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ABSTRACT
Two-dimensional nonlinear dynamic analyses (NDAs) of Austrian Dam in the 1989 M,=6.9 Loma Prieta
Earthquake are presented using the finite difference program FLAC 8.0 with the user-defined constitutive
model PM4Silt and following engineering procedures common in practice. This relatively homogenous,
55-m high embankment dam was comprised primarily of low-plasticity clayey sands and clayey gravels.
The dam experienced estimated peak ground accelerations of 0.4-0.6g during the earthquake and
developed extensive cracking with crest settlements up to 859 mm. The engineering properties of the
compacted embankment materials are estimated based on the available isotropically consolidated
undrained triaxial compression and resonant column test data. NDAs were performed using two
alternative calibrations for the PM4Silt model and four different input motions. Sensitivity of the
computed deformations to various modeling parameters and assumptions was examined. The computed
responses are shown to be in reasonable agreement with the observed crest settlements, embankment
deformation patterns, and excess pore pressures. Limitations in the material characterizations and analysis
procedures and their possible effects on the analysis results are discussed. The results of this study
provide support for the use of these analysis methods and engineering procedures in seismic evaluations
of compacted earthfill embankments.
INTRODUCTION

Austrian Dam, a 55-m-high compacted earth embankment dam located in Santa Clara County in
California, experienced significant damage during the 1989 My=6.9 Loma Prieta Earthquake. The
embankment was to have an upstream impervious zone and a downstream pervious zone based on
selective borrowing, but was homogenous for practical purposes with both zones comprised primarily of
low-plasticity clayey sands and clayey gravels. Peak horizontal ground accelerations at the dam site are
estimated to have been between 0.4 and 0.6 g. The dam experienced crest settlements of 750 to 859 mm
along 140 m of its approximately 230-m-long crest. Extensive cracking in the embankment required
removal and replacement of the upper portion of the embankment, and extensive damage to the spillway
led to eventual construction of a new spillway. Details of the dam's characteristics and its performance in
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the Loma Prieta Earthquake are provided by Wahler Associates (1979, 1981, 1990), Babbitt (1991), and
Harder et al. (1998).

Options for constitutive modeling of compacted clayey fills or clays in nonlinear dynamic analyses
(NDAs) are limited in practice, such that it is common for clay-like soils to be represented in an NDA
using total stress (e.g., Mohr Coulomb) or total stress hysteretic models that do not simulate key features
of cyclic softening, pore pressure generation, or shear strain accumulation (e.g., Rampello et al. 2009,
Stark et al. 2012, Hadidi et al. 2014, Luque and Bray 2017). For example, the only published NDA for
Austrian Dam used a Mohr Coulomb based model (Vrymoed and Lam 2006). Advanced constitutive
models for clays have been used in seismic analyses of embankment dams (e.g., Mejia et al. 1992, Elia
and Rouainia 2013), but there remains a need for further development, implementation, and validation of
these types of models in the analysis programs most commonly used in practice. The constitutive model
PM4Silt (Boulanger and Ziotopoulou 2018) was recently developed for representing clays and plastic silts
in NDAs using FLAC 8.0 (Itasca 2016), and provides an opportunity to reevaluate the Austrian Dam case
history using a more advanced constitutive model.

This paper presents results of two-dimensional (2D) NDAs of Austrian Dam in the 1989 M,,=6.9
Loma Prieta Earthquake using the finite difference program FLAC 8.0 (Itasca 2016) with the user-defined
constitutive model PM4Silt (Boulanger and Ziotopoulou 2018) and following engineering procedures
common in practice. The characteristics of the dam and its performance in the Loma Prieta Earthquake
are summarized. The engineering properties of the compacted embankment materials are re-evaluated and
two alternative calibrations for the PM4Silt model are developed. Analyses to establish the initial static
stress and seepage conditions are described. NDAs are then presented for the two alternative PM4Silt
model calibrations and four different input motions. Sensitivity of the computed deformations to various
modeling parameters and assumptions is examined. The computed responses are shown to be in
reasonable agreement with the observed crest settlements, embankment deformation patterns, and excess
pore pressures. Limitations in the material characterizations and analysis procedures and their possible
effects on the analysis results are discussed. The results of this study are shown to provide support for the
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use of these analysis methods and engineering procedures is seismic evaluations of compacted earthfill
embankments.
AUSTRIAN DAM AND ITS PERFORMANCE IN THE LOMA PRIETA EARTHQUAKE

Austrian Dam is a 55-m-high compacted earthfill embankment dam located on the upper portion of
Los Gatos Creek in Santa Clara County. The dam, completed in 1951, retains a reservoir (Lake Elsman)
with a capacity of 7.7 million m® and freeboard of 4.6 m. A plan view and cross-section of the maximum
section (A-A'") are shown in Figures 1 and 2, respectively. The dam crest is at elevation 342.9 m and has a
width of 6.1 m and length of about 230 m. The upstream and downstream slopes range from 1.5:1
(horizontal to vertical) near the crest to 3.5:1 near the toes. Construction drawings indicate that the dam
was to have upstream impervious and downstream pervious zones based on selective borrowing, but the
as-constructed embankment is nearly homogenous for practical purposes. The dam is founded on the
Franciscan Formation, including sandstones, siltstones, shales, and greywacke. The central portion of the
downstream shell was to be underlain by seven gravel strip drains spaced 9.3-m apart over the bedrock.
The drains were absent in one of four trenches excavated near the downstream toe in 1989, suggesting the
drains may not all have been constructed as specified (Babbitt 1991). Additional details of the dam
construction, material properties, and performance in the Loma Prieta Earthquake are provided in Wahler
Associates (1979, 1981, 1990), internal memos on public file at the California Division of Safety of Dams
(e.g., Babbitt 1991), and Harder et al. (1998).

The embankment materials were comprised primarily of low-plasticity clayey sands (SC) and clayey
gravels (GC) with fines contents (passing No. 200 sieve) ranging from 16-44% (mean of 32%) and gravel
contents (coarser than No. 4 sieve) ranging from 26-72% (mean of 46%). The matrix materials had
plasticity indices (PI) ranging from 11-15 (mean of 13). The mean dry unit weight of the as-compacted
materials during construction was about 19.0 kN/m® versus about 19.9 kN/m® for samples obtained from
borings in 1989. Babbitt (1991) reviewed original construction records, settlement data, repair records,

and supporting laboratory test data, and concluded that the average as-compacted unit weight,
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corresponding to about 93% of the DWR 20,000 ft-1b/ft* compaction standard, was reasonable for the
general embankment. Classification and compaction test data are summarized in Table 1.

The dam is located over the up-dip edge of the Loma Prieta fault plane projection by Wald et al.
(1991) as shown in Figure 3. The nearest strong motion recordings were at the Corralitos station, which is
also located over the up-dip edge of the fault plane projection at a similar epicentral distance as Austrian
Dam. The next nearest strong motion station was at Lenihan Dam, which is located at slightly greater
distances from the epicenter and fault plane than is Austrian Dam. The Corralitos station is on
predominantly shale landslide deposits that have a measured Vi3 (i.e., average shear wave velocity to a
depth of 30 m) of 462 m/s (Gibbs et al. 1992), whereas the Lenihan abutment station is on Franciscan
formation rocks with an inferred V3o of 1,070 m/s (CESMD 2019) consistent with geophysical
measurements summarized in Makdisi et al. (1991). There does not appear to be any record of
geophysical measurements at Austrian Dam, but unpublished data from a limited number of other projects
in the region have shown shear wave velocities ranging from 760 to 2,700 m/s in the upper 30 m of the
Franciscan formation. Channel 1 at the Corralitos and Lenihan stations is oriented due east, which is
approximately transverse to Austrian Dam. The recorded horizontal acceleration time series and
corresponding acceleration response spectra for the Corralitos station and the abutment station at Lenihan
Dam are shown in Figure 4. The Corralitos motions had slightly greater peak accelerations (0.48-0.63 g)
than the Lenihan abutment motions (0.41-0.44 g), but lower spectral accelerations for periods greater than
about 0.8 s. The longer-period components of the Lenihan abutment motions may have been influenced
by the dynamic response of the dam, but the extent of such interaction is uncertain. The motions at the
Austrian Dam site were not recorded, but it seems reasonable to expect that they would have had similar
characteristics to those recorded at the Corralitos and Lenihan abutment stations based on the relative
proximities to the fault plane projection and earthquake epicenter.

The reservoir and phreatic levels in the dam were low at the time of the earthquake, as shown on
Figure 2. The reservoir was about 30 m below the dam crest and had been similarly low for three or four
years prior to the earthquake because of drought conditions. Piezometric levels were monitored by pairs
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of standpipe piezometers placed in three boreholes at the locations shown on Figure 1 and to the depths
shown on Figure 2. The piezometer pairs in each borehole had 5-foot sensing intervals (sand packing)
separated from each other by bentonite pellets (Vrymoed and Lam 2006). The piezometers were recorded
on October 16, 1989, only one day before the earthquake; the piezometric levels and inferred phreatic
surface from these recordings are shown on the cross-section in Figure 2. Piezometers P-3 and P-5 were
dry. The piezometers were recorded again on October 19, 1989, only 2 days after the earthquake. The
post-earthquake piezometer readings showed rises of 2.7 m to 16.8 m, as discussed later with the
numerical simulation results. The post-earthquake recordings showed that the excess pore pressures
dissipated relatively slowly; e.g., the excess heads of 15.2 m and 16.8 m measured in piezometers P-6 and
P-1 two days after the earthquake, dropped about 7.5 m (about 50% of 15.2 m) and 1.3 m (about 8% of
16.8 m) over the next 10 days (Wahler Associates 1990, Vrymoed and Lam 2006). The observed slow
rates of dissipation suggest that excess heads immediately after the earthquake may have been 0-10%
greater than the values measured two days after the earthquake and that essentially undrained loading
conditions existed during earthquake loading. These piezometer data provide a basis for calibrating the
seepage analyses, as well as evaluating model predictions of excess pore pressure after strong shaking.
The embankment experienced extensive cracking and deformation during the earthquake. The areas
of significant longitudinal and transverse/oblique cracking were mapped as shown on Figure 1. The
photograph in Figure 5a shows the cracking along the dam crest near the left abutment, whereas the
photograph in Figure 5b shows the cracking and distortion along the access road on the downstream face
of the dam. At the left abutment, transverse cracks in the embankment were up to 200 mm wide and up to
3 m deep, and cracks along the embankment-foundation contact were up to 450 mm wide and up to 8 m
deep (Harder et al. 1998). The cracking along the embankment-foundation contact was associated with
loose fill or slope debris materials that appear to have not been removed from the abutment slope during
construction (Wahler Associates 1990). At the right abutment, cracks and separations at the contact
between the embankment and the spillway walls were up to 250 mm wide and up to 7 m deep (Harder et
al. 1998). Longitudinal cracks in the upper portions of the upstream and downstream faces were up to 100
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mm wide shortly after the earthquake, but widened to as much as 300 mm at the surface over the
following couple of weeks. Trenches showed the cracks extending to depths of about 4.3 m with widths
that tapered with depth. The progressive widening of the longitudinal cracks with time was generally
attributed to soil creep during this period. Limited longitudinal cracking and minor bulging was also
observed on the downstream face near the toe. In addition, the tubing for piezometer P-1 (located midway
down the downstream face) was observed to be deformed between elevations 291.1 m and 292.6 m (or
about 7.6 to 9.1 m above the bedrock), and the tubing for piezometer P-6 (located at the dam crest) was
deformed between elevations 310.2 and 317.2 m (about mid-height in the embankment).

Survey monuments along the dam crest were surveyed on October 16, 1987, one day before the
earthquake, and then again on October 18, one day after the earthquake. The survey measurements
showed that the dam crest settled 750 to 859 mm over the central 140 m of the crest length. Horizontal
displacements along the dam crest were more varied, with the measurements indicating a maximum of
330 mm in the downstream direction near the right abutment and a maximum of 130 mm in the upstream
direction closer to the left abutment. Harder et al. (1998) noted the surveys were not tied into a stationary
benchmark, and concluded instead that the right side of the embankment likely moved about 460 mm
downstream relative to the left abutment. Survey measurements over the following 19 days did not show
any measurable increase in displacements with time (Vrymoed and Lam 2006).

The embankment damage was repaired within two months of the earthquake and a new spillway was
constructed on the left abutment in 1993-94. The embankment repairs included excavating and replacing
fills in the areas of observed cracking, the addition of blanket and chimney drains at both embankment
ends, grouting of the embankment-foundation contact at the left abutment, epoxy grouting of the cracks in
the spillway, and grouting of voids beneath the spillway slabs (Harder et al. 1998).

MATERIAL PROPERTIES AND CONSTITUTIVE MODEL CALIBRATION

The cross-sections and internal zoning used for the 2D nonlinear dynamic analyses are shown in
Figure 6. The upstream pervious, downstream impervious, and gravel strip drain zones are assigned
different hydraulic conductivities, but are all modeled using the same set of mechanical properties with
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the constitutive model PM4Silt. The same mechanical properties are assigned to the upstream and
downstream zones because field investigations showed them to be largely indistinguishable in gradations
and engineering properties (Figure 7). The composite strength of the gravel strip zone may be greater than
that of the material between the strips alone, but neglecting the strengthening effect of the gravel strips in
this zone would be a conservative approximation and would not be expected to significantly affect the
response of the overall structure. The bedrock was modeled as a rigid base for the mesh shown in Figure
6a, which also may be slightly conservative but is a reasonable simplification given the absence of shear
wave velocity data for the bedrock and the uncertainty in the input ground motions. The second mesh
shown in Figure 6b uses the same embankment mesh as Figure 6a, but includes a 60-m-thick layer of
bedrock with a compliant base and free-field lateral boundary conditions (Itasca 2016); this mesh will be
used later to evaluate sensitivity of the computed responses to a range of possible bedrock shear wave
velocities. The remainder of this section focuses on the calibration of the PM4Silt model for the
compacted fills, whereas details of the analyses for initial static stresses and dynamic response are
covered in the following sections.

The PM4Silt model was chosen for representing the compacted fills because their engineering
properties appear to be largely governed by the clayey matrix materials (i.e., fines content of 16-44%, Pls
of 11-15) and thus better modeled as clay-like than sand-like. The PM4Silt model builds on the
framework of the stress-ratio controlled, critical state compatible, bounding surface plasticity PM4Sand
model (Ziotopoulou and Boulanger 2016) with modifications to better approximate the monotonic and
cyclic undrained loading responses of clays and plastic silts. Calibration procedures for PM4Silt with
different types of available information are illustrated in Boulanger et al. (2018), and so are only briefly
described herein. The calibration process involved: (1) establishing relationships for undrained shear
strength (s,) and small-strain shear modulus (G..x) as functions of the consolidation stress conditions, (2)
adjusting the parameter /4, to obtain reasonable results for shear modulus reduction and equivalent
damping ratio versus shear strain amplitude, (3) adjusting the parameter /,, to obtain reasonable cyclic
strength curves, (4) adjusting other secondary parameters to obtain reasonable rates of shear strain
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accumulation at larger strains, and (5) iteratively repeating the above steps until no further adjustments
are warranted. Two alternative calibrations were developed, with all parameters listed in Table 2. The
following discussion elaborates on the calibration steps, the differences in the two calibrations, and the
calibrated model responses.

Monotonic undrained shear strength parameters were obtained from the isotropically consolidated,
undrained (ICU) triaxial compression test data for tube samples by Wahler Associates (1981),
reinterpreted using the approach in Duncan and Wright (2005). Test specimens were reconsolidated in the
laboratory to isotropic effective stresses that are in the range of the vertical or mean effective stresses that
existed at the sampling depths. Strength parameters were developed for two different failure criterion: (a)
peak effective stress ratio or stress obliquity, which occurred at axial strains of about 3-6%, or (b) an axial
strain of 10%. The test specimens had strain-hardening responses (incrementally dilative in monotonic
shearing at larger strains), as shown in Figure 8, such that undrained shear strengths from the latter
approach were greater than from the former. The effective strength parameters were determined by
plotting the principal stress difference at failure [#,= (07— 037)/2] versus the mean of the major and minor
principal effective stresses at failure [s’s= (o”;r+ 0’3)/2], as shown in Figures 9a and 9c for the two failure
criteria, respectively. The linear fits to these data produced intercepts of a' = 0 and slopes of &' =34.5 and
33.3 degrees, respectively. These parameters were converted to conventional Mohr Coulomb cohesion

intercepts (¢') and effective friction angles (¢') using the following relationships (Lambe and Whitman

1969),

¢=—2 (1)
cos(¢")

¢ = asin(tan(a’)) )

The resulting strength parameters are ¢’ = 0 with ¢'=43.4 and 41.1 degrees, respectively. The critical
state friction angle (¢',) for PM4Silt was subsequently set to 41 degrees, given that the mobilized friction

angles were approaching critical state at the larger strains. The undrained shear strengths were equated
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with the shear stress on the eventual failure plane at failure () and plotted versus the consolidation stress
on the eventual failure plane (¢’ = o0's. for ICU tests) as shown in Figures 9b and 9d. The linear fits to
these data produced the intercepts (dz) and slopes (wz) shown on these figures and listed in Table 3; these
strength parameters correspond to a consolidation stress ratio K. = ¢”;/0'3. = 1.0 since these are ICU tests.
The drained strength relationship, defined using ds = ¢’ and s = ¢’ on a graph of 7y versus o', is used to
define the undrained shear strength for K. = K, where K;is the maximum possible consolidation stress
ratio (i.e., also corresponding to drained failure conditions). Undrained strengths for other values of K. are
linearly interpolated between the strengths estimated for K. = 1 and K. = K.

The undrained shear strength at critical state (s.s) assigned to each zone of PM4Silt was computed
using the above procedure and the parameters listed in Table 2 with the initial static consolidation stresses
that exist prior to the start of dynamic loading. For each zone, the ¢’ is computed based on the
assumption that principle stresses are in the same direction at the time of consolidation and failure (i.e., as
is done for rapid drawdown analysis per Duncan and Wright 2005). Additional discussion and examples
of this process, including alternative forms and the potential limitations of this procedure for estimating
strengths under the more complex loading paths imposed by seismic loading, are provided in
Montgomery et al. (2014). The ratio of s,,.s to any consolidation stress becomes excessively large at
shallow depths, so s, was limited to be no greater than ¢, at shallow depths (i.e., s,/ T < 1); this limit
avoids depending on large negative pore water pressures during shearing of elements at shallow depths.
The s,,cs values produced throughout the embankment by the above procedure are later presented as
Sucs/ Ove cONtours as an alternative way to view the strengths produced by this adaptation of the Duncan

b,wet

and Wright (2005) procedure. The bounding surface parameter n”"* was set to 1.0 which eliminates any
potential strain-softening during undrained shearing.

A relationship for the small-strain (maximum) shear modulus (G..x) was obtained from the results of

four resonant column tests by Wahler Associates (1979). The Gy values are plotted versus mean
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effective consolidation stress (p';) in Figure 10, and two alternative fits obtained using the equation for
elastic shear modulus used in PM4Silt,

G=G,P, [%} 3

A
One fit was obtained by fixing the stress exponent ng = 0.5, as generally expected for cohesionless soils,
after G, = 2,640 was obtained. A second, improved fit was obtained with ng left as a fitting parameter,
which led to ng = 0.6 and G, = 2,280. The latter set of parameters were adopted for the PM4Silt
calibrations, although the two fits are not significantly different over the range of stresses most important
to the dam (i.e., o', of about 1 to 8 atm). Sensitivity analyses presented later include cases with G,
increased or decreased by 30%.

Modulus reduction and equivalent damping ratios for the PM4Silt model were obtained from single
element simulations of undrained DSS loading at different strain amplitudes under a range of
consolidation stresses. The stress-strain loops obtained for Calibrations 1 and 2, along with the modulus
reduction and equivalent damping values from the 3™ loading cycle at each strain amplitude, are shown in
Figure 11 for simulations with a consolidation stress of 600 kPa (= 6 atm). The stress-strain loops for both
calibrations for shear strains up to 1% are approximately the same, despite the differences in their
undrained shear strengths. Also shown on this figure are the modulus reduction and equivalent damping
ratio relationships recommended by Menq (2003) for a well graded gravel with a coefficient of uniformity
(C.) of 100 and by Vucetic and Dobry (1991) for a fine-grained soil with a PI of 15. The modulus
reduction results for PM4Silt are intermediate to these two empirical correlations, which seems
appropriate given the embankment materials are well-graded clayey sands and clayey gravels with a PI of
about 13. The equivalent damping ratios for PM4Silt are greater than either empirical correlation, which
is a common limitation for this model. These simulation results, obtained using the default value for 4,

(0.5), were considered sufficiently reasonable that no adjustments to %, were performed.

Submitted May 2019 10



The preceding two steps in the calibration process prioritize modeling of the estimated small-strain
shear modulus and the modulus reduction and equivalent damping ratio responses over the modeling of
the monotonic stress-strain responses from the ICU triaxial tests. The monotonic stress-strain responses
from the triaxial tests (Figure 8) have secant shear moduli that are far smaller than from the resonant
column test data (Figure 10) and imply shear modulus reduction curves that are shifted well to the left
(strong nonlinearity at smaller shear strains) of the empirical relationships shown in Figure 11. Numerous
past studies have demonstrated that small-strain properties cannot be reliably measured with conventional
triaxial devices due to mechanical compliance, friction, and other limitations, and that laboratory tests on
field samples can further underestimate (or sometimes overestimate) the in-situ shear stiffness depending
on the degree of sample disturbance, testing procedures, strain levels, and soil type. For example, Lunne
et al. (2006) summarize the effects of disturbance and testing procedures on the stress-strain response of
soft clays and Boulanger and Wijewickreme (2019) showed how calibration of a constitutive model
(PM4Silt) based on in-situ shear wave velocity and empirical shear modulus reduction relationships
produced simulated monotonic stress-strain responses that were notably stiffer than those measured in
monotonic undrained direct simple shear tests of field samples of a low-plasticity silt. For Austrian Dam,
the presence of gravel-sized particles would be expected to exacerbate disturbance associated with field
sampling, specimen handling, and laboratory testing, even though relatively large 146-mm diameter
samples were used. Volumetric strains during triaxial sample consolidation ranged from 1.8-4.1%
(average of 2.5%) which is indicative of relatively poor sample quality, and thus the strain-hardening
responses shown in Figure 8 could have been accentuated by sample disturbance effects (e.g., as observed
by Lunne et al. 2006 for clays). Simulations of monotonic undrained compression loading using PM4Silt
(in plane strain) with the preceding calibration process are compared to the ICU test results for
consolidation stresses of 1.02 atm and 3.74 atm in Figures 12a and 12b, respectively. The simulations
show the shear strength being almost fully mobilized at shear strains of about 0.5%, after which the
stress-strain response is essentially ductile (i.e., the strain-hardening response at larger strains is not
simulated). Alternative calibrations that improved simulations of the strain-hardening responses at larger
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strains in the ICU triaxial tests produced unrealistic modulus reduction, damping, and cyclic loading
responses, and thus the present calibration was considered more appropriate given the limitations inherent
to the constitutive model and the uncertainties in soil properties.

Cyclic strengths of the embankment materials were evaluated based on a set of nine anisotropically
consolidated undrained (ACU) cyclic triaxial tests by Wahler Associates (1979). These few tests covered
three different consolidation stresses, two different anisotropic consolidation stress ratios, samples from
the upstream and downstream shells, and different imposed cyclic stress ratios, such that the data were
sparse across the testing parameter space. Wahler Associates (1979) developed interpolations across these
different parameters using forms consistent with empirical expectations, from which the CSR causing a
double-amplitude axial strain of 5% in 30 loading cycles was about 0.25 to 0.28 at consolidation stresses
of 3 to 6 atm. These cyclic strengths correspond to about 0.52 to 0.59 times the expected undrained shear
strengths based on the first failure criterion. This ratio of cyclic to monotonic strengths is smaller than
empirical expectations for a range of clay-like soils (Idriss and Boulanger 2008), although any
comparison is complicated by the uncertain relative effects of loading rate (or strain rate) on the cyclic
and monotonic strengths of these types of fill materials (cyclic strengths usually determined for the much
greater strain rates expected during an earthquake, compared to the standardized strain rates used to
determine monotonic strengths). The smaller ratio of cyclic to monotonic strengths could also reflect the
differences in soil gradation or the adverse effects of sampling disturbance. In particular, it seems
reasonable to anticipate that the unavoidable disturbance associated with sampling this type of material
would have a more detrimental effect on its cyclic strengths than its monotonic strengths, which would
result in a lower ratio of cyclic to monotonic strength. Given the above concerns and sparseness of the
data set, the results of these cyclic test results were considered as likely providing a lower bound on the
in-situ cyclic strengths, and thus slightly greater cyclic strength ratios were targeted in the constitutive
model calibration described below.

Cyclic strengths for the PM4Silt model were obtained from single element simulations of undrained
DSS loading at uniform cyclic stress ratios under a range of consolidation stresses. The cyclic stress-strain
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and stress-path responses are illustrated by the results in Figure 13 for Calibration 1 with o', = 6 atm and
an initial static shear stress ratios (@ = /") of 0.0 (Figure 13a) and 0.1 (Figure 13b). These results
illustrate the typical cyclic mobility response wherein peak shear strains increased by 1-2% per cycle after
the limiting pore pressure conditions had been reached; this rate of shear strain accumulation was
obtained by reducing the fabric parameter z.x, reducing the fabric growth parameter C:, and increasing
the modulus degradation factor Cgp relative to their default values (Table 2). In addition, the results with
an initial static shear stress illustrate how the cyclic strength is reduced in the presence of a static shear
stress bias and how strains accumulate in the "downslope" direction for these loading conditions. Results
of additional simulations with ¢, = 6 atm and o = 0 are plotted in Figure 14 showing the CSR required to
cause peak shear strains of 3, 7.5, or 15% at different numbers of uniform loading cycles. The resulting
cyclic strength curves are approximately parallel and show that the cyclic strengths for peak shear strains
of 3% or 15% are within +/- 5 to 10% of the strengths for a peak shear strain of 7.5%. Note that the CSR
required to cause a peak shear strain of 3% in thirty cycles is about 0.30, which is intentionally slightly
greater than the value estimated from the cyclic testing for the reasons discussed previously. The effect of
consolidation stress on cyclic strengths is illustrate by the results for o’y =1, 2, 6, and 12 atm in Figure
15. The CSR required to cause a peak shear strain of 7.5% increases with decreasing o, (Figure 15a), but
the cyclic strength ratio (z./s.) is only slightly affected by the change in &', (Figure 15b). Similar results
were obtained for Calibration 2, as illustrated in Figure 16. Both sets of results illustrate that the PM4Silt
model provides a reasonable normalization of cyclic and monotonic undrained shear strengths across the
range of o', of interest for this embankment.

The two calibrations for PM4Silt (Table 2) primarily differ in their specified undrained shear
strengths, with Calibration 1 having lower strengths than Calibration 2. The ICU test data showed strain-
hardening responses that could not be reproduced using PM4Silt (e.g., Figure 12) without sacrificing
other key features of behavior. For this reason, the intent is that Calibration 1 may be viewed as

appropriate for loading conditions that produce peak shear strains of only a few percent, whereas
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Calibration 2 is more appropriate for loading conditions that cause peak shear strains in the range 10-
20%. Repeating the NDAs with both calibrations provides an assessment of the sensitivity of the
computed deformations to this aspect of how undrained shear strengths are selected.

INITIAL STATIC STRESS AND SEEPAGE CONDITIONS

The analyses for initial static stress and seepage conditions, as well as for dynamic loading, were
performed using the two meshes in Figure 6 with the finite difference software FLAC 8.0 (Itasca 2016);
the initial static stress and seepage conditions in the embankment were essentially identical with or
without the inclusion of the bedrock layer, and thus results are only presented for the mesh in Figure 6a.
The initial static stress and seepage conditions were established through the following sequence of
analysis steps. The initial seepage conditions were established first using an uncoupled analysis. The
initial static stresses were then computed using another uncoupled analysis (with water pressures fixed at
the values obtained in the preceding analysis) in which: (1) vertical total stresses were initiated based on
the vertical column of overlying soils, (2) horizontal effective stresses were initiated based on a K, of
0.50, (3) all zones were assigned a Mohr Coulomb material model with drained strengths and
confinement-dependent secant shear moduli, and (4) equilibrium was then solved for. If necessary, initial
horizontal stresses in individual zones were adjusted to keep K, values between 0.4 and 2.5, and
equilibrium solved for again. The material model was then switched to PM4Silt and equilibrium solved
for again. Lastly, the analysis was switched to a coupled mode and equilibrium solved for one last time.
The last two solutions for equilibrium serve as a check that everything has been specified correctly; i.e.,
equilibrium stresses were relatively unaffected by these steps and convergence was almost immediate.
The initial static stress conditions produced by this procedure were then evaluated for reasonableness, as
discussed below.

The results of the steady seepage analysis are illustrated by the pore pressure contours and phreatic
surface shown in Figure 17. Hydraulic conductivities for the three regions of the model were iteratively
adjusted to produce a phreatic line that matched with the levels measured in piezometer P-6 (at dam
centerline) and piezometers P-1 and P-2 (nearest the downstream toe). The first analysis case assumed:
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(1) the vertical hydraulic conductivity in the impervious zone was 10~ cm/s, (2) the vertical hydraulic
conductivities in the pervious and gravel strip drain zones were 10 and 100 times the vertical
conductivities of the impervious zone, respectively, and (3) the horizontal hydraulic conductivities were 2
times the vertical conductivities for all zones. The final calibrated analysis case assumed: (1) the vertical
hydraulic conductivities in the impervious and pervious zones were both 10° cm/s and 2 times greater in
the strip drain zone, and (2) the horizontal hydraulic conductivities were 1, 10, and 12 times the vertical
conductivities in the pervious, impervious, and strip drain zones, respectively. The increased horizontal
hydraulic conductivity in the upstream impervious zone was required for obtaining agreement with the
phreatic surface measured at P-6. The simulated phreatic surface at piezometer P-4 (midway between the
others) is above its measured level, which was unavoidable given that the level measured at P-4 was
lower than that measured further downstream in P-1 and P-2. Overall, the seepage analysis results are
considered sufficiently consistent with the piezometer data for establishing the initial static stresses within
the embankment, while recognizing that the calibrated hydraulic conductivities are undoubtedly
compensating for other limitations of the numerical model, including not accounting for seepage in the
bedrock or potential layering within the compacted embankment.

The initial static stress conditions are illustrated in Figure 18 with contours of ¢’, (Figure 18a), K,
(Figure 18b), and « (Figure 18c). Total unit weights for unsaturated and unsaturated zones were 19.1 and
21.8 kN/m’®, respectively. The o, vary smoothly with distance from the surface of the dam, and reach
maximum values of about 8 atm along the bedrock immediately below the crest. The K, values range
from 0.4 to 0.6 throughout the central portion of the dam, and increase to values greater than unity at
shallow depths along the upstream and downstream faces. This pattern of K, values is considered
reasonable because compaction-induced stresses would be expected to produce greater K, values at
shallower depths (perhaps the upper 6 m), whereas K, values at the greater depths in the central portion of
the embankment would be expected to be closer to normally-consolidated values. The « values are less

than 0.2 through the central portion of the dam and less than 0.3 everywhere except at shallow depths
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along the upstream and downstream faces. These results are considered a reasonable estimate of stress
conditions within the embankment prior to the earthquake.

The s...; values assigned to PM4Silt based on the initial static stress conditions are shown as contours
of equivalent s, ./ o’y in Figure 19. The s,, ./ 0", ratios range from 0.35 to 0.5 throughout the central
portion of the dam, and increase to values as large as 1.0 at shallow depths. Sensitivity analyses showed
that the s, s values are relatively insensitive to variations in K, produced by alternative approaches to
establishing initial static stress conditions; in effect, the procedure for computing s, ., was found to be
most strongly controlled by the major principal effective stress and only slightly influenced by the minor
principal effective stress for this embankment.

The soil above the phreatic surface is modeled as unsaturated with zero pore pressure, which
corresponds to assuming drained strengths during static and dynamic loading. In reality, the soils may
remain almost saturated to some height above the phreatic surface and be partially saturated everywhere
else above the phreatic surface. Negative pore pressures above the phreatic surface would be expected to
strengthen the soil, whereas saturation above the phreatic surface may weaken the soil because it can
more easily generate positive pore pressures during earthquake loading. The above two effects may be
partly compensating in how they affect the overall dam response. The assumption of drained conditions
above the phreatic surface is nonetheless common in practice, and thus its use herein is consistent with the
intent of the present study. Sensitivity analyses presented later include cases with the zone of saturation
extending 3 to 6 m above the phreatic surface due to capillary rise.

DYNAMIC SIMULATION RESULTS

Dynamic analyses were performed using the two PM4Silt calibrations and all four input motions.
Results are presented first for the mesh with a rigid foundation (Figure 6a), while results for the mesh
with a 60-m-thick bedrock layer (Figure 6b) are presented later as part of the sensitivity analyses. All
analyses were performed in large deformation mode and were coupled with the pore fluid, although with
no pore fluid flow during dynamic loading. The horizontal input motions (Figure 4) were applied in
combination with the vertical component of motion recorded at the same strong motion station (the effect
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of omitting the vertical component of motion is discussed later). The horizontal and vertical motions were
applied directly to the base of the model with a rigid foundation (Figure 6a). Rayleigh damping of 0.5% at
a frequency of 1.0 Hz was used during dynamic loading. Detailed results are presented for Calibration 1
with the Corralitos Channel 1 input motion (i.e., the station with the most similar epicentral distance and
the component that closely aligns with the transverse loading direction for Austrian Dam), after which the
results of other analysis cases are summarized.

Results for Calibration 1 with the Corralitos Channel 1 Input Motion

Time series of acceleration at the bedrock and dam crest, horizontal and vertical displacement at the
dam crest (relative to the bedrock), and excess pore pressure head at three locations in the embankment
for Calibration 1 and the Corralitos Channel 1 input motion are shown in Figure 20. The horizontal
accelerations at the dam crest are significantly amplified relative to the input motion, reaching peak
values of 0.7g several times, and decay more slowly with time than the input motion. The dam crest
settles more than 900 mm in the first 10 s, and then slowly increases to 1,060 mm at the end of strong
shaking. The dam crest also develops a horizontal upstream displacement of about 94 mm at the end of
strong shaking. Excess pore pressure heads at the end of strong shaking were 18.1 m at the location of P-
1, 5.0 m at the location of P-6, and 17.8 m at a point B-6 located halfway between P-6 and the underlying
bedrock. The analysis was continued for sufficient time after the end of strong shaking to allow for full
dissipation of excess pore water pressures, during which the crest settlements increased by less than 1%,
which is consistent with the survey data showing that crest settlements did not increase measurably with
time after the earthquake.

Contours of horizontal and vertical displacement, shear strain, and excess pore pressure at the end of
strong shaking are shown in Figures 21a, 21b, 21¢, and 21d, respectively. The displacement patterns
indicate a relatively symmetric slumping of the embankment with rotational components of deformation
on both the upstream and downstream faces. The crest settlement is 1,060 mm and the mid-faces of the
upstream and downstream faces move laterally by about 800 mm. Shear strains are less than 5%
throughout most of the embankment, but increase to maximum values of 10-25% near the embankment-
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bedrock interface beneath the upstream and downstream shells. The larger shear strains in the saturated
portion of the downstream shell are qualitatively consistent with the observed deformation of the tubing
for piezometer P-1 at about 7.6 to 9.1 m above the bedrock, given that the model did not account for any
increased strength in the gravel strip drain zone which would have likely caused the zone of greatest shear
strains to be above the drain zone. The shear strain and vertical displacement contours show relatively
small deformations in the lower central portion of the embankment and an increased gradient of
deformations near mid-height beneath the dam crest, which are again qualitatively consistent with
observed deformation of the tubing for piezometer P-6 near mid-height below the dam crest. The shear
strains in most of the saturated zone are more consistent with the shear strains associated with the failure
criterion used for developing Calibration 1 than Calibration 2, whereas the maximum shear strains near
the bedrock contact are getting closer to being consistent with the criterion used for developing
Calibration 2. The excess pore pressures in much of the saturated zone are 150-200 kPa, with maximum
values of about 300 kPa in a more limited zone near the bedrock contact just downstream of the
centerline. These excess pore pressures correspond to excess heads (i.e., rises in piezometer levels) of 15-
30 m. The excess pore pressure heads decrease rapidly near the phreatic surface, indicating that the excess
heads computed at points in these areas will be sensitive to where the phreatic surface develops during the
seepage analyses.
Results for Both Calibrations and All Input Motions

Settlement of the dam crest from the NDAs with each calibration and input motion are summarized in
Table 4, along with the maximum measured settlement. The computed crest settlements with either of the
Corralitos input motions (Channel 1 or 3) were similar for either calibration of PM4Silt; i.e., 1,048-1,060
mm with Calibration 1 and 822-874 mm with Calibration 2. The computed crest settlements with either
of the Lenihan input motions (Channel 1 or 3) were also similar for either calibration (840-853 mm for
Calibration 1 and 610-638 mm for Calibration 2), and were about 20-25% smaller than those obtained
with the Corralitos motions. For either set of input motions, the crest settlements for Calibration 2 were
about 20-25% smaller than obtained with Calibration 1. The patterns of deformation were generally
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similar for all motions and both calibrations, as illustrated by comparing the contours of horizontal
displacement obtained with Calibration 2 and the Corralitos Channel 1 input motion (Figure 22) with
those shown previously in Figure 21b (Calibration 1 and same input motion). The maximum measured
crest settlement of 859 mm is about equal to the average of all the computed values, at the lower end of
values computed with Calibration 1, and at the upper end of values computed with Calibration 2.

Horizontal displacement of the dam crest (near the centerline) at the end of strong shaking ranged
from 202 mm upstream to 36 mm downstream for these eight analysis cases summarized in Table 4. The
horizontal displacements are small relative to the vertical crest settlements, which is consistent with the
general symmetry of deformations in the upstream and downstream shells. The dam crest also
experienced horizontal extensional strains, such that horizontal displacements at the crest edges generally
differed from those at the centerline by 20-50 mm. The measured horizontal crest displacements were
more varied (130 mm upstream to 330 mm downstream) and uncertain given concerns over the reference
benchmark (Harder et al. 1998). The computed horizontal displacements are reasonable in magnitude but
appear biased toward the upstream direction compared to the measurements; possible causes for this bias
in deformation direction include the characteristics of the input motions or the assumption of identical
properties for the upstream and downstream zones.

The excess pore pressure heads computed at points P-1, P-2, P-4, P-6 and B-6 at the end of strong
shaking with each calibration and input motion are summarized in Table 5, along with the measured
values. The excess heads computed at P-1 with Calibration 1 (15.1-19.6 m) are consistent with the
measured excess head (16.8 m), whereas the values computed with Calibration 2 (10.0-13.3 m) under-
estimate the measured excess head. The excess heads computed at P-2 with either Calibration (6.6-11.3
m) are all greater than measured (2.7 m), and the excess heads computed at P-4 with either Calibration
(6.3-12.2 m) are also similarly greater than measured (4.0 m). The excess heads computed at P-6 with
either Calibration (2.5-6.9 m) are well below the measured value (15.2 m), but the excess head at the
lower B-6 (11.2-19.5 m) are similar to those measured just above it at P-6. Overall, the computed excess
heads in the saturated zone are reasonably consistent with the general magnitude of the measured values,
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allowing for uncertainties in the field measurements and the variation of computed values with the input
motion, model calibration, and exact position of the sensing interval relative to the phreatic surface.

The displacement patterns obtained in all analysis cases are also qualitatively consistent with the
cracking and bulging patterns observed in the field. The contours of computed horizontal displacement
(e.g., Figures 21a and 22a) have large horizontal extensional gradients on the upstream and downstream
faces just below the dam crest, which correspond closely with the areas where longitudinal cracking was
observed on both faces (Figure 1). The contours of horizontal displacement also have large horizontal
compressive gradients along the lower portions of both faces, which correspond closely with the area
where bulging was observed on the downstream face (Figures 1 and 5b); note that similar bulging along
the lower portion of the upstream face would have been below the reservoir level and may have gone
unobserved.

The eight analysis cases in Tables 4 and 5 were repeated with the vertical component of the input
motion omitted to evaluate the effect of that common simplification in practice. The dam crest settlements
for Calibrations 1 and 2 were reduced by 9-14% (average 12%) for the Corralitos input motions and 4-8%
(average 5%) for the Lenihan input motions. The simulated excess pore pressure heads at the piezometer
locations instead increased by about 0.7 m on average, with the excess heads at individual piezometers
increasing or decreasing by as much a 3 m depending on the calibration and motion. These differences in
deformations and pore pressures are small enough that the general agreement between measured and
computed responses is not significantly affected by including or omitting the vertical component of the
bedrock input motion.

Sensitivity of Results to Other Model Variations

The effect of several other model variations on computed dam crest settlements are summarized in
Table 6. The baseline analysis case for this table was the rigid foundation model with Calibration No. 1
and the Corralitos Channel 1 recording as the horizontal input motion.

e Recalibrating PM4Silt with G, increased by 30% caused the crest settlement to decrease by 9%,

whereas recalibrating with G, decreased by 30% caused crest settlement to increase by 18%.
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These two recalibrations included reducing /,, to 30 (from the baseline 40) and increasing /,, to
55, respectively, to maintain the same cyclic strengths as the baseline case. Thus, the effect of
changing G, is primarily attributed to its effect on the dam's dynamic response.

e Reversing the polarity of the horizontal motion caused crest settlement to decrease by 3%. The
small effect of polarity is reasonable given the general symmetry of the dam and input motion.

e Extending the saturated zone 3 m above the phreatic surface caused crest settlement to decrease
by 4%, and extending it 6 m above the phreatic surface cause it to decrease by 7%. This relatively
small net effect is attributed to the compensating effects that saturation and negative initial pore
pressures above the phreatic surface have on the monotonic and cyclic strengths at different
overburden stresses.

e Increasing the total unit weights to 20.9 kN/m3 above the phreatic surface (a 9% increase to
account for possibly higher water contents) and 22.1 kN/m?® below the phreatic surface (a 1.4%
increase) caused crest settlement to decrease by 2%. The small effect on crest displacements is
reasonable given the various compensating effects that total unit weight has on consolidation
stresses, strengths, fundamental periods, and driving stresses.

e Including a 60-m-thick layer of bedrock with a compliant base and free-field side boundary
conditions (Figure 6b) caused crest settlement to decrease by 29%, 18%, and 9% when the
bedrock was assigned a shear wave velocity of 1,000 m/s, 2,000 m/s, and 4,000 m/s, respectively.
The effect of the bedrock layer decreases with increasing rock stiffness, since the stiffer rock is
closer to approximating the rigid foundation condition assumed for the baseline case.

The crest settlements ranged from 750 mm to 1,250 mm for all of the above sensitivity analysis cases, and
ranged from 750 mm to 867 mm for the cases with a bedrock layer having a shear wave velocity of 1,000
m/s or 2,000 m/s. The latter analysis results are particularly relevant, given that shear wave velocities in
the Franciscan formation bedrock at Austrian Dam could very reasonably fall within this range. These

latter analysis results are still consistent with the observed maximum crest settlement of 859 mm, whereas
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similar analyses using the stronger Calibration No. 2 and the less damaging Lenihan input motions (Table
4) would have underestimated the observed crest settlements.
DISCUSSION

Sources of potential bias or dispersion in NDA results for embankment dams, including those
presented herein for Austrian Dam, include uncertainties associated with the initial conditions (e.g.,
stresses, pore pressures, saturation levels), material properties (e.g., spatial variability, sample
disturbance, shearing mode), constitutive models (e.g., calibration, limitations), numerical modeling
procedures, and input motions. For this reason, case history studies provide an invaluable check that the
aggregation of all the steps involved in any NDA modeling procedure produce an outcome that is
reasonably consistent with the observed field performance. The comparisons of predicted and measured
responses over several case histories provide a sense of potential bias or dispersion for future applications
of the same NDA modeling procedures, recognizing that good agreement for any one case history could
be due to a number of compensating errors and poor agreement for any one case history could be due to
accumulation of several smaller errors.

The characterization and constitutive modeling of the compacted clayey sand and clayey gravel fill
materials were of particular concern for the present case history study. These types of compacted fills are
difficult to sample and the available laboratory tests showed strain-hardening behaviors that are difficult
to model with existing constitutive models. The PM4Silt model produced simulated responses that were
reasonably consistent with the available characterization data, but the effect of strain-hardening on the
undrained strength at large shear strains could only be enveloped by developing two alternative
strength/model calibrations. Furthermore, the estimated in-situ undrained shear strengths include
uncertainties associated with: (1) the effects of sampling disturbance, (2) the unknown effects of loading
rate on the shear strength of these types of intermediate soils during an earthquake, (3) the use of the
procedures from Duncan and Wright (2005) for estimating undrained shear strengths based on anisotropic
consolidation stresses, and (4) other factors such as fill age, inherent anisotropy, loading path, prior stress
history, partial saturation, and cementation. The procedures used herein to characterize the strengths of
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the compacted fills are considered representative of common engineering practices, and the two different
strength representations and corresponding constitutive model calibrations provide insight on how
uncertainty in shear strengths can affect predicted responses.

CONCLUSIONS

Two-dimensional NDAs of Austrian Dam in the 1989 M,,=6.9 Loma Prieta Earthquake were performed
using the finite difference program FLAC 8.0 (Itasca 2016) with the user-defined constitutive model
PM4Silt (Boulanger and Ziotopoulou 2018) and engineering procedures common in practice. This
relatively homogenous, 55-m high embankment dam was comprised primarily of compacted low-
plasticity clayey sands and clayey gravels. The dam developed extensive cracking, crest settlements up to
859 mm, and excess pore pressure heads up to 16.8 m due to the strong shaking with estimated peak
horizontal bedrock accelerations of 0.4-0.6g. The engineering properties of the compacted embankment
materials were reevaluated based on the isotropically consolidated undrained triaxial compression and
resonant column test data by Wahler Associates (1979, 1981). Two alternative interpretations of the
compacted fill's undrained shear strength data were developed and used to produce two alternative
calibrations for the PM4Silt model.

The embankment responses computed for the two alternative PM4Silt calibrations (and hence
undrained strength representations) and four different input motions were in reasonable agreement with,
and generally bounded, the observed crest settlements, embankment deformation patterns, and excess
pore pressures. For example, the eight different analysis cases listed in Table 4 produced crest settlements
that ranged from 610-1,060 mm (-29% to +23% from the measured 859 mm) and averaged 843 mm
(within 2% of the measured value). Similarly, the nine sensitivity analysis cases using Calibration No. 1
with the Corralitos Channel 1 input motion (Table 6) produced crest settlements that ranged from 750-
1,250 mm (-13% to +46% from the measured 859 mm). The results of this case history study provide
support for the use of these analysis methods and engineering procedures in seismic evaluations of

compacted earthfill embankments.
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APPENDIX A. UNDRAINED SHEAR STRENGTH ASSIGNMENT
The assignment of the undrained shear strength at critical state (s,.s) to an element (or zone) of PM4Silt
in the numerical model is based on the initial static consolidation stress conditions that exist just prior to
dynamic loading. The s, for each zone is computed using the procedures described in Duncan and
Wright (2005) for limit equilibrium slope stability analyses and extended to finite element or finite
difference models by Montgomery et al. (2014). The sequence of calculations for each individual
element/zone in the numerical model is described below.

The initial vertical and horizontal effective stresses (o', 0’;) and the horizontal shear stress (7,;) in the
plane section of the 2D model are used to compute the major and minor principal effective stresses at

consolidation (&’;c, 0’3) as,

o +o, o —o'\ %
! v v_ 2
GeTT h{( 2 hj +(th)} -
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The consolidation stress ratio (K.) is,

'
K :610

c

, (A3)
O-3c

The consolidation stress on the eventual failure plane (o”:) is computed assuming the orientation of the
failure plane is the same at consolidation and failure (Lowe and Karafiath 1960),

o,.+0, o0).—0; .
G;Q — e 5 3c _ Tl 3 3c Sll’l(¢') (A4)

The shear stress on the eventual failure plane at failure (z) for consolidation at K. =1 is computed using

the undrained shear strength parameters developed from the ICU test data as,
Tyxa=dy+0), tan (/) (A5)
The shear stress on the eventual failure plane at failure for consolidation at K. =Kis computed using the

effective stress shear strength parameters and noting that o’y = o’ for this case,

Tykx, = '+ o7, tan(¢") (A6)

The value of Krdepends on the consolidation stresses and is computed as,

!

o rme Ly
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The shear stress on the eventual failure plane at undrained failure for consolidation at any other value of

K. is linearly interpolated from the undrained strengths for K. = 1 and K. = Ky as,

(Tﬁ’K/ Tk - )
(&, 1)

The s.,; for PM4Silt may then be assigned in one of two ways. One option is to set sy.cs = 7 , While

Ty =Tpx=™T (K. -1 (A8)

recognizing that this introduces a degree of conservatism because s, corresponds to the maximum shear
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stress at critical state rather than the shear stress on the eventual failure plane. The second option is to set
Sues = Ty g / cos (¢C'V) which converts 7 sk toa maximum shear stress for consistency with s, ... The

first option was used for the present analyses to maintain consistency with common practices for
evaluating slope stability (e.g., Duncan and Wright 2005), while recognizing that others may prefer the
second option.

For the analyses of Austrian Dam, the second option for specifying s, s would give a 33% increase in
strength compared to the first option because of the relatively large critical state friction angle. A 33%
increase in strength is greater than the differences in strengths obtained using Calibration No. 2 versus
Calibration No. 1; the strengths obtained with Calibration No. 2 are generally 10-30% greater than with
Calibration No. 1, with the difference varying throughout the embankment as the consolidation stress and
consolidation stress ratio vary. The best agreement between computed and observed dam responses for
cases that included a compliant bedrock layer was generally obtained using Calibration No. 1 with the
first option for specifying s.,.s, and thus use of the second option would be expected to result in an under-
estimation of dam deformations given the other assumptions and modeling choices made for these
analyses.
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Table 1: Classification and compaction data for embankment materials (Wahler Associates 1979, 1981)

Property Range Mean
USCS classification SC, GC --
Percent coarser than No. 4 sieve (%) 26-172 46
Percent finer than No. 200 sieve (%) 16 — 44 32
Specific gravity, Gs 2.60—2.78 2.70
Liquid Limit, LL 28 -32 31
Plasticity Index, PI 11-15 13
Water content as compacted in ~1950 (%) 9.5-195 14.5
Dry unit weight as compacted in ~1950 (kN/m?) 16.90 —20.75 19.04
Dry unit weight of samples in ~1989 (kN/m?) 19.07 —20.69 19.90

Table 2. Input parameters for PM4Silt calibrations

Input parameter Default value Calibration Calibration

No. 1 No. 2
Sucs — Su at critical state -8 (o', Ke) ®
G, — shear modulus coefficient -8 2280
hpo — contraction rate parameter -8 40 80
ng — shear modulus exponent 0.75 0.6
h, — plastic modulus ratio 0.5 --°
e, — initial void ratio 0.9 0.394
A - compressibility in e-In(p') space 0.06 -
¢'cv — critical state friction angle 32° 41°
n®" — bounding surface parameter 0.8 1.0
n®>¥ — bounding surface parameter 0.5 - ¢
n? — dilation surface parameter 0.3 --°
Ay, — dilatancy parameter 0.8 --°
Tumax — Sets bounding pmin Pmin = Pes/8 - ¢
Zmax — fabric term 10 £40(sv/c've) <20 5
C, — fabric growth parameter 100 50
C: - strain accumulation rate factor 0.5 <(1.2s,/c'+0.2) < 1.3 -
Cgp —modulus degradation factor 3.0 6.0
Cyaf — plastic modulus factor 4.0 -¢
Vo, — Poisson ratio 0.3 -°

@ Required input parameter that does not have a default value.
® Computed using the strength parameters in Table 3.

¢ Retained default value.



Table 3. Undrained shear strength parameters from reinterpretation of the ICU triaxial compression test
data in Wahler Associates (1981)

Consolidation condition  Strength parameter Calibration 1 Calibration 2
K. =1 (ICU) dr 0.37 atm 0.54 atm

YR 22.4° 28.6°
Ke=Ks ds (=¢") 0 atm 0 atm

Vs (=9 43.4° 41.1°

Table 4. Dam crest settlements — measured and computed using the baseline model

Case Peak horizontal Dam crest settlement (mm)
base accel. (g) Calibration 1 Calibration 2

Measured * n.a. 859

Corralitos - Chan 1 °¢ 0.479 1060 822

Corralitos - Chan 3° 0.630 1048 874

Lenihan - Chan 1°¢ 0.410 840 610

Lenihan - Chan 3° 0.442 853 638

* Survey data as reported in Harder et al. (1998)

® Recording station and horizontal component used for the input motion. The vertical component of the
input motion was Channel 2 from the same recording station.

¢ Horizontal recording is oriented due east, which is approximately transverse to Austrian Dam.

Table 5. Increases in piezometer levels due to earthquake loading — measured and computed using the
baseline model

Case Input motion Piezometer rise due to earthquake loading (m)
P-1 P-2 P-4 P-6 (B-6)*
Measured ° n.a. 16.8 2.7 4.0 15.2
Calibration 1 Corralitos — Chan 1 ° 18.1 11.3 10.9 5.0 (17.8)
Corralitos — Chan 3 ° 19.6 11.0 10.8 5.8 (19.5)
Lenihan — Chan 1°¢ 16.1 7.3 11.5 6.0 (13.7)
Lenihan — Chan 3 ¢ 15.1 7.2 12.2 6.9 (14.6)
Calibration 2 Corralitos — Chan 1° 13.1 7.2 8.9 2.5(13.8)
Corralitos — Chan 3 ° 133 7.6 10.0 2.5(15.9)
Lenihan — Chan 1° 10.0 6.6 6.3 4.8 (11.2)
Lenihan — Chan 3°¢ 11.1 6.7 8.2 4.9 (11.2)

* Piezometer 6 is located just below the simulated phreatic surface; Excess pore pressures increase
significantly just below this elevation, so computed values for point B-6 midway between P-6 and the
bedrock surface are reported in parenthesis.

b Recorded October 19, 2018 by Wahler Associates (1990)

¢ Recording station and horizontal component used for the input motion. The vertical component of the
input motion was Channel 2 from the same recording station.



Table 6. Sensitivity of computed dam crest settlements to numerical model variations

Variation from the baseline model Dam crest Change from
settlement (mm) baseline
Baseline case * 1060 --
Embankment G, increased 30% ° 967 -9%
Embankment G, decreased 30% © 1,250 18%
Reverse polarity of horizontal component 1,027 -3%
Saturation extended 3 m above phreatic surface 1,015 -4%
Saturation extended 6 m above phreatic surface 981 -7%
Increase unit weight to 20.9 kN/m® above, and 22.1 1041 -2%
kN/m? below, the phreatic surface, respectively
Bedrock included, with Voo = 1,000 m/s 750 -29%
Bedrock included, with Vo = 2,000 m/s 867 -18%
Bedrock included, with Vs ok = 4,000 m/s 962 -9%

?Baseline case uses: rigid foundation, Corralitos Channels 1 (horizontal) and 2 (vertical) as input motions,
and Calibration No. 1 for the constitutive model.

® Parameter /,, reduced to 30 to maintain the same cyclic strengths as the baseline case.

¢ Parameter 4,, increased to 55 to maintain the same cyclic strengths as the baseline case.
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Frgure 5 Photographs of cracking after Loma Prieta earthquake (a) longitudinal and transverse cracking
on the dam crest near the left abutment, (b) cracking along access road on the lower portion of the
downstream face (California Division of Safety of Dams files 1989)
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Figure 6. Mesh and zoning for the numerical model: (a) embankment mesh with a rigid foundation, and
(b) same embankment mesh on a 60-m thick layer of bedrock
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Figure 11. Cyclic undrained DSS loading at constant strain amplitudes: (a) stress-strain response for
Calibration 1, (b) stress-strain response for Calibration 2, (c) shear modulus reduction versus shear strain
amplitude, and (d) equivalent damping ratios versus shear strain amplitude.
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Figure 17. Comparison of seepage analysis results with pre-earthquake piezometer data

Figure 18. Initial static stress conditions: (a) vertical effective stress, 'y (b) coefficient of lateral earth
pressure at rest, Ko, and (c) initial horizontal static shear stress ratio, a.

Figure 19. Contours of undrained shear strength as a ratio of vertical consolidation stress
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Figure 20. Time series of acceleration, displacement, and excess pore pressure computed for Calibration 1
with the Corralitos Channel 1 recording as the horizontal input motion
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Figure 21. Deformations and pore pressures at the end of shaking for Calibration 1 with Corralitos
Channel 1 as the horizontal input motion: (a) contours of horizontal displacement, (b) contours of vertical
displacement, (c) contours of shear strain, and (d) contours of excess pore water pressure.



Figure 22. Deformations and pore pressures at the end of shaking for Calibration 2 with Corralitos
Channel 1 as the horizontal input motion: (a) contours of horizontal displacement, (b) contours of vertical
displacement, (c) contours of shear strain, and (d) contours of excess pore water pressure.





