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Abstract  

A direct axisymmetric cone penetration model developed for use with a user-written 

implementation of the MIT-S1 constitutive model is presented. The penetration model uses the 

finite difference program FLAC with an Arbitrary Lagrangian Eulerian algorithm that couples 

FLAC’s large deformation Lagrangian formulation with user-written algorithms for rezoning and 

second-order Eulerian advection remapping. Numerical examples are used to illustrate the 

performance of the remapping and advection algorithms and cone penetration simulations. Cone 

penetration at a Boston Blue Clay site is simulated with the Mohr-Coulomb, modified Cam clay, 

and MIT-S1 constitutive models and compared to measured cone penetration test profiles. Single 

element simulations illustrate that the MIT-S1 constitutive model captures the significant 

undrained shear strength anisotropy exhibited by Boston Blue Clay, whereas the modified Cam 

clay and Mohr-Coulomb models do not. Penetration simulations demonstrate the important effect 

of undrained shear strength anisotropy on the cone tip resistance, as well as on stress and pore 

pressure fields around the cone tip and rod.   
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Introduction 

Numerical studies of cone penetration have been performed with direct and indirect models. Direct 

models simulate penetration with the full axisymmetric cone geometry, but are numerically 

challenging due to large deformations around the cone. Indirect methods simulate cylindrical or 

spherical cavity expansion and convert the limit cavity expansion pressures to cone tip resistances 

using semi-empirical relationships that are significantly different for clays and sands. Direct 

models offer greater capabilities for examining problems where the cone geometry and full loading 

condition are important (e.g., layered soils, dissipation tests, partially drained penetration) or where 

semi-empirical relationships for converting cavity-expansion limit pressures are not established 

(e.g., intermediate soils including silty/clayey sands).  

Nineteen different direct axisymmetric models are summarized in Table 1, including key features 

of the numerical method (as reported in the references), numerical platform, constitutive models, 

pore water modeling, and the cone/rod interface condition. Several of the methods, including Teh 

and Houlsby (1991), Abu-Farsakh et al. (2003), and Ahmadi and Robertson (2005), impose a 

deformation field around the penetrating cone that is uncoupled from the constitutive soil response. 

Other methods idealize the contact condition between the cone and soil as frictionless or having 

low friction in order to limit mesh distortion (Chai et al. 2012, Yi et al. 2012, and Huang et al. 

2004). The most common method in Table 1 is an Arbitrary Lagrangian Eulerian (ALE) algorithm, 

or variants thereof, that couples large Lagrangian deformations with remeshing and remapping 

steps to overcome the limitations of the other methods described above. Many of the ALE methods 

used adaptive remeshing techniques that are capable of simulating cone penetration beginning 

from ground surface by tracking the soil and cone boundaries, and remeshing the grid geometry 

within these boundaries (Susila and Hryciw 2003, Lu et al. 2004, Walker and Yu 2006, 
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Liyanapathirana 2009, Walker and Yu 2010, Tolooiyan and Gavin 2011, Kouretzis et al. 2014, 

Mahmoodzadeh et al. 2014, Aubram et al. 2015, Wang et al. 2015). Several of the methods in 

Table 1, regardless of numerical procedure, simulate steady cone penetration (i.e., cone penetration 

at depths sufficiently large that soil self-weight and ground surface boundary effects can be 

neglected) by modeling a region of soil around the cone along with appropriate far-field boundary 

conditions (Teh and Houlsby 1991, van den Berg et al. 1996, Abu-Farsakh et al. 1998, Yu et al. 

2000, and Abu-Farsakh et al. 2003, and this study). 

Most of the direct penetration models listed in Table 1 used relatively simple constitutive models, 

including Mohr-Coulomb (MC), Tresca, von-Mises, and modified Cam clay (MCC) for undrained 

penetration in clays, and MC and Drucker-Prager for drained penetration in sand. Two direct 

penetration models used a more complicated constitutive model for drained penetration in sand; 

the elastoplastic model for sand by Yao et al. (2004) and the hypoplastic model by Niemunis and 

Herle (1997). All but one study (Yi et al. 2012) assumed penetration was either perfectly drained 

(for sand) or perfectly undrained (for clay); several studies for clay further simplified the analysis 

by assuming uncoupled undrained conditions. The soil constitutive models used for clay in these 

studies (Table 1) were limited to isotropic or nearly isotropic undrained shear strength behavior 

and thus cannot simulate the significant undrained shear strength anisotropy observed in most 

natural soft clays. The effect of undrained shear strength anisotropy on cone penetration in clay 

was examined by Su and Liao (2002) using an indirect method (a closed form cavity expansion 

solution), but has not been examined using a direct penetration model to date.  

This paper presents a direct axisymmetric cone penetration model for saturated clay using a user-

written implementation of the bounding surface plasticity constitutive model MIT-S1 (Pestana and 

Whittle 1999). This is the first direct penetration model to use a complex bounding surface 
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constitutive model for clay and the first direct analysis showing the effect of significant undrained 

shear strength anisotropy on cone penetration. The first section of this paper describes the 

numerical aspects of the direct axisymmetric penetration model: the geometry and boundary 

conditions of the penetration model, the mechanics of the finite difference program FLAC (Fast 

Lagrangian Analysis of Continua; Itasca 2016), and the user-defined ALE scheme including 

adaptation of the Eulerian remapping scheme for FLAC’s mixed discretization scheme, the 

axisymmetric penetration model geometry, and the MIT-S1 constitutive model. The second section 

examines numerical performance of the penetration model. First, an example is used to examine 

how numerical diffusion and dispersion from the ALE algorithm are affected by the rezoning and 

remapping parameters, including the size of the Lagrangian step before rezoning and Eulerian 

remapping are performed and the choice of a parameter to limit numerical dispersion. Next, 

numerical performance of the penetration model is illustrated by sensitivity analyses for one 

baseline case to show the effects of mesh size, boundary distance, dynamic time-step, and the 

parameters controlling the ALE algorithm. The last section of this paper presents simulations of 

cone penetration in a natural deposit of Boston Blue Clay (BBC) in Newbury, Massachusetts using 

the MIT-S1 and two simpler constitutive models (MC and MCC). Single element simulations for 

different loading conditions illustrate that the MIT-S1 model is able to capture the undrained shear 

strength (𝑠௨) anisotropy and strain softening of BBC, whereas the MC and MCC models cannot. 

The effect of the constitutive model and 𝑠௨ anisotropy on simulated cone penetration resistance 

(𝑞௧), stress fields, and excess pore pressure (𝑢) distribution are described. The practical 

implications for estimating 𝑠௨ from 𝑞௧ measurements are discussed, including differences in the 

derived cone factor (𝑁௞௧) for different reference strength tests. These analysis results provide the 
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first measures of validation for the MIT-S1 implementation in FLAC and direct axisymmetric cone 

penetration model described herein. 

Numerical Methods for Cone Penetration Simulations 

Cone penetration is simulated with a direct, axisymmetric, steady state method in the finite 

difference program FLAC. Large deformations around the cone tip and cone shoulder can lead to 

zone distortion and numerical instability in direct penetration models; these large deformations are 

addressed with a user-defined ALE algorithm for rezoning and remapping which is described in 

three parts: the Lagrangian interval, the rezoning step, and the Eulerian remapping interval. This 

section provides references where the governing equations, theory, and numerical implementation 

are documented elsewhere; and presents equations when necessary for clarifying implementation 

details. 

Cone Penetration Model Geometry and Boundary Conditions   

The axisymmetric model geometry, as shown in Figure 1, was developed to simulate steady state 

penetration at depths sufficiently large that self-weight and ground surface effects can be 

neglected. The cone diameter is 3.57 cm (standard 10-cm2 cone area). The model extends 22.5 

cone diameters below the cone tip, 5 cone diameters above the cone shoulder, and 22.5 cone 

diameters to the radial boundary. The model is highly discretized near the cone face where 

deformation concentrates; zone sizes increase with distance from the cone face based on a power 

distribution. 

The analysis begins with a “wished-in-place” cone at the depth of interest, followed by sufficient 

cone penetration to produce steady distributions of stresses and pore pressure throughout the mesh.  

The boundary conditions are specified for simulating soil flowing upwards relative to a stationary 

cone; soil conceptually flows into the bottom of the model and exits at the top of the model 
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(Figure 1). Penetration velocity is applied to gridpoints at the top boundary, which assumes that 

the soil node adjacent to the rod is sliding relative to the rod at this location. The in-situ vertical 

stress condition is applied at the bottom boundary. The right radial boundary is represented with 

interface elements that approximate an infinite elastic boundary condition.  

The fixed-in-place cone tip and shaft are connected to the adjacent soil zones by interface elements 

whose shear strength is governed by a Mohr-Coulomb friction criterion. The ratio of the interface 

friction angle (𝜙௖௢௡௘) to the soil's critical state friction angle (𝜙௖௦
ᇱ ) is 𝛿 ൌ 𝜙௖௢௡௘/𝜙௖௦

ᇱ . The 

axisymmetric boundary condition does not allow gridpoints at 𝑥 ൌ 0 to displace in the x-direction. 

Therefore, the soil node connected to the cone tip is fixed in the x-direction (i.e., cannot slide up 

the face) and constrained to move vertically (due to the interface elements being relatively rigid in 

the normal direction). This approximation of deformation conditions at the cone tip was judged to 

be reasonable for the current model geometry as the solutions were found to be insensitive to 

further refinements in the discretization; this finding is attributed to the already small zone sizes 

at the cone tip and the observation that the soil zones near the cone tip all go to critical state 

conditions during cone penetration. The other soil gridpoints along the cone face and shaft can 

deform parallel to the cone and shaft boundaries. The gridpoint at the cone shoulder is connected 

to an interface element along the rod and not to an interface element on the cone face (otherwise, 

the normal stiffness of two angled interface elements would lock the node against movement). 

This configuration means the soil zone immediately below the cone shoulder will penetrate the 

cone by a small amount during Lagrangian deformation. Alternatively, the gridpoint at the cone 

shoulder could be connected to an interface element on the cone face, which would result in the 

soil zone immediately above the cone shoulder expanding radially (analogous to opening of a small 

gap behind the shoulder) during Lagrangian deformation. The steady solutions were not sensitive 



8 
 

to either approach, which is attributed to the small size of these zones and the use of small intervals 

of Lagrangian deformation as discussed later. 

Consistent with the cone penetration models presented in Table 1, this model does not directly 

address shear bands and strain localizations in the continuum elements, even though development 

of periodic (in space and time) shear bands around penetrometers in clay are a known phenomenon 

(e.g., Zhou and Randolph 2007). The MIT-S1 constitutive model can address large deformations 

and accommodate a strain-softening and localization response; however, this steady state 

penetration solution did not produce shear bands or strain localizations in the continuum elements, 

possibly because of the steady state solution technique. The Mohr-Coulomb interface elements do 

provide an approximate accounting for strain localization along the soil-cone tip and shaft 

interfaces. 

Large deformations of the model geometry will concentrate around the cone tip and cone shoulder, 

which can lead to numerical instability and mesh entanglement if the Lagrangian interval is too 

large. Large deformations are accommodated with an ALE algorithm that performs grid rezoning 

and model property remapping operations throughout simulated penetration. Implementation and 

evaluation of the ALE algorithm are described in later sections. 

FLAC Finite Difference Analysis  

FLAC is an explicit finite difference program for geotechnical engineering analysis. The global 

governing equations and their numerical implementation are described in Itasca (2016). This 

section provides an overview of those numerical aspects that are important for the cone penetration 

model described herein, including: (1) the explicit formulation and how it relates to the 

performance of the numerical formulations and the constitutive models, (2) the large deformation 
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Lagrangian analysis and how it relates to the user-written ALE algorithm, and (3) the mixed 

discretization and how it relates to the user-written remapping of zone variables. 

FLAC's explicit computational cycle is illustrated in Figure 2. The penetration model described in 

the previous section uses FLAC’s dynamic analysis to step towards steady-state penetration 

conditions from the initial wished-in-place conditions. The maximum dynamic time-step is 

internally constrained by the speed information travels across model zones, which depends on zone 

dimensions, material wave velocities, damping parameters, and pore fluid permeability. For 

example, in the baseline case of simulated penetration presented later, the maximum dynamic time 

step was 1.1x10-6 seconds and the cone velocity (relative to the soil mesh) was 0.20 m/s (which 

reached undrained steady state penetration conditions faster than the standard penetration rate of 

0.02 m/s with no observed effect on results), which means that over 105 calculation steps were 

performed per simulated cone diameter of penetration.  

FLAC calculates equivalent nodal (gridpoint) forces from stresses in subzones. The FLAC grid is 

composed of quadrilateral zones, which are discretized into two overlying sets of two constant-

strain, triangular subzones. A mixed discretization scheme is used to prevent “hourglass” zone 

deformations (Marti and Cundall, 1982) wherein the isotropic components of stress and strain are 

the same for all subzones, while deviatoric components are treated separately for each subzone. 

Mechanical deformation in FLAC is governed by the equation of motion, with gridpoint 

accelerations computed from lumped masses and unbalanced forces. Gridpoint velocities are used 

to calculate each subzone’s strain rate and strain increments. Gridpoint and material coordinates 

are updated in FLAC’s large deformation mode from the calculated displacements, and the user-

implemented rezoning and remapping steps of the ALE algorithm are called after a user-specified 

amount of zone geometry deformation. Subzone stresses are constitutively calculated from the 
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strain increments, and the cycle is repeated. During remapping operations, values calculated at the 

subzone level must be remapped for each subzone. Pore pressures in FLAC are located at 

gridpoints and develop from either fluid flow (governed by Darcy’s law) or mechanical volumetric 

strain (governed by Biot theory); therefore, gridpoint values must be remapped in addition to zone 

and subzone values. 

FLAC's constitutive model library includes the MC and MCC soil models and it allows for 

interfacing with user-defined constitutive models such as the MIT-S1 model used in this paper. In 

addition, FLAC includes its own scripting language that enables implementation of user-defined 

numerical procedures, such as the rezoning and remapping operations described in the following 

section.  

ALE Algorithm for Direct CPT Simulations in FLAC 

The Arbitrary Lagrangian Eulerian (ALE) algorithm implemented in this study couples FLAC’s 

large deformation Lagrangian formulation with user-defined routines for both rezoning and 

Eulerian remapping steps. Coupling the Lagrangian deformation with a rezoning and remapping 

step allows penetration to be simulated to steady-state conditions without the severe zone 

deformation, mesh entanglement, and numerical instability that occurs with solely a Lagrangian 

method. User-defined modules for rezoning and Eulerian remapping were required because 

FLAC's current rezoning algorithm is limited to plane strain conditions. Only those equations and 

concepts necessary to describe the adaptations made for FLAC or for background to the sensitivity 

studies in the following section are presented here. The full equations for the rezoning step and 

Eulerian remapping step are found in Pember and Anderson (2001) and Moug (2017). The 

numerical implementation of this ALE algorithm for FLAC is summarized as a pseudo-code in the 

Appendix of this paper. Moug (2017) includes an example implementation of the cone penetration 
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model along with the full ALE code for use with FLAC. The Lagrangian interval, rezoning step, 

and Eulerian intervals are briefly described below. 

Lagrangian Interval 

A dynamic time interval (or specified number of explicit time steps) in FLAC's large deformation 

mode simulates a Lagrangian interval of penetration. The time interval and cone penetration 

velocity together determine how much cone penetration is simulated in this Lagrangian interval. 

The amount of deformation during the Lagrangian interval must be limited such that significant 

overlap remains between the deformed and remapped model zones, as illustrated later in the 

verification examples.  

Rezoning Step 

In the rezoning step, the grid coordinates are mapped to a new rezoned geometry while material 

coordinates remain stationary. ALE algorithms might use adaptive remeshing where the rezoned 

geometry adapts to changing boundaries and is refined in large deformation areas. Adaptive 

remeshing was not necessary for the present study, so the rezoned geometry is instead taken as the 

original "undeformed" geometry. Thus, the algorithm is net Eulerian where soil material moves 

relative to a stationary cone and grid. Similar net Eulerian methods for geotechnical penetration 

problems were presented in Liyanapathirana et al. (2000) and van den Berg et al. (1996).  

The remapping and Eulerian rezoning methods reference model values in both space and pseudo-

time (i.e. advection time). Model geometry is transformed to general quadrilateral coordinates 

ሺ𝜉, 𝜂ሻ ൌ ሺ𝑖, 𝑗ሻ as shown in Figure 3. Model zones are referenced as 𝑖, 𝑗; 𝜂 edges are referenced as 

𝑖 േ 1/2; 𝜉 edges are referenced as 𝑖, 𝑗 േ 1/2, and gridpoints are referenced as 𝑖 േ 1/2, 𝑗 േ 1/2. 

The rezoning step and subsequent Eulerian advection remapping step occur over a pseudo time-

step with duration 𝑡௙. At 𝑡 ൌ 0 the Lagrangian interval has finished and the geometry is in a 
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deformed state with coordinates 𝑿௡. At  𝑡 ൌ 𝑡௙ the geometry has been advected to the undeformed 

state with coordinates 𝑿𝒏ା𝟏. 

Calculation and storage of undeformed zone volumes ሺ𝜎௜௝
௡ାଵ) from gridpoint coordinates are 

required at model initialization. Pember and Anderson (2001) provide volume equations assuming 

two-dimensional plane strain geometry, therefore volume calculations were adapted for 

implementation with the axisymmetric cone model.  

The Pember and Anderson (2001) implementation was extended for remapping FLAC model 

variables that are located at gridpoints such as pore pressure. The adaptation treats gridpoints as 

the center of pseudo-zones which have corners located at zone centers and are connected by 

pseudo-edges as shown in Figure 4. Therefore, all gridpoint, edge, and zone calculations performed 

in the rezoning step should be performed for model zones and the pseudo-zones around gridpoints.  

Eulerian (Remapping) Interval  

The Eulerian interval advects material and field properties from 𝑿௡ to 𝑿௡ାଵ over the same time-

step, 𝑡௙, as in the rezoning interval. Zone density ሺ𝜌௜௝ሻ is the first model property remapped because 

𝜌௜௝
௡ାଵ is required for remapping all other model zone and gridpoint properties, which are 

generalized as 𝑤௜௝. The remapped model zone properties include yield surface variables, plastic 

potential variables, and stress components. For the MIT-S1 model, this corresponds to remapping 

40 variables per model zone (10 variables per subzone) plus the pore pressure for each gridpoint.  

𝜌௜௝
௡ାଵ values are calculated by (1) computing axisymmetric volume fluxes between 𝑿௡ to 𝑿௡ାଵ at 

all edges (e.g. 𝛿𝜎௜,௝േଵ/ଶ, 𝛿𝜎௜േଵ/ଶ,௝) as shown in Figure 5, (2) computing 𝜎௜௝
௡ from 𝜎௜௝

௡ାଵ values stored 

at initialization and 𝛿𝜎 values, (3) computing the mass in the deformed zone (𝑀௜௝
௡ ) from 𝜌௜௝

௡  and 

𝜎௜௝
௡, (4) estimating density values at edges at 𝑡 ൌ 𝑡௙/2 (e.g. 𝜌௜,௝േଵ/ଶ

௡ାଵ/ଶ , 𝜌௜േଵ/ଶ,௝
௡ାଵ/ଶ ) with the corner 
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transport upwind method (Colella 1990), (5) estimating mass fluxes at each edge (e.g. 

𝐹௜,௝േଵ/ଶ, 𝐹௜േଵ/ଶ,௝) from 𝛿𝜎 and 𝜌௡ାଵ/ଶ edge values, and finally (6) estimating 𝜌௜௝
௡ାଵ: 

𝜌௜௝
௡ାଵ ൌ

𝑀௜௝
௡ାଵ

𝜎௜௝
௡ାଵ ൌ

𝑀௜௝
௡ ൅ ൫𝐹௜ିଵ/ଶ,௝ െ 𝐹௜ାଵ/ଶ,௝൯ ൅ ൫𝐹௜,௝ିଵ/ଶ െ 𝐹௜,௝ାଵ/ଶ൯

𝜎௜௝
௡ାଵ ሺ1ሻ 

All 𝑤௜௝ values are remapped in a similar manner to 𝜌௜௝ values. The corner transport upwind method 

is also used to estimate 𝑤௜௝ values at edges at 𝑡 ൌ 𝑡௙/2. Remapped zone values are estimated as: 

𝑤௜௝
௡ାଵ𝑀௜௝

௡ାଵ ൌ 𝑤௜௝
௡ 𝑀௜௝

௡ ൅ ቀ𝑤௜ିଵ/ଶ,௝
௡ାଵ/ଶ 𝐹௜ିଵ/ଶ,௝ െ 𝑤௜ାଵ/ଶ,௝

௡ାଵ/ଶ 𝐹௜ାଵ/ଶ,௝ቁ ൅ ቀ𝑤௜,௝ିଵ/ଶ
௡ାଵ/ଶ 𝐹௜,௝ିଵ/ଶ െ 𝑤௜,௝ାଵ/ଶ

௡ାଵ/ଶ 𝐹௜,௝ାଵ/ଶቁሺ2ሻ 

Model and kinematic properties in FLAC are located at either quadrilateral zones, triangular 

subzones, or gridpoints. Remapping for subzone properties is performed similar to properties 

located in the quadrilateral zone, with edge values and fluxes estimated for quadrilateral edges but 

based on property values from subzones. The procedure for remapping gridpoint values in FLAC 

is similar to that for the zone values in Equation 2 with edges around gridpoints treated as pseudo-

edges as shown in Figure 5. Mass fluxes at pseudo-edges are approximated as the axisymmetric 

volume-weighted average between the adjacent four parallel edges.  

Slopes of remapped properties in the 𝜉 and 𝜂 directions (∆ஞ𝑤௜௝ and ∆ఎ𝑤௜௝, respectively) across the 

𝑖, 𝑗 zone or gridpoint are required to estimate property gradients and edge values of remapped 

properties. Slopes are estimated with van Leer limited monotonic central differences (van Leer, 

1979) and are described to support the numerical evaluation work presented in the following 

section. The van Leer limiters will estimate slopes less than or equal to the average of adjacent 

zones, and the central difference is set to zero if the slope changes directions across neighboring 

zones. The van Leer limited central difference in the 𝜉 direction (∆𝑤క) and 𝜉 gradient (𝑤క) are 

computed as, 

∆஼𝑤௜௝
క ൌ 0.5ሺ𝑤௜ାଵ,௝ െ 𝑤௜ିଵ,௝ሻ  
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 ∆ோ𝑤௜௝
క ൌ 𝑤௜ାଵ,௝ െ 𝑤௜,௝ 

∆௅𝑤௜௝
క ൌ 𝑤௜,௝ െ 𝑤௜ିଵ,௝ 

if ∆௅𝑤∆ோ𝑤 ൐ 0,  

 ∆క𝑤௜௝ ൌ min ቀቚ∆஼𝑤௜௝
క ቚ , 𝜔௅ ቚ∆ோ𝑤௜௝

క ቚ , 𝜔௅ ቚ∆௅𝑤௜௝
క ቚቁ ∗ 𝑠𝑖𝑔𝑛ሺ∆஼𝑤௜௝

క ሻ 

else    

 ∆క𝑤௜௝ ൌ 0 

𝑤క ൌ
∆క𝑤
∆𝜉

                                                                                                                                          ሺ3ሻ 

The van Leer limited central difference and gradient in the η direction are computed similarly.  

The van Leer limiting factor (𝜔௅ሻ should fall between 1 and 2 for a second-order 

algorithm where 𝜔௅ can be a function of the overlapping distance between a deformed and 

undeformed zone. Large remapping distances will require stronger limiting, which is achieved 

with 𝜔௅ close to 1, to prevent numerical dispersion. If 𝜔௅ is set at 0, the algorithm becomes first-

order accurate. A value of 𝜔௅ ൌ 1 was found to work well for the present study; results for values 

of 0, 1, and 2 are compared later in a verification example. 

After remapped model zone and gridpoint properties have been determined and assigned to the 

undeformed model geometry, the constitutive model may initially violate plastic consistency (e.g., 

stress conditions may lie outside the yield surface). This is corrected at the element level, where 

the constitutive model must iterate back to the plastic yield surface in the same manner that the 

constitutive model performs implicit integration throughout Lagrangian analysis. Details of the 

iterative forward-Euler integration scheme in our implementation of MIT-S1 with FLAC are 

available in Jaeger (2012).  
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Assessment of Numerical Methods 

The user-defined ALE algorithm and axisymmetric cone penetration model were evaluated 

through numerical exercises, as described in this section. Numerical dispersion and diffusion from 

repeated rezoning and remapping cycles are evaluated first, followed by a sensitivity study of the 

cone penetration model to numerical aspects of the solution procedure. 

Performance of Rezoning and Remapping Algorithms 

Numerical diffusion and dispersion due to the rezoning and remapping cycles of the ALE 

algorithm is illustrated using the example shown in Figure 6a, which is similar to the example by 

Dukowicz and Kodis (1987). This example involves advecting an initially discontinuous 

distribution of a property (shown in Figure 6a) from the bottom to the top of a mesh, which in this 

case is similar to the mesh used in cone penetration modeling (e.g., Figure 1) but with equally 

sized zones. The Lagrangian interval applies rigid vertical displacement to the model, therefore 

this example does not solve the constitutive equations or penetration process, but rather just tests 

the numerical diffusion and dispersion due to the rezoning and remapping cycles. Numerical 

diffusion will be evident by numerical smoothing of the initially discontinuous property 

distribution as it advects through the mesh, whereas numerical dispersion will be evident by 

remapped values exceeding the distribution’s initial limits.  

The dependence of numerical diffusion and dispersion on the limiting factor 𝜔௅ (Equation 3) and 

the size of Lagrangian interval are illustrated in Figures 6b-g. Results for 𝜔௅ ൌ 0, 1, and 2 with a 

Lagrangian interval displacement of 1.9 mm (0.2 times the minimum zone height) are shown in 

Figures 6b, 6c, and 6d, respectively. Results for the same 𝜔௅ values but with a Lagrangian interval 

displacement only 1/10th as large (0.02 times the minimum zone height) are shown in Figures 6e, 

6f, and 6g, respectively. The total number of remapping steps was 500 with the larger Lagrangian 
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interval (Figures 6b-6d) and 5,000 with the smaller Lagrangian interval (Figures 6e-6g). Numerical 

diffusion is greatest when 𝜔௅ ൌ 0 (i.e., the algorithm is first-order) for either Lagrangian interval 

size (Figures 6b and 6e).  Numerical diffusion is reduced when 𝜔௅ ൌ 1 for either case, although 

diffusion is greater for the smaller Lagrangian interval (Figure 6f versus 6c) because it requires ten 

times more remapping steps. Numerical diffusion is further reduced when 𝜔௅ ൌ 2, but it is 

accompanied by dispersion (property values outside the initial distribution limits) for the larger 

Lagrangian interval (Figure 6d). This example demonstrates that the second-order algorithm (𝜔௅ ൌ

1 or 2) will decrease numerical diffusion due to remapping when compared to a first-order 

algorithm, but that stronger limiting (e.g., 𝜔௅ ൌ 1) may be required with large Lagrangian intervals 

to avoid numerical dispersion.  

Evaluation of Numerical Modeling Procedures for Cone Penetration  

A series of direct cone penetration analyses were performed to evaluate sensitivity of the solutions 

to the numerical aspects of the model, including mesh geometry, zone size, van Leer limiting 

factors, Lagrangian interval size, and dynamic time-step. Results are compared in terms of 𝑞௧ 

versus penetration distance in Figure 7 for a baseline case with the MCC constitutive model 

calibrated to BBC data (Table 2), a perfectly smooth (𝛿 ൌ 0) cone face and rod, and an isotropic 

hydraulic conductivity of 1x10-8 m/s.  

The effect of model zone size near the cone face is shown in Figure 7a. Essentially the same 

solution is obtained if the minimum zone height against the cone face is 0.03 or 0.06 (baseline case 

value) times the cone diameter; this corresponds to 19 and 10 zones in contact with the cone face, 

respectively. The solution begins to differ and show oscillations if the minimum zone height is 

increased to 0.12 times the cone diameter (only 5 zones in contact with the cone face) and is poor 
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with significant oscillations if it is increased to 0.19 times the cone diameter (i.e., only 3 zones in 

contact with the cone face).  

The effect of distance to the right and bottom boundaries, which were kept equal to each other, is 

shown in Figure 7b. Essentially the same solution is obtained if these distances are 45 or 90 cone 

diameters. The 𝑞௧ is increased by about 1%, 2.5%, and 7.5% if these distances are reduced to 22.5 

(baseline case value), 11.2, and 5.6 cone diameters, respectively.  

The effect of setting the van Leer central difference limiting factor 𝜔௅ equal to 0 (first order), 1, 

or 2 was also examined. The simulated penetration resistances were unaffected (less than 0.20% 

difference); similarly, stress and pore pressure fields did not show notable differences throughout 

simulated penetration. Notable differences were likely not observed between different 𝜔௅ values 

because the problem approaches the same steady state stress conditions. However, for the more 

complex MIT-S1 constitutive model, the higher order values for 𝜔௅ did reduce numerical noise 

for spatial solutions (contour plots) with some numerical parameter combinations, but also did not 

significantly affect the steady state solution for the more stable parameter combinations. 

Penetration simulations in this paper use 𝜔௅ = 1 and the Lagrangian deformation limited to half 

the minimum zone size. As demonstrated in Figure 6, large remapping distances relative to zone 

size require stronger limiting to prevent numerical dispersion.  

The effect of the Lagrangian interval's penetration distance is shown in Figure 7d. The baseline 

case is 1.7 mm of cone penetration per Lagrangian interval, corresponding to 0.50 times the 

minimum zone height in the mesh (i.e. at the cone face). The two smaller Lagrangian intervals 

(0.25 and 0.10 times the minimum zone height) shows similar results to the baseline case. 

However, the largest Lagrangian interval (0.75 times the minimum zone height) resulted in 

numerical instability after penetrating a distance of only 3 cone diameters.  
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The effect of reducing the dynamic time step below the default (baseline case) did not affect the 

penetration resistance. The solutions were essentially the same using 1.0, 0.5, or 0.25 times the 

default (maximum) time step (1.1x10-6 seconds for this problem).  

The results summarized in Figure 7 provide a measure of verification for the numerical modeling 

procedures in two ways. First, they indicate that reasonable variations in the numerical analysis 

parameters, within certain bounds, do not have significant effects on the simulated 𝑞௧. Second, the 

𝑞௧ for the baseline case is consistent with values obtained by others using MCC models in direct 

penetration modeling. The relationship between 𝑞௧ and 𝑠௨ is often expressed using the form, 

𝑞௧ ൌ 𝜎௩௢ ൅ 𝑁௞௧𝑠௨ ሺ4ሻ 

where 𝑁௞௧ is a cone bearing factor that depends on the type of test for which 𝑠௨ is estimated. The 

baseline case corresponds to 𝑁௞௧ = 9.2 for a 𝐾௢ normally consolidated undrained triaxial 

compression 𝑠௨ = 30 kPa, 𝜎௩௢
ᇱ  = 100 kPa, and an elastic shear modulus (𝐺) equal to 75 times 𝑠௨. 

This value of 𝑁௞௧ is in good agreement with 𝑁௞௧= 9 reported by Yu et al. (2000) using an MCC 

model with a similar 𝐺/𝑠௨ ratio and interface roughness condition. Additional analyses for other 

values of 𝑠௨, 𝐺/𝑠௨, and 𝐾௢ produced results in good agreement with those reported by Yu et al. 

(2000), indicating that the penetration model is producing reasonable results with this constitutive 

model.  

Penetration in Boston Blue Clay 

The penetration model was used with the MC, MCC, and MIT-S1 constitutive models to simulate 

steady-state penetration in BBC at a site in Newbury, Massachusetts (Landon 2007). The MC and 

MCC models are included within the FLAC library of soil models. MIT-S1 was implemented in 

FLAC as a user-defined constitutive model by Jaeger (2012). The following sections summarize 

𝑠௨ data for BBC loaded in triaxial compression, direct simple shear, and triaxial extension, the 
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responses of the three constitutive models in single element simulations for these test paths, and 

the results of cone penetration simulations using the three constitutive models.  

Undrained Strengths of Boston Blue Clay 

Laboratory test results on intact and resedimented BBC samples are summarized in Table 3 for 𝐾௢ 

consolidated undrained triaxial compression (CKOUC), 𝐾௢ consolidated undrained triaxial 

extension (CKOUE), and 𝐾௢ consolidated undrained direct simple shear (CKOUDSS) loading 

conditions. Under normally consolidated conditions the ratio of 𝑠௨ to the initial vertical effective 

stress (𝑠௨/𝜎௩௢
ᇱ ) for CKOUC loading is about 0.28 and 0.33 for intact and resedimented specimens, 

respectively. The 𝑠௨/𝜎௩௢
ᇱ  for CKOUDSS and CKOUE loading decreases to 0.14 and 0.20, 

respectively, for resedimented specimens (data are not available for intact specimens). For an 

overconsolidation ratio (OCR) of 2.0, the 𝑠௨/𝜎௩௢
ᇱ  for CKOUC loading is about 0.42 and 0.54 for 

intact and resedimented specimens, respectively, with the 𝑠௨/𝜎௩௢
ᇱ  decreasing to 0.28 and 0.31 for 

CKOUE loading for intact and resedimented specimens, respectively. These differences in 𝑠௨ for 

different test types are consistent with ranges reported for other sedimentary clays (Kulhawy and 

Mayne 1990); e.g., the 𝑠௨ for CKOUE loading is 42-67% of the 𝑠௨ for CKOUC loading depending 

on the sample type and OCR. 

Calibration and Constitutive Behavior 

The MIT-S1 calibration for BBC, as presented in Table 4, uses the parameter values from Jaeger 

(2012) with slight modifications; e.g., the 𝐶௕value was increased from 540 to 850 to achieve the 

in-situ shear velocity of BBC reported in Landon (2007). The 𝑠௨/𝜎௩௢
ᇱ

 from single element 

simulations at OCRs of 1.0, 2.0, and 2.2 for CKOUC, CKOUE, and CKOUDSS loading conditions 

are summarized in Table 3. This calibration produces peak 𝑠௨/𝜎௩௢
ᇱ  values of 0.32, 0.18, and 0.17 
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for normally consolidated CKOUC, CKOUE and CKOUDSS loading conditions, respectively, 

which are reasonable approximations of the experimentally observed 𝑠௨ anisotropy. 

The MCC calibration follows the Randolph (1979) calibration as summarized in Table 2, except 

𝐾௢  was changed from 0.55 to 0.49 to match the MIT-S1 calibration. This calibration produces a 

𝑠௨/𝜎௩௢
ᇱ  of 0.30 for both normally consolidated CKOUC and CKOUE loading conditions and a 

𝑠௨/𝜎௩௢
ᇱ  of 0.34 for normally consolidated CKOUDSS loading (Table 3). 

The MC calibration for undrained loading involved setting the friction angle (𝜙) to zero and the 

soil cohesion equal to the target 𝑠௨ value. For the purpose of this study, the target 𝑠௨ and elastic 

shear moduli were set equal to that for the MCC calibration. For 𝜙 ൌ 0, the strength envelope of 

the MC model reduces to the Tresca failure criterion and produces the same peak 𝑠௨/𝜎௩௢
ᇱ  of 0.30 

for all loading conditions (Table 3).  

Figure 8 shows the BBC 𝐾௢ normally consolidated yield surfaces for MC, MCC, and MIT-S1 

where 𝜎௩௢
ᇱ ൌ 100 𝑘𝑃𝑎. The ability of MIT-S1 to approximate 𝑠௨ anisotropy stems from 

incorporation of the Matsuoka-Nakai (1974) generalization of the yield and critical state surfaces, 

and from incorporation of an anisotropy tensor in the yield surface expression. Figure 8 

demonstrates the isotropic yield surfaces for MC and MCC models, which are consistent with the 

𝑠௨ values predicted in the CKOUC and CKOUE simulations. 

Stress and excess pore pressure (𝑢) versus strain as well as stress path responses from single 

element simulations with normally consolidated BBC calibrations are shown in Figure 9 to 

illustrate the different behaviors between the three constitutive models. The initial 𝜎௩௢
ᇱ and 𝜎௩௢  were 

100 kPa and 𝐾௢ was set equal to 0.49. The stress-strain responses for CKOUC loading conditions 

(the solid lines in Figure 9a) show similar 𝑠௨ values for the three soil models, which was one 

objective of the calibration process. Only the MIT-S1 model shows post-peak strain softening 
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behavior, which was observed in normally consolidated CKOUC testing on block samples of BBC 

by Landon (2007), and on resedimented samples of BBC by Pestana et al. (2002). The stress-strain 

responses for CKOUE (the dashed lines in Figure 9a) and CKOUDSS (the solid lines in Figure 9d) 

illustrate how these calibrations for the MC and MCC models result in significant overestimations 

of 𝑠௨ for these loading conditions. The 𝑢 responses in Figure 9 illustrate the significant differences 

in shear-induced 𝑢 for the three constitutive models. The MC model, with 𝜙 ൌ 0 and associative 

flow, only develops 𝑢 in response to changes in mean total stress (𝑝), which is why MC generates 

the smallest 𝑢 for all three loading conditions (Figures 9b and 9e). The MCC model generates 

significantly greater 𝑢 than the MC model for all three loading conditions because the MCC model 

develops plastic volumetric strains once the yield surface has been reached and the MC model 

does not. The MIT-S1 model generates even greater 𝑢 for all three loading paths because the 

model’s bounding surface was calibrated to produce more realistic approximations of BBC stress 

paths and 𝑠௨ anisotropy. The greater generation of 𝑢 for the MIT-S1 model is evident in its stress 

paths moving to significantly lower effective stresses during shearing than for either the MC or 

MCC models (Figures 9c and 9f). Pestana and Whittle (1999) and Pestana et al. (2002) compared 

experimental results for resedimented BBC to the MIT-S1 constitutive response to show that 

MIT-S1 captures the observed experimental soil behavior in CKOUC, CKOUE, and CKOUDSS 

loading paths across a range of overconsolidation ratios. 

Simulated Cone Tip Resistance 

The penetration model was first used to simulate steady-state penetration in BBC at the Newbury 

site at a depth of 9.6 m where 𝜎௩௢
ᇱ  = 100 kPa and the OCR = 2.2, the groundwater level was at a 

depth of 1.7 m (Landon 2007). The interface roughness condition was 𝛿 = 0.8. The isotropic 

hydraulic conductivity is 1x10-8 m/s for all Newbury site penetration models in this paper, which 
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is small enough that undrained penetration conditions prevail and an anisotropic hydraulic 

conductivity (where hydraulic conductivity is lower than 1x10-8 m/s in the vertical direction) does 

not impact the solution. The differences in 𝑞௧, stress fields, and 𝑢 fields around the cone for the 

three constitutive models are described and related to the differences in the constitutive responses 

exhibited in the single element simulations. 

The simulated 𝑞௧ versus penetration distance for all three constitutive models are presented in 

Figure 10. Steady-state 𝑞௧ values were reached by 2 to 6 cone diameters of penetration, but 

penetration was simulated to 25 cone diameters to produce steady state stress conditions along the 

cone shaft. 

The simulated 𝑞௧ with the MC and MCC models were 750 kPa and 735 kPa, respectively. This 

similarity in 𝑞௧ values is expected because the two models produce essentially the same 𝑠௨ of 

59 kPa for CKOUC and CKOUE loading conditions. These simulations, with their essentially 

isotropic 𝑠௨ values, correspond to an 𝑁௞௧,ூௌை of about 9.7 for MC and 9.5 for MCC. The subscript 

ISO emphasizes that bearing factors derived for these types of models are based on approximately 

isotropic undrained shear strengths.   

The simulated 𝑞௧ with the MIT-S1 model is about 536 kPa, about 30% smaller than with the MC 

and MCC models. The smaller 𝑞௧ value with the MIT-S1 model is expected because soil is sheared 

in various modes during cone penetration (Baligh 1985), and the MIT-S1 model produces lower 

𝑠௨ values for all but the CKOUC loading condition; i.e., MIT-S1 with OCR of 2.2 and 𝜎௩௢
ᇱ  of 

100 kPa produces 𝑠௨ of 54, 38, and 36 kPa for CKOUC, CKOUE and CKODSS loading conditions 

respectively. This simulation result corresponds to 𝑁௞௧,஼ , 𝑁௞௧,ாand 𝑁௞௧,஽ௌௌ values of 6.7, 9.5 and 

10.0, respectively. 
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The complex loading paths of soil near a penetrating cone do not correspond closely to any single 

laboratory element test, but rather represent a combination of compression, simple shear, and 

extension paths (Baligh 1985). For penetration with the MIT-S1 model, the 𝑞௧ could alternatively 

be related to the average 𝑠௨ for these three test types (i.e., 39.3 kPa for this example) which would 

correspond to a 𝑁௞௧,௔௩௘ = 8.7. This value is, however, smaller than the 𝑁௞௧,ூௌை obtained with the 

MC and MCC models. These results illustrate that 𝑁௞௧  values are significantly affected by 𝑠௨ 

anisotropy and are unique to the specific reference strength test against which they are determined. 

The simulated 𝑞௧ values, now including results for a depth of 5.6 m where the OCR = 4.3, are 

plotted with CPT profiles from the Newbury site in Figure 11 after Landon (2007). The CPT1 and 

CPT2 profiles were located approximately 10 m apart. The measured 𝑞௧ at CPT2 were about 20-

30% greater than at CPT1 over the depths of interest. The Sherbrooke block sample that was used 

to obtain the intact CKoUC 𝑠௨ value in Table 3 was located approximately 4 m west of CPT2 and 

7.5 m south of CPT1. Simulations with the MCC and MC models produced 𝑞௧ values that are close 

to, or slightly above, the values measured in CPT2, whereas simulations with the MIT-S1 model 

produced 𝑞௧ values that are closer to those measured in CPT1. The MCC and MC models produced 

larger 𝑞௧ values because they were calibrated to the stronger CKOUC loading condition (Table 3). 

Simulations with the MIT-S1 model produced lower 𝑞௧ values because its calibration accounts for 

lower 𝑠௨ values for loading paths more analogous to extension or simple shear loading. For this 

site, the spatial variation in 𝑞௧ values between CPT1 and CPT2 are as large as the differences in 

the 𝑞௧ values simulated using these three models. 

The 𝑁௞௧values from these simulations were also compared to typical 𝑁௞௧ values in geotechnical 

engineering practice and 𝑁௞௧ values determined analytically. Typical 𝑁௞௧ values used in 

geotechnical engineering vary between 15 and 30 (Fleming et al. 2009) which reflects a range of 
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site specific factors including soil stiffness, cone and sleeve roughness, 𝑠௨ anisotropy, and soil 

sensitivity (Schneider et al. 2008). Lunne et al. (2003) reported 𝑁௞௧ values of 6-15 for Onsoy clay 

based on 𝑠௨ values from high-quality block samples, and noted that higher 𝑁௞௧ values in some 

field studies may be attributed to lower 𝑠௨ values caused by greater sample disturbance when not 

using high quality block samples. Lu et al. (2004) simulated penetration with a MC model and 

reported an 𝑁௞௧ value of 9.7 for similar penetration conditions as described in this section. 

Simulated Stress Fields 

The simulated mean total stress fields (𝑝) around the penetrating cone after 25 cone diameters of 

penetration are shown in Figure 12 for each soil model at a depth of 9.6 m. The steady-state 𝑝 

distributions show similar values in the cone tip area for the MC and MCC models, whereas 𝑝 is 

less for the MIT-S1 model. The differences in 𝑝 are consistent with the differences in 𝑞௧ for the 

three models. 

Simulated Pore Pressure Fields 

Steady-state 𝑢 fields are presented in Figure 13 for the three constitutive models. There are two 

components to the 𝑢 generated during undrained cone penetration: (1) due to an increment in 𝑝, 

and (2) due to an increment in deviatoric stress or strain. Penetration-induced 𝑢 with the MC model 

are slightly smaller than with the MCC soil model. The 𝑝 fields are similar for the two models 

because they have similar strength behaviors and therefore produce similar 𝑞௧. The MC model, 

however, generates less 𝑢 during deviatoric shearing as illustrated by the single element 

simulations in Figure 9, and thus has slightly smaller values of 𝑢 around the penetrating cone.  

The steady-state 𝑢 for the MIT-S1 model shows smaller 𝑢 near the cone face compared to either 

the MC or MCC models, but greater 𝑢 for some zones near the cone shaft above the tip. The smaller 

values near the cone face are attributed to the MIT-S1 model producing smaller 𝑝 and 𝑞௧ because 
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of its lower average strength. The 𝑢 near the cone shaft above the tip are larger with MIT-S1 

because it produces more 𝑢 during deviatoric shearing (as shown in Figure 9) and the 𝑝 for the 

three models are not as different in this area.  

Conclusions 

A direct axisymmetric cone penetration model was developed for use with a user-written 

implementation of the MIT-S1 constitutive model (Pestana and Whittle 1999) in the finite 

difference program FLAC (Itasca 2016). The cone penetration model uses an ALE algorithm that 

couples FLAC’s large deformation Lagrangian formulation with user-written algorithms for 

rezoning and remapping with a second-order, mass-conservative, Eulerian upwinding technique 

after Colella (1990). The current application to steady penetration involved remapping to the 

original geometry, such that the solution is net Eulerian. Results of sensitivity analyses indicate 

that the ALE algorithm and cone penetration model are reasonably robust.  

Cone penetration at a Boston Blue Clay site was simulated using the Mohr-Coulomb, modified 

Cam clay, and MIT-S1 constitutive models. Single element simulations illustrated that the MIT-S1 

constitutive model is capable of simulating the 𝑠௨ anisotropy and strain softening exhibited by 

BBC in undrained triaxial compression, undrained triaxial extension, and undrained direct simple 

shear, whereas the modified Cam clay and Mohr-Coulomb models cannot. Cone penetration 

simulations illustrated the important effect of 𝑠௨ anisotropy on 𝑞௧ and associated 𝑁௞௧ factors, as 

well as on stress and 𝑢 fields around the cone tip and rod. The simulated 𝑞௧ were in reasonable 

agreement with measured values. 

Appendix 

The implementation of an Arbitrary Lagrangian Eulerian algorithm for axisymmetric geometry is 

summarized as a pseudo-code having four main components: initialization, Lagrangian interval, 
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rezoning step, and Eulerian interval. This implementation is fully detailed in Pember and Anderson 

(2001); for consistency, the same symbolic conventions are used in this paper. Symbols are defined 

in the List of Notation. The edge value estimation in the Eulerian interval is based on the corner 

transport upwind method (Colella 1990) with direction gradients estimated with van Leer central 

difference limiters (van Leer 1979). This pseudo-code is presented for remapping model zone 

values, a similar procedure is used for remapping values located at gridpoints and subzones. The 

full code for use with FLAC is available in Moug (2017). 

Initialization 

1. Calculate and store:  

i. Undeformed gridpoint and coordinates: 𝑿௜௝
௡ାଵ ൌ ሺ𝑥௜௝, 𝑦௜௝ሻ 

ii. Undeformed axisymmetric zone volumes: 𝜎௜௝
௡ାଵ 

Lagrangian Interval 

2. Run FLAC in large deformation mode for a Lagrangian interval  

3. Store deformed grid coordinates: 𝑿௜௝
௡ ൌ ሺ𝑥௜௝, 𝑦௜௝ሻ  

Rezoning Step 

4. Calculate and store: 

i. Gridpoint rezoning velocities: 𝒔 ൌ 𝑿೙శభି𝑿೙

௧೑
    

ii. Deformed edge lengths: ∆𝜂௜ାଵ/ଶ,௝, Δ𝜉௜,௝ାଵ/ଶ 

iii. Deformed edge normal vectors: 𝒏௜,௝ାଵ/ଶ
ఎ , 𝒏௜ାଵ/ଶ,௝

క   

iv. Deformed zone Jacobians: 𝐽௜௝ 

5. Set grid geometry to undeformed geometry: 𝑥௜௝ ൌ 𝑥௜௝
௡ାଵ, 𝑦௜௝ ൌ 𝑦௜௝

௡ାଵ 

Eulerian Interval 
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6. Calculate axisymmetric transport volumes between 𝑿௜௝
௡ and 𝑿௜௝

௡ାଵ at all edges: 𝛿𝜎௜േଵ/ଶ,௝, 

𝛿𝜎௜,௝േଵ/ଶ 

7. Calculate volume fluxes between deformed grid and rezoned grid at all edges: 𝑄௜േଵ/ଶ,௝, 𝑄௜,௝േଵ/ଶ 

8. Calculate remapped model values at all zone edges at 𝑡 ൌ 𝑡௙/2 with the corner transport 

upwind (Colella 1990) method: 

i. Estimate and store van Leer limited central differences (van Leer, 1979) for each 

remapped property in 𝜉 and 𝜂 directions for every zone (Equation 3): Δక𝑤௜௝, Δఎ𝑤௜௝ 

ii. Estimate and store 𝜉 and 𝜂 gradients for each remapped property: 𝑤క, 𝑤ఎ 

iii. Determine edge state to be estimated for each edge by upwinding with 𝛿𝜎 values 

iv. Estimate remapped property values for 𝜉 and 𝜂 edges at 𝑡 ൌ 𝑡௙/2 

a. Calculate cross-transport gradient at 𝜉 and 𝜂 edges: 𝑤௣ആ
, 𝑤௣഍

 

b. Calculate 𝜉 and 𝜂 edge values for state found in 8.iii.a: 𝑤௜േଵ/ଶ,௝
௡ାଵ/ଶ ,  𝑤௜,௝േଵ/ଶ

௡ାଵ/ଶ  

9. Calculate remapped zone density:  

i. Calculate deformed zone volumes: 𝜎௜௝
௡ 

ii. Calculate mass flux at 𝜉 and 𝜂 edges: 𝐹௜േଵ/ଶ,௝, 𝐹௜,௝േଵ/ଶ 

iii. Calculate remapped zone mass: 𝑀௜௝
௡ାଵ 

iv. Calculate remapped zone density (Equation 1): 𝜌௜௝
௡ାଵ 

10. Calculate remapped model properties (Equation 2): 𝑤௜௝
௡ାଵ 

11. Assign 𝜌௜௝
௡ାଵ and 𝑤௜௝

௡ାଵ values to model zones and gridpoints 

12. Apply constitutive model-specific consistency corrections 

13. Continue analysis at Step 2 
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Notation 

The following symbols are used in this paper: 

𝛿  Interface friction ratio; 

𝛿𝜎  Transport volume; 

𝜂  Quadrilateral coordinate mapping 𝑗 direction 

∆𝜂  𝜂 edge length; 

𝜉  Quadrilateral coordinate mapping 𝑖 direction 

∆𝜉  𝜉 edge length; 

∆క𝑤  𝜉 direction van Leer central difference limiter; 

∆ఎ𝑤  𝜂 direction van Leer central difference limiter; 

𝐹  Mass flux; 

𝑖  Discrete grid zone index in the 𝜉 direction 

𝑗  Discrete grid zone index in the 𝜂 direction 

𝐽  Zone Jacobian; 

𝐾௢_o    Coefficient of lateral earth pressure; 

𝑀  Zone mass; 

𝑁௄்  Cone bearing factor; 

𝑛  Discrete Eulerian time index; 

𝒏క   𝜉 edge normal vector; 
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𝒏ఎ  𝜂 edge normal vector; 

𝜔௅  Van Leer limiting factor; 

𝑝  Mean total stress; 

𝜙௖௢௡௘  Cone friction angle; 

𝜙௖௦
ᇱ   Soil critical state friction angle; 

𝑄  Volume flux; 

𝑞௧  Cone penetration resistance; 

𝜌  Density; 

𝒔  Gridpoint remapping velocity; 

𝑠௨  Undrained shear strength; 

𝑠௨/𝜎௩௢
ᇱ   Undrained shear strength ratio; 

𝜎  Zone volume; 

𝜎௩௢
ᇱ

  Vertical effective stress; 

𝑡௙  Pseudo time-step for rezoning and remapping; 

𝑢  Pore water pressure; 

𝑤  General model property; 

𝑤క  𝜉 gradient; 

𝑤ఎ  𝜂 gradient; and 

𝑿  Gridpoint coordinates. 
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Table 1. Summary of direct numerical penetration work 
Publication Numerical Platform Description of Numerical Algorithma Constitutive Model Soil Type Pore Water δcone tip δshaft 

Teh and Houlsby (1991) Finite Element 
Strain Path with Large Strain FE equilibrium 

correction 
von Mises Clay 

Uncoupled-
Undrained 

0 0,1 

van den Berg et al. (1996) Finite Element ALE with a static cone and fixed element nodes Drucker-Prager Sand & Incompressible Clay 
Drained (sand); 

Uncoupled-
Undrained (clay) 

0.31 (sand) 
0.67 (clay) 

Abu-Farsakh et al. (1998) Finite Element 
Large deformation finite strain from a wished in 

place initial condition 
Modified Cam-Clay Clay Undrained 0, 0.25 

Yu et al. (2000) Finite Element Steady-state finite element analysis Modified Cam-Clay Clay Undrained 
0, 0.25, 0.5, 0.75, 

1 

Abu-Farsakh et al. (2003) Finite Element 
Stage 1: Radial expansion to piezocone radius 

Modified Cam-Clay 
50% Kaolin 50% Fine Sand          

& 33% Kaolinite 67% Fine Sand 
Undrained Not Specified 

Stage 2: Penetration to steady state 

Susila & Hryciw (2003) Finite Element ALE with r-adaptive remeshing Drucker-Prager Sand Undrained 
0.48, 0.52, 0.55,  

0.58, 0.61, 0.64 

Lu et al. (2004) Finite Element 
Remeshing and Interpolation Technique 

Tresca Clay Undrained 0, 0.5, 1 0,1 
combined with Small Strain (RITSS) 

Huang et al. (2004) Finite Element Finite sliding with frictional contact elements Mohr-Coulomb Sand Drained 0, 0.17, 0.33, 0.5 

Ahmadi & Robertson 
(2005) 

Finite Difference 
Imposed vertical and horizontal displacement at 

inner boundary from a non-zero initial radius 
Mohr-Coulomb Sand & Incompressible Clay 

Drained (sand); 
Uncoupled-

Undrained (clay) 
Not Specified 

Walker & Yu (2006) Finite Element 
ALE with Van Leer (1977) second order 

von Mises Clay 
Uncoupled-
Undrained 

0, 0.33, 0.5, 0.67 advection for remapping and adaptive 
remeshing with volume smoothing 

Liyanapathirana (2009) Finite Element 

ALE with Van Leer (1977) second order 

von Mises 
Strain softening, rate dependent 

clay 
Uncoupled-
Undrained 

0, 0.33, 0.67, 1.0 advection for remapping and adaptive 

remeshing with volume smoothing 

Walker & Yu (2010) Finite Element 
ALE with Van Leer (1977) second order 

von Mises Layered Incompressible Clay 
Uncoupled-
Undrained 

0 advection for remapping and adaptive 
remeshing with volume smoothing 

Tolooiyan & Gavin (2011)  Finite Element 
ALE with volume smoothing remeshing, 

remapping algorithm not reported 
Drucker-Prager Sand Drained 0.5 

Chai et al. (2012) Finite Element 
Continuous contact and deformation of the 

penetrating cone and ground 
Modified Cam-Clay Over Consolidated Clay 

Undrained 0.01 
Mohr-Coulomb Clayey Soil 

Yi et al. (2012) Finite Element 

Updated Lagrangian formulation with 

Drucker-Prager 
Non-dilatant, homogeneous, elastic 

perfectly-plastic 

Drained,     
Partially Drained  

& Undrained 
0 

logarithmic strains. Large deformations in the 
soil-cone area were addressed by changing 

the grid geometry with trial and error. 
Kouretzis et al. (2014) Finite Element ALE with adaptive remeshing Yao et al. (2004)b Sand Drained 0.5 

Mahmoodzadeh et al. 
(2014) 

Finite Element 
Modified Small Strain (MSS) 

Modified Cam-Clay Clay Undrained 0 
Large Deformation Finite-Element (LDFE) 

Aubram et al. (2015) Finite Element 
ALE with remeshing smoothing and finite volume 

remapping 
Niemunis and Herle 

(1997)c 
Sand Drained 0 

Wang et al. (2015) Finite Element 
RITSS 

Niemunis and Herle 
(1997)c 

Sand Drained 0 EALE (Efficient Arbitrary Lagrangian Eulerian) 
CEL (Coupled Eulerian-Lagrangian) 

This study Finite Difference 
ALE with second order remapping to steady state 

penetration 
MIT-S1 Clay Undrained 0.8 0.8 

a as described in publication        b Elastoplastic model for sand after the modified Cam clay model        c Hypoplastic model for sand for cyclic small strain loading 
  
  



 

Table 2. Boston Blue Clay calibration for modified Cam clay (after Randolph, 1979) 
MCC 

Parameter 
Parameter Description 

Value 

𝜆 
Slope of virgin consolidation line in 
𝑒 െ  ln ሺ𝑝ᇱሻ space 

0.15 

𝜅 
Slope of unload-reload line in 𝑒 െ ln ሺ𝑝ᇱሻ 
space 

0.03 

𝜈 Poisson’s ratio 0.30 

𝜐஼ௌ௅ 
Reference specific volume (1 ൅ 𝑒) at 
𝑝ᇱ ൌ  1 on the critical state line 

2.744 

𝜙௖௦
ᇱ  Critical state friction angle  30° 

𝐾ைே஼ 
Lateral earth pressure coefficient at 
normally consolidated conditions 

0.49a 

a changed from the Randolph (1979) calibration 
 



 

Table 3. Undrained shear strength ratio (𝑠௨/𝜎௩௢
ᇱ ) for Boston Blue Clay specimens and single 

element simulations 

Test 
Lab Tests Single Element Simulations 

    
Mohr-Coulomb 

Modified   
Intact Resedimented Cam Claya MIT-S1b 

OCR 1   
CKOUC 0.28c 0.33d 0.30 0.30 0.32 
CKOUE   - 0.14d 0.30 0.30 0.18 

CKOUDSS - 0.20e 0.30 0.34 0.17 
OCR 2           

CKoUC 0.42c 0.54g 0.55 0.55 0.52 
CKOUE   0.28f 0.31h 0.55 0.55 0.34 

CKOUDSS - 0.32i 0.55 0.62 0.35 
OCR 2.2           

CKOUC 0.45c - 0.59 0.59 0.54 
CKOUE   - - 0.59 0.59 0.38 

CKOUDSS - - 0.59 0.67 0.36 
aRandolph et al. (1979) eSeah (1990) iLadd & Edgers (1972)   
bJaeger (2012) fEstabrook (1991)   
cLandon (2007) gSheahan (1991)     
dLadd & Varallyay (1965) hFayad (1986)       

 



 

Table 4. Boston Blue Clay calibration for MIT-S1  
MIT-S1 

Parameter 
Parameter Description Value 

𝜌௖ 
Slope of virgin compression curve in 
log ሺ𝑒ሻ െ log ሺ𝑝ᇱሻ space 0.178 

𝑝௥௘௙
ᇱ /𝑝௔௧௠ Reference 𝑝ᇱ at 𝑒 ൌ 1 on the 

isotropic virgin compression curve  1.5 

𝜃 
Controls transition to limiting 
compression curve (𝜃 ൌ 0 for clays) 0.0 

𝐷 
Characterizes slope of unloading 
curve 0.04 

𝑟 
Characterizes shape of unloading 
curve 0.30 

𝐾ைே஼  
Lateral earth pressure coefficient at 
normally consolidated conditions 0.49 

𝜇௢
ᇱ  Small strain Poisson’s ratio 0.24 

𝜔 
Controls non-linearity in Poisson’s 
ratio 1.0 

𝐶௕ Controls small strain elastic moduli. 850.0 

𝜙௖௦
ᇱ  Critical state friction angle 33.5 

𝜙௠௥
ᇱ  Peak friction angle at 𝑒 ൌ 1 46.0 

𝑝థ 
Controls variation of peak friction 
angle with void ratio (𝑝థ ൌ 0 for 
clays) 

0.0 

𝑚 
Controls shape of yield and 
bounding surfaces 0.80 

𝜔௦ 
Controls non-linearity of elastic 
moduli in shear 8.0 

𝜓 
Controls rate of evolution of the 
yield surface anisotropy 8.0 

ℎ 
Controls plastic strain magnitude 
when OCR > 1 6.0 

 



 
Fig. 1. Direct axisymmetric penetration model geometry and boundary conditions 

 
Fig. 2. FLAC mechanical calculation cycle 

 
Fig. 3. (a) Quadrilateral grid convention, and (b) index space coordinates for ALE algorithm 



 
Fig. 4. Pseudo gridpoint edge values for gridpoint value remapping 

 
Fig. 5. Volume fluxes during the rezoning step and the Eulerian remapping interval 

 
Fig. 6. (a) Initial property distribution, (b) 500 remapping steps with limiting factor = 0, (c) 500 

remapping steps with limiting factor = 1, (d) 500 remapping steps with limiting factor = 2, (e) 

5000 remapping steps with limiting factor = 0, (f) 5000 remapping steps with limiting factor = 1, 

and (g) 5000 remapping steps with limiting factor = 2 

 



 
Fig. 7. Direct penetration model verification for (a) model zone size, (b) model boundary 

distance, (c) van Leer limiting factors, and (d) Lagrangian displacement interval 

 

 
Fig. 8. Yield surfaces for 𝐾௢ normally consolidated BBC with Mohr-Coulomb, modified Cam 

clay, and MIT-S1 constitutive models 

 



 
Fig. 9. Single element simulations for normally consolidated BBC with MC, MCC, and MIT-S1 

constitutive models: (a-c) CKOUC and CKOUE loading, and (d-f) CKOUDSS loading 

 
Fig. 10. Simulated cone tip resistance versus penetration distance in BBC 



 
Fig. 11. CPT profiles in BBC at Newbury, MA and simulated cone tip resistance at 5.6 and 9.6 

m below ground surface (bgs) 

 
Fig. 12. Total mean stress distribution at 25 CPT diameters of penetration in BBC 



 
Fig. 13. Excess pore pressure distribution at 25 CPT diameters of penetration in BBC 




