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This review connects several lines of research to argue that
hyperbolic geometry should be broadly applicable to neural
circuits as well as other biological circuits. The reason for this
is that networks that conform to hyperbolic geometry are
maximally responsive to external and internal perturbations.
These networks also allow for efficient communication under
conditions where nodes are added or removed. We will argue
that one of the signatures of hyperbolic geometry is the
celebrated Zipf's law (also sometimes known as the Pareto
distribution) that states that the probability to observe a given
pattern is inversely related to its rank. Zipf's law is observed in
a variety of biological systems — from protein sequences,
neural networks to economics. These observations provide
further evidence for the ubiquity of networks with an
underlying hyperbolic metric structure. Recent studies in
neuroscience specifically point to the relevance of a three-
dimensional hyperbolic space for neural signaling. The three-
dimensional hyperbolic space may confer additional
robustness compared to other dimensions. We illustrate how
the use of hyperbolic coordinates revealed a novel
topographic organization within the olfactory system. The use
of such coordinates may facilitate representation of relevant
signals elsewhere in the brain.
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Hyperbolic geometry has been shown to describe multi-
ple aspects of human perception, including those in vision
[1-3], olfaction [4], and touch [5,6]. Hyperbolic geometry
also has been recently shown to describe the statistics of
natural stimuli in olfaction [4] and color [7]. The use of
hyperbolic geometry is also attracting attention in
machine learning research where it provides more accu-
rate representation for diverse data sets including natural
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images [9] and phylogenetic trees [10]. Hyperbolic coor-
dinates have also been found useful for describe man-
made networks, such as internet [11°], where they make it
possible to efficiently route signals through the network.

One reason for this ubiquity is that hyperbolic geometry
provides continuous approximation to tree-like hierar-
chical systems and processes [8°] (Figure 1). The
distinguishing property of the hierarchical tree-like
processes is the exponential expansion of states, which
is captured by hyperbolic geometry and metric.
Because of the negative curvature, the distances
between points grow exponentially compared to their
Euclidean values. In particular, the length and area of a
circle grow exponentially with their radius in hyper-
bolic spaces [8°]. In fact, the exponential expansion of
states makes it difficult to represent hyperbolic spaces.
Multiple representations exist, including the Poincare
half plane (Figure 1a) and Poincare disk (Figure 1b).
These representations use different transformations to
map the hyperbolic spaces to the Euclidean space. In
both cases, one observes that the geodesics connecting
nodes in the networks are curved and follow approxi-
mately paths along the tree rather than straight lines
between points. The ubiquity of hierarchical latent
structures and hyperbolic geometry raises the possibil-
ity that hyperbolic geometry might be related to other
ubiquitous properties of biological systems, namely the
self-organized criticality and particularly Zipf’s law
[12,13°°], which will discuss next.

Zipf’s law was originally formulated in linguistics for word
frequency [12,13°°]. The observation is that the probabil-
ity to encounter a given word o, is inversely proportional
to its rank:

r(o)’ (1)

where P(o) and 7(o) are the probability and the rank of
the word. Generalizing words to states, this power law
dependence has been observed for natural images [14], as
well as across multiple scales of biological organization,
including neural networks [13°°,15,16], amino acid
sequences in the immune systems [17], flocks of birds
[18-20] and other self-organized animal groups. Zipf’s law
also applies to multiple measures of human activity, such
as the size of cities [21], firms [22] and funds [23].

Given the ubiquity of Zipf’s law and hyperbolic geome-
try one wonders whether they are related to each other.
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Figure 1

(a)
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Hyperbolic spaces approximate tree-like hierarchical networks. Poincare half space model (a) and Poincare disk (b) provide two different ways for
representing hyperbolic spaces in the Euclidean plane. Both representations capture exponential expansion of states produced by tree-like
networks near the space boundary. This boundary is planar in (a) and circular in (b). In both cases, the lines of shortest distance (red) are curved,
unlike in the Euclidean space where straight lines yield the shortest paths between points. Note that these lines approximately trace the
‘phylogenetic’ distances between nodes. In (a) colored dots describe nodes of a network. Background squares provide discrete version of a
Poincare half-space model of a hyperbolic space. (b) Points are sampled randomly from their expected density. Node position reflects their
expected degree. Hub-like nodes are assigned coordinates closer to the disk center. The number of nodes increases exponentially with radius
whereas their expected degree decreases exponentially. This combination leads to power-law distribution of network degrees [8°].

In the case of Zipf’s law recent theoretical work has
provided an explanation for its ubiquity as reflecting
networks whose states are strongly modulated by the
external parameters [24°,25°]. Loosely, the requirement
for the emergence of Zipf’s law is that the distribution of
internal states of a system should be narrow for a given
value of environmental variables but that changing the
values of the environmental variable should strongly
modulate the mean of the distribution of internal states.
Qualitatively, this arrangement should describe circuits
that are strongly responsive to external perturbations.
It turns out that this intuition can be formalized
to mathematically show that indeed Zipf’s law naturally
describes circuits that provide maximal amount of
information about the variables they are designed to
convey [26°°]. In some cases, these variables can repre-
sent signals from the natural environment. For example,
a flock of birds should be able to respond well to predator
threat. In other cases, the ‘hidden’ or ‘latent’ variable
signal internal states of the network. For example, within
the nervous system should be responsive to changes
in the metabolic state of the animal. These results
echo mathematical results for the ‘navigability’ of
networks with hyperbolic geometry [11°,27-29] where
all greedy-routing using information only about local
connectivity and coordinates provides asymptotically
shortest paths [30].

"This observation prompts one to search for a mathematical
connection between Zipf’s law and hyperbolic geometry. It
turns out that Zipf’s law can be reformulated as stating
that the number of states should grow exponential with
energy, where energy £ is defined as the logarithm of

the probability, £ = —log[P(c)]. Indeed, applying the
logarithm to Eq. (1) yields that

£ = log|r(o)]. (2)

This indicates that the rank, which is related to the
number of states N, increases exponentially with energy,
N(E) o . An exponential expansion in the number of
nodes is one of the signatures of hyperbolic geometry
[8°] and a hallmark of the tree-like networks for which
they provide continuous approximation (Figure 1). Thus,
this simple reasoning makes it possible to connect
the observations of Zipf’s law [17] and other signatures
of power-law dynamics [31] with hyperbolic geometry in
neural circuits [4,32] and maximally informative repre-
sentations [26°°,33].

The link between hyperbolic geometry, Zipf law and
maximally informative representations clarifies why
hyperbolic geometry is simultaneously relevant for both
the olfactory system [4] and word distribution [12,13°°]. In
the case of olfaction, plants and animals have to produce
chemical signals that will be discernible by other animals.
Here there are advantages for both the producer and the
receiver to mutually optimize their representation. This
point is illustrated in Figure 2 that shows an embedding
of monomolecular odorants into a three-dimensional
hyperbolic space (Poincare ball) where distances between
odors reflect how correlated they are across different
fruit samples. This visualization was obtained using
non-metric multi-dimensional scaling (nMDS) to embed
odors produced by tomato and strawberry samples into a
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Figure 2
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Embedding of fruit volatile compounds from tomato and strawberry,
using analysis from Ref. [4]. The points are positioned based on
distances that reflect correlations in concentrations across different
samples of tomatoes [45] and strawberries [46]. The color represents
correlation of the odorant concentration with human rankings for
pleasantness. The points fall near the surface of a three-dimensional
Poincare ball.

three dimensional hyperbolic space [4]. The dimension-
ality of the space and its metric were first found via a
topological analysis that ruled out Euclidean and spheri-
cal geometries, suggesting instead that points distributed
near a surface of a hyperbolic Poincare ball were consis-
tent with the measured distances. Once the space param-
eters were identified, the specific distribution of points
was found using an nMDS with a hyperbolic metric. What
is interesting about the resultant picture is that, although
the distances between points within the embedding
reflect correlation between odorants when produced by
plants, the map shows topographical organization in terms
of human pleasantness ratings. A region near the top of
the sphere contain odorants that all have strong correla-
tions with human pleasantness index for individual odors.
The pleasantness index represents how correlated was
the concentration of a particular monomolecular odorant
with the overall pleasantness values that humans assigned
to different fruit samples. Although all of the odorants are
derived from plants, some are associated with much lower
pleasantness ratings than others. The observed topogra-
phy suggests that olfactory representations within the
nervous system are orderly, even though they may appear
random at the initial stages of olfactory processing [34]
where random coding provides a good approximation for
animal’s discrimination performance [35-37]. The use of
hyperbolic coordinates in Figure 2 makes it possible
therefore to connect natural scenes statistics with human
perception. Hyperbolic coordinates were also evident in
earlier publications that analyzed human perception by
itself [38-40]. Although they were not named as such, the
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surfaces plotted were consistent with a hyperboloid cross-
section and described as ‘potato-chip’ models. It seems
plausible that the use of hyperbolic geometries can be
helpful in identifying topography elsewhere within the
nervous system.

Of separate note is the dimensionality of the hyperbolic
space suggested by the analysis of both the human
perceptual rankings and natural odors. Three-dimensional
hyperbolic spaces are also particularly useful for visualiza-
tion of phylogenetic trees [10]. Thus, one may wonder
whether hyperbolic geometry specifically in three dimen-
sions might be particularly relevant for biological circuits.
This hypothesis is supported Mostow’s theorem [41] that
three dimensional hyperbolic spaces are uniquely deter-
mined by their topological properties, with no possibility of
continuous deformations [42,43]. The three-dimensions
may therefore be the lowest dimension to confer sufficient
robustness of hyperbolic representations to noise.

Overall, quantifying the dimensionality of both neural
signals and behavioral outputs is an active area of research
[44]. Across different systems, emergent evidence suggests
that both the neural activity and behavioral outputs are
described by low-dimensional smooth manifolds. At the
same time, at the level of behavioral outputs, there are
exponentially many states organized hierarchically. Hyper-
bolic organization provides a way to reconcile these two
observations by mapping the apparent complexity of
behavioral states using hyperbolic spaces of low dimension.
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