


a closely-related analogue known as hexagonal tetrastack9,37,38,
which differs from the pyrochlore lattice by the orientations of
adjacent layers but has similar free energy9,37,38. Similarly, cubic
diamond (also known as conventional diamond or c-diamond)
and hexagonal diamond (also known as h-diamond or Lons-
daleite) are structurally similar crystals with similar free energies
that differ in the stacking of subsequent layers13. In each case,
care must be taken in the patchy particle design to favor one poly-
morph over the other9,12,13,37. As such, a primary concern in our
design protocol is to engineer anisotropy into the particle inter-
action to break the degeneracy between the desired lattice struc-
tures and closely related analogues (i.e., pyrochlore vs. hexagonal
tetrastack, cubic diamond vs. hexagonal diamond).

A number of inverse design techniques have been pro-
posed for optimizing the interactions between colloidal parti-
cles8,10–12,37,39–48 to favor the formation of the desired target
crystal. For example, Truskett and coworkers used inverse de-
sign strategies to design engineered isotropic pairwise potentials
that favor the formation of various two-dimensional and three-
dimensional colloidal crystals43,45–47. Torquato and coworkers
also employed inverse statistical mechanical strategies to design
isotropic potentials that favor various colloidal lattices42,44,48, as
well as anisotropic potentials that favor the formation of vari-
ous two-dimensional colloidal lattices39. Lyubartsev and Laakso-
nen49 and Mungan et al.50 deduced interaction potentials from
structural correlation functions. Cohn and Kumar51 employed
linear programming to determine isotropic potentials leading to
the desired configuration as ground state. Dijkstra and cowork-
ers employed an isotropic repulsive pairwise potential to favor
the formation of a pyrochlore-like colloidal crystal8. Escobedo40

used anisotropic particles and potentials to form different col-
loidal compounds. Romano and Sciortino employed asymmetric
patterning to robustly assemble pyrochlore and disfavor hexago-
nal tetrastack lattice37. Morphew et al.11 used a basin-hopping
optimization method to design the potentials that favor the for-
mation of three-dimensional cubic diamond lattice and BCC lat-
tice via colloidal molecules. Glotzer and coworkers proposed the
introduction of angular potentials or charge repulsion to favor
cubic over hexagonal diamond12. Pine and coworkers designed
isotropic DNA-grafted colloidal clusters and singlet colloids to re-
alize a colloidal MgCu2 lattice10. In the absence of some means
to break the degeneracy between competing polymorphs it is typ-
ically necessary to seed the system with a fragment of the desired
crystal structure12 to robustly assemble the target crystal. Failing
to break the degeneracy through one or other of these strategies
risks the uncontrolled fabrication of hybrid lattices11.

In this work, we employ a recently developed inverse de-
sign protocol termed landscape engineering to systematically dis-
cover patchy colloid building blocks capable of spontaneous self-
assembly into a pyrochlore lattice and a cubic diamond lattice
formed from tetrahedral clusters52. The approach iteratively
sculpts the free energy surface of the self-assembling colloids us-
ing evolutionary algorithms to update the placement and strength
of the colloidal patches to stabilize the target lattice over all com-
peting polymorphs. We target pyrochlore and cubic diamond
as 3D lattices possessing complete photonic bandgaps that have

proven frustratingly elusive to fabrication via self-assembly11,13.
We show that the colloidal designs predicted by landscape en-
gineering spontaneously nucleate and grow defect-free photonic
lattices of the desired crystal polymorphs in a two-stage hierarchi-
cal assembly mechanism. Since we conduct inverse design over
the free energy surface rather than the potential energy surface,
the interaction potentials discovered by landscape engineering
are not those that would have been expected by energy minimiza-
tion or zero-temperature optimization of the target lattice. This
demonstrates the importance of incorporating many-body and en-
tropic effects into the particle design.

The anisotropic potentials employed in this work are relatively
simple and generic, but may be considered as simplified and
idealized models of inter-particle interactions that may be ex-
perimentally realized through advanced surface-patterning tech-
niques10,30–32,35,53–57. For example, the patchy colloid model
considered in this work can be considered as a simplified rep-
resentation of nanodot-decorated nanoparticles of the sort real-
ized by Bae et al.32 and Wang et al.31 through regions of tita-
nia or propyl methacrylate whose interaction strengths depend
on the specific materials properties. In a similar vein, Zhang
et al. used colloidal masks to fabricate anisotropic nanoparticles
decorated with nanodots on opposite poles58. We might also
consider our models to be idealized representations of colloids
surface functionalized with localized patches of complementary
DNA oligomers with defined sequence and specificity10,35,55–57.
The Kern-Frenkel model59 is one of the most popular computa-
tional models employed to simulate patchy particle assembly11,37

and can be considered a simplified model for patchy particles
with surface interaction patches deposited via glancing angle de-
position53,54,60. Accordingly, our computational patchy particle
model and others like it are intended as simplified idealizations
of experimentally-realizable inter-particle interactions. It is the
primary goal of the present work to employ such potentials to ex-
pose the fundamental principles governing assembly, provide new
insight into the thermodynamic, kinetic, and morphological pro-
cesses underpinning assembly, and demonstrate a new methodol-
ogy for the rational design of patchy colloids programmed to self-
assemble into desired aggregates. In doing so, we aim to provide
new understanding and precepts for the experimental design of
self-assembling colloidal lattices. Romano and Sciortino have pre-
viously proposed the use of asymmetric Kern-Frenkel type patchy
colloids to form pyrochlore lattice37. The present work considers
a different patchy particle model with defined isotropic surface
interactions that may be considered a simplified representation
of nanodot-decorated nanoparticles31,32. Moreover we design
the anisotropic interaction potentials using a systematic and au-
tomated inverse design protocol. Accordingly, this work reports a
new automated inverse design strategy for the fabrication of de-
sired colloidal lattices, and reduces this to practice in the design
of two patchy particle building blocks capable of spontaneously
self-assembling pyrochlore and diamond lattices with omnidirec-
tional photonic bandgaps.
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Fig. 2 An illustration of the two-stage hierarchical assembly mechanism for the

pyrochlore lattice. During the high temperature phase at Thigh, the more strongly

interacting "B" patches direct the formation of tetrahedral clusters while the more

weakly interacting "D" patches are effectively inert. During the cooling process

to Tlow, the "B" patches lock the patchy colloids into the self-assembled

tetrahedra and the "D" patches direct the tetrahedral clusters to assemble into

the pyrochlore lattice.

counterparts of "B" patches on the north pole and the desired self-
assembled tetrahedral motif in both cases is the same. At the high
temperature Thigh we seek to optimize the interaction strength
and polar angle of the "B" patches at the north pole {EB, φB} to
favor the assembly of tetrahedral clusters relative to all competing
structures. We solve this inverse design problem using the land-
scape engineering approach described below52. We then obtain
the optimal solution for the "D" patches on the south pole through
equations 3 and 4. In doing so we assume that the optimal solu-
tion for the “D” patches at the low temperature is identical to
that for the “B” patches at the high temperature, with the interac-
tion strength just appropriately scaled by the temperature ratio.
The motivation for this equivalence is that the “B” and “D” inter-
faces are structurally identical, but we do note that the former is
formed from constituent monomers whereas the latter is formed
from constituent tetrahedra, so the multibody and entropic in-
teractions during the assembly process may differ. Nevertheless,
the assumption of this equivalence simplifies the inverse design
problem for the pyrochlore lattice by reducing it to a single opti-
mization. As we will show, the assumption proves to be a good
one as it leads to the successful assembly of defect-free crystals.
As discussed later, in the case of cubic diamond this symmetry is
absent and we must independently optimize the two poles of the
colloidal building blocks within two separate optimization proto-
cols.

Our computational model for the anisotropic interaction
patches is deliberately a simple and generic potential. Ex-
perimentally, such directional and specific patches with partic-
ular {EB, φB,ED, φD} might be realized by advanced surface-
patterning techniques10,30–32,35,53–57. For example, the central
colloidal spheres may be functionalized by DNA oligomers with
tunable interaction strengths and specificities35, or patterned
with regions of titania or propyl methacrylate whose interaction
strengths depend on the specific materials properties31,32.

We perform our simulation in reduced units, where σ = 1,
ε = εA = 1, and m = 1. Using these units, we specify σA = 5,
σi = σ = 1 for i ∈ {B,D}, mA = 125 and mi = m = 1 for i ∈ {B,D}.
We may define a mapping between our reduced units and real
units. For example, consider central particle "A" of diameter σA

= 5σ = 1 µm and density ρA = 1 g/cm3, and an energy scale
of ε = 1 kBT at T = 298 K. From these fundamental units, we
can derive the temperature in real units as T = T∗ ε

kB
and time in

real units as t = t∗σ
√

m
ε , where T∗ and t∗ are temperature and

time in reduced units. In our two-stage assembly process, we use
T∗

high = 0.8 at high temperature and T∗
low = 0.3 at low temperature,

which correspond to Thigh = 238.4 K and Tlow = 89.4 K in real
units, respectively. Also, we use a step size of dt∗ = 0.005 in our
simulations, which corresponds to dt = 0.36 µs in real units.

2.1.2 Cubic diamond lattice

The fundamental motif of the cubic diamond lattice formed from
tetrahedral clusters is dimers of tetrahedra in staggered configu-
rations (fig. 3a)11,12,37. (For short, we will henceforward simply
refer to this lattice as cubic diamond except when it is unclear
to do so.) These staggered tetrahedral dimers come together to
form chair-like rings (fig. 3b) within the cubic diamond crystal. A
competing structure that shares similar free energy is the hexago-
nal diamond lattice that contains tetrahedral dimers in both stag-
gered and eclipsed (fig. 3c) configurations. The hexagonal di-
amond lattice consists of 25% chair-like rings and 75% boat-like
rings (fig. 3d)13. To favor cubic over hexagonal diamond, we em-
ploy a similar patchy colloid design to that for pyrochlore. Three
"B" patches with interaction strength εB are placed in an equi-
lateral triangle on the north pole at a polar angle of φB to favor
the high temperature formation of tetrahedral clusters (fig. 3e-g).
The south pole must be functionalized with two kinds of patches,
"D" patches and "E" patches at a polar angle φ = φD = φE , in or-
der to preferentially stabilize the staggered dimer relative to the
eclipsed one. The "D" patches (purple) are aziumthally aligned
with the "B" patches (blue), and the "E" patches (lime) are rotated
by 60°. The "B"-"B" interaction is still modeled by Lennard-Jones
potential as in equation 1. The "D"-"E" interaction is also mod-
eled by Lennard-Jones potential with the interaction strength and
range given by the Lorentz-Berthelot mixing rules:

UDE
LJ (r) = 4εDE

[

(σDE

r

)12
−

(σDE

r

)6
]

εDE =
√
εDεE

σDE =
σD +σE

2

(5)

All other interactions are given by WCA potential defined in equa-
tion 2. In this way, the "D"-"E" attractive interactions induce the
contact dimer formed by two tetrahedra to stabilize a mutual ro-
tation of 60° and favor the staggered dimer over the eclipsed one
fig. 3(h). Our use of this design with two patch types in an alter-
nating ring with attractive interactions between unlike patches is
motivated by the need to induce a 60◦ rotation between the two
tetrahedra at the dimer interface. There is no clear way to favor

4 | 1–19





low-temperature at which "D" and "E"-mediated assembly into the
cubic diamond lattice proceeds. After the optimization is com-
plete, the "B" patches are added back on the opposite pole with
{EB, φB} taken from the pyrochlore optimization, and the inter-
action strengths of "D" and "E" patches are scaled down from T∗

high
= 0.8 at which the optimization was conducted to T∗

low = 0.3.

We now briefly discuss each step of the landscape engineering
procedure (fig. 4).

2.2.1 Langevin dynamics

For each candidate in a group of candidates, we need to estimate
its accessible configurations. To do this, we employ Langevin
dynamics simulation using HOOMD-blue67,68. For each simu-
lation, we initialize the system with 64 randomly placed and ori-
ented patchy colloids in a cubic simulation box with side length
L = 52.52σ. Taking a patchy colloid to be a sphere with radius
corresponding to the sum of the radii of the central particle and
its surface patches, the corresponding volume fraction of patchy
colloids in the system is ϕ = 0.05. We use Langevin dynamics
integrator with T∗

= 0.8 and step size dt∗ = 0.005. We evolve the
system for 3.5× 107 steps and track the cluster formed by one
randomly-selected tagged colloid every 3500 steps. This results
in a total of 104 snapshots per simulation. We perform three in-
dependent Langevin dynamics simulations for each candidate.

2.2.2 Diffusion maps

Diffusion maps69,70 are a widely-used nonlinear dimensionality
reduction technique that has previously been applied to study of
time evolution of molecular systems2,71–74. In the study of self-
assembly process, it can provide a dynamically meaningful low-
dimensional representation of the assembly process2. In our case,
the diffusion map embeds the N self-assembled aggregates {xi}Ni=1

observed from the molecular simulations onto a low-dimensional
manifold. The algorithm starts from constructing the Gaussian
kernel matrix based on the pairwise distances between aggre-
gates:

Ai j = e−
d2
i j

2ǫ (6)

where di j is the pairwise distance between aggregate i and ag-
gregate j, and ǫ is a Gaussian bandwidth. The definition of di j

will be provided below. From this kernel matrix, a stochastic ma-
trix representing the random walk over the data set is defined by
row-normalizing the kernel matrix:

Mi j =
Ai j

∑

j Ai j
(7)

where Mi j may be interpreted as the probability of hopping from
aggregate i to aggregate j in a time step ∆t = ǫ . The eigenvec-
tors { ®ψi}Ni=1

of the stochastic matrix M are the discrete approxi-
mations of the eigenfunctions of the backward Fokker-Planck op-
erator which describes a diffusion process over the data set69,70.
The eigenfunctions associated with large eigenvalues describe the
"slow" modes of the diffusion process, while the eigenfunctions
associated with small eigenvalues describe the "fast" modes. The
long-time behavior of the system is captured by top few eigen-
functions. Since the matrix M is Markovian, its top eigenvalue

is λ1 = 1 and the associated eigenvector is the trivial eigenvec-
tor ®ψ1 =

®175. The diffusion map nonlinear embedding into a d-
dimensional space is achieved by projecting each self-assembled
aggregate observed over the course of the simulations {xi}Ni=1

into
the top d nontrivial eigenvectors:

xi →
[

®ψ2(i) ®ψ3(i) . . . ®ψd+1(i)
]T
. (8)

An appropriate choice of d is defined by a gap in the eigenvalue
spectrum2,52. In all cases in the present work a gap was identi-
fied after the third eigenvalue λ3 informing two-dimensional em-
beddings into the two leading non-trivial eigenvectors { ®ψ2, ®ψ3}.
The diffusion map embedding can be accelerated by combining
landmark selection and Nyström extension to construct diffusion
maps over a subset of M << N landmark points and then pro-
jecting the remaining (N − M) points into the embedding using
an out-of-sample extension76,77. The details of this approach are
presented in ref. 77, with illustrative applications to molecular
systems demonstrating 50-fold speedups with less than 4% error
in manifold reconstruction.

The key to construct the diffusion map is to appropriately de-
fine the pairwise distance di j in equation 6. We need a way to
compare the structural similarities between aggregates formed by
the patchy colloids. To do this, we employ the graph-based ap-
proach described in ref. 52, which is a modification of the Isorank
algorithm78. This graph-based approach transforms the task of
comparing structural similarities between aggregates into the task
of comparing similarities between the graphs representing the ag-
gregates. It first represents each aggregate by a graph G whose
nodes correspond to the colloids within the aggregate and whose
edges are weighted by the Euclidean distances between those col-
loids. In case of two aggregates with different number of colloids
(i.e. two graphs with different number of nodes), the algorithm
augments the smaller graph with |Ni −Nj | ghost nodes. The algo-
rithm then employs a greedy approach to find the pseudo-optimal
alignment between two graphs by seeking an alignment Hmin that
minimizes the L1 distance between two graphs Gi and G j :

Hmin = argmin

∑

m,n |(HTGiH)(m,n)−G j (m,n)|
|Nj |(|Nj | −1) (9)

and the "distance" (i.e. structural similarity) between aggregate i

and aggregate j is:

di j =

∑

m,n |(HT
minGiHmin)(m,n)−G j (m,n)|

|Nj |(|Nj | −1) . (10)

Importantly, this graph-based distance measure is invariant to ro-
tation, translation, and particle permutation (i.e., particle relabel-
ing) of the self-assembled aggregates.

During each Langevin dynamics simulation conducted for each
candidate in a generation, we record the aggregates comprising
a single tagged colloid. Then, we collect together the aggregates
sampled from all such simulations for all candidates within a gen-
eration. From this group of aggregates, we construct a single
composite diffusion map. By generating a composite diffusion
map for all candidates in a generation, we obtain a unified low-
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dimensional embedding within which to construct and compare
free energy surfaces.

2.2.3 Umbrella sampling – hybrid Monte Carlo

Having constructed the low-dimensional diffusion map space, we
now need to construct the free energy surface for each candi-
date in terms of the diffusion map coordinates { ®ψi}d+1

i=2
. To avoid

the possible kinetic trapping due to potentially high free en-
ergy barrier, we follow the biased sampling procedure described
in ref. 52 that combines umbrella sampling64,65,79 with hybrid
Monte Carlo80–82 to efficiently sample configurational space by
applying biasing potentials within the collective variables (i.e.,
leading eigenvectors { ®ψi}) determined by diffusion maps. We
then reweight these data to estimate the unbiased free energy
surfaces governing the self-assembly of each candidate building
block. In brief, we tile the d-dimensional diffusion map embed-
ding with harmonic biasing potentials:

W( ®ψ, ®ψ∗) = 1

2
( ®ψ− ®ψ∗)T K( ®ψ− ®ψ∗) (11)

where ®ψ∗ is the d-dimensional harmonic center and K is a d × d

dimensional diagonal matrix whose elements are the strengths
of harmonic potential along each dimension. We conduct
an independent biased simulation under each biasing poten-
tial and efficiently sample configurational space within the hy-
brid Monte Carlo (HMC) framework using a NVE integrator to
propose a trial move under the unbiased Hamiltonian. The
initial translational and angular momenta are drawn from the
Maxwell-Boltzmann distribution. The acceptance probability of
the trial move from the old state {{q}old, {p}old, ®ψold} to the new
{{q}new, {p}new, ®ψnew} is dictated by the Metropolis-Hasting cri-
terion:

Pacc(old → new) =min

(

1,
e−β(U({q }new)+K({p}new)+W ( ®ψnew, ®ψ∗))

e−β(U({q }old)+K({p}old)+W ( ®ψold, ®ψ∗))

)

(12)
where β = (kBT)−1, U({q}) is the potential energy associated with
the particle positions {q}, K({p}) is the kinetic energy associated
with the particle velocities {p}, and W( ®ψ, ®ψ∗) is the artificial bi-
asing potential defined by equation 11. Importantly, the HMC
NVE trial move proposal does not require the calculation of bias-
ing forces on the particles due to the artificial biasing potentials.
The diffusion map does not provide an explicit differentiable ex-
pression for the collective variables as a function of the particle
positions, meaning that analytical expressions for these biasing
forces are unavailable. Should these forces be desired to per-
form, for example, biased molecular dynamics, techniques such
as SandCV exist to estimate these forces by approximate interpo-
lation and basis function expansions within the low-dimensional
embedding83, or the CVs themselves could be estimated using ar-
tificial neural network approaches such as MESA that provide the
necessary derivatives through automatic differentiation84–86.

We perform umbrella sampling simulations for each candidate
around each harmonic biasing potential. In each case the sys-
tem is initialized from the snapshot that is closest to the center of
the harmonic biasing potential in the diffusion map embedding.

Next, the aggregate formed by the tagged colloid is frozen, and
the system is relaxed using the Fast Inertial Relaxation Engine87

(FIRE) algorithm until the energy of the system converges within
a tolerance of 0.1ε. During the relaxation, only WCA potential
is enabled. After the relaxation, the aggregate formed by the
tagged colloid is unfrozen and the full Hamiltonian comprising all
Lennard-Jones and WCA potentials are enabled. During the first
three generations of optimization for tetrahedron, we set the har-
monic constant of the biasing potentials to be 2500ε. In later iter-
ations we relax this to 25ε. Each hybrid Monte Carlo loop is con-
ducted at T∗

= 0.8 and comprises 3500 steps of NVE integration
with step size dt∗ = 0.005. We perform 16000 Monte Carlo loops
by equilibrating the system for the first 7000 loops and collect-
ing data for the remaining 9000 loops. All molecular dynamics
calculations are performed using HOOMD-blue67,68. After con-
ducting umbrella sampling on the diffusion map space, we use
BayesWHAM88 algorithm to reconstruct the maximum a posteri-
ori (MAP) estimate of the unbiased free energy surface for each
candidate supported in the basis of the diffusion map collective
variables by reweighting the biased umbrella sampling data.

2.2.4 Covariance matrix adaptation – evolution strategy

Having constructed the free energy surface for each candidate in
a generation, we then employ an objective function to define their
relative fitnesses. The free energy surface is first coarse-grained
by its inherent structures89 by partitioning it into the basins of
attraction for local free energy minima detected by steepest de-
scent. The free energy of the inherent structure associated with
the target self-assembled aggregate βFtarget is compared with the
lowest free energy inherent structure of a competitor aggregate
βFcompetitor. The fitness of each candidate colloidal building block
is defined as the free energy gap:

∆βF = βFtarget − βFcompetitor. (13)

Minimization of this objective function seeks to make the target
structure the global free energy minimum on the self-assembly
free energy surface and also open up a free energy gap be-
tween the nearest metastable competing structure. Although it is
a purely thermodynamic objective function, we have previously
demonstrated that its optimization can lead to a funneled topog-
raphy of the free energy landscape centered on the desired aggre-
gate52. This topography can carry kinetic benefits in mitigating
kinetically-trapped configurations and increasing both the yield
and the rate of assembly of the target aggregate52.

Having evaluated the fitness values for all candidates in a gen-
eration, we then propose new candidates by Covariance Ma-
trix Adaptation Evolutionary Strategy66(CMA-ES), which is a
derivative-free algorithm for non-convex optimization problem.
By stochastically seeding multiple walkers to probe the local to-
pography based on running estimates of the local covariance ma-
trix, CMA-ES has demonstrated good robustness and convergence
rates on a variety of optimization problems and rugged land-
scapes66,90. Based on the fitness values of candidates in gener-
ation g, the algorithm first selects top µ candidates. Next, based
on these top µ candidates, the algorithm updates the estimate of
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covariance matrix C and step size σ. Then, it proposes a new
generation (g+1) of P candidates by:

x(g+1)
= 〈xg〉µ +σgN(0,Cg) (14)

where x is the vector of design parameters characterizing a candi-
date, and 〈xg〉µ is the mean value of the top µ candidates in gener-
ation g. We set µ = 3, so CMA-ES will select top three candidates
to propose the next generation. The optimization for the self-
assembly of tetrahedral clusters for pyrochlore and cubic diamond
proceeds in the two-dimensional design space x = [EB, φB]T , and
for the self-assembly of the tetrahedral clusters into dimers re-
quired by the cubic diamond lattice in the three-dimensional
space x = [ED, EE, φ = φD = φE ]T . N(0,Cg) is a k dimensional
multivariate Gaussian random vector with mean 0 and covariance
matrix Cg, where k is the dimensionality of the design space. If
the standard deviation of each parameter in x dips lower than 1
kBT at T = 298 K in the interaction strengths and 1° in the polar
angle, we declare the CMA-ES to have converged and terminate
the optimization. Otherwise, a new generation of candidates is
proposed, and we repeat the whole optimization procedure for
the new generation: conducting Langevin dynamics simulations
for each new candidate, generating composite diffusion map for
the new candidates, performing umbrella sampling on the com-
posite diffusion map space, constructing the free energy surfaces
and evaluating fitness values for each new candidate.

3 Results

We now proceed to describe our results for the inverse design of
patchy colloids by landscape engineering to spontaneously nucle-
ate and grow defect-free photonic lattices by a two-stage hierar-
chical assembly mechanism.

3.1 Inverse design of self-assembling pyrochlore lattice

3.1.1 Optimization of tetrahedral aggregate formation

We first apply landscape engineering to perform inverse design
of patchy colloids to assemble pyrochlore lattice. As described
in section 2.1.1, the pyrochlore lattice may be viewed as a tetra-
hedral network of corner-sharing tetrahedra. The optimization
of the anisotropic patchy colloid design in fig. 1 proceeds in the
four-dimensional design space {EB, φB,ED, φD} defining the po-
lar angle and interaction strength of the more strongly interacting
"B" patches on the north pole that mediate high-temperature as-
sembly of monomers into tetrahedra at T∗

high = 0.8 and the more

weakly interacting "D" patches on the south pole that direct as-
sembly of the pre-assembled tetrahedra into the pyrochlore lattice
at T∗

low = 0.3. By the symmetry of the design, we may first opti-
mize "B" patches at a reduced temperature of T∗

= 0.8 and then
obtain the corresponding parameters for "D" patches by equations
3 and 4. Thus, we optimize {EB, φB} at T∗

= 0.8 and the target
structure is the tetrahedron.

To initialize the optimization, we generate 10 initial candi-
dates from a multivariate Gaussian distribution centered around
(15.41ε, 30.0◦) with an initial covariance matrix of C0 = diag(5,5)
(i.e., a diagonal matrix with main diagonal vector (5,5)) and ini-

tial step size 1. This relatively large choice of initial covariance
matrix and step size was made to favor early exploration of the
design space. As detailed in section 2.2, for each candidate in
each generation we perform unbiased Langevin dynamics simu-
lations of assembly, construct composite diffusion maps, perform
biased umbrella sampling – hybrid Monte Carlo simulations, esti-
mate self-assembly free energy landscapes, and evaluate the rela-
tive fitness of each candidate. The evolution of fitness values ∆βF

and parameters {EB, φB} as a function of generation is shown
in fig. 5. In the 16th generation, the parameters converge to
EB = 15.44ε and φB = 30.44° within standard deviations of 1 kBT

at T = 298 K and 1°.
To see how the free energy surfaces change across generations,

we select the best candidate from each generation and generate
a composite diffusion map for all such candidates to provide a
common set of collective variables that we can use to compare
their free energy surfaces. The result is shown in fig. 6. Here we
compare the free energy surfaces of the best candidates in gener-
ations 1, 7 and 15. In particular, fig. 6 (d)-(f) show the free en-
ergy surfaces of these candidates in the composite diffusion map
space, and fig. 6 (a)-(c) show the partition of design space into
the Voronoi cells around the candidates in each of these genera-
tions. Panels (a)-(c) show that CMA-ES draws the initial distribu-
tion of candidates down into the optimum of the fitness landscape
in ∆βF over the course of the 16-generation optimization course.
Panels (d)-(f) show that the free energy surface is sculpted such
that the tetrahedron is preferentially stabilized with respect to all
competitors. In the 1st generation the tetrahedron is the most
stable aggregate but the monomer and dimer are also very stable,
lying, respectively, just +1 kBT and +2 kBT higher in free energy.
The trimer lies at +4 kBT . In the 7th generation, the stability of
the monomer relative to the tetrahedron is decreased to nearly
+3 kBT , but that of the dimer and trimer now lie at +2 kBT .
Finally in the 15th generation, the relative stabilities of the dimer
and trimer are decreased to +2.6 kBT and +4 kBT , respectively,
and the monomer lies at +2.5 kBT , making the tetrahedron at
least 2.5 kBT more stable than all of its competitors. The net ef-
fect of the landscape engineering approach can be seen to have
maximized the free energy gap (relative stability) between tetra-
hedron and all competing aggregates.

3.1.2 High-temperature assembly of tetrahedra and compar-

ison with empirical geometric design

Landscape engineering discovers the optimized parameters for
the "B" patches of EB = 15.44ε and φB = 30.44°. We now proceed
to verify that this design leads to the self-assembly of tetrahedral
aggregates in high yield. We perform four independent unbiased
Langevin dynamics simulations at T∗

= 0.8 for 2×106 reduced time
units for patchy colloids decorated with "B" patches employing the
optimal design parameters. All simulations are initialized with
512 randomly placed and oriented particles in a cubic box of side
length L = 105.54σ, corresponding to a volume fraction of ϕ =
0.05. The solid colored lines in fig. 7 show the temporal yield of
tetrahedral aggregates as a function of time. Assuming monomers
are depleted according to simple first-order kinetics, we can fit

an expression for the tetrahedral yield of form y(t) = b
(

1− e−kt
)

,
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and hexagonal tetrastack polymorphs.

Having characterized the final structure, we then proceed to
compute the band structure of the corresponding periodic crystal
using the MIT Photonic Bands (MPB) software95. We create an
infinite periodic pyrochlore lattice from the primitive lattice vec-
tors ®R1 = (0, a2 ,

a
2
), ®R2 = ( a2 ,0,

a
2
), ®R3 = ( a2 ,

a
2
,0) where a is the lattice

constant. The positions of the four basis particles reported in the
basis of the primitive lattice vectors (i.e., (l,m,n) denotes a posi-
tion vector l ®R1 +m ®R2 +n ®R3) are given in table 1. The lattice con-

Basis particle index Position

1
(

1
2
, 1

2
, 1

2

)

2
(

0, 1
2
, 1

2

)

3
(

1
2
,0, 1

2

)

4
(

1
2
, 1

2
,0

)

Table 1 Positions of basis particles of the pyrochlore lattice in the basis of

primitive lattice vectors ®R1 = (0, a2 , a2 ), ®R2 = ( a2 , 0, a2 ), ®R3 = ( a2 , a2 , 0) where a

is the lattice constant. The tuple (l,m,n) denotes a particle position vector

l ®R1 +m ®R2 +n ®R3.

stant a is related to the first peak in radial distribution function
(nearest-neighbor distance) rpeak,1 by a = 4√

2
rpeak,1. We estimate

the nearest-neighbor distance from the radial distribution func-
tion of final configuration (fig. 10b) to be rpeak,1 ≈ 5.25σ. The
radius of the colloidal particles is that of "A" spheres σA/2 = 2.5σ

and the dielectric constant is set to ǫr = 12.0 corresponding to
the value for silicon. The medium is taken to be air. We use a
16×16×16 grid to discretize the primitive unit cell to compute the
band structure along the high-symmetry lines in the first Brillouin
zone. We verify that our results are converged with respect to the
grid spacing. The resulting photonic band structure is shown in
Figure 11. The band structure shows the opening of an indirect
bandgap between the second and third bands with a width-to-
midgap ratio (ratio between the bandgap width and the midgap
frequency) of 4.63%.

3.2 Inverse design of self-assembling cubic diamond lattice

3.2.1 Optimization of staggered dimer formation

Following the success in pyrochlore assembly, we then apply our
landscape engineering approach to design a new patchy colloid
to assemble cubic diamond lattice via tetrahedral clusters. As
described in section 2.1.2 and illustrated in fig. 3, the cubic dia-
mond lattice comprises tetrahedral clusters arranged in staggered
dimers. The high-temperature assembly of patchy colloids into
tetrahedra proceeds in exactly the same fashion as for pyrochlore,
and we adopt EB = 15.44ε and φB = 30.44° as the optimal design
solution for the "B" patches. The design problem then reduces to
optimization of the interaction strengths and polar angles of the
south pole "D" and "E" patches to mediate the low-temperature
assembly of the pre-assembled tetrahedral aggregates into cubic
diamond lattice. We choose to optimize the parameters for "D"
and "E" patches at T∗

high = 0.8, and then scale down the interac-

tion strengths to match the low temperature phase T∗
low = 0.3 by

a factor of T∗
low/T

∗
high. Thus, we optimize {ED,EE, φ = φD = φE }

at T∗
= 0.8 and the target structure is a staggered dimer.

We initialize the optimization by generating 10 initial candi-
dates from a multivariate Gaussian distribution centered around
(6.67ε,6.67ε,26.60°) with an initial covariance matrix of C0 =

diag(5,5,5) and an initial step size 1. The evolution of {ED,EE, φ}
and the fitness ∆βF over the landscape engineering generations
are shown in fig. 12. In the 18th generation, all parameters have
converged to ED = 10.02ε, EE = 11.64ε and φ = 26.68° within
standard deviations of 1 kBT at T = 298 K and 1°.

The distribution of candidates within the design space and free
energy surfaces for the best candidates in generations 1, 9 and
17 are presented in fig. 13 to show how landscape engineering
changes the design and assembly properties of the building block
over the course of the optimization. In fig. 13a-i we partition the
design spaces {φ,EE }, {φ,ED} and {EE,ED} by the Voronoi cells
around the candidates in generations 1, 9 and 17, and we color
each Voronoi cell by the fitness value of the corresponding can-
didate. Here we observe that despite the relatively poor initial
guesses for ED and EE , CMA-ES was able to efficiently move the
mean and shrink the variance of subsequent generations of can-
didates to converge to the optimum of the ∆βF fitness landscape.
In fig. 13j-l we show that the self-assembly free energy surfaces
are driven towards a topography in which the staggered dimer
is preferentially stabilized relative to all competing aggregates.
In the 1st generation, the monomer is the most stable aggregate
lying (-1) kBT lower in free energy than the dimer. The trimer
and tetrahedron are each less stable than the dimer, lying, re-
spectively, +4 kBT and +8 kBT higher in free energy. In the 9th

generation, the landscape engineering protocol has successfully
rendered the dimer the most stable aggregate on the landscape,
with the monomer, trimer, and tetrahedron lying, respectively, +5
kBT , +5 kBT , and +6 kBT higher in free energy. In the 17th

generation, the dimer has been even further stabilized, with the
trimer and tetrahedron each lying +6 kBT higher in free energy,
and the monomer rendered completely unstable within the sam-
pling resolution of our calculations.

3.2.2 High-temperature assembly of dimers

We verify the optimal landscape engineering design of ED =

10.02ε, EE = 11.64ε and φ = 26.68° by performing four unbiased
Langevin dynamics simulations at T∗

= 0.8 for 2×106 reduced time
units for patchy colloids decorated with "D" and "E" patches. Sim-
ulations are initialized with 512 colloidal monomers with ran-
dom positions and orientations in a cubic simulation box with
side length L = 105.04σ corresponding to a volume fraction of ϕ
= 0.05. The yield of staggered dimers as a function of time for
the four runs is presented in fig. 14. Fitting the first-order kinetic

model for the dimer yield y(t) = b
(

1− e−kt
)

results in best-fit con-

stants of k = (459.9±29.1)s−1 and b= (99.1±0.1)%, demonstrating
that this design produces staggered dimers with nearly quantita-
tive yield.
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