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ABSTRACT: Two-dimensional (2D) cesium lead halide perovskite colloidal nanoplatelets
show sharper excitonic absorption/emission peaks and larger absorption cross section in
comparison to bulk materials and quantum dots. It remains unclear how 2D exciton and
charge separation properties can be utilized to further enhance the performance of perovskite
materials for optoelectrical applications. Herein, we report a study of exciton and interfacial
charge-transfer dynamics of CsPbBr; nanoplatelets via transient absorption spectroscopy. The
exciton binding energy (~260 meV) is determined via detailed spectral analysis. The exciton
bleach is caused by band-edge exciton state-filling with negligible single carrier (electron or
hole) contributions. Efficient charge separation can be achieved by selective electron and hole
transfers to adsorbed molecular acceptors (benzoquinone and phenothiazine, respectively),
and the halflife of the charge-separated state (>>100 ns) in nanoplatelet-phenothiazine
complexes is >100 fold longer than that in quantum dot-phenothiazine complexes. Our results
suggest that CsPbBr; nanoplatelets are promising materials for photocatalysis and photovoltaic

CsPbBr3

applications.

erovskite semiconductors, including hybrid (MAPbBX,,

where MA = methylammonium, X = Cl, Br, I) and all-
inorganic (CsPbX;, X = Cl, Br, I) perovskites, are a new class
of materials with great potential for optoelectrical applica-
tions." ™ Their high luminescent quantum yield, long carrier
lifetime, and long carrier diffusion length have led to
impressive performance for light-emittin§ diodes,” ™" las-
ing,'"*™*” and low-cost photovoltaics”® " (with solar-to-
electricity conversion efficiency exceeding 20%’'~*’). Two-
dimensional (2D) CsPbX; (X = CI, Br, I) colloidal
nanoplatelets (NPLs) were introduced into the perovskite
family recently with tunable emission from 2.0 to 3.0 eV.*'™*
These colloidal NPLs can be synthesized in ambient
conditions at room temperature,*"*7** and their 2D
morphology gives rise to unique excitonic features, such as
large exciton binding energy,*® sharp absorption and emission
peaks, #4748 and large absorption coefficient.”” These
properties make perovskite NPLs even more promising
materials for photocatalysis and optoelectrical applications.
However, the properties of charge separation and recombina-
tion in these 2D NPLs, which are the key processes during
photocatalytic and photovoltaic reactions, remain unclear. On
the one hand, the 2D morphology of NPLs is reported to
effectively extend the charge-separated state compared to the
0D and 1D nanostructures’’ and enhance the solar-to-H,
conversion efficiency.”” > On the other hand, the large
exciton binding energy due to dielectric confinement effect in
2D morphology%’53 is not favorable for exciton dissociation
and charge separation (CS). Moreover, charge separation/
recombination properties are determined by the band-edge 2D
exciton behaviors in these NPLs. Therefore, systematic studies
on exciton and charge-transfer dynamics in CsPbBr; NPLs are
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important to both fundamental understanding of 2D excitons
in these 2D perovskite materials and rational improvements of
their photocatalysis and optoelectrical performance.

Herein, we report a systematic study of exciton and
interfacial charge-transfer dynamics of CsPbBr; colloidal
NPLs via transient absorption (TA) spectroscopy. The NPL
absorption features before and after excitation were analyzed to
reveal the binding energy of excitons (~260 meV). The origin
of the band edge exciton bleach (XB) signal was examined.
The dissociation of excitons by selective interfacial electron
transfer (ET) and hole transfer (HT) from the NPL to
adsorbed benzoquinone (BQ) and phenothiazine (PTZ),
respectively, was studied as a function of acceptor concen-
tration to reveal the time constants for the charge separation
and recombination processes.

Sample Characterization. CsPbBr; NPLs were synthesized
following reported procedures with slight modifications.” The
details of the synthesis are described in the Supporting
Information. The transmission electron microscopy (TEM)
image of CsPbBr; NPLs (Figure la) shows rectangular
morphology with a lateral size of (26.7 + 6.4) X (8.1 + 1.6)
nm?® (Figure S1). The CsPbBr; NPLs dispersed in toluene
were used for all measurements in this work. The static
absorption (Abs, blue circles in Figure 1b) spectrum of NPLs
can be fit according to the well-established model for quantum
wells (QWs) and consists of the exciton and continuous band
transitions (see Supporting Information, section $4).****7%7
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Figure 1. CsPbBr; NPLs. (a) TEM image of CsPbBry; NPLs. (b) Photoluminescence (solid blue line) and absorption (blue circles) spectra of
CsPbBr; NPLs. The black solid line is the fit of the absorption spectrum. (c) Scheme of energy levels of CsPbBr; NPLs, oxidation potential
(HOMO) of PTZ, reduction potential (LUMO) of BQ, and interfacial ET and HT pathways from NPL to molecular acceptors (BQ or PTZ).
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Figure 2. TA spectra and kinetics of free CsPbBry NPLs. (a) TA spectra at indicated delay times (dots) and their fits (solid black lines). Inset: the
expanded view of the TA spectra at low-energy range (480—680 nm). (b) Fits of absorption spectra before pump (Abs, solid lines) and after pump
(Abs*, dashed lines) that contribute to TA spectra. The arrows show the state-filling (red) and BGR (green) effects on absorption after pump. (c)
Comparison of XB, PA, and PL decay kinetics. The solid line is the fit.

The sharp absorption peak at ~2.76 eV (~448 nm) is assigned
to the band-edge excitonic transition (X) of S monolayer
CsPbBr; NPLs with a thickness of ~3 nm,* and the sharp
photoluminescence (PL, blue solid line in Figure 1b) peak at
~2.70 eV (~459 nm) is attributed to band edge emission.*>*®
The full width at half-maximum of the PL peak is 90 + 2 meV,
which is 1.4-fold narrower than CsPbBr; QDs (~130 meV),*®
indicating more uniform quantum confinement along the NPL
thickness direction. From the peak position and the onset of
the continuous absorption band (Con, from 2.9 to 3.2 €V), the
exciton binding energy is determined to be 260 + 10 meV,
which is much larger than that in CsPbBr;QDs (~40 meV)"’
and bulk perovskites (~10 meV).**” This binding energy value
in CsPbBr; NPLs is consistent with recently reported
(C¢H(CH,),NH,),Pbl, nanosheets (200—260 meV)>’ but
is about 2-fold larger than previously reported CsPbBr; NPLs
(~120 meV).* The band edge positions (vs vacuum) of the
conduction band (CB) and valence band (VB) are estimated
as —3.59 and —6.34 eV, respectively, which differ from bulk
values mainly because of the quantum confinement effect (see
Supporting Information, section S3). With the reported
reduction potential of BQ at —4.3 e¢V,’" and the reported
oxidation potential of PTZ at —5.5 eV, electrons and holes
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can be selectively transferred from NPLs to BQ and PTZ,
respectively (Figure 1c).

Spectroscopy of CsPbBr; NPLs. We first investigated the
exciton dynamics in CsPbBr; NPLs by TA spectroscopy. All
TA measurements in this work were conducted at room
temperature with low pump fluence (~S puJ/cm?®) so that
multiexciton generation is negligible and only single exciton
dynamics is considered. The TA spectra of free NPLs (Figure
2a) show a negative exciton bleach (XB) signal at ~448 nm,
which can be attributed to blocking of the band edge
transitions by the presence of a photogenerated band edge
exciton. Comparison of normalized TA spectra at all delay
times (Figure S3) shows that the spectral shape is independent
of delay time from 1 ps to 1.2 ns, consistent with the presence
of only long-lived single-exciton states. The spectra also show a
broad photoinduced absorption (PA) signal from 480 to 680
nm (inset of Figure 2a), similar to many other low-dimensional
semiconductor nanocrystals.”**'~®* The TA spectra (Figure
2a) can be fit to the difference between the absorption of the
excited NPL (Abs*) and ground state (Abs), accounting for
exciton-state filling, exciton—exciton interaction, and band gap
renormalization (BGR), similar to bulk perovskites®” and other
2D NPLs.>>”” State-filling of continuous band is ignored at the
low excitation conditions in which only the single exciton state
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Figure 3. Electron and hole transfer from NPLs. (a) TA spectra of NPL-PTZ complexes at indicated delay times. Inset: a comparison of TA spectra
of NPL-PTZ and free NPL at long delay time (0.2—1 s). (b) Comparison of kinetics of subtracted exciton bleach of NPL-PTZ (SXB, red circles),
exciton bleach of free NPLs (free XB, gray dashed line), and subtracted oxidized PTZ signals (SPTZ, green squares). The black lines are the fits of
SXB and SPTZ kinetics of NPL-PTZ. (c) TA spectra of NPL-BQ complexes at indicated delay times. (d) Comparison of kinetics of subtracted
exciton bleach of NPL-BQ (SXB, red circles) and exciton bleach of free NPLs (free XB, gray dashed line). The black lines are the fits of SXB

kinetics of NPL-BQ.

is occupied. Abs (solid lines) is obtained by fitting the ground-
state spectrum as shown in Figure 1b. Compared to Abs, Abs*
(dashed lines, Figure 2b) has a lower exciton peak intensity
due to the state-filling of band edge exciton state, broadened
peak width, and red-shifted peak position due to exciton—
exciton interaction.”” The continuous feature in the excited
NPLs (Con*) is shifted to lower energy because of the
BGR*”® (see Supporting Information, section S4 for details).
The best fits (black solid lines in Figure 2a) give an exciton
shift of 10 + 2 meV, similar to CsPbBr; QDs," but smaller
than that in CdSe NPLs (~20 meV).>” This shift is a net result
of exciton—exciton interactions (Ayy), which contains: (1) red
shift due to exciton—exciton Coulomb attraction, also known
as the biexciton binding energy®®” and (2) blue shift due to
Coulomb screening effect, which reduces the exciton binding
energy at a higher exciton density.*®

The XB (~448 nm), PA (500—650 nm), and PL decay
kinetics agree with each other (Figure 2c), indicating that both
XB and PL probe exciton decay processes. PL decay kinetics
before 120 ps is not compared because of the limited
instrument response time of the time-resolved PL measure-
ment (~110 ps). The best fit of the XB kinetics gives a
formation time of 101 + 20 fs (see Supporting Information,
section SS), indicating fast hot exciton relaxation to the band
edge, consistent with recently reported CsPbBr; NPLs*® and
similar to CsPbBr; QDs.***® The decay time constants are
20.8 + 1.2 ps (26.8 + 2.1%), 1664 + 156 ps (53.2 + 4.4%),
and 11.4 + 1.3 ns (20.0 + 4.2%) (Table S2), and the half-life
of XB kinetics is 804 + 25 ps, which is faster than the band
edge exciton decay reported in CsPbBr; QDs (half-life ~ 2.8
ns).”® This may be attributed to enhanced radiative decay rates
of band edge excitons in 2D materials®~"" and additional

~
~
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nonradiative pathways in NPLs based on a lower PL quantum
yield of NPLs (~31%)" compared to QDs (~79%).”*
Charge Separation in CsPbBry; NPLs. Electron transfer and
hole transfer from NPLs were investigated in NPL-BQ and
NPL-PTZ complexes, respectively, with varying NPL/
adsorbate ratio by transient absorption spectroscopy. These
complexes were prepared by adding different amounts of BQ
(PTZ) to NPL toluene solution followed by sonication, and
the total BQ (PTZ) concentrations vary from 0.55 (1.12) to
9.25 (7.53) mM. The transient spectra of NPL-PTZ complexes
with the highest PTZ concentration (7.53 mM) are shown in
Figure 3a. At long delay time (>0.2 us), when the TA signal of
free NPL decays to zero, a broad peak of NPL-PTZ sample
centered at ~525 nm can be seen (inset of Figure 3a), which is
attributed to the oxidized PTZ signal.61 This long-lived
oxidized PTZ signal shows that the exciton in NPL dissociates
by hole transfer to PTZ to form a charge-separated state with
electron remaining in NPL and hole in PTZ. Comparison of
XB kinetics of free NPLs and NPL-PTZ shows a faster
recovery of the latter in the <1 ns time scale. Interestingly,
these samples show the same decay kinetics (Figure S4a) at
long delay time (>10 ns), indicating that there exists some free
NPLs in the NPL-PTZ sample. The contribution of NPLs with
adsorbed PTZ can be represented by the subtracted XB
kinetics (SXB), which is obtained by subtracting normalized
XB kinetics of free NPL from total XB kinetics of NPL-PTZ
(Figure S4a). Because of the overlap between PA and oxidized
PTZ signals (Figure S4b), we subtract the normalized PA
kinetics (600—650 nm) from the total signal at ~525 nm to
obtain the pure oxidized PTX signal, referred to as the
subtracted oxidized PTZ kinetics (SPTZ). As shown in Figure
3b, SXB decays faster than XB of free NPLs, consistent with
HT from NPL to PTZ. Furthermore, the formation of the
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SPTZ signal agrees with the decay of the SXB signal,
confirming that the exciton decays by HT from NPL to
PTZ. It is important to note that the XB decays to zero at long
delay time (>1 ns), when the electron remains in the NPL and
the hole is transferred to PTZ, indicating that the VB hole is
required for observing an XB signal.

The transient spectra of NPL-BQ complexes with the
highest BQ concentration (9.25 mM) are shown in Figure 3c.
Similar to the NPL-PTZ sample, the NPL-BQ sample also
contains a contribution of free NPLs, whose contribution can
be removed by subtracting normalized XB kinetics of free NPL
from the XB kinetics of NPL-BQ (Figure S4c). As shown in
Figure 3d, the subtracted exciton bleach kinetics (SXB) of
NPL-BQ_complexes decays faster than the XB of free NPLs
(Figure 3d), indicating ET from NPL to BQ. Surprisingly, the
SXB of NPL-BQ also decays to zero at a long delay time (>1
ns), indicating a CB electron is also required for the
observation of XB.

The results above show that the selective removal of either
the CB electron or VB hole results in the complete recovery of
XB, which suggest that the band edge exciton transition is
blocked by the exciton and that the presence of only the CB
electron or VB hole leads to negligible contribution to XB.
This is different from either cadmium chalcogenide nanocryst-
als (QDs,”*™”* NRs,”°"7® and NPLs**"*7%%), where electron
state-filling dominates XB, or CsPbBr; QDs, where both
electron (~67%) and hole (~33%) state-filling contribute to
the XB.>® Although the origin of this difference is unclear, it is
likely due to two properties of CsPbBry; NPLs. (1) The
effective mass of the electron (m, = 0.215m,) is similar to that
of the hole (m;, = 0.211m,) in CsPbBr; NPLs,*’ so that the CB
and VB edges likely have similar density of states and phase
space-filling behaviors at a thermal equilibrium. (2) The band
edge exciton in CsPbBry NPLs is strongly bound (with a
binding energy of ~260 meV) so that the exciton wave
function is a superposition of many single electron and hole
levels. Because the band edge single electron or hole level
makes only small contributions to the exciton wave function,
neither the CB electron (VB hole) in the charge-separated
state, with the electron (hole) in NPL and the transferred hole
(electron) in the acceptor, leads to significant exciton bleach.

We fit the XB kinetics of free CsPbBr; NPL, SXB kinetics of
NPL-BQ/PTZ complexes, and SPTZ kinetics (black solid lines
in Figures 2c and 3b,d) using multi-exponential functions with
the same set of parameters accounting for band edge
recombination, carrier trapping, and CS processes (see
Supporting Information, section SS for details). The best
multi-exponential fits give time constants (amplitudes) of 0.55
+0.02 ps (26.8 + 2.1%), 17.7 + 3.8 ps (53.2 + 4.4%), and 724
+ 84 ps (20.0 + 4.2%) for HT and 0.66 + 0.03 ps (26.8 +
2.1%), 14.7 + 2.6 ps (53.2 + 4.4%), and 552 + 67 ps (20.0 +
4.2%) for ET in samples with the highest PTZ (7.53 mM) and
BQ (9.25 mM) concentrations, respectively. From these time
constants, the HT and ET half-life values can be estimated to
be 24.1 + 2.5 ps and 10.6 + 1.0 ps, respectively. Accounting
for the competition between charge separation and recombi-
nation, the HT and ET yields are estimated to be 97.6 + 0.1%
in NPL-PTZ complexes and 97.8 + 0.1% in NPL-BQ
complexes, respectively (see Supporting Information, section
SS). The fits also reveal that the charge-separated state in NPL-
PTZ is long-lived, whose decay can be fit to a bi-exponential
function with time constants (amplitudes) of 31 + 3 ns (42.8
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+ 3.0%) and 4887 + 241 ns (57.2 + 3.1%) and described bya
half-life >>100 ns.

Because both the ET and HT times depend on the number
of acceptors per NPL, it is useful to quantify these time
constants for complexes with one acceptor (BQ or PTZ),
referred to as the intrinsic ET and HT time constants. To do
this, we analyzed the XB kinetics of NPL-BQ (PTZ) as a
function of BQ(PTZ) concentrations using a previously
reported model for colloidal QDs (see Supporting Informa-
tion, section $6).”***** This model assumes (1) the number of
acceptors on NPL surfaces follows a Poisson distribution,***®
(2) the adsorption of acceptors on NPL surfaces follows the
Langmuir adsorption isotherm,* and (3) exciton diffusion
within 2D NPLs is fast®"** and ET and HT rates scale linearly
with the number of adsorbed acceptors on the NPL surface.”®
The apparent exciton quenching rate (the reciprocal of the
half-life of XB kinetics, 1/7,,) as a function of acceptor
concentration (Figure S6c) can be fit well according to this
model, from which the average number of acceptors per NPL
at different acceptor concentrations (Figure S6d) can be
obtained. The best fits (solid lines in Figure S6c) yield the
intrinsic ET (HT) time constant per BQ_ (PTZ) of 248 + 69
ps (670 + 90 ps), which is similar to those in CsPbBry QDs.>
This indicates that strong electronic coupling between charge
carriers in NPLs and surface adsorbed acceptors results in
efficient charge transfer, similar to QDs and nano-
rods 62848791

Compared to CsPbBr; QDs, the 2D morphology of CsPbBr;
NPLs results in the following distinguishing advantages: (1)
The strong dielectric confinement effect gives large exciton
binding energy so that the exciton rather than free carriers
dominates at the band-edge, which increases the oscillator
strength of band-edge transitions and is promising for emitting
applications. (2) The charge-separated state lifetime of
CsPbBr; NPL-PTZ complexes (with halflife >>100 ns) is
over 100-fold longer than that in CsPbBr; QD-PTZ complexes
(with half-life of ~1 ns).® We attribute the longer charge-
separated state lifetime to the 2D morphology, on the basis of
our previous findings of 2D CdS NPLs.”® Although for the
same reason we also expect a longer charge-separated state
lifetime in NPL-electron acceptor complexes than that in QD-
electron acceptor complexes, we are unable to probe the
charge-separated state in NPL-BQ complexes because the
reduced form of BQ does not have an absorption feature in the
visible region (400—800 nm). Considering charge recombina-
tion is the main loss pathway for solar-to-fuel conversion,” the
longer-lived charge-separated state in CsPbBr; NPL-acceptor
complexes shows greater potential than perovskite QDs for
photocatalysis. (3) NPLs have larger absorption coefficient,"’
making NPLs potentially better sensitizers in photovoltaics.
Therefore, with near unity CS yield, high CS rate, long CS
distance, and large absorption cross section, CsPbBr; NPLs are
promising as a novel class of photocatalysis and optoelectrical
materials. ">

In summary, we have studied the exciton dynamics and
charge-transfer processes in CsPbBr; NPLs via TA spectros-
copy. The exciton binding energy (~260 meV) is determined
via detailed analysis on static and transient absorption spectra.
The XB of CsPbBr; NPLs requires exciton at band edge, and
single carriers (electron or hole) have negligible contributions
to the XB, which is different from either CsPbBr; QDs or low-
dimensional cadmium chalcogenide nanocrystals. ET and HT
from NPLs to electron (BQ) and hole (PTZ) acceptors,
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respectively, were observed, and their rates increase at higher
acceptor contractions. The ET and HT time constants are
determined to be 248 + 69 and 670 + 90 ps per BQ and PTZ,
respectively, and reach 24.1 + 2.5 and 10.6 + 1.0 ps,
respectively, at the highest PTZ (7.53 mM) and BQ (9.2§
mM) concentrations studied in our work. At these
concentrations, the HT and ET yields are estimated to be
97.6 + 0.1% in NPL-PTZ complexes and 97.8 + 0.1% in NPL-
BQ complexes and the half-life time of the charge-separated
state in NPL-PTZ complexes exceeds 100 ns, which is over
100-fold longer than that in CsPbBr; QD-PTZ complexes. The
findings in this work enhance fundamental understanding of
exciton properties and carrier dynamics in 2D perovskite
nanomaterials. Moreover, the observations of ultrafast
interfacial charge transfer and long-lived charge-separated
state of NPL-acceptor complexes suggest they are also
promising materials for photocatalysis and solar cell
applications.

B EXPERIMENTAL METHODS

Sample Synthesis. The colloidal CsPbBr; NPLs were synthe-
sized following the reported procedures with slight mod-
ifications.”” Details can be found in the Supporting
Information, section S1.

Experimental Setup. Instrumental information describing
optical characterization of NPLs are provided in detail in the
Supporting Information, section S2. Femtosecond transient
absorption (TA) measurements were based on a regeneratively
amplified Ti:sapphire laser system (Coherent Legend, 800 nm,
150 fs, 2.4 mJ/pulse, and 1 kHz repetition rate). The TA
signals were collected and analyzed by the Helios (femto-
second scale) and the EOS (nanosecond scale) spectrometer
(Ultrafast Systems LLC). PL measurements were performed
with a FluoroMax-3 Spectrofluorometer (Horiba Scientific).
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