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ABSTRACT

In a time-division duplex (TDD) multiple antenna system. the
channel state information (CSI) can be estimated using reverse train-
ing. A pilot contamination (spoofing) attack occurs when during
the training phase, an adversary also sends identical training (pilot)
signal as that of the legitimate receiver. This contaminates channel
estimation and alters the legitimate precoder/beamformimg design.
facilitating eavesdropping. Past approaches to pilot spoofing detec-
tion are limited to flat fading channels. In this paper we propose a
novel approach for detection of pilot spoofing attack over frequency
selective channels, with unknown channels and channel lengths, ex-
cept that an upperbound on the number of channel taps is assumed to
be known. The proposed approach is illustrated by numerical exam-
ples and they show the efficacy of the proposed approach. A method
to estimate Bob’s channel regardless of the spoofing attack, is also
presented and illustrated via simulations.

Index Terms— Physical layer security. pilot spoofing attack,
active eavesdropping, channel estimation.

1. INTRODUCTION

Consider a three-node time-division duplex (TDD) multiple antenna
system, consisting of a multi-antenna base station Alice, a single
antenna legitimate user Bob, and a single antenna eavesdropper Eve.
Alice designs its transmit beamformer based upon its channel to Bob
for improved performance. In a TDD system, the downlink and up-
link channels can be assumed to be reciprocal. Therefore, Alice can
acquire the channel state information (CSI regarding Alice-to-Bob
channel via reverse training during the uplink transmission. Bob
sends pilot (training) signals to Alice during the training phase of
the slotted TDD system. If a publicly known protocol is used where
the pilot sequences are publicly known, a malicious single-antenna
terminal (eavesdropper) Eve can transmit the same pilot sequence
during the training phase. synchronized with Bob’s training. Then
the CSI estimated by Alice is a weighted sum of Bob-to-Alice and
Eve-to-Alice CSIs. Consequently the beamformer designed on this
basis will lead to a significant information leakage to Eve. This is an
example of a pilot spoofing/contamination attack [1-3].

Several types of eavesdropping have been identified and ana-
lyzed in the literature [3]. In passive eavesdropping, the eavesdrop-
per does not transmit any signal of its own, but fries to intercept con-
fidential communication between a legitimate transmitter-receiver
pair. In active eavesdropping, the eavesdropper also transmits a sig-
nal of its own. If the intent is to disrupt the legitimate operation,
active eavesdropping attack is more appropriately termed as a jam-
ming attack [4,5]. Such jamming attacks may occur during the train-
ing phase (pilot jamming). as in [4—6]. and/or in the data phase, as
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in [4,5]. The objective of a jamming attack is to degrade the over-
all legitimate system performance. Distinct from pilot jamming is
the pilot spoofing or pilot contamination attack [1, 3, 7]. where the
eavesdropper Eve sends synchronized, identical training (pilot) sig-
nal as that of the legitimate user Bob. In contrast, in a pilot jamming
attack, Eve’s signal is a different pilot or not noise-like signal [6].
Eve's objective in pilot spoofing is to deceive Alice into treating the
Alice-to-Eve channel as Alice-to-Bob channel. This paper is con-
cerned with pilot spoofing attack issues.

Relation to Prior Work: All prior works on pilot spoofing de-
tection [2, 3, 7-12] deal with flat fading environments. The assump-
tion of flat fading is fundamental to these cited papers, and their
solutions will not work in frequency selective channels. In this pa-
per we address frequency selective channels with unknown channels
and channel lengths, except an upperbound on the number of chan-
nel taps is assumed to be known. In contrast, all prior works such
as [2,3,7-12], assume that channels are 1-tap channels.

Notation: Superscripts (.)*, (.)7 and (.)¥ represent complex
conjugate, transpose and complex conjugate transpose operation, re-
spectively, on a vector/matrix. The notation E{.} denotes the ex-
pectation operation, C the set of complex numbers, Ins an M x M
identity matrix, and p(A) denotes the rank of A. The notation x ~
N:(m, X)) denotes a random vector x that is circularly symmetric
complex Gaussian with mean m and covariance 3.

2. SYSTEM MODEL

We consider an MISO (multiple-input single-output) system with a
multi-antenna transmitter Alice equipped with /V, antennas, a sin-
gle antenna legitimate user Bob, and an eavesdropper Eve. Eve’s
objective in pilot spoofing is to deceive Alice into treating the Alice-
to-Eve channel as Alice-to-Bob channel. Hence, the number of an-
tennas at Eve must be the same as the number of antennas at Bob.
Therefore, in our model, Eve also has a single antenna. Such a sys-
tem model has also been been investigated in [2, 7-9], except that
instead of considering flat fading channels, we consider frequency
selective channels. Let s¢(n), 1 < n < T, denote the training se-
quence of length 7" time samples. Bob-to-Alice frequency selective
channel impulse response is denoted as {hg¢}; 5 ' (hge € CVr,
L g is the Bob’s channel length (number of taps)). and Eve-to-Alice
channel is denoted as {hg, }1;.::,;0—1 (hgy € CN7, L is the Eve’s
channel length). where the impulse responses include both large-
scale and small-scale fading effects. Let Pg and Pg denote the av-
erage fraining power allocated by Bob and Eve, respectively. In the
absence of any transmission from Eve, the received signal at Alice
during the training phase is given by

Lp—1

y(n) =VPs ) hpesi(n—0)+v(n) €™ (1)

£=0
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where additive noise v(r) ~ MNz(0,02Ix,.) and we normalize
/i Zle [se(n)|? = 1 (e.g., take |s;(n)| = 1). When Eve also
transmits pilot, the received signal at Alice during the training phase
is (L = max(Lg, Lg))

|
|
i

¥(n) =
£

(\/P_B hp: + \/ﬁhm) stin—£0)+v(n) @)

Il
=]

where hgy = O for £ > Lp and hgy = 0 for £ > Lg. In case
of Eve’s attack. based on (2). Alice would estimate /Pg hps +
VPghge, £ = 0,1,---. as Bob-to-Alice channel, instead of
+/Pg hp; based on (1).

2.1. Self-contamination at Bob

How to detect Eve’s attack based only on the knowledge of s:(n)
and y(n), is addressed in [8] for flat fading channels, where a
fraction [ of the training power Pgp at Bob is allocated to a
scalar random sequence sp(n) (zero-mean, ii.d., normalized
to have T ! Zle |sg(n)|? = 1, finite alphabet: BPSK or
QPSK, e.g) to be transmitted by Bob along with (superim-
posed on) s¢(n). That is, instead of \/Pgs:(n). Bob transmits
(0518<17 n:l.’g.’--- :T)

5p(n) = \/Pe(1 — B) st(n) + /PeBss(n). (3)

The sequence {sp(n)} is unknown to Alice (and to Eve) and it can
not be replicated in advance as it is a random sequence generated at
Bob. However, Alice knows that such {sg(n)} is to be expected in
¥(n). In this case, in the absence of any transmission from Eve, the
received signal at Alice during the training phase is given by

¥(n) = x0(n) + v(n), @

where

Lp—1
xo(n) = > hpedp(n—10). )
£=0
When Eve also transmits, we have

¥(n) = x1(n) +v(n) )

where

Lp—1 iy
Xl(n) = Z ]]B.c_'gB('n, — f) + \/P_E Z hEgst(ﬂ, — f]. (7
=0 £=0

In this paper we extend the self-contamination approach of
[8] to apply to frequency selective channels. Let L, > L =
max(Lg,Lr) and T, = T — Ly + 1. We do not assume knowl-
edge of L or Lg, but an upperbound L., on them is assumed to be
known to Alice. Define the Ly, x T}, matrix

St(Lm) St(Lm —|— 1) St (T)
St (Lm = 1) St (Lm] St (T — 1)
W= : ; :
#ill) 5:(2) st(T — Lm +1)

®
We assume that {s;(n)} is such that p(U) = Ly,. It then follows
that p(UUH) = L,,. This is the persistence of excitation condition
of order L., [13, Def. 10.1], which is necessary and sufficient for
unique estimation of channel tap gains (for number of taps < L)
using the method of least squares.
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3. ATTACK DETECTION

Now we have the following two hypotheses Hp (no attack) and #H1
(attack present) for the received signal at Alice:

Ho: y(m)=Xo(m)+v(n)

Hio: )‘(’ﬂ)le(n)—i—v(n) & i R R ©)

3.1. Signal Subspace Dimension

Define the correlation matrix of measurements as (z =0, 1)
i
IR o T {y(n)yH(n) |’H,;} (10)
n=Lm
and the correlation matrix of signals as (z = 0, 1)
iy
Ros=Tn' > E{s(mx!(n)|#:}. an
n=Lmn

Then we have R, ; = Ry s + o2In,., i =0,1.
If 5¢(n) is non-random, using (5), we obtain

R. o0 =FPgHg [(1 — B)RiB + ,SUQBILB] Hg (12)

where 04 = E{|sg(n)|?},

Hg = [hgo --- hpr,-1] € ev>"8 (13)
[R¢g]i; =(ij)th element of R;p € C*E*LE (14)
T
:T,,:l Z stn—i4+1)si(n—j54+1). (15)
n=Lm,

Note that (12) also holds if {s;(n)} is random and independent of
{s5(n)}. Since p(U) = Lum (see (8)). p(Res) = L. (If {se(n)}
isiid. random, Rep = 0711, where of = E{|s¢(n)|*}.) We also
assume that

H

n® = [nﬁo hg(LB_l)] e oethld (16)
is a realization of a continuous random vector with positive-definite
covariance matrix, implying that p(Hg) = Lg w.p.1 if N, > Lg.

Therefore, p(Rz,0) = Lg w.p.1if N; > Lp.
Similarly, using (7). we obtain

o[ 55 o, (3]

0 ,80?911,3 Hg
where

He = [hco — hC(L—l)] c CNexL (18)

hce =+/(1 — B)Pehpe 4+ v Pehge (19)

[R:c]i; =(ij)th element of R;c € CFXE (20)

T
= e Z stn—i+Dsi(n—j7+1). 21)
n=Lm

Since p(U) = Lm. p(Ric) = L. We assume that

H
n'® = [hgo hg(LE—l)} echie
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is a realization of a continuous random vector with positive-definite
covariance mafrix, and it is independent of %), Therefore,
p([HC HB]] = Lp + Lg wp.lif N, > Lg 4+ Lg. There-
fore, p(R@,l) =Lp+LgwplifN.>Lp+ Lg.

Thus, the ranks of the signal correlation matrix under the two
hypotheses are different. Alice does not know the true values of Lg
and L g. only an upperbound L,, on them. Lack of knowledge of Lg
and L g precludes use of the approach of [8] (also used in [11, 12]),
which relies on the knowledge that Lg = L = 1, i.e., the channels
are flat-fading (1-tap). We propose an alternative next.

3.2. Projection Orthogonal to Training

Stack T;, consecutive samples of kth component . (n) of y(n) into
a column:
= [ye(Lm) ye(Lm +1) --- yk(T)]T e CTm

Define v* from vy (n), the kth component v(r), in a similar fashion.

Fori=0,1,:-- ;L — 1, let
§:(3) =[s¢(Lm — 1) se(Lm +1—1) --- s(T —13)]"
$8(i) =[sB(Lm —1) sB(Lm+1—1) --- sp(T —13)]"

Then in the presence of eavesdropper. we have

Z ( Pg(1 — B) [hpe]x + VPe [heek ) 8:(£)

=0
Lp—1

- Z V' Pef hpiin(f) + v
£=0

where [hp¢] is the kth component of hp,. and similarly for [hge].
Finally define

8§ = [&(0) -+ §&(Lm —1)] € CTmxEm (22)
The training is such that p(S) = p(U) = L. Let ’Psl = projec-
tion orthogonal to the subspace spanned by the columns of S. Then
P:-y* has no contribution from training s¢(n). “Reshape” ’,lf’gly‘c
into a row vector along time and put all components ks together.
Then the so “projected” y(n) lacks s¢(n) but has the effect of hges
and sg(n).

We have (EVD stands for eigenvalue decomposition)

P =1Ir, — §(§78) 718" ¢ CTmXTm @23)
= upEg; vpeeEtEtel @4

where 3, is diagonal with T3, — L., positive eigenvalues along
its diagonal and we have used the fact that p(S) = L. hence the
orthogonal subspace is of rank 17, — L.,. Consider the reduced
dimension vectors of dimension Tr, — L :

e U{{vk,
§5(i) = U{'sB(i). @5

Y ey ey

§(3) = U7 & (),

Then we have E{vk“"(vk‘")H} = o2Ir,,_1,,. Since ’PSJ‘E = 0 im-
pliesUFS =0, ie., U¥§,(£) =0for 0 < £ < L., — 1, we have

Lp—1

Y=Y V/PeBhpsss() + v
£=0
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Now reshape y*" into a row of scalars g (n), n = L, - - - , Tm.
T S,
V" = [§k(Lm) Ge(Lm+1) - Gi(Tm)]" € CT
Similarly define ¥ (n) from v*", and 5% (n) from §5 (). Then
¥(n) € CN* with kth component §jx.(r). satisfies

Lp—1

¥(n) = VPsB Y hpedi(n)+¥(n). 6)

£=0

=i(n)

since E{v*"(v*")¥} = o2Ir,,_1.,,.. it follows that {ﬁk(n)}:":‘Lm
is a zero-mean, i.i.d..complex-Gaussian sequence, and since (orig-
inal) {v(n)} is spatially (i.e., componentwise) independent. in
(26), {¥(n)} is iid. zero-mean complex Gaussian with covariance
oly,. Sumlally 5%(n) is uncorrelated zero-mean sequence with
IEI{|"”’ (n)|*} not a function of n (follows just as the properties of
v(n)). Similar to (12), the correlation matrix of X(n) is given by

R; =P HgRpHE @7

where [Rg]i; = ™ S Im  E{5RTV(n) (55 (n))*}. It can

ni=Lm

be shown that p(Rg) = L. so that p(Rz) = Lp w.p.1.

3.3. Proposed Attack Detection Approach

In addition to (9). consider the nature of projected {¥(n)} under the
two hypotheses:

Ho : ¥(n) =

X(n) +v(n)
Hi: ¥(n)=xX

— Lm’Lm ]_, S
(n) +¥(n) *" +

Tm. (28)

We see that under Ho. the signal subspace rank of both {y(n)}
and {¥(n)} is Lp. whereas under H;. the signal subspace rank of
{¥(n)} is Lp + Lg while that of {§(n)} is Lp. Since the channel
lengths L g and L i are not known, our proposed relies on estimating
the signal subspace ranks of {y(n)} and {§(n)}: if the two ranks are
the same, there is no pilot spoofing, and if the two ranks are differ-
ent, one declares presence of a pilot spoofing attack. In contrast, in
the approach of [8] (also used in [11, 12]) applicable to fiat fading
channels, it is enough to check the signal subspace rank of {y(n)}.
which is 1 if there is no pilot spoofing. and is 2 in the presence of
pilot spoofing.

We use two different approaches for estimation of signal sub-
space rank given observations of signals in white Gaussian noise:
the minimum description length (MDL) source enumeration method
( [14-16]), and the random matrix theory (RMT) based source enu-
meration approach of [17. 18].

3.4. Estimation of Bob’s Channel

Regardless of the absence/presence of spoofer, we first estimate the
channel hgoy (see (19)) with known input s;(n) and noisy output
y(n) using the method of least-squares. The solution ho: satisfies

(k:{]:l:"' :Lm_ 1)
Lpm—1 o i
; (£, k)hee = T ZL: y(n)s; (n — k),
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where r5(€, k) = ﬁ Zzsz st(n — €)s;(n — k). Remove the

training contribution from the received signal to define

Lm—1

¥(n) =y(n) — > hoesi(n—¥) 29
£=0
Lp—1

~VBPs > _ hpesp(n— L)+ v(n). (30)
£=0

Now using (30), we apply the blind approach of [19] (the SIMO
case, equalizer length of 5 taps, delay of 2) to estimate hg; as hpe =
chpe. V£, up to a complex constant c. (Note that step 2 of Algorithm
1 of [19] was modified to extract “significant” principal eigenvectors
of the data correlation matrix, instead of the number of principal
eigenvectors stated in [19, Step 2, Alg. 1]. All eigenvalues smaller
than 0.1 x the largest eigenvalue of the data correlation matrix in step
2 of Algorithm 1 of [19] were deemed to be insignificant, hence the
corresponding eigenvectors were insignificant. The reason for this
modification is the lack of knowledge of Ly in (30).) We will use
a phase-insensitive mean-square error (MSE) measure to evaluate
channel estimation errors; this has been used in [20] in a different

~(B) . : :
context. If b'" is an estimate of h®) (see (16)), both normalized
to unit norm, phase-insensitive MSE in estimation of h(®)

is given
by [20]
min [|0® — AP |2 =2 2m® Fa®|. @31
00,27
1 —p * .

=N, =10, T=64, MDL
—&=N =10, T=128, MDL| ]

1 Vi
Ay I

0.7 ’ [‘ i —==N =40, T=64, MDL |
0.6 y l‘; —4=N =40, T=128, MDL|
e 2 I/ --N =10, T=64, RMT | |

h / ! / -«-N=10, T=128, RMT

04 Ay -m-N =40, T=64, RMT |7]
03 o / ) / we=N =40, T=128, RMT|-
0.2 e

2 ; ;f ,d:/
0.1 . . i

Probability of Detection

&5 0 -5 0 5 10 15 20
Pg o2/ o’ (dB)
Fig. 1: Probability of attack detection as a function of Eve’s

power Pg relative to noise power o2 when Bob’s power is fixed
at Ppos. /o2 = 10dB, =04 .

4. SIMULATION EXAMPLE

We consider frequency selective channels with Lg = 3. Lg = 2,
both values unknown to Alice who uses the upperbound L,, = 4,
hge ~ No(0,0%.In, ). hee ~ No(0, o3 In, ). both channels have
independent tap gains, and noise power o2, training power budget
Py at Bob is such that Pgo%,. /o2 = 10dB, training power bud-
get P at Eve is such that Pro#. /o2 varies from —20dB through
20dB, and fractional allocation /3 of training power at Bob to ran-
dom sequence sg(n) is 0.4 . Bob and Eve have single antennas
while Alice has N, = 10 or 40 antennas (> 2L,,). The training
sequence is a random binary sequence with 7" =64 or 128, and the
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random sequence {sg(n)} is i.i.d. QPSK. Fig. 1 shows our detec-
tion probability Py results averaged over 5000 runs for both MDL
and RMT (designed for false-alarm rate of 0.001) approaches. The
performance improves with increasing 7", N,. and Eve’s power Pg,
and RMT outperforms MDL. Fig. 2 shows phase-insensitive MSE
in Bob’s channel estimation. The curves labeled “blind” are based
on Sec. 3.4, and the curves labeled “naive” ignore Eve’s presence
and use an iterative method for channel estimation (estimate channel
using only training, equalize and quantize self-contamination, and
then redo with training-plus-estimated sg(n) as pseudo-training).
The blind result is invariant to Eve’s power, since it is applied af-
ter canceling training contribution, hence Eve’s contribution. The
naive results work well for low Pg (as exptected), but rapidly deteri-
orate with increasing Pr. The estimated Bob’s channel can be used
by Alice to implement a time-reversal matched-filter precoding [21]
at Alice for transmission to Bob; this precoder does not need the
knowledge of scaling ambiguity in estimating Bob’s channel.

F] ——N =10, T=564, blind
—4-N =10, T=128, biind
["]-m—N =40, T=54, blind

0 | _| =N =40, T=128, blind .
=N =10, T=64, naive i
-+ .N':ﬂ], T=128, naive ¥
..N =40, T=64, naive

*.N' =40, T=128, naive

10°

Channel phase-invariant MSE (Bob)

=20 -15 =10 -5 5 10 15 20

0
Pg 0%, / & (dB)
Fig. 2: Channel normalized MSE (31) for Bob’s channel as a func-
tion of Eve’s power Pgr. All parameters as for Fig. 1.

5. CONCLUSIONS

A novel approach to detection of pilot spoofing/contamination at-
tack in a 3-node TDD system (legitimate source-destination pair Al-
ice and Bob, and spoofer Eve) was presented in [8] (and also used
in [11, 12]) for fiat fading channels, exploiting the fact that both
Bob’s and Eve’s channels are one-tap channels. In this paper we
extended the approach of [8] to frequency selective channels. with
unknown channels and channel lengths, except that an upperbound
on the number of channel taps is assumed to be known to Alice. The
proposed approach was illustrated by numerical examples and they
show the efficacy of the proposed approach. A method to estimate
Bob’s channel regardless of the spoofing attack, was also presented
and illustrated via simulations.
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