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ABSTRACT  

This paper assesses potential benefits of online integrity monitoring for aviation software. Today, aviation software safety is 

assessed entirely via verification and validation conducted before deployment, largely through exhaustive testing. Though 

software anomalies (or bugs) do occur, system fault trees do not assign fault probabilities to software components. Moreover, 

online signal monitoring is not generally applied to detect bugs. As software complexity increases, and as interactions between 

software and hardware system components become more complex, it is prudent to consider whether exhaustive pre-service 

software testing is sufficient to maintain system safety, and whether safety analyses used for hardware components (e.g. fault 

trees and monitoring) might be applied to software components. The contribution of this paper is to propose an architecture for 

online bug monitoring and quantify its potential. The proposed concept has significant potential impact for low-cost, 

autonomous unmanned aircraft systems, where cost drivers prohibit exhaustive pre-service verification. 

INTRODUCTION  

In safety-of-life aviation applications, integrity monitors are critical for detecting navigation-system faults that might otherwise 

cause hazardously misleading information.  To protect aviation applications reliant on the Global Navigation Satellite System 

(GNSS), for example, engineers have developed a number of GNSS integrity-monitoring systems including RAIM, GBAS, 

and SBAS [1]-[4].  These monitoring capabilities inherently acknowledge that anomalous events can occur, even in technically 

well-designed systems. 
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By contrast, in deploying aviation-software systems, software is assumed to be perfect once verified.  This assumption implies 

the algorithm structure is fully specified in advance and implemented exactly.  Although the notion of exhaustive software 

verification is reasonable for simple software programs, verification complexity becomes daunting as software complexity 

increases, particularly for aviation systems and other cyberphyiscal systems in which software and hardware components 

interact.  Indicative of the skyrocketing complexity of aviation software, the number of lines in flight-control codes have 

increased by an order of magnitude each decade [5],[6]. Resulting complexity has substantially slowed development of 

innovative conventional aircraft and emerging unmanned aerial systems (UAS) [7],[8]. Serious software anomalies have also 

caused problems for large and complex commercial aircraft [9]. 

One active branch of research that seeks to address the challenges of verifying complex code is the field of formal methods 

[10]-[13]. Formal methods apply specification-based approaches to generate automated proofs of how a code will perform. 

Though this approach has promise, it has proved impractical to date because of rigid constraints on the software development 

process, including the algorithms, languages and syntax used. Moreover, writing and checking formal specifications is 

extremely difficult and time-consuming. Even using today’s technology, a software verification specialist must be hired. Other 

longer term issues include the possibility of errors appearing in the specification itself and inflexibility, which makes iterative 

updates to the specification extremely difficult. 

Given that it is difficult to deploy formal methods for large-scale aviation software (which is often written in general-purpose 

languages like C), we propose an alternative concept for achieving high levels of safety without overly constraining aviation 

software developers. Specifically, in this paper, we explore the potential utility of online bug monitoring for simplifying 

verification. The concept is that aviation software would consist of a large flight control code complemented by a small, failsafe 

kernel. The large flight control code would be verified to a reasonable degree, but only the failsafe kernel would be verified 

exhaustively (or perhaps designed using formal methods). While the primary flight control code would be active in nominal 

operations, a transition to the kernel would occur if a potentially hazardous bug were detected during operation; the failsafe 

kernel would have just sufficient capability to navigate the aircraft to safety in that event. Triggering the failsafe kernel 

necessitates an effective real-time bug-monitoring capability. As we will explore in this paper, if such a bug monitor achieves 

sufficient levels of performance, the overall software architecture delivers a high level of integrity, compatible with safety-of-

life aviation applications. Importantly, the proposed architecture would greatly relax pre-operation verification requirements, 

allowing for more rapid development of aviation software and enabling the use of a wide range of programming languages, 
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data structures, and modern algorithms (including machine learning). The reduced requirements for pre-service verification 

would promote more nimble software design processes, including iterative design methods (like agile design [14]-[16]), which 

are difficult to implement given the high cost of re-verifying existing software using conventional verification standards 

[17],[18]. 

The main contribution of this paper is to propose a system architecture and corresponding safety case that exploit online bug 

monitoring to relax requirements for pre-service verification without sacrificing overall system safety. Though we have 

previously introduced concepts for bug monitors [20], the safety case for such monitors has not previously been considered.  

The remainder of the paper is structured as follows. First, we develop a high-level fault tree that captures the potential 

contribution of a bug-monitor to overall system safety. Second, we describe a prototype bug-monitor that we have implemented 

using an open-source flight controller called Ardupilot. Third, we identify key performance metrics that can be used to evaluate 

the monitor’s performance, and we develop a mathematical approach to quantify those performance metrics. Fourth, we explore 

the design space for the monitor using a very simple probabilistic model of monitor operation. In discussing this design space, 

potential design targets for a monitor are identified. A brief summary concludes the paper. 

PROPOSED SYSTEM ARCHITECTURE  

This section defines a system architecture and an associated fault tree, in order to analyze how a bug monitor might relax 

requirements for pre-service verification while preserving overall system safety. Three primary mitigations for bug-induced 

faults are proposed: pre-service verification, crash recovery, and bug monitoring. A fault-tree including all three mitigations is 

shown in Fig. 1. 

As per current practice for verifying aviation software, detailed in DO-178 [17], we envision pre-service verification to be the 

foundation for mitigating bug-induced faults. Pre-service verification is intended to catch most bugs in the code, and in 

particular those bugs that occur during nominal operations. This process is assumed to consist of extensive run-time testing on 

compiled code, starting with testing of software interfaced with simulated hardware and concluding with validation of the 

software integrated with the full physical system.   

Unlike conventional verification for aviation software, a finite probability of a failure due to a bug is specified on the system 

fault tree. An analysis of the number and type of verification tests will be needed to determine whether a pre-service verification 

campaign can meet the target probability that a hazardous bug remains after verification. If online bug detection is sufficiently 
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reliable, then it may be possible to tolerate a greater likelihood of a latent bug remaining in the code. This mitigation concept 

implies that rare bugs – at least those escaping initial verification efforts – are inherently somewhat random in nature. We assert 

that such a probabilistic model is appropriate for difficult-to-find-bugs, which appear and disappear with no discernible pattern. 

(Such bugs, which seemingly vanish when probed, are common enough that programmers have coined the name Heisenbugs 

[19], a humorous reference to the Heisenberg Uncertainty Principle.) 

As an example of possible mitigation, Fig. 1 shows how a total system failure rate of 10-9 per arbitrary unit of time can 

potentially be achieved by combining a bug monitor (missed-detection probability of 10-5) and a moderate level of verification 

(maximum allowed probability that a hazardous bug remains post-verification of 10-4). For a deployed system, the failure rate 

would need to be specified for a given period of time (e.g., as the allowed rate of bug faults per hour); however, at this 

preliminary stage in development of bug-monitor concepts, it is too early to settle on a particular time unit. As such, all 

probabilities in this paper are written without a specified time unit. 

 

Fig. 1. Fault tree for proposed bug mitigation architecture. Example fault-probabiliy targets per unit time are shown, as one vision for 
how the risk of a bug causing a system failure might be limited to a maximum probability of 10-9 per unit time.  

 

On closer examination, Fig. 1 describes a safety architecture consisting of three levels of risk mitigation for bugs, which are 

complemented by a pair of autopilots, as illustrated in Fig. 2. The three levels of risk mitigation include: offline verification 
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that occurs before the system enters service, online crash recovery, and an online bug monitoring. The distinction between 

crash recovery and bug monitoring acknowledges that rare, essentially random bugs manifest in one of two ways – as dramatic 

software crashes or as more subtle corrupted variable values. First, in the case of a software crash, such as a segmentation fault, 

an exception handling routine would have responsibility to switch control from the primary control code to the failsafe. Though 

such bug-induced faults are potentially disastrous, they have the virtue of being easy to detect and therefore mitigate. Second, 

in the case of a corrupted variable, a bug monitoring routine would have responsibility to switch control to the failsafe. Though 

a system-fault due to corrupted-variable values may take somewhat longer to develop than one due to a software crash, the 

corrupted-variable case is much harder to detect and mitigate. As such, the emphasis of this paper will be on analyzing the 

performance of the bug monitoring routine. 

Returning to Fig. 1, it is clear that any bug that evades pre-service verification must be caught by either crash recovery or bug 

monitoring. The missed-detection probabilities are therefore combined with an OR in the figure. For a bug to harm the system, 

it must be missed by pre-service verification AND monitoring. The upshot is that, at least in this example, the requirements for 

pre-service verification are relaxed by five orders of magnitude by introducing online bug mitigation.  

 

Fig. 2. Monitor block diagram 

 

An astute reader may be concerned about additional integrity risk incurred when an alarm is issued by crash recovery or bug 

monitoring. Because the failsafe kernel is assumed to be verified to an exceptionally high standard, the probability of a bug 

occurring in the failsafe kernel is assumed to be zero, and so the fault-tree includes no additional integrity risk associated with 

true-positive alarms. This model is justified by the idea that the failsafe kernel is a very small code that provides just enough 
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functionality to safely land an aircraft and no more; because the failsafe kernel is much less complex than the primary autopilot, 

it is assumed that the failsafe kernel can be exhaustively verified or be constructed with formal methods such that it is 

guaranteed correct-by-construction. Thus, the bug monitor is only needed for the much larger, more complex primary autopilot. 

Neither transitioning nor operating the failsafe induces added integrity risk; however, it must be acknowledged that 

transitioning to the failsafe entails interruption of service. In other words, alarms from crash recovery AND bug monitoring 

introduce continuity risk, as shown in Fig. 3. Continuity breaks are caused both by true and false alarms. 

 

Fig. 3. Continuity risk for proposed architecture 

 

An important question is: can acceptable levels of integrity and continuity risk be achieved by such an architecture? In order 

to evaluate potential performance, it is useful to convert the fault-tree in Fig. 1 into an equation, where the system-failure risk 

due to a software fault is described by the following series of conditional probabilities.  
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This equation can be simplified slightly by assuming conservatively that any software bug is capable of causing a system 

failure, in which case the first probability above is one. Making this conservative assumption, introducing PVF as a shortened 
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  failsafe trigger fault | verification faultLOI VFP P P . (2) 

The probability that the failsafe does not trigger can be expanded, noting from Fig. 1 that the failsafe is triggered either by crash 

recovery or bug monitoring. This “or” condition is represented by addition of relevant probabilities: 

  failsafe trigger fault | verification fault CR FNP P P  . (3) 

Here PCR represents the probability that crash recovery fails and PFN, that the bug monitor fails. The abbreviation FN stands for 

false-negative. Further simplification is possible if we assume that crash recovery is relatively likely to succeed, since software 

crashes are easy to detect. In that case, the crash-recovery risk PCR is negligibly small as compared to bug-monitor risk PFN, 

such that 

  failsafe trigger fault | verification fault FNP P , (4) 

and that, combining (2) and (4),  

 LOI FN VFP P P . (5) 

In subsequent analysis, (5) will be used to model the overall probability of a loss-of-integrity event causing system failure. 

Note that the above analysis (and the fault tree of Fig. 1) implicitly assume a vanishingly small probability that multiple 

unrelated bugs occur simultaneously, which is reasonable given a sufficiently thorough pre-service verification campaign (i.e., 

given that PVF is sufficiently small). 

BUG MONITOR IMPLEMENTATION 

Before defining performance criteria for a bug monitor, it is helpful to first discuss how such a monitor would be implemented 

in practice. To this end, we briefly review details of a prototype bug monitor our team has recently implemented and tested. 

General Description 

Bug monitors we have implemented to date in [20] and [21] can be described in general terms by the block diagram of Fig. 2. 

The primary automation software and the bug-monitoring algorithm are two separate programs, each coded separately and 

linked at compile time. In this sense the design of the monitor is essentially independent from the design of the primary 
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automation, such that the source code for the automation software could conceptually remain proprietary and unknown to the 

designers of the bug monitor. 

In the linking step, the bug monitor is configured to scan memory locations associated with certain variables used by the primary 

automation software. These probes allow the bug monitor to extract variable values associated with particular lines of the 

primary code. Probes may be analyzed directly, or they may be mapped via signal processing to a smaller set of derived values 

called features. A vector of probes and/or features is then compared to a classification surface, which represents a learned 

model of nominal behavior. If the feature vector lies inside the classification surface, the primary code is deemed to be operating 

normally, and so the primary code is allowed to continue controlling the aircraft. However, in the rare event that the feature 

vector lies outside the classification surface, the primary code is deemed to be operating anomalously, and control is switched 

to the failsafe kernel. 

Bug Detector Implementation 

In our recent work, we have instrumented Ardupilot, an open source autopilot [22] that has been configured to operate a wide 

range of autonomous and remotely operated platforms, from fixed-wing aircraft, to rotorcraft, submersibles, and ground 

vehicles. Ardupilot is a useful software testbed, in that it offers a well-documented bug database and version history. In fact, 

Ardupilot can easily be rolled back to re-introduce specific bugs from earlier versions. In working with Ardupilot, we have 

generated a monitor as a separate program, called OScope. We compile the two programs using Clang to obtain intermediate 

representations (IR), and link the two IR codes into a common executable using the Low-Level Virtual Machine (LLVM), an 

open source toolset originated by the University of Illinois [23].  

In implementing our Oscope monitor, we considered four key design decisions: 

 Probe selection: Which variables in the autopilot should be monitored? 

 Time horizon: Should monitor classification consider only probe variables from a single time epoch (snapshot 

processing) or from multiple epochs (batch or recursive processing)? 

 Feature selection: Should the set of sampled probe variables be subjected to signal processing (e.g. extraction of mean 

or dominant frequencies from a time signal) to generate a reduced set of features for classification, or should the probe 

values be used directly as classification features? 

 Classification model: What model structure and training technique should be used to cluster features and distinguish 

between nominal and anomalous system behavior? 
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In implementing a proof-of-concept system, our guiding principal has been to keep our prototype as simple as possible in every 

respect in order to demonstrate feasibility; we envision optimizing performance at a later time, once we have shown the system 

works. With simplicity in mind, we addressed each of the bulleted design questions above to minimize prototype complexity.  

First, we configured OScope to consider two basic methods for probe selection: (a) an input-output method, in which we 

selected 25 probe variables reading from sensors or writing to actuators, and (b) a randomized method, in which we selected 

10 random variables from the set of all variables in Ardupilot. These methods of probe selection are unrelated to the location 

or nature of any particular bug, and so it is “fair” to test feasibility by applying these probes to detect known bugs from a bug 

database.  

Second, we configured OScope’s time horizon for snapshot analysis, with probe variables extracted at a single epoch and used 

for immediate bug-classification at that epoch. Though analysis of snapshot values (rather than a time-series) restricts the 

amount of data available and likely reduces our signal-to-noise ratio for classification, snapshot analysis offers a strong benefit. 

Notably, in snapshot analysis, physical-component dynamics cannot influence the time-evolution of the probe data. Thus, 

snapshot analysis isolates detected anomalies as software bugs, as distinguished from hardware-component faults that would 

otherwise correlate probe values in an anomalous manner over time. 

Third, we configured Oscope to use the probe variables directly as classification features, with no additional signal processing. 

Although this design choice limits the signal-to-noise benefits of signal processing, avoiding signal processing simplifies 

implementation and interpretation. Moreover, absent filtering or other signal processing, the monitor responds immediately, 

such that time-to-alert is essentially zero. 

Last, we configured Oscope to use one of the simplest machine-learning classifiers to model relationships among probe values. 

Specifically, we used an AdaBoost classifier, implemented as a set of decision trees. In addition to its ease of implementation, 

AdaBoost is advantageous in that its inner workings are relatively transparent and interpretable. Also, AdaBoost has proved 

useful in a number of automation-related studies, such as [24] and [25]. 

Preliminary Results 

To test our prototype, we identified three relevant bugs from the Ardupilot bug database. Specifically, we considered bugs 

2835 (large pitch actuation commanded when aircraft stalls during a turn), 6637 (aircraft flies away rather than entering a 
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circular holding pattern due to erroneous user-defined bank-angle parameter), and 7062 (failure to transition from climb to 

level flight for a VTOL aircraft). These bugs were all difficult bugs in the sense that they were not detected in early verification 

and validation of Ardupilot (indicating that the bugs might escape the pre-service verification block of Fig. 1). The  bugs were 

also difficult in the sense that they did not cause the code to abruptly stop working (indicating they would have escaped the 

software crash recovery block of Fig. 1). These bugs escaping pre-service verification and software-crash recovery are ideal 

candidates for our proposed bug monitor, which is designed to serve as a last layer of defense. 

For a basic feasibility evaluation, we generated a number of simulated flight trials using JSBSim, an open-source flight 

dynamics engine [26]. Approximately 20 trials were generated for each bug, each consisting of 3000 or more epochs 

individually classified as “nominal” or “faulted” by a human supervisor. In generating trials, we randomly perturbed initial 

conditions, waypoints, and disturbance forces. For this study, we simulated only one flight condition per bug; however it is 

worth noting that in our prior work (involving much simpler automation software), we were successful in training classifiers 

for diverse scenarios, in which the same model recognized both regular and balked landings as nominal (or correct) modes of 

operation of a control code, as long as no bug was active [20].  

To keep our data analysis simple, we trained our classifier on half of the simulated trials and tested our classifier using the other 

half. The classifier was trained to a nominal alarm rate of 20%. Our results showed that the probe set consisting of input-output 

variables was indeed sensitive to the bug, with a median true-alarm rate of 65% for bug 2835, 55% for bug 6637, and 99% for 

bug 7062. Ten randomly selected probe sets (each consisting of 10 probe variables) were also considered and compared to the 

input-output variable set. The best random variable set for bug 2835 gave a true-alarm rate of 35%, for bug 6637 gave 58%, 

and for bug 7062 gave 98%. Analysis of confidence margins indicated all results were statistically significant relative to the 

nominal alarm rate of 20%. 

These preliminary results demonstrate, for the first time, that detection of real bugs is possible in a real autopilot, even using a 

nonoptimized probe set. Clearly, some bugs are easier to detect than others, with the final bug (7062) being relatively easy to 

detect, with very few missed detections, and with the first bug (2835) being relatively hard to detect, with a great many missed 

detections. Perhaps surprisingly, the best random-variable probe sets performed nearly as well as the input-output variable set. 

This suggests that there is significant hidden structure within the code that might be exploited for optimal probe selection.  

Although the performance metrics for our proof-of-concept are still far away from aerospace standards, we hypothesize that 

there is ample opportunity to enhance performance, given that we used the simplest possible strategies to build the monitor 
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including (a) randomized probe selection, (b) snapshot processing, (c) no signal processing on the probe values, and (d) 

rudimentary choice of machine-learning models for our classifier.  

Unsupervised Bug Detection with a One-Class Model 

As a practical consideration, it is important to acknowledge one additional design detail:  the need for unsupervised machine 

learning. For the bug-detection application, we must assume bugs can take nearly any form, and we cannot expect that new 

bugs will resemble bugs observed previously in the bug database. In this sense, it is not particularly useful to train the bug 

detection model with supervised learning methods, which rely on a human expert to label when known bugs are expressed.  

A more useful approach for designing a monitor is to use an unsupervised approach, which does not rely on any model of a 

bug. To this end, we consider a one-class model, in which the model is trained only to recognize nominal behavior, such that 

any observation inconsistent with nominal behavior must be considered to be an anomaly. This approach is unsupervised in the 

sense that no labeling is required for the training data set.  

As long as the training data are constrained to represent predominantly nominal behaviors (allowing for a few rare bug 

conditions mixed in), then the one-class model can be trained without explicit supervision. This is an important detail, and it 

bears restating. As long as bugs are relatively rare in the training data, a one-class model can be defined using unlabeled data. 

Bugs in the training data will inadvertently influence the classification surface that represents bug-free operation; however, this 

influence will be small as long as bugs are sufficiently rare. The analysis that follows will explicitly model this effect, by using 

the probability that bugs escaping pre-service verification as a model of their frequency of appearing in the nominal training 

data. A one-class model identifies feature values as lying inside or outside of the nominal classification region. Fig. 4 illustrates 

the conceptual difference between the supervised two-class model described for our proof-of-concept Ardupilot 

implementation and the unsupervised one-class model we intend to use in future work. The figure is purely for illustrative 

purposes, with all points generated by a random number generator (and not from the Ardupilot experiments). The figure models 

a situation in which a single bug triggers intermittently. Bug-free instances are shown as closed circles and instances where the 

bug is active are shown as open circles. Note that the feature vector changes at each epoch due to variations in software variables 

that are unrelated to the bug. As such, there is a distribution of sampled feature values for both the buggy and bug-free cases 

and that these distributions may be different in structure in the general case, as shown in Fig. 4. 

As shown on the top of the figure, the two-class model divides the feature space into two regions (shaded and unshaded) to 

separate data vectors that have been labeled by a human expert. In the case shown, each point represents a feature vector 
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associated with monitor probe values sampled at one instant in time. Illustrated feature vectors are only two-dimensional, with 

the feature-A dimension plotted on the horizontal axis and feature-B dimension on the vertical. Feature vectors labeled as 

nominal are shown as closed dots; feature vectors labeled as anomalous are shown as open circles. The boundary between the 

two regions is identifying by a machine learning algorithm (such as Adaboost), so as to capture most of the closed dots (nominal 

points) in one region and most of the open circles (anomalous points) in another region. In this case, the boundary between the 

two classification regions is a line at the interface of the shaded and unshaded regions. When points fall in the shaded region 

they are classified as nominal and in the unshaded region they are classified as anomalous. Note in the figure that a few stray 

dots are misclassified, including some closed dots (nominal points) that fall in the unshaded (anomalous) classification region, 

which are false alarms, and some open circles (anomalous points) that fall in the shaded (nominal) classification region, which 

are missed detections. A “good” classification surface is one that minimizes both the number of false alarms and the number 

of missed detections. 

 

Fig. 4. Classification surfaces for two-class supervised (top) and one-class unsupervised (bottom) models. Horizontal and vertical axes 
represent the two values from a two-element feature vector. 
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As shown on the bottom of the figure, an alternative classification strategy is to build a tight bound around the nominal points.  

In the illustration, the distribution of the nominal points is irregular; as such a clustering algorithm (such as Expectation 

Maximization) can be used to define multiple clusters within the nominal data. The union of these clusters defines the region 

of the feature space associated with nominal behavior. In this case, four Gaussian-like clusters are identified, and an elliptical 

(shaded) region is associated with each of the four nominal clusters. Three of these ellipses overlap, but the fourth is not 

contiguous. The union of the four ellipses, defines the nominal classification region. As desired, the majority of the closed dot 

(nominal) points lie in the nominal classification region, while the majority of the open circle (anomalous) points lie outside. 

Because only nominal behaviors are modeled, this type of one-class model is agnostic to the nature of unknown bugs. As such, 

the one-class model should allow detection of any type of bug that causes the software to behave in an off-nominal fashion, 

whether or not the new bug is similar in form to a bug previously observed during software verification.  

Of course, operating in unusual environmental conditions could also result in an anomaly that might trip the monitor, even in 

the absence of a bug. In such cases, it is nonetheless prudent and conservative to seek safety (e.g. land) since the monitor alert 

could just as easily be the result of a bug. By examining logged cases, we envision that it will be possible to determine whether 

anomaly events are caused by a bug or a new operating condition and to either fix the bug or to update the trained one-class 

model accordingly. 

In order to construct the one-class model for the nominal region, as shown on the bottom of Fig. 4, it is critical to collect the 

right training data. In particular, the training data must (1) capture the full range of expected operational conditions and (2) 

ensure that most data points are unaffected by a bug. The first above requirement will be satisfied by pre-service verification. 

In other words, the pre-service verification study should run through all the most likely operational conditions expected in the 

field. Thus, the pre-service verification study that exists today to verify current-generation aviation software will take on a new 

dimension, as its secondary purpose will be to generate a training data set for the one-class bug monitor. The second above 

requirement is also satisfied by pre-service verification. Because pre-service verification ensures that bugs are rare, very few 

bug-affected values will appear into the training set. In concept, any bug-affected values that do pass through verification will 

be close enough to nominal that they will satisfy verification requirements, and so the appearance of a few bugs in the training 

set should not significantly corrupt the training of the classifier. A quantitative analysis (see the next section) confirms that 

allowing a few buggy values in the training data does not significantly corrupt the classification surface.  
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PERFORMANCE CRITERIA FOR BUG MONITOR 

This section defines and quantifies relevant performance criteria for an online bug monitor. As discussed in the prior section, 

our prototype monitor proves the bug-detection concept, but does not yet meet performance levels suitable for practical 

deployment in an aviation system. The question remains: what monitor performance levels are required to provide practical 

benefit in relaxing pre-service verification? To address the question, this section introduces a simplified analytical model that 

enables exploration of the bug-monitor design space.  

Performance Criteria Definitions 

For a bug monitor to be effective, it must reliably and quickly detect bugs large enough to result in a potential system fault, 

with very few false alarms. This qualitative statement can be decomposed into four quantitative performance criteria: time-to-

alert, loss-of-integrity probability, minimum-detectable bias, and alarm probability. To characterize monitor performance, we 

define four monitor performance criteria as follows. 

Time-to-alert (TTA): This is the allowable time between the moment a bug-induced fault becomes hazardous and the moment 

at which the failsafe feature is activated. If the monitor fails to trigger the failsafe within the TTA, then the event is considered 

to be a false negative (or missed detection) event. For a safety-critical aviation application, TTA may be as short as 2 seconds 

[27]. 

Loss-of-integrity probability (PLOI): This is the allowable probability that a bug results in a major failure without the monitor 

triggering an alert within the TTA. The term major failure here means an event that causes loss of life or substantial loss of 

property. For the proposed architecture, PLOI is quantified by (5). Recall that integrity probabilities are usually quantified as 

risks per unit time (e.g. risk of a hazardous fault due to a bug per hour), but that temporal effects are not explicitly addressed 

in this paper. 

Minimum-detectable bias (b): This is the smallest bias that can be reliably detected and for which the PLOI requirement can be 

satisfied. Bug-induced faults that are not clearly observable to be anomalies (e.g. those which are not significantly outside the 

monitor’s classification surface) will not meet the PLOI requirement. In other words, bug-induced for which the monitor vector 

remains small are unobservable to the monitor; hence, the software must be constructed to be robust to such faults. The 

minimum detectable bias b sets the robustness criterion. Any fault that, on average, corrupts software values by a magnitude 

less than b must not result in a major failure. 
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Alarm probability (PA): This is the allowable probability that the monitor engages the failsafe per unit time, considering both 

true positives and false positives (aka, true detections and false alarms). Whether the failsafe kernel is triggered by a hazardous 

bug or by an incorrect detection, the ensuing emergency response is an extreme inconvenience. Because such alarm events 

suspend use of the primary automation software, they might be labeled continuity breaks, a term frequently used to describe 

alarm events in other aviation applications [28].  

Quantifying Monitor Performance  

To support design-space exploration, it is now useful to introduce equations to quantify the above performance criteria using a 

probabilistic model. The Ardupilot infrastructure described above is computationally intensive to run, so statistical exploration 

of the design space is impractical.  

In particular, this section introduces probabilistic expressions for the alarm probability PA and the minimum-detectable bias b. 

A probabilistic expression for the loss-of-integrity probability PLOI was already developed as (5). For general monitor designs, 

our future work will eventually need to address timing issues, such as discussion of the time basis for probabilities, time 

correlation, and TTA. However, TTA is not an immediate concern for snapshot monitors like the Ardupilot monitor described 

above, since snapshot monitors respond immediately with a TTA of zero. 

Alarm Probability (PA):  The alarm probability combines both true and false alarms.  Thus 

 
   

   
true positive | hazardous bug hazardous bug

false positive | no hazardous bug no hazardous bug

 AP P P

P P
. (6) 

The probability of a bug being present is equal to the probability of a verification fault PVF. Conservatively modeling as 

hazardous all bugs large enough to be detected,  hazardous bugP  is upper bounded by PVF. Note that PVF lumps together the 

two mechanisms for detecting bugs (bug monitoring and crash recovery). Also note that the probability of a true-positive 

approaches one for both mechanisms and that, with very mild conservatism, the probability  true positive | hazardous bugP  

has been rounded up to one. Thus, 

    false positive | no hazardous bug no hazardous bugA VFP P P P  . (7) 
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Equation (7) can further be simplified by recognizing that the probability of no hazardous bug is the complement to the 

probability of a hazardous bug. In other words,  no hazardous bug 1 VFP P  . The label PFP will be used to identify the 

probability of a false positive, meaning the probability that the failsafe is triggered given that no bug is present. Thus, 

  1A VF FP VFP P P P   . (8) 

The classifier acts on the monitor vector, a vector of probes and/or features that we will label 𝒙 ∈ ℝே. Based on training of a 

one-class classifier, a subspace Ω ⊂ ℝே will be defined as representing nominal monitor behavior  nominalx . This 

implies that any vector x in the complementary subspace will be classified as an anomaly  anomalyC x , which will in 

turn trigger the failsafe. The size of classification region can be scaled to provide a desired level of confidence in classification. 

If the nominal subspace   is made larger, for instance, the probability of a false positive is reduced.  A quantitative statement 

of the false-positive probability PFP is 

  1


  FP nomP p dx x . (9) 

Here the probability distribution  nomp x  is the probability density function for the monitor vector when no bug is present. Note 

that in the machine learning community, the integral on the right-side of the above equation is often called specificity. (That is, 

specificity is 1 FPP ). 

An important wrinkle for practical implementation is that the classification surface will be trained based on unlabeled data that 

may actually contain bugs. This type of unsupervised learning is required by the nature of the problem. In other words, if a bug 

could be labeled, then it would be removed prior to training and deployment; however, the raison d’etre for the monitor is to 

identify bugs that persist into deployment and that must therefore be present during training.  

Fortunately, if training data are collected during a pre-service verification campaign, then it is at least known that the probability 

of bugs is rare (less than or equal to PVF). Thus, even though latent bugs are present in the training data, they have little impact 

on the definition of the classification surface, as long as the bug probability PVF is somewhat smaller than the target false-positive 

probability PFP. 
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An important distinction between the false-positive rate PFP and the total alarm rate PA, which considers both false and true 

positives, is that the designer can only directly measure PA. In other words, during training, samples cannot automatically be 

classified as “buggy” or “bug-free,” and so alarms cannot be categorized as true or false positives. It is still possible to discuss a 

false-positive rate in theoretical terms, as in (9), and is indeed useful to quantify the false-positive probability this way for 

analytical purposes, such as in simulation-based design-space exploration.  

Minimum Detectable Bias (b): Recall that the minimum detectable bias is the smallest anomaly that can reliably be detected 

via classification.   

In order to define this bias b, we must first model another aspect of the classification process. In particular, we must model the 

false-negative (or missed detection) probability PFN, which describes the probability that the monitor fails to alert when an 

observable bug is present. Defining μ  to be the mean value of the monitor vector for a given bug and  ;bugp x μ to be the 

probability density function (PDF) describing values of the monitor vector when that bug is present, the false-negative probability 

for that bug can be obtained by integrating over the nominal subspace : 

  ;


 FN bugP p dx μ x . (10) 

Within the machine-learning community, the term specificity is commonly used to refer to the complement of the false-negative 

probability. (In other words, specificity is 1- PFN). 

Although it may not be possible to know the distribution  ;bugp x μ  for any particular bug, it may be possible to develop a 

conservative overbounding model to describe the distribution. Overbounding is a common procedure used in aviation 

applications to conservatively model distributions for unknown fault modes [29]-[32]. As a starting point, it can be useful to 

assume that the distribution of the features is similar whether or not the bug is present, and that the bug simply acts to shift the 

mean of the feature-vector distribution. Given that the structure of the buggy and bug-free distributions may be different in the 

general case (as illustrated in Fig. 4), this assumption that the bug only shifts the distribution mean without otherwise affecting 

distribution shape is clearly an approximation, one that should be revisited in future work. Similar assumptions are commonly 

made in analysis of aviation navigation systems [33]-[35], and these assumptions can be rigorously justified if there exists an 

overbounding noise distribution, meaning a single model that conservatively describes various bugs as well as nominal operation. 

In any case, we assume here that an overbound for all bugs can be defined, and use this reasonable assumption as a basis for 
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preliminary characterization of monitor performance. Assuming an overbounding distribution exists to model the shape of the 

nominal and buggy distributions, then the key feature of the overbounding distribution is simply its mean μ . 

Let us assume that bugs can shift the mean of the overbounding distribution away from the nominal mean 𝛍଴, and that the value 

of the buggy mean μ  is arbitrary. In this case, it is useful to determine which values of the unknown mean can be detected 

reliably and which values are too small to detect (meaning that the code must be hardened to be robust to these small biases).  

To determine this minimum detectable value, the first step is to invert equation (10) to find the bias that corresponds to a worst-

case specified PFN.  In general, there will be multiple solutions to this inverse problem. Define the set of solutions to be U. 

 𝑈 ൌ ൛𝛍 | 𝑃ிே ൌ ׬ 𝑝௕௨௚ሺ𝒙 ; 𝛍ሻ𝑑𝒙ఆ ൟ (11) 

The minimum detectable bias b is the smallest distance between any 𝛍 ∈ 𝑈 and the nominal mean 𝛍଴, which describes the center 

of the nominal (bug-free) feature distribution. 

 𝑏 ൌ min
𝛍 ∈ 𝑈

ሺ‖𝛍 െ 𝛍𝟎‖ሻ (12) 

This expression can be computed analytically, even when the mean of the overbounding model is unknown. Note that the feature-

value distribution factors into b through the integral for the false-negative rate PFN, and that the overbound on the random 

distribution of feature values is needed to conservatively evaluate the integral. The result is sensitive to the difference between 

the bug’s unknown mean 𝝁 and a reference location 𝝁𝟎, a variable which describes the center of any of the clusters unioned to 

define the classification region, as visualized in Fig. 4.  

As defined by (12), the minimum detectable bias is a measure of how small a bias can reliably be detected. Any bias with a 

monitor vector whose magnitude is smaller than b cannot be reliably detected, meaning that the missed-detection probability is 

greater than FNP  (and potentially approaching one). Since bugs with magnitude smaller than b are difficult to detect, the primary 

control software must be designed to handle corrupted data when a small-magnitude error (magnitude less than b) is present. In 

this sense, the value b also defines the maximum bug magnitude which the software must be designed to tolerate. 

Though the value of FNP  cannot be measured directly, it can be related to the specification for PLOI using (5).  
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SIMULATED PERFORMANCE ANALYSIS 

In a broad sense, the key performance metrics PLOI, PA, and b are related to each other and to the intermediate variables FNP , 

FPP , VFP , and T through (5), (8), and (12). These relationships can be simulated to explore the space of possible monitor designs 

if the PDFs for the buggy and bug-free cases can be modeled. 

PDF Models 

For the purposes of roughly characterizing the monitor design space, this paper models the nominal monitor vector PDF as a one 

dimensional Gaussian distribution with zero mean and unit variance.   

    ;0,1nom gp x p x  (13) 

Here the function pg describes the Gaussian PDF for a monitor value x, parameterized by a mean of zero and a variance of one. 

The overbounding variance can be set to one without loss of generality simply by normalizing the monitor statistic appropriately. 

The bigger approximations here are treating the monitor vector as a one-dimensional random variable and more specifically as 

a Gaussian-distributed variable. In concept it is possible to model the monitor-vector distribution as a multivariate random vector 

with an arbitrary PDF; however, as illustrated in Fig. 4, even a complicated feature distribution can potentially be modeled as a 

set of multi-dimensional Gaussian distributions. Building on this concept that a Gaussian distribution is reasonably representative 

of many nominal training sets, we simplify our analysis to aid interpretation of our results and introduce a one-dimensional 

Gaussian distribution as a model of the feature-vector distribution for the bug monitor. In short, the assumption of a one-

dimensional Gaussian PDF is a reasonable starting point, which simplifies analysis greatly and which reflects a level of 

abstraction appropriate for design-space exploration. 

As for the anomaly-case PDF distribution, this PDF is also modeled here as a Gaussian PDF. Specifically, the PDF  bugp x  is 

biased by a mean value of  , reflecting the level to which the bug corrupts variable values, and the standard deviation is defined 

as bug . With these assumptions, the bug-case PDF is 

    2; , bug g bugp x p x . (14) 

The proposed bug-corrupted PDF is intended to be an overbound in the sense that it models a generalized distribution that is as 

conservative as any real distribution (with wider tails that ensure the false-negative probabilities will be evaluated to be at least 
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as large as for the true PDF). In fact, we will assume that both the bug-case and bug-free PDFs are overbounds and that their 

standard deviations are scaled to be the same ( 1 bug ). This assumption of an identical overbounding variance for the faulted 

and fault-free distribution is common in analyses of other aviation-safety applications, for example in [27] and [36]. 

For a one-dimensional PDF model, the classification region  can be identified by a pair of thresholds, one above and one below 

zero. Since our nominal PDF (13) is symmetric about zero, it makes sense to assign thresholds symmetrically at the values 

x = T. Such thresholds are illustrated in Fig. 5. The thresholds are shown as bracketing the nominal distribution, as in Fig. 5 

(left), but only capturing one tail of the bug-case distribution, as in Fig. 5 (right). 

 

 

 

Fig. 5. Model of feature distribution 

 

For a symmetric threshold pair and a Gaussian nominal distribution, equation (9) for PFP can be rewritten as  

  1 ;0,1


  
T

FP g

T

P p dx x . (15) 

This equation can also be inverted to express the threshold T in terms of the false-positive probability PFP. If 1
gP  is the inverse 

of the probability integral above, then 

  1 1 g FPT P P . (16) 

bug ACTIVE

TP FN TP

-4 -2 0 2 4

Test statistic

0

0.1

0.2

0.3

0.4

0.5
bug INACTIVE

FP TN FP

-4 -2 0 2 4

Test statistic

0

0.1

0.2

0.3

0.4

0.5



22 

When using numerical analysis packages, the inverse density function of a 1D Gaussian integrated between thresholds can be 

evaluated using a chi-square cumulative density function with one degree of freedom. Using Matlab for instance, where the 

inverse chi-square cumulative density function is labeled chi2inv, the threshold T is 

  1 ;1chi2inv  FPT P . (17) 

Likewise, the minimum-detectable bias b can also be rewritten in terms of the Guassian bug-case model by combining (12) and 

(14). Without loss of generality, 𝝁𝟎 is assumed zero for this analysis. Thus, the minimum detectable bias can be obtained by 

finding the value of b that solves a constraint equation: 

  
0

solve ; ,1 0




 
   

 

T

FN g
b

T

b P p x b dx . (18) 

This type of solution can be obtained readily with a numerical package like Matlab (e.g using Matlab’s fsolve command). 

Note that the solution to the above equation is not unique, since the integral is symmetric for positive and negative values of b. 

A unique solution can be obtained, however, if b is restricted to be positive. 

The full design space can now be characterized by combining the general equations (5) and (8) with the model-specific equations 

(17) and (18). These equations relate seven parameters with four equations. For our purposes, it makes sense to define four of 

the variables as dependent parameters:  , , ,FN FP vfP P P T . The remaining variables, which are the independent parameters, are 

the three key performance metrics: {PLOI, PA, b}. In other words, if specifications are given for the three key performance metrics, 

then the monitor design is completely specified by the four equations (5), (8), (17), and (18). In this sense, the surface of possible 

designs might be viewed as a vector function f of the three key performance metrics: 

  , ,

 
 
  
 
 
  

FN

FP

LOI A
vf

P

P
P P b

P

T

f . (19) 

Design-Space Dimension Reduction 

In fact, a numerical analysis reveals that this three-dimensional design space acts more like a function of only two variables 

rather than three. In this section we show that it is reasonable to introduce a heuristic fifth equation into the design 
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characterization, in order to approximate (19) as a vector function g of only two independent variables. This function might be 

written as 

  ,

 
 
 
  
 
 
  

FN

FP

vf LOI A

P

P

P P P

T

b

g . (20) 

 

In order to explain this dimension reduction, we note that the value of the verification-fault probability PVF must by definition 

be smaller than the alarm probability PA, as discussed above and as evident from (8). Given this constraint, it is useful to 

introduce a variable  0,1   to describe the ratio of the two probabilities: 

 𝜙 ൌ
௉ೡ೑

௉ಲ
. (21) 

A different behavior is evident at each extreme of the values of  . At the top end, for instance, where 1  , all of the alarm 

probability is dedicated to true alarms, meaning that the bug monitor must be set inactive. In other words, near the limit 1  , 

𝑃௩௙ → 𝑃஺ according to (21), and 0FPP , according to (8).  Furthermore, T  as 0FPP , by inspection of (15). Setting 

the monitor threshold to infinity is essentially equivalent to turning off the monitor, as the monitor will never alarm. By contrast, 

at the bottom end of the range, where 0  , the pre-service verification becomes perfect. In quantitative terms, 0vfP  , 

according to (21), as 0  . In this limit, the monitor is also inactive, in this case because no bugs persist after the pre-service 

verification and so no monitor is needed. 

Given that the monitor is inactive at both extremes of  0,1  , we need only consider values in the middle of the range. As it 

turns out, model performance is relatively flat for values of   in the middle of its range, and so as a heuristic, it is reasonable to 

introduce a constraint equation that sets   to a constant value.  

To see that performance is only weakly affected by changes to   , consider Fig. 6. The figure illustrates threshold T as a function 

of   for widely varying combinations of PLOI and PA. As expected, the threshold diverges in all cases near the upper limit, as
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1  . Otherwise, the threshold is relative flat, with a value very similar to the lower-case bound, where all of the alarm 

probability is given to false positives, where T is obtained by setting 𝑃ி௉ ൌ 𝑃஺ in (17). 

For the models used in this paper, a reasonable value of the heuristic constraint is to set 0.2  . At this operating point, the pre-

service verification fault probability is relatively large (20% of the total alarm budget) and the threshold is relatively close to its 

lower bound, which is good in the sense that a lower threshold makes for a more sensitive monitor. Realistically, any ratio could 

be selected in the middle range of  0.1,0.6  , with relatively minimal tradeoffs between making the pre-service verification 

more stringent (decreasing Pvf as   decreases) and making the monitor less sensitive (increasing T as   increases). 

  

Fig. 6. Alert probability PA and verification-fault probability PVF are related by the parameter  

Whatever value of   is selected as the nominal operating point, the new constraint equation can be derived by manipulating (21) 

to give: 

 𝑃௩௙ ൌ 𝜙𝑃஺. (22) 

This equation can be combined with other design equations. For example, substituting (22) into (8) gives  

 𝑃ி௉ ൌ
ሺଵିథሻ௉ಲ

ଵିథ௉ಲ
. (23) 
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Also, substituting (22) into (5) gives  

 𝑃ிே ൌ
௉ಽೀ಺

థ௉ಲ
. (24) 

Importantly, combining (24) with (18) creates a constraint equation that directly relates the key performance metrics PLOI, PA, b, 

implying that only two of the key performance metrics can be treated as independent parameters once  is set to a constant. 

Characterizing Design Space 

As a final analysis step, it is instructive to visualize the design surface g, as defined by (20), over a representative range of the 

independent design parameters PA and PLOI. Each of the remaining parameters in the set { , , , ,FN FP vfb P P P T } can be studied over 

this range. 

First, consider the relationship of the minimum-detectable bias b to the independent parameters PA and PLOI. This relationship is 

represented as a contour plot in Fig. 7.  Contours of the bias b are expressed as multiples of the standard deviation, shown 

increasing from 2 to 8 downward, as PLOI shrinks. This trend is not unexpected; in order to enhance integrity (achieve lower PLOI) 

requires fewer missed-detection risk by the online bug monitor, and so larger margins of robustness are needed as achieved by 

increasing b.  

 

  

Fig. 7. Design space for minimum-detectable bias b 
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In observing Fig. 7, it is also notable that b does not increase monotonically when moving from left to right, through increasing 

PA. The reason the peak value of b lies in the middle of the range of PA is two-fold. First consider moving to the left on in Fig. 

7. In this direction 𝑃௅ைூ → 𝜙𝑃஺, which implies that the monitor is ineffective (e.g. 1mdP ) and that all bug mitigation is the 

responsibility of pre-service verification. Thus, moving to the left side of the plot, values of b decrease sharply since the monitor 

is essentially inactive. In fact, values of 𝑃௅ைூ ൒ 𝜙𝑃஺ cannot even be achieved, and so this region of the design space is shaded 

gray to indicate that it is infeasible. Second consider moving to the right on in Fig. 7. In this direction, PA increases implying for 

fixed  that the tolerance for false alarms also increases (PFP increases) and hence that the monitor can be more sensitive (reduced 

T and b). 

Design parameters other than b can also be investigated, but it turns out that trends are very simple. For instance, contours of 

threshold T are shown in Fig. 8. For constant  , the threshold is only a function of the alarm probability PA, and so all of the 

contours appear as vertical lines. Similarly, contours of Pvf (not shown) are also vertical lines. 

  

Fig. 8. Design space for minimum-detectable bias T 
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Design Implications 

Certain general design recommendations can be inferred from our analysis of the monitor design space. Most notably, it is 

important for a practical design to keep PLOI low, to assure a level of integrity sufficient for safety-critical operation, and to keep 

PA low, to preserve continuity, since alarms cause regular operations to end as the failsafe algorithms become active. In other 

words, it is generally desirable to operate toward the lower left region of Fig. 7 and Fig. 8. Moreover, it is important to operate 

some distance from the infeasible region, shown gray in both figures, since the monitor becomes ineffective approaching the 

boundary of this region, as discussed above. In short, operating somewhere in the lower-left (or southwest) quadrant of the 

figures is most desirable. 

The major limitations on preceding arbitrarily far into the lower-left quadrant of the figures is that the robustness requirements 

become large moving downward (b increases as PLOI decreases) and the pre-service verification requirements become stringent 

moving to the left (PVF decreases as PA decreases). The robustness issue is significant because the code must be configured to 

work with increasingly large undetected faults (large b) in order to achieve enhanced integrity (lower PLOI). The pre-service 

verification issue is significant because the whole point of introducing the monitor is to reduce the severity of pre-service 

verification requirements (for fixed level of integrity PLOI) in order to promote faster system development. Recall the earlier 

motivating question, which asked if the levels of integrity proposed in Fig. 1 were feasible for a practical implementation. The 

answer is that such a design is conceptually possible. By setting the alarm probability to a value of PA equal to 5∙10-4, and by 

targeting a  ratio of 0.2,  the pre-service verification requirement would become Pvf = 10-5. It would still be possible to achieve 

an overall integrity risk of PLOI  = 10-9  (as shown in Fig. 1) if b were set to a value of approximately 8 times the standard 

deviation of the monitor statistic, at least assuming the simple Gaussian model used in this paper.  

The major tradeoff is the robustness requirement implied by b. Because the monitor’s sensitivity is limited in detecting small 

bugs, the code must be made robust enough to tolerate corrupted-data issues caused by small bugs. For perspective, the code 

will experience variations in its variables that amount to a three-standard-deviation value of the monitor statistic with a 

probability of about 10-3 (for a Gaussian PDF). In other words, the three-sigma level might be considered to be a rare-nominal 

event in the absence of a bug. By comparison, the code must be made to be robust to anomalies at the eight-sigma level, nearly 

three times the size of this rare-nominal event. This tradeoff seems quite modest given the enormous, five-order-of-magnitude 

reduction in the requirements for pre-service verification. 
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Implications for Monitor Prototype 

Our design-space exploration suggests that the bug-monitoring architecture described in Fig. 1 may in fact be realizable. To 

reduce the requirements on pre-service verification by five orders of magnitude, from 1∙10-9 to 2∙10-4, would require a significant 

enhancement in the performance of our current prototype. Specifically, an alarm rate of 5∙10-4 per unit time would be required, 

which is a significant improvement over the performance of our prototype monitor, which featured an alarm rate of 3∙10-1 per 

epoch. However, given the simplicity of our implementation and the fact that many avenues exist to enhance monitor 

performance – through introduction of careful probe selection, an extended time horizon, signal processing, and enhanced 

machine-learning models – an alarm rate of 5∙10-4 per unit time may, in fact, be achievable. This hypothesis suggests a rich 

vein of research to explore in our future work.  

Future work should also revisit analytical assumptions made in this paper. For instance, a simple Gaussian model was assumed 

for our design-space exploration. It was further assumed that an overbound could be defined for the feature vector probability 

density function. Before leveraging such assumptions to make a safety case, the assumptions should be rigorously tested against 

representative data from bug logs for deployed aviation software. Furthermore, new research is needed to show whether aviation 

software can indeed be made robust to small bugs (i.e. bugs for which the monitor static falls below a minimum detectable 

level). 

It is worth noting that the most likely applications of our proposed work are low-cost unmanned aircraft applications, where 

safety must be assured for operation in the airspace, but where cost drivers prohibit intensive pre-service verification to the 

standards expected for today’s large commercial aircraft. Though an alarm rate of 5∙10-4 per an appropriate unit time (say, per 

hour) would be prohibitive for a manned aircraft, such an alarm rate is acceptable for a great many potential applications of 

automated drone aircraft. 

CONCLUSION 

This paper presents a novel concept for relaxing pre-service software verification requirements for safety-critical aviation 

automation by introducing online bug-monitoring. The concept would provide significant benefit for emerging autonomous 

systems, in which software complexity is rapidly increasing. The analysis presented in this paper introduces a safety case for the 

combination of pre-service verification and bug monitoring. Also, the paper identifies key performance metrics to evaluate the 

bug monitor. A preliminary analysis based on a simple (Gaussian) model of the variability in the monitor statistic suggests that 

significant safety benefits can be achieved with reasonable tradeoffs; for instance, an example is discussed in which integrity is 
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preserved while relaxing pre-service verification requirements by five orders of magnitude. The tradeoff is a relatively modest 

increase in robustness, such that the code can tolerate small undetectable bugs, about three times larger than rare-normal 

variations in the values of software variables. In short, bug monitoring offers great potential benefits to shorten the software 

development cycle for aviation systems without sacrificing overall system safety. 
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