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This review connects several lines of research to argue that

hyperbolic geometry should be broadly applicable to neural

circuits as well as other biological circuits. The reason for this

is that networks that conform to hyperbolic geometry are

maximally responsive to external and internal perturbations.

These networks also allow for efficient communication under

conditions where nodes are added or removed. We will argue

that one of the signatures of hyperbolic geometry is the

celebrated Zipf’s law (also sometimes known as the Pareto

distribution) that states that the probability to observe a given

pattern is inversely related to its rank. Zipf’s law is observed in

a variety of biological systems — from protein sequences,

neural networks to economics. These observations provide

further evidence for the ubiquity of networks with an

underlying hyperbolic metric structure. Recent studies in

neuroscience specifically point to the relevance of a three-

dimensional hyperbolic space for neural signaling. The three-

dimensional hyperbolic space may confer additional

robustness compared to other dimensions. We illustrate how

the use of hyperbolic coordinates revealed a novel

topographic organization within the olfactory system. The use

of such coordinates may facilitate representation of relevant

signals elsewhere in the brain.
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Hyperbolic geometry has been shown to describe multi-

ple aspects of human perception, including those in vision

[1–3], olfaction [4], and touch [5,6]. Hyperbolic geometry

also has been recently shown to describe the statistics of

natural stimuli in olfaction [4] and color [7]. The use of

hyperbolic geometry is also attracting attention in

machine learning research where it provides more accu-

rate representation for diverse data sets including natural
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images [9] and phylogenetic trees [10]. Hyperbolic coor-

dinates have also been found useful for describe man-

made networks, such as internet [11�], where they make it

possible to efficiently route signals through the network.

One reason for this ubiquity is that hyperbolic geometry

provides continuous approximation to tree-like hierar-

chical systems and processes [8�] (Figure 1). The

distinguishing property of the hierarchical tree-like

processes is the exponential expansion of states, which

is captured by hyperbolic geometry and metric.

Because of the negative curvature, the distances

between points grow exponentially compared to their

Euclidean values. In particular, the length and area of a

circle grow exponentially with their radius in hyper-

bolic spaces [8�]. In fact, the exponential expansion of

states makes it difficult to represent hyperbolic spaces.

Multiple representations exist, including the Poincare

half plane (Figure 1a) and Poincare disk (Figure 1b).

These representations use different transformations to

map the hyperbolic spaces to the Euclidean space. In

both cases, one observes that the geodesics connecting

nodes in the networks are curved and follow approxi-

mately paths along the tree rather than straight lines

between points. The ubiquity of hierarchical latent

structures and hyperbolic geometry raises the possibil-

ity that hyperbolic geometry might be related to other

ubiquitous properties of biological systems, namely the

self-organized criticality and particularly Zipf’s law

[12,13��], which will discuss next.

Zipf’s law was originally formulated in linguistics for word

frequency [12,13��]. The observation is that the probabil-

ity to encounter a given word s; is inversely proportional

to its rank:

P sð Þ / 1

rðsÞ ; ð1Þ

where PðsÞ and rðsÞ are the probability and the rank of

the word. Generalizing words to states, this power law

dependence has been observed for natural images [14], as

well as across multiple scales of biological organization,

including neural networks [13��,15,16], amino acid

sequences in the immune systems [17], flocks of birds

[18–20] and other self-organized animal groups. Zipf’s law

also applies to multiple measures of human activity, such

as the size of cities [21], firms [22] and funds [23].

Given the ubiquity of Zipf’s law and hyperbolic geome-

try one wonders whether they are related to each other.
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Figure 1

a b

(a) (b)

Current Opinion in Neurobiology

Hyperbolic spaces approximate tree-like hierarchical networks. Poincare half space model (a) and Poincare disk (b) provide two different ways for

representing hyperbolic spaces in the Euclidean plane. Both representations capture exponential expansion of states produced by tree-like

networks near the space boundary. This boundary is planar in (a) and circular in (b). In both cases, the lines of shortest distance (red) are curved,

unlike in the Euclidean space where straight lines yield the shortest paths between points. Note that these lines approximately trace the

‘phylogenetic’ distances between nodes. In (a) colored dots describe nodes of a network. Background squares provide discrete version of a

Poincare half-space model of a hyperbolic space. (b) Points are sampled randomly from their expected density. Node position reflects their

expected degree. Hub-like nodes are assigned coordinates closer to the disk center. The number of nodes increases exponentially with radius

whereas their expected degree decreases exponentially. This combination leads to power-law distribution of network degrees [8�].
In the case of Zipf’s law recent theoretical work has

provided an explanation for its ubiquity as reflecting

networks whose states are strongly modulated by the

external parameters [24�,25�]. Loosely, the requirement

for the emergence of Zipf’s law is that the distribution of

internal states of a system should be narrow for a given

value of environmental variables but that changing the

values of the environmental variable should strongly

modulate the mean of the distribution of internal states.

Qualitatively, this arrangement should describe circuits

that are strongly responsive to external perturbations.

It turns out that this intuition can be formalized

to mathematically show that indeed Zipf’s law naturally

describes circuits that provide maximal amount of

information about the variables they are designed to

convey [26��]. In some cases, these variables can repre-

sent signals from the natural environment. For example,

a flock of birds should be able to respond well to predator

threat. In other cases, the ‘hidden’ or ‘latent’ variable

signal internal states of the network. For example, within

the nervous system should be responsive to changes

in the metabolic state of the animal. These results

echo mathematical results for the ‘navigability’ of

networks with hyperbolic geometry [11�,27–29] where

all greedy-routing using information only about local

connectivity and coordinates provides asymptotically

shortest paths [30].

This observation prompts one to search for a mathematical

connection between Zipf’s law and hyperbolic geometry. It

turns out that Zipf’s law can be reformulated as stating

that the number of states should grow exponential with

energy, where energy E is defined as the logarithm of
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the probability, E ¼ �log P sð Þ½ �: Indeed, applying the

logarithm to Eq. (1) yields that

E ¼ log r sð Þ½ �: ð2Þ

This indicates that the rank, which is related to the

number of states N, increases exponentially with energy,

NðEÞ / eE. An exponential expansion in the number of

nodes is one of the signatures of hyperbolic geometry

[8�] and a hallmark of the tree-like networks for which

they provide continuous approximation (Figure 1). Thus,

this simple reasoning makes it possible to connect

the observations of Zipf’s law [17] and other signatures

of power-law dynamics [31] with hyperbolic geometry in

neural circuits [4,32] and maximally informative repre-

sentations [26��,33].

The link between hyperbolic geometry, Zipf’ law and

maximally informative representations clarifies why

hyperbolic geometry is simultaneously relevant for both

the olfactory system [4] and word distribution [12,13��]. In

the case of olfaction, plants and animals have to produce

chemical signals that will be discernible by other animals.

Here there are advantages for both the producer and the

receiver to mutually optimize their representation. This

point is illustrated in Figure 2 that shows an embedding

of monomolecular odorants into a three-dimensional

hyperbolic space (Poincare ball) where distances between

odors reflect how correlated they are across different

fruit samples. This visualization was obtained using

non-metric multi-dimensional scaling (nMDS) to embed

odors produced by tomato and strawberry samples into a
www.sciencedirect.com



Hyperbolic geometry in neural circuits Sharpee 103

Figure 2
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Embedding of fruit volatile compounds from tomato and strawberry,

using analysis from Ref. [4]. The points are positioned based on

distances that reflect correlations in concentrations across different

samples of tomatoes [45] and strawberries [46]. The color represents

correlation of the odorant concentration with human rankings for

pleasantness. The points fall near the surface of a three-dimensional

Poincare ball.
three dimensional hyperbolic space [4]. The dimension-

ality of the space and its metric were first found via a

topological analysis that ruled out Euclidean and spheri-

cal geometries, suggesting instead that points distributed

near a surface of a hyperbolic Poincare ball were consis-

tent with the measured distances. Once the space param-

eters were identified, the specific distribution of points

was found using an nMDS with a hyperbolic metric. What

is interesting about the resultant picture is that, although

the distances between points within the embedding

reflect correlation between odorants when produced by

plants, the map shows topographical organization in terms

of human pleasantness ratings. A region near the top of

the sphere contain odorants that all have strong correla-

tions with human pleasantness index for individual odors.

The pleasantness index represents how correlated was

the concentration of a particular monomolecular odorant

with the overall pleasantness values that humans assigned

to different fruit samples. Although all of the odorants are

derived from plants, some are associated with much lower

pleasantness ratings than others. The observed topogra-

phy suggests that olfactory representations within the

nervous system are orderly, even though they may appear

random at the initial stages of olfactory processing [34]

where random coding provides a good approximation for

animal’s discrimination performance [35–37]. The use of

hyperbolic coordinates in Figure 2 makes it possible

therefore to connect natural scenes statistics with human

perception. Hyperbolic coordinates were also evident in

earlier publications that analyzed human perception by

itself [38–40]. Although they were not named as such, the
www.sciencedirect.com 
surfaces plotted were consistent with a hyperboloid cross-

section and described as ‘potato-chip’ models. It seems

plausible that the use of hyperbolic geometries can be

helpful in identifying topography elsewhere within the

nervous system.

Of separate note is the dimensionality of the hyperbolic

space suggested by the analysis of both the human

perceptual rankings and natural odors. Three-dimensional

hyperbolic spaces are also particularly useful for visualiza-

tion of phylogenetic trees [10]. Thus, one may wonder

whether hyperbolic geometry specifically in three dimen-

sions might be particularly relevant for biological circuits.

This hypothesis is supported Mostow’s theorem [41] that

three dimensional hyperbolic spaces are uniquely deter-

mined by their topological properties, with no possibility of

continuous deformations [42,43]. The three-dimensions

may therefore be the lowest dimension to confer sufficient

robustness of hyperbolic representations to noise.

Overall, quantifying the dimensionality of both neural

signals and behavioral outputs is an active area of research

[44]. Across different systems, emergent evidence suggests

that both the neural activity and behavioral outputs are

described by low-dimensional smooth manifolds. At the

same time, at the level of behavioral outputs, there are

exponentially many states organized hierarchically. Hyper-

bolic organization provides a way to reconcile these two

observations by mapping the apparent complexity of

behavioral states using hyperbolic spaces of low dimension.
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