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Abstract—In a time-division duplex (TDD) multiple antenna
system, the channel state information (CSI) can be estimated
using reverse training. A pilot contamination (spoo�ng) attack
occurs when during the training phase, an adversary also sends
identical training (pilot) signal as that of the legitimate receiver.
This contaminates channel estimation and alters the legitimate
beamformimg design, facilitating eavesdropping. Most of past
approaches to pilot spoo�ng detection are limited to �at fading
channels. A recent approach proposed superimposing a random
sequence on the training sequence at the legitimate receiver
for detection of pilot spoo�ng attack over frequency selective
channels, with unknown channels and channel lengths, except
that an upperbound on the number of channel taps is assumed
to be known. In this paper we augment this approach with joint
estimation of both legitimate receiver and eavesdropper channels,
and secure time-reversal precoding, to mitigate the effects of
pilot spoo�ng. The proposed mitigation approach is illustrated
via simulations.

I. INTRODUCTION

Consider a three-node time-division duplex (TDD) multiple
antenna system, consisting of a multi-antenna base station
Alice, a single antenna legitimate user Bob, and a single an-
tenna eavesdropper Eve. Alice designs its transmit beamformer
based upon its channel to Bob for improved performance.
In a TDD system, the downlink and uplink channels can be
assumed to be reciprocal. Therefore, Alice can acquire the
channel state information (CSI regarding Alice-to-Bob channel
via reverse training during the uplink transmission. Bob sends
pilot (training) signals to Alice during the training phase of
the slotted TDD system. If a publicly known protocol is used
where the pilot sequences are publicly known, a malicious
single-antenna terminal (eavesdropper) Eve can transmit the
same pilot sequence during the training phase, synchronized
with Bob’s training. Then the CSI estimated by Alice is a
weighted sum of Bob-to-Alice and Eve-to-Alice CSIs. Conse-
quently the beamformer designed on this basis will lead to a
signi�cant information leakage to Eve. This is an example of
a pilot spoo�ng/contamination attack [1], [2].
Several types of eavesdropping have been identi�ed and

analyzed in the literature [2]. In passive eavesdropping, the
eavesdropper does not transmit any signal of its own, but tries
to intercept con�dential communication between a legitimate
transmitter-receiver pair. In active eavesdropping, the eaves-
dropper also transmits a signal of its own. If the intent is to
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disrupt the legitimate operation, active eavesdropping attack
is more appropriately termed as a jamming attack [3]. Such
jamming attacks may occur during the training phase (pilot
jamming) and/or in the data phase. The objective of a jamming
attack is to degrade the overall legitimate system performance.
Distinct from pilot jamming is the pilot spoo�ng or pilot
contamination attack [1], [2], [4], where the eavesdropper Eve
sends synchronized, identical training (pilot) signal as that of
the legitimate user Bob. In contrast, in a pilot jamming attack,
Eve’s signal is a different pilot or not noise-like signal. Eve’s
objective in pilot spoo�ng is to deceive Alice into treating the
Alice-to-Eve channel as Alice-to-Bob channel. This paper is
concerned with pilot spoo�ng attack issues.
Almost all prior works on pilot spoo�ng detection [2], [4]–

[9] deal with �at fading environments. The assumption of �at
fading is fundamental to these cited papers, and their solutions
will not work in frequency selective channels. In this paper we
address frequency selective channels with unknown channels
and channel lengths. In contrast, prior works such as [2],
[4]–[9], assume that channels are 1-tap channels. Spoo�ng
detection over frequency selective channels was recently ad-
dressed in [10]. In this paper we augment this approach with
joint estimation of both legitimate receiver and eavesdropper
channels, and secure time-reversal precoding, to mitigate the
effects of pilot spoo�ng.

II. SYSTEM MODEL
We consider an MISO (multiple-input single-output) system

with a multi-antenna transmitter Alice equipped with Nr

antennas, a single antenna legitimate user Bob, and an eaves-
dropper Eve. Eve’s objective in pilot spoo�ng is to deceive
Alice into treating the Alice-to-Eve channel as Alice-to-Bob
channel. Hence, the number of antennas at Eve must be the
same as the number of antennas at Bob. Therefore, in our
model, Eve also has a single antenna. Such a system model
has also been been investigated in [4]–[6], except that instead
of considering �at fading channels, we consider frequency
selective channels.
Let st(n), 1 ≤ n ≤ T , denote the training sequence of

length T time samples. Bob-to-Alice frequency selective chan-
nel impulse response is denoted as {hB�}LB−1

�=0 (hB� ∈ CNr ,
LB is the Bob’s channel length (number of taps)), and Eve-
to-Alice channel is denoted as {hE�}LE−1

�=0 (hE� ∈ CNr , LE is
the Eve’s channel length), where the impulse responses include
both large-scale and small-scale fading effects. Let PB and PE
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denote the average training power allocated by Bob and Eve,
respectively. In the absence of any transmission from Eve, the
received signal at Alice during the training phase is given by

y(n) =
√

PB

LB−1∑
�=0

hB�st(n− �) + v(n) ∈ CNr (1)

where additive noise v(n) ∼ Nc(0, σ
2
vINr ) and we normalize

T−1
∑T

n=1 |st(n)|2 = 1 (e.g., take |st(n)| = 1). When Eve
also transmits pilot, the received signal at Alice during the
training phase is (L̄ = max(LB, LE))

y(n) =
L̄−1∑
�=0

(√
PB hB� +

√
PE hE�

)
st(n− �) + v(n) (2)

where hB� = 0 for � ≥ LB and hE� = 0 for � ≥ LE .
In case of Eve’s attack, based on (2), Alice would estimate√
PB hB� +

√
PE hE�, � = 0, 1, · · · , as Bob-to-Alice channel,

instead of
√
PB hB� based on (1).

A. Self-contamination at Bob

How to detect Eve’s attack based only on the knowledge of
st(n) and y(n), is addressed in [5] for �at fading channels,
where a fraction β of the training power PB at Bob is
allocated to a scalar random sequence sB(n) (zero-mean, i.i.d.,
normalized to have T −1

∑T
n=1 |sB(n)|2 = 1, �nite alphabet:

BPSK or QPSK, e.g.) to be transmitted by Bob along with
(superimposed on) st(n). That is, instead of

√
PBst(n), Bob

transmits (0 ≤ β < 1, n = 1, 2, · · · , T )

s̃B(n) =
√

PB(1− β) st(n) +
√

PBβ sB(n). (3)

The sequence {sB(n)} is unknown to Alice (and to Eve) and
it can not be replicated in advance as it is a random sequence
generated at Bob. However, Alice knows that such {sB(n)}
is to be expected in y(n). In this case, in the absence of any
transmission from Eve, the received signal at Alice during the
training phase is given by

y(n) = x0(n) + v(n), x0(n) =
LB−1∑
�=0

hB�s̃B(n− �) . (4)

When Eve also transmits, we have

y(n) = x1(n) + v(n) (5)

where

x1(n) =
LB−1∑
�=0

hB�s̃B(n− �) +
√
PE

LE−1∑
�=0

hE�st(n− �).

(6)

In [10] we extended the self-contamination approach of [5]
to apply to frequency selective channels. Let Lm ≥ L̄ =
max(LB, LE) and Tm = T − Lm + 1. We do not assume

knowledge of LB or LE , but an upperbound Lm on them is
assumed to be known to Alice. De�ne the Lm × Tm matrix

U =

⎡
⎢⎢⎢⎣

st(Lm) st(Lm + 1) · · · st(T )
st(Lm − 1) st(Lm) · · · st(T − 1)

...
...

. . .
...

st(1) st(2) · · · st(T − Lm + 1)

⎤
⎥⎥⎥⎦

(7)
We assume that {st(n)} is such that ρ(U) = Lm. It then
follows that ρ(UUH) = Lm. This is the persistence of
excitation condition of order Lm [11, Def. 10.1], which is
necessary and suf�cient for unique estimation of channel tap
gains (for number of taps ≤ Lm) using the method of least
squares.

III. ATTACK DETECTION

Now we have the following two hypotheses H0 (no attack)
and H1 (attack present) for the received signal at Alice:

H0 : y(n) = x0(n) + v(n)
H1 : y(n) = x1(n) + v(n)

, n = 1, 2, · · · , T. (8)

A. Signal Subspace Dimension

De�ne the correlation matrices Ry,i and Rx,i of measure-
ments and signals, respectively, as (i = 0, 1)

Ry,i = T−1
m

T∑
n=Lm

E
{
y(n)yH(n)

∣∣Hi

}
, (9)

Rx,i = T−1
m

T∑
n=Lm

E
{
xi(n)xHi (n)

∣∣Hi

}
. (10)

Then we have Ry,i = Rx,i + σ2
vINr , i = 0, 1. It is shown

in [10] that rank(Rx,0) = LB w.p.1 if Nr ≥ LB, and
rank(Rx,1) = LB + LE w.p.1 if Nr ≥ LB + LE .
Thus, the ranks of the signal correlation matrix under the

two hypotheses are different. Alice does not know the true
values of LB and LE , only an upperbound Lm on them. Lack
of knowledge of LB and LE precludes use of the approach
of [5] (also used in [8], [9]), which relies on the knowledge
that LB = LE = 1, i.e., the channels are �at-fading (1-tap).
[10] proposed an alternative approach to attack detection. Here
we follow a similar approach, discussed next, which differs in
details.

B. Attack Detection Approach

Regardless of the absence/presence of spoofer, we �rst
estimate the channel hC� =

√
(1 − β)PBhB�+

√
PEhE� with

known input st(n) and noisy output y(n) using the method of
least-squares. The solution ĥC� satis�es (k = 0, 1, · · · , Lm−1)

Lm−1∑
�=0

rs(�, k)ĥC� =
1

Tm

T∑
n=Lm

y(n)s∗t (n− k),
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where rs(�, k) = 1
Tm

∑T
n=Lm

st(n− �)s∗t (n−k). Remove the
training contribution from the received signal to de�ne

ỹ(n) =y(n)−
Lm−1∑
�=0

ĥC�st(n− �)

≈
√
βPB

LB−1∑
�=0

hB�sB(n− �) + v(n) = x̃(n) + v(n).

(11)

In addition to (8), consider the nature of projected { ỹ(n)}
under the two hypotheses:

H0 : ỹ(n) = x̃(n) + v(n)
H1 : ỹ(n) = x̃(n) + v(n) , n = Lm, Lm + 1, · · · , Tm .

(12)
We see that underH0, the signal subspace rank of both {y(n)}
and {ỹ(n)} is LB , whereas underH1, the signal subspace rank
of {y(n)} is LB + LE while that of {ỹ(n)} is LB . Since the
channel lengths LB and LE are not known, our proposed relies
on estimating the signal subspace ranks of {y(n)} and { ỹ(n)}:
if the two ranks are the same, there is no pilot spoo�ng, and
if the two ranks are different, one declares presence of a pilot
spoo�ng attack. In contrast, in the approach of [5] (also used
in [8], [9]) applicable to �at fading channels, it is enough to
check the signal subspace rank of {y(n)}, which is 1 if there
is no pilot spoo�ng, and is 2 in the presence of pilot spoo�ng.
Two different approaches for estimation of signal subspace

rank given observations of signals in white Gaussian noise,
were used in [10]: the minimum description length (MDL)
source enumeration method ( [12]–[14]), and the random
matrix theory (RMT) based source enumeration approach of
[15], [16]. Note also that model (12) used here is different
from that in [10].

IV. CHANNEL ESTIMATION

A. Estimation of Bob’s Channel
Now using (11), we apply the blind approach of [17] (the

SIMO case, equalizer length of 5 taps, delay of 2) to estimate
hB� as ĥB� = chB�, ∀�, up to a complex constant c. (Note
that step 2 of Algorithm 1 of [17] was modi�ed to extract
“signi�cant” principal eigenvectors of the data correlation
matrix, instead of the number of principal eigenvectors stated
in [17, Step 2, Alg. 1]. All eigenvalues smaller than 0.1× the
largest eigenvalue of the data correlation matrix in step 2 of
Algorithm 1 of [17] were deemed to be insigni�cant, hence
the corresponding eigenvectors were insigni�cant. The reason
for this modi�cation is the lack of knowledge of LB in (11).)
Also, [17] involves equalization and quantization of sB(n).
We will use a phase-insensitive mean-square error (MSE)

measure to evaluate channel estimation errors; this has been
used in [18] in a different context. If ĥ

(B)
is an estimate of

h(B) = [h�B0 · · · h�B(Lm−1)]
�, both normalized to unit norm,

phase-insensitive MSE in estimation of h(B) is given by [18]

min
θ∈[0,2π]

‖h(B) − ejθĥ
(B)‖2 = 2− 2|h(B)H ĥ

(B)|. (13)

Correct scaling of ĥ
(B)

is possible along the lines of
[9] but as applied to frequency-selective channels, by using
equalized/quantized sB(n).

B. Estimation of Eve’s Channel
If the detector indicates the presence of Eve, we also

estimate Eve’s channel. Here we need ĥ
(B)

with proper scale.
Then ĥE� = ĥC� − ĥB�.

V. TIME-REVERSAL PRECODING AT ALICE

We use time-reversal beamforming [19] at Alice from
transmission to Bob. In the absence of spoo�ng, Alice designs
the precoder based on estimated Bob’s channel. If spoo�ng is
present, Alice designs a constrained time-reversal precoder to
maximize SNR at Bob while placing a null toward Eve (using
Eve’s estimated channel) at several “time lags.” Let {sA(n)},
E{|sA(n)|2} = 1, denote the scalar information sequence
of Alice intended for Bob. Alice designs a time-revsersal
precoder with impulse response w� ∈ CNr , 0 ≤ � ≤ Lm − 1,
and transmits

√
PA

∑Lm−1
�=0 w� sA(n− �) =

√
PAwn ⊗ sA(n)

where PA is the transmit power, ⊗ denotes convolution and
{w�} is normalized to unit norm. The received signals at Bob
and Eve are given, respectively, by

yB(n) =
√
PAh�Bn ⊗ wn ⊗ sA(n) + vB(n) (14)

yAE(n) =
√

PAh�En ⊗ wn ⊗ sA(n) + vE(n), (15)

where we have used channel reciprocity, vE(n) ∼ Nc(0, σ
2
E)

and vB(n) ∼ Nc(0, σ
2
B) are additive white Gaussian noise at

Eve’s and Bob’s receivers.
In the absence of Eve (or, Eve is not detected), to maximize

|gB(�)| at � = Lm − 1, (gB(�) = h�B� ⊗ w�), matched �lter
reception at Bob yields w� = h∗B(Lm−1−�), 0 ≤ � ≤ Lm − 1.
When Eve is present, the precoder is designed to maximize
|gB(�)| at � = Lm−1 subject to gE(�) = 0 ∀� where gE(�) =
h�E�⊗w�. For channel and precoder lengths not exceeding Lm,
we need to consider gE(�) for 0 ≤ � ≤ 2Lm − 2. De�ne

w̄ = [w�
0 w�

1 · · · w�
Lm−1]

� , (16)

HE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h�E0 0 · · · 0
h�E1 h�E0 · · · 0
...

...
. . .

...
h�E(Lm−1) h�E(Lm−2) · · · h�E0

0 h�E(Lm−1) · · · 0
...

...
. . .

...
0 · · · · · · h�E(Lm−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

h̄B = [h�B(Lm−1) h
�
B(Lm−2) · · · h�B0]

� . (18)

Then gE(�) = 0 for 0 ≤ � ≤ 2Lm−2 is equivalent to HEw̄ =
0.
This leads to the optimization problem

maxw̄ |h̄�Bw̄| subject to HEw̄ = 0, ‖w̄‖ = 1. (19)

����



The constraint HEw̄ = 0 implies that w̄ lies in a subspace
orthogonal to that spanned by HH

E , i.e., for some w̄0, with
P⊥
HH

E
denoting projection orthogonal to HH

E ,

w̄ = P⊥
HH

E
w̄0 =

(
INrLm −HH

E (HEHH
E )−1HE

)
w̄0. (20)

With ˜̄hB := (P⊥
HH

E
)�h̄B , |h̄�Bw̄| = |˜̄h�Bw̄0| is maximized

w.r.t. w̄0 by an MF solution w̄0∗ = c ˜̄h∗B for some nonzero
constant c. Since P⊥

HH
E

is a projection operator satisfying
P⊥
HH

E
(P⊥

HH
E
)H = P⊥

HH
E
, in terms of w̄, we have w̄ =

P⊥
HH

E
w̄0∗ = cP⊥

HH
E
h̄∗B , where c is picked to set ‖w̄‖ = 1.

We note again that if Eve is not detected, we pick w̄ = h̄∗B .
In practice, we replace hB� and hE� with their estimates.

Also, since Lm typically overestimates the true lengths LB and
LE , we replace (HEHH

E )−1 in (20) with its pseudo-inverse
via SVD.
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Fig. 1. Probability of attack detection as a function of Eve’s power PE relative
to noise power σ2v when Bob’s power is �xed at PBσ2
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2
v = 10dB, β=0.4
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VI. SIMULATION EXAMPLE

We consider frequency selective channels with LB = 3,
LE = 2, both values unknown to Alice who uses the upper-
bound Lm = 4, hB� ∼ Nc(0, σ

2
BcINr ), hE� ∼ Nc(0, σ

2
EcINr),

both channels have independent tap gains, and noise power σ 2
v ,

training power budget PB at Bob is such that PBσ
2
Bc/σ

2
v =

10dB, training power budget PE at Eve is such that PEσ
2
Ec/σ

2
v

varies from −20dB through 20dB, and fractional allocation
β of training power at Bob to random sequence sB(n) is
0.4 . Bob and Eve have single antennas while Alice has
N r = 10 or 40 antennas (≥ 2Lm). The training sequence
is a random binary sequence with T =64 or 128, and the
random sequence {sB(n)} is i.i.d. QPSK. Fig. 1 shows our
detection probability Pd results averaged over 5000 runs for
both MDL and RMT (designed for false-alarm rate of 0.001)
approaches. The performance improves with increasing T , N r

and Eve’s power PE , and RMT outperforms MDL. Fig. 2
shows phase-insensitive MSE in Bob’s channel estimation.
The curves labeled “blind” are based on the approach of [17],
and the curves labeled “naive” ignore Eve’s presence and use
an iterative method for channel estimation (estimate channel

using only training, equalize and quantize self-contamination,
and then redo with training-plus-estimated sB(n) as pseudo-
training). The blind result is invariant to Eve’s power, since it
is applied after canceling training contribution, hence Eve’s
contribution. The naive results work well for low PE (as
exptected), but rapidly deteriorate with increasing PE .
The estimated Bob’s channel can be used by Alice to im-

plement a time-reversal matched-�lter precoder (beamformer)
[19] at Alice for transmission to Bob, as discussed in Sec.
V. At Bob and Eve, respectively, we design linear MMSE
equalizers with full knowledge of their respective channels
and the beamformer at Alice, to evaluate possible performance
limits. It is seen from Figs. 3-6 that when spoo�ng-aware
channel estimates are used, Alice can frustrate Eve’s eaves-
dropping with only a “small” (if any) deterioration in Bob’s
performance.
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VII. CONCLUSIONS

A novel approach to detection of pilot spoof-
ing/contamination attack in a 3-node TDD system (legitimate
source-destination pair Alice and Bob, and spoofer Eve)
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Fig. 5. BER at Bob when Alice uses naive estimate of Bob’s channel for
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full knowledge of Alice-to-Bob channel and the beamformer at Alice.

was presented in [9] for frequency-selective channels, with
unknown channels and channel lengths. In this paper we
augmented this approach with joint estimation of both
legitimate receiver and eavesdropper channels, and secure
time-reversal precoding, to mitigate the effects of pilot
spoo�ng. The proposed approach was illustrated by numerical
examples and they show the ef�cacy of the proposed
approach.

REFERENCES
[1] X. Zhou, B. Maham and A. Hjorungnes, “Pilot contamination for active

eavesdropping,” IEEE Trans. Wireless Commun., vol. 11, pp. 903-907,
March 2012.

[2] D. Kapetanovic, G. Zheng and F. Rusek, “Physical layer security for
massive MIMO: An overview on passive eavesdropping and active
attacks,” IEEE Commun. Mag., vol. 53, No. 6, pp. 21-27, June 2015.

[3] R. Miller and W. Trappe, “On the vulnerabilities of CSI in MIMO
wireless communication systems,” IEEE Trans. Mobile Computing, vol.
8, pp. 1386-1398, Aug. 2012.

[4] Q. Xiong, Y-C. Liang, K.H. Li and Y. Gong, “An energy-ratio-
based approach for detecting pilot spoo�ng attack in multiple-antenna
systems,” IEEE Trans. Information Forensics & Security, vol. 10, pp.
932-940, May 2015.

PE / σv
2 (dB)

-20 -15 -10 -5 0 5 10 15 20

do
w

nl
in

k 
B

E
R

 (B
ob

): 
M

M
S

E
, s

ec
ur

e

10-6

10-5

10-4

10-3

10-2

Nr=10, T=64

Nr=10, T=128

Nr=40, T=64

Nr=40, T=128

Fig. 6. BER at Bob when Alice uses spoo�ng-aware (“secure”) estimate of
Bob’s channel, and Eve’s estimated channel, for time-reversal beamforming
design. Bob uses a linear MMSE equalizer with full knowledge of Alice-to-
Bob channel and the beamformer at Alice.

[5] J.K. Tugnait, “Self-contamination for detection of pilot contamination
attack in multiple antenna systems ,” IEEE Wireless Commun. Lett.,
vol. 4, No. 5, pp. 525-528, Oct. 2015.

[6] Q. Xiong, Y-C. Liang, K.H. Li and Y. Gong, “Secure transmission
against pilot spoo�ng attack: A two-way training-based scheme,” IEEE
Trans. Information Forensics & Security, vol. 11, pp. 1017-1026, May
2016.

[7] J.K. Tugnait, “Detection of pilot contamination attack in TDD/SDMA
systems,” in Proc. 2016 IEEE Intern. Conf. Acoustics, Speech & Signal
Processing (ICASSP 2016), pp. 3576-3580, Shanghai, China, March
20-25, 2016.

[8] J.K. Tugnait, “On mitigation of pilot spoo�ng attack,” in Proc. 2017
IEEE Intern. Conf. Acoust., Speech Signal Process. (ICASSP 2017),
New Orleans, Louisiana, March 5-9, 2017, pp. 2097-2101.

[9] J.K. Tugnait, “Pilot spoo�ng attack detection and countermeasure,”
IEEE Trans. Commun., vol. 66, no. 5, pp. 2093-2106, May 2018.

[10] J.K. Tugnait, “Detection of pilot spoo�ng attack over frequency se-
lective channels,” in Proc. 2018 IEEE Statistical Signal Processing
Workshop (SSP), pp. 737-741, Freiburg, Germany, June 10-13, 2018.

[11] M. Verhaegen and V. Verdult, Filtering and System Identi�cation.
Cambridge, UK: Cambridge U. Press, 2007.

[12] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoustics, Speech, Signal Proc., vol. 33, no. 2,
pp. 387-392, April 1985.

[13] F. Haddadi, M. Malek-Mohammadi, M.M. Nayebi and M.R. Aref,
“Statistical performance analysis of MDL source enumeration in array
processing,” IEEE Trans. Signal Processing, vol. 58, no. 1, pp. 452-
457, Jan. 2010.

[14] B. Nadler, “Nonparametric detection of signals by information theoretic
criteria: Performance analysis and an improved estimator,” IEEE Trans.
Signal Processing, vol. 58, no. 5, pp. 2746-2756, May 2010.

[15] S. Kritchman and B. Nadler, “Determining the number of components
in a factor model from limited noisy data,” Chem. Inst. Lab. Syst., vol.
94, pp. 19-32, 2008.

[16] S. Kritchman and B. Nadler, “Non-parametric detection of the number
of signals: Hypothesis testing and random matrix theory,” IEEE Trans.
Signal Process., vol. 57, no. 10, pp. 3930-3941, Oct. 2009.

[17] I. Kacha, K. Abed-Meraim and A. Belouchrani, “Fast adaptive blind
MMSE equalizer for multichannel FIR systems,” EURASIP J. Applied
Signal Process., vol. 2006, Article ID 14827, pages 1-17, 2006.

[18] D.J. Love and R.W. Heath, “Equal gain transmission in multiple-input
multiple-output wireless systems,” IEEE Trans. Commun., vol. 51, no.
7, pp. 1102-1110, July 2003.

[19] T. Strohmer, M. Emami, J. Hansen, G. Papanicolaou and A.J. Paulraj,
“Application of time-reversal with MMSE equalizer to UWB commu-
nications,” in Proc. IEEE Globecom 2004, vol. 5, pp. 3123-3127, Nov.
2004.

���	


