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ABSTRACT

With the prevalence of online social networking, a large amount
of studies have focused on online users’ privacy. Existing work
has heavily focused on preventing unauthorized access of one’s
personal information (e.g. locations, posts and photos). Very little
research has been devoted into protecting the friend search en-
gine, a service that allows people to explore others’ friend lists.
Although most friend search engines only disclose a partial view
of one’s friend list (e.g., k friends) or offer the ability to show all or
no friends, attackers may leverage the combined knowledge from
views obtained from different queries to gain a much larger social
network of a targeted victim, potentially revealing sensitive infor-
mation of a victim. In this paper, we propose a new friend search
engine, namely FriendGuard, which guarantees the degree of friend
exposure as set by users. If a user only allows k of his/her friends
to be disclosed, our search engine will ensure that any attempts of
discovering more friends of this user through querying the user’s
other friends will be a failure. The key idea underlying our search
engine is the construction of a unique sub social network that is
capable of satisfying query needs as well as controlling the degree
of friend exposure. We have carried out an extensive experimental
study and the results demonstrate both efficiency and effectiveness
in our approach.
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1 INTRODUCTION

Social networks, such as Facebook and Twitter, are a way of con-
necting countless people through online sharing and media. One
key feature on many social networks is the friend search engine.
This engine usually allows users to display the friend list of an-
other user in order to foster new connections, and therefore allow
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Figure 1: An Example of Attack Scenario

more interactions between people that would otherwise not be
connected.

Although this is a useful feature to some, a friend engine may
help leak unwanted and unnecessary information of one’s network,
raising privacy concerns. By crawling an online social network
through API tools, a few researchers have found that the friend
search engine is a lot more vulnerable to privacy breaches than
many would expect. Most of a user’s friend list can be revealed
using a series of carefully designed queries that crawl the user’s
friends of friends [1, 18]. Figure 1 shows an example of such a
vulnerability. User’s queried by the friend search engine will return
the nodes they point to. In this case, we will focus on Alice. From
this example, assume Alice only wants to show Bob, Tom, and Mary.
Instead, Gavin and Ben want to show her as a connection. If every
single node within this network is queried, Alice will have her entire
friends list shown including Gavin and Ben. This could similarly be
true if Alice wished that her friend list was private. This shows that
with incompatible settings or random selections, an entire user’s
friend list can be inferred through the picks of others.

This vulnerability enables attackers to gain intelligence of a tar-
get’s close friend network, and possibly use this information to gain
leverage or obtain sensitive information regarding the targeted in-
dividuals. For example, a business man may not want to disclose
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all of its social connections to its competitors since that may con-
tain business intelligence; a politician may not want to reveal his
relationships with all his potential supporters. Such attacks clearly
violate users’ privacy expectations. Unfortunately, this is an under
looked issue among social networking users. Someone who has
created a private network and friend list should not have to worry
about their connections being exposed through a work around in
the system. When security controls are bypassed, users may feel
hesitant to continue using a platform, which would be a loss for
both the product owner and the individual user.

In the recent years, there have been a few approaches that aim to
preserve users’ private social connections against malicious friend
searches [6, 12]. However, the latest research shows that they are
still vulnerable under collusion-based attacks [8, 9].

In this paper, we propose a new friend search engine, called
FriendGuard. FriendGuard maintains the same key function of the
previous defense that allows people to view a maximum k friends of
a user. Meanwhile, FriendGuard provides strong privacy guarantees.
That is, if a user only allows k of his/her friends to be disclosed, our
search engine will ensure that any attempts of discovering more
friends of this user through querying the user’s other friends will
be a failure. For example, the previous attack scenario noted by
Figure 1 will be avoided if Gavin and Ben were not reported as the
top k friends of Alice.

The key idea underlying our search engine is the construction
of a sub social network that is capable of satisfying query needs
as well as controlling the degree of friend exposure. Specifically,
we extract a minimum sub-network from the existing social net-
work so that any individual or collaborative friend search will not
disclose information outside this sub-network. Every node in this
sub-network only has a desired amount of connections limited by
each user’s privacy policy. We have developed efficient algorithms
to support friend queries in real time. These algorithms include a
greedy algorithm that attempts to pick the top friends of a current
user, a depth first search algorithm that prioritizes a single pick for
each current user along a path, and an optimized method for the
depth first search algorithm that picks root nodes for each path
by smallest degree in the original online social network. We have
also carried out an extensive experimental study and the results
demonstrate both efficiency and effectiveness of our approach.

The remaining sections of the paper are organized as follows.
Section 2 discusses the related work. Section 3 discusses the overall
goal of our paper in relation to the current security vulnerabili-
ties. Section 4 talks about each specific algorithm and how they
achieve a more secure friend search engine. Section 5 overviews
our implemented algorithm across a variety of tests. Section 6 talks
about some of the shortcomings of our solution and other possible
problems. Finally, Section 7 concludes the paper.

2 RELATED WORK

With the growing concerns of privacy issues incurred during the
growth of online social networking, many researchers and service
providers have attempted to propose solutions that help provide
better privacy protection for users. Most of the efforts are placed on
location privacy and information sharing privacy [2, 5, 7, 14-17].
Very little studies have been carried out to preserve unexpected

social network exposure caused by the online friend search engine.
Several vulnerabilities in the existing friend search engine of Face-
book have been pointed out in [1]. Specifically, Bonneau et al. [1]
found an attack that is able to discover nearly the entire friend
list of a user by conducting an abundant amount of random friend
queries using the friend search engine. In [18], Ren et al. point
out that attacks that use intersection set computation may reveal
more users’ friend information if no privacy protection mechanism
is in place. Such kind of attacks are especially concerning since
users have no control of it and may not even be aware of these
vulnerabilities, even though they have properly set up their privacy
configurations, e.g., sharing only a small set of their social contacts.

To address the privacy concerns during the friend search, Ren et
al. [12] propose a remediation approach that uses a privacy-aware
method to verify that the given set does not leak information. In
this solution, user A queries the friend search engine for user B.
If a friend of A and B, say C, is found, then the friends of C and
B can be intersected to find the overlap. This intersection set of
B and C will be recommended to A by the friend search engine,
based on the findings that many users are willing to accept friend
requests to strangers if they have a common connection [11]. By
doing this, common connections are needed to gain an accurate
estimate of a user’s network. While this is useful, it restricts the
amount of connections given through a friend search engine to a
node that is not inside their common connections. Our approach
aims to give controls to individual users, that can specify the exact
amount of friends that they would like to disclose through a friend
search engine. This would also help to give picks that are outside
of a common connection, allowing more diverse sets to be given
than this method allows.

Another solution proposed by Li [6] implements a policy that
allows users to set a k-friend limit to the query results returned by
a friend search engine. This solution utilizes a stack method that
tracks the queries made, and changes results based on prior returned
sets. This algorithm checks if current query results would violate
the k-friend integrity of the previous searches when performing
the current one. If the query violates this, the algorithm will not
give the user(s) that would be violated, and instead gives another
suitable option. By implementing this method, they are able to
give optimal sets as available, but will then switch to more secure
results if further queries would cause the k-friend policy limit to
be violated.

An example of this defense is shown in Table 1 which references
Figure 2. Suppose that an attacker queries Mike and Tom, when
there is no defense. The friend search engine gives the nodes speci-
fied by there arrows. By adding both results we can see that Tom
has friends Mike, Bob, and Sarah violating K=2. When the defense
scheme is in place though, the algorithm changes its behavior after
giving the results from Mike. Because it knows that giving two new
friends for Tom would violate his k friend policy, it instead returns
Mike and Bob. This allows the friend search engine to return a set
that does not violate Tom’s k friend policy of 2.

This defense scheme was later discovered by the same researchers
to contain a vulnerability. In [8, 9], collusion attacks could be made
on this defense scheme to gain more exposure than the k friend limit
policy allowed. By pooling information across multiple attackers
making queries, queries can bypass the defense method by making
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Figure 2: Sample OSN

Table 1: Query Results Comparison

User Being Queried (k=2) Mike Tom
Query results without defense | Tom, Mary | Bob, Sarah
Query results with defense Tom, Mary | Mike, Bob

queries that gain information of a user’s friend list not possible if
the queries were made by the same attacker. Because this defense
uses a stack like system to log their queries, the stack would not
remain for another user, even if they were sharing information,
because it was not in the scope of their defense.

Table 2: Collusion Attack

User Being Queried (k=2) Mike Tom
Query results obtained by 157 attacker | Tom, Mary | Mike, Bob
Bob, Sarah

Query results obtained by 2”9 attacker | no query

The example in Table 2 shows how the defense stack is bypassed
by a collusion attack. Specifically, when the first attacker queries
Mike’s friends, the friend search engine returns Tom and Mary.
Afterwards, if the first attacker queries about T'om, the friend search
engine will return Mike and Bob but not Sarah in order to prevent
the attacker from knowing more than two friends of Tom. However,
this defense scheme is not able to prevent two or more attackers
who combine their query results. For example, if the second attacker
does not query Mike but only query Tom’s friends list, it is possible
that the friend search engine returns any two friends of Tom which
could be Bob and Sarah. Once these two attackers share their query
results, they will know that Tom has three friends: Mike, Bob and
Sarah. This violates Tom’s privacy policy whereby he only wants
to disclose two friends. While this example is simple, there is a lot
that goes into making attacks on a network through collusion to
explore most of a user’s contact list. Such collusion attack violates
users’ privacy settings and result in the same overexposure as if
there was no defense for this network.

Unlike previous works which relies on runtime privacy checking
and query modification, we tackle the problem from a new angle by
extracting a sub-network from the online social network to form

a robust platform for any friend search engine. We ensure that
queries performed on our constructed sub-network will be robust
to various kinds of attacks including the newly discovered collusion
attacks, and provide a strong guarantee of preserving users’ friend
exposure degree.

3 PROBLEM STATEMENT

In this work, the online social network is modeled as an undirected
graph as defined in Definition 1.

DEFINITION 1. (Online Social Network or OSN) An online social
network is defined as an undirected graph G(Z, R), where Z is the set
of the users in this social network, and R is the set of edges connecting
pairs of users who have relationship with each other, i.e, R = (uj, uj)
where u;j, u;j € E.

In the online social network, the users can set the number of
contacts that they allow the friend search engine to disclose. This
privacy setting is called friend policy in our paper.

DEFINITION 2. (Friend Policy) A friend policy P(u;, ky,; ) denotes
that user u; allows no more than k of his/her contacts to be disclosed
by a friend search engine.

DEFINITION 3. (Friend Query) Given P(u;, ky; ), a friend query
on u; is denoted as Q(u;, ky; ) which will return a set of 0-ky,; users
fromu;’s contact list.

Our proposed approach aims to honor user-defined friend poli-
cies by ensuring the friend exposure degree (Definition 5 under the
attack model as defined in Definition 4).

DEFINITION 4. (Attack Model) Attackers are assumed to be able
to query any user through the friend search engine, and may share
their query results to gain more knowledge.

DEFINITION 5. (Friend Exposure Degree) Let u; denote a user
on an online social network. User u;’s friend exposure degree (denoted
as &,;) is the number of friends who will be revealed by aggregated
query results through any number of queries on the friend search
engine.

4 THE FRIENDGUARD SEARCH ENGINE

As users and regulations define more strict privacy control, a fault
in the friend search system that allows attackers to violate these
privacy preferences is a big problem. Attackers who obtain a large
percentage of a targeted users’ friend information could develop
an intelligent social-graph of that targeted user [1, 18] to gain
leverage. This leads to growing privacy concerns from users, and
possibly fault on the social network for not upholding their own
privacy rules. To address these issues, we propose a new scheme to
protect social connections during the friend search, which is called
FriendGuard.

Our FriendGuard scheme takes a dramatically different approach
compared to prior works [6, 12]. The FriendGuard will be operated
by OSN (online social network) service providers which have the
full knowledge of their own social networks. Our main idea is to
help OSN providers to mark a sub-network for the friend search
engine to constrain the friend exposure for all the users. The sub-
network can either be built all at one time, or can be built incremen-
tally as queries to the friend search engine are made. It is worth



Figure 3: The Original Online Social Network

noting that the sub-network does not need extra storage space.
Instead, the OSN providers will just need to add a flag to the user
links to indicate whether this link belongs to the sub-network and
can be used during the friend query.

The FriendGuard scheme can be operated in two modes: (i) un-
weighted friend selection; (ii) popularity-based friend selection.
In the first mode, the FriendGuard will return any k friends of a
user being queried without considering how frequently the user
interacts with the k friends. In the second mode, the FriendGuard
will strive to return the most popular friends while preserving the
friend exposure degrees. It is worth noting that it is almost impos-
sible to always return the most popular friends while guaranteeing
the friend exposure degree for each user, which is likely to lead to
overexposure as shown in the previous examples. In the following
subsections, we will discuss the trade-off that needs to be made to
ensure the privacy guarantee.

Figure 3 gives an example social network that will be used to
compare the results from our proposed two types of friend search
engine results. Specifically, Figure 3 shows the social connections
among 7 users, whereby the edges between two users indicate the
two users are friends of each other, and the value on each edge
indicates an aggregated popularity score between the two users.
Assume that the OSN providers have their own functions for obtain-
ing the original popularity scores. We will model the connection
between two users by using their average popularity score. For
example, if user U; has a popularity score 6 among U,’s friends
according to his/her contact frequency with user Uz, and user U
scores 4 among Uy ’s friends, their aggregated mutual popularity
will be simply modeled as (6+4)/2=5 as denoted on the graph. This
helps us to consider each connection extracted from the original
social network to be bidirectional. That means that if user A is
returned as a friend of user B during the query, user B will also be
in user A’s friend query list. In this way, we eliminate the possible
collusion attack as defined by definition 4.

4.1 Unweighted Friend Selection

To support the unweighted friend selection, we will construct the
sub-network as follows. First, we sort all the users (i.e., nodes in the
OSN) in an increasing order to denote which users will be selected
first. We have explored three kinds of selection types as presented

Algorithm 1: FriendGuard Independent User Selection

/* = is a set of nodes within an OSN. This set can
be an individual node or the total nodes within
the network. N; denotes the node selected. */

Data: (=)

/* net is the main OSN, whereas sub_net is the FSE
specific sub-network. Calling
sub_net[N;].friends.size() gives the current
connections of Nj. */

for (N; e £ )do
k = N; k_friend_policy();
friends_left = k - sub_net[Nj].friends.size();
for (Nj € net ) do
if ( friends_left < k ) then
if (net[N;][N;] are friends && Nj != N; &&
sub_net[N;].friends.size() < k ) then
if (N; € sub_net[N;].friends ) then
continue;

else
sub_net[N;].friends.append[N;];
sub_net[Nj].friends.append[N;];
friends_left -= 1;

end

end

else
‘ break;
end

end
end

in the following three algorithms: (1) Independent User Selection;
(2) Path Traversal User Selection; (3) Degree Based Path Traversal
User Selection.

The Independent User Selection algorithm (Algorithm 1) is the
least complex algorithm that could help efficiently build the sub-
network, and also allow this network to focus on one user’s top
picks at a time. This algorithm is based off the assumption that
picking each user’s top friends will result in the most optimal sub-
network for the FSE (friend search engine). This greedy strategy
picks the maximum amount of connections for each current node
that is selected. Each selection made is a bidirectional pick. This
means that if user A chooses user B to be a connection, user B must
also choose user A. At each pick, both the source and destination
nodes are checked to see if they are at their respective k friend
policy limit. If one of them is, the pick is not allowed. This is done
until 0 - k picks are found for all users in =.

The Path Traversal User Selection algorithm as shown in Al-
gorithm 2 is a more complex defense scheme that uses a depth
first search to create the FSE sub-network. This is done by picking
a single top friend of the current user, and in iterations moving
through the chosen nodes until no more picks can be made. This
algorithm differentiates from Algorithm 1 because it attempts to
optimize the first picks of every user in a path rather than just
the current user. Checking the k friend limit at each selection and



Algorithm 2: FriendGuard Path Traversal User Selection

/* N; is the node selected where c denotes the
current node. K is the friend policy specified
by a user. */

Data: ( N. )

/* net is the main OSN, whereas sub_net is the FSE
specific sub-network. Calling
sub_net[N;].friends.size() gives the current
connections of N;. */

k = N¢.k_friend_policy();

friends_left = k - sub_net[N¢].friends.size();

for ( N; € net )do

if ( friends_left < k ) then

if (net[N:][N;] are friends && N; != No &&

sub_net[Nj]. friends.size() < k ) then

if (N; € sub_net[N,].friends ) then
continue;

else
sub_net[N,].friends.append[N;];
sub_net[N;].friends.append[N,];
friends_left -= 1;
DFS( Nj, N; k_friend_policy() );

end

end

else
| break;
end

end

forcing bidirectional picks is still part of this algorithm to keep the
integrity of our core defense.

Algorithm 3: FriendGuard Degree Based Path Traversal User
Selection

/* Sorted is a set containing all nodes of the OSN.
This list contains nodes in increasing order of
degree from the original network. */

Data: (Sorted)

/* N; denotes the node selected. Calling
sub_net[N;].friends.size() gives the current
connections of Nj. */

for ( N; € Sorted ) do
if (sub_net[N;].friends.size() < k ) then

‘ Algorithm 2( N, N; .k_friend_policy() );
else
‘ continue;
end
end

The Degree Based Path Traversal User Selection algorithm (Al-
gorithm 3) is an optimized depth first search algorithm. In this
method, a sort method is conducted prior so that the nodes with
lowest degree are picked first. This then utilizes Algorithm 2 to

Figure 4: Unweighted FSE Sub-Network

complete the sub-network. Utilizing this method helps to allow
low degree nodes to make connections before all their connections
within the online social network are selected. The resulting sub-
network with this method would hopefully have a reduced number
of nodes that return an empty set due to a lack of connections.
While other algorithms are able to make connections at runtime by
the FSE, the full sub-network would need to be made in this case
so that low degree nodes can be made first.

Among the above three algorithms, Algorithm 1 and 2 have a
nice feature that the construction of the friend search sub-network
can be carried out incrementally. In other words, the two algorithms
only need to be called during the first query of each node to create
the connections that will be displayed to the user at each later
query.

Recall the example in Figure 3, the corresponding friend search
sub-network obtained by our unweighted algorithm is shown in
Figure 4.

4.2 Popularity-Based Friend Selection

The popularity-based friend selection aims to return a user’s popu-
lar friends, i.e., active users on OSN, since active users may have
more potential to help increase social activities when recommended
to new users. It is nearly impossible to provide k top friends for each
user while preserving the security of our system. Therefore, we
employ the following trade off during the friend search. If a connec-
tion with the most popular friend in the extracted sub-network will
leak more than k contacts of an individual user, we will substitute
this connection with a less popular connection if possible.
Algorithms 1 and 2 can be modified to utilize weights rather than
the node order. Adding weights to these algorithms only slightly
changes their overall design. As shown in Algorithms 4 and 5, the
weighted algorithm adds another step to check each friend of the
current node. This is done in two different ways: a prioritization of
the current node’s optimal friends, or a compromise between the
current and destination node’s optimal picks. The two options may
lead to similar results in many cases, but there could be substantial
differences in some cases. Since all the connections within the FSE
sub-network must be bidirectional at the end to prevent additional
information leakage, considering both friends’ optimal picks may
be a more fair choice when the selection process occurs. Figure



Figure 5: Weighted FSE Sub-Network

5 shows the resulting sub-network from Figure 3 when utilizing
popularity-based (or weighted) selections.

4.3 Trade-off between Privacy and Usability

Figure 6: Sample OSN

Figure 6 shows another example OSN. The FSE sub-network
extracted by our unweighted friend search algorithm is shown in
Figure 8. It is assumed that all users have picked k = 2 within this
OSN for simple illustration. This example illustrates a trade off to
be made between privacy and usability. The impact of this will also
be evaluated and discussed in Section 5.1.

The FriendGuard Path Traversal User Selection algorithm was
used here to make selections. Figure 7 shows the picks made by
this algorithm. Each circled number indicates a root node that has
been chosen. Then, the algorithm follows the sub-network to find
other nodes connected to the root nodes until not any new node
can be added. The nodes with a * next to them denote a connection
already made by a previous bidirectional pick. A ! denotes that a
node was unable to find any other new connected node. Arrows
in the figure represent that the selection algorithm finds another
path starting from the root node. This algorithm continues until

Algorithm 4: Directional Weight Selection

/* 2 is a set of nodes within an OSN. This will be
a single node for DFS versions of this, and one
to the total amount of nodes for the Greedy
algorithm. */

Data: (Z)

/* net is the main OSN, whereas sub_net is the FSE
specific sub-network. Calling
sub_net[N;].friends.size() gives the current
connections of Nj. */

for (N; € 2 )do

k = N; k_friend_policy();

friends_left = k - sub_net[Nj].friends.size();

while ( friends_left <k )do

highest_weight = 0;

Np =-1;

for (Nj € net )do

if (net[N;][N;] are friends && Nj != Nj &&

sub_net[Nj].friends.size() < k ) then
if (net[N;][N;].weight() > highest_weight &&
Nj ¢ sub_net[N;].friends ) then
highest_weight = net[N;][N;].weight() +
network[N;][N;].weight();

Nj, = Nj;
end
end
end
if (Nj == -1 ) then
‘ break;
else

sub_net[N;].friends.append[Nj;];
sub_net[N;].friends.append[N;];
friends_left -= 1;
if (Algorithm_Type == DFS ) then
‘ DFS( Nj, Nj.k_friend_policy() );
end
end

end
end

O O Y T T

@ @
[ Ue L Us | Us | U |

Uiz Ugp®

®

Ug* Up* Up* ! Ug* Ug* | 0|0

@
[ U [u.. [ Uss Ui

Ups  Ug* Ui Uss*
! P

[ Uo | Us | Uyo |
Ug Ui Up
Ug* !

Figure 7: FriendGuard Path Traversal User Selection



Algorithm 5: Bidirectional Weight Selection

Data: (Z)

/* Algorithm 5 follows all the algorithm of
Algorithm 4 besides the selection of the
highest node within the friend connections.
This is done through the variation of this
selection line within Algorithm 5. All other
lines are exactly the same before and after
this line denoted by ...; */

if (net[N;][Nj] are friends && N; != N;j &&
sub_net[Nj]. friends.size() < k ) then
Np =Nj;
if ((net[N;][Nj].weight() + net[N;][N;].weight() ) >
highest_weight && N; ¢ sub_net[N;]. friends ) then
highest_weight = net[N;][N;].weight() +
network[N;][N;].weight();
Np = Nj;
end

end
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Figure 8: FSE Sub-Network

all nodes have reached their k connections or have had a chance to
make a selection.

Figure 8 is the resulting friend search sub-network from the
original sample osn. Nodes highlighted in green have maximum
k connections of 2, yellow represents having a (0, k) connections
of 1, and orange represents a k connection of 0. In this case, users
may have differing connection degrees in the FSE sub-network
even with a constant k friend policy. In a network that has limited
connections or an unoptimized path, some nodes of the network
may be unused or have less than k connections to make sure there
is no more than the max allotted connections for any user. This
trade off allows for a more secure sub-network for the FSE, but
limits the degree of some users in the sub-network. While this does
limit some FSE queries, these loses will be mitigated by the fact that
an OSN is usually heavily connected and that some people will opt

out of displaying any friends. This will in turn free up some space
for less connected nodes.

5 EXPERIMENTAL STUDY

Our FriendGuard scheme was tested using three unweighted datasets
from Facebook, Twitter, and Google+ [10], along with one Bitcoin
weighted dataset [3, 4]. We tested efficiency of our algorithms on
the unweighted data, whereas we used the BitCoin dataset to as-
sess algorithm effectiveness. Effectiveness is defined as the most
overall optimized sub-network, and measured by total weight of all
connections in the sub-network for the FSE. Testing was done by
creating fully populated sub-networks.

These datasets were extracted into two-dimensional vectors
[3, 4, 10]. Table 3 shows the size of each network. To ensure fair
experimental conditions, we kept the same k-friend policy for each
user, while in an actual OSN users can pick different policies based
on their own privacy preferences.

Table 3: Social Network Datasets

‘ Facebook | Twitter ‘ Google+ ‘ Bitcoin
Nodes 4,039 81,306 107,614 5,881
Edges 88,234 1,768,149 | 13,673,453 | 35,592
Weighted False False False True

5.1 Sub-Network Node Degree

In the first set of experiments, we evaluate the effectiveness of our
algorithms by varying k from 1 to 20. Then, we examine the per-
centage of nodes of different degrees in the obtained sub-network.
Figure 9 shows the results from the Path Traversal User Selection
algorithm. Observe that the percentage of nodes of Degree k de-
creases with the increase of k. This is expected since the larger
the value of k, (i.e.each user needs to disclose more friends), the
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Figure 9: Perfomance of Path Traversal User Selection Algo-
rithm in Facebook Dataset
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Figure 10: Percentage of Nodes with Degree k

harder to find k mutual friends in the network that will not cause
additional friend information disclosure. Although the extracted
sub-network will not return k friends for some queries, we can
see that the sub-network still has a high percentage of nodes with
degrees ranging between 1 to k, and very low percentage (less than
5%) of nodes with degree 0 (i.e., no friend to report) in most cases,
which means the majority of friend queries on the sub-network
will return non-empty results.

Our two other algorithms, the Degree Based Path Traversal User
Selection and the Independent User Selection algorithm demon-
strate similar effectiveness as shown in Figures 10, 11 and 12. Recall
that the Path Traversal User Selection algorithm attempts to op-
timize first picks for each user. The Degree Based Path Traversal
User Selection that employs the same strategy but picks low degree
nodes first, and the Independent User Selection algorithm aims
to optimize all of a single user’s picks. In the experiments, the
Degree Based Path Traversal User Selection algorithm achieved
slightly higher k percentages noted in Figure 10, and slightly lower
0 percentage nodes in Figure 12 than the regular Path Traversal

User Selection algorithm for all datasets besides Google+. This is
expected because the Degree Based Path Traversal User Selection
prioritizes nodes with lower degree. This helps these nodes to get
picks before their connections have k connections and are unable
to be picked. The Independent User Selection algorithm preformed
slightly better than the Path Traversal User Selection algorithm in
all cases. It preformed slightly better or around the same for the De-
gree Based Path Traversal User Selection algorithm as k grew, and a
littler worse when k was low. While these algorithms have different
methods and overall performance. They all have very similar node
degree results as k grows.

As k increases, the FSE sub-network moves from having mostly
k degree nodes to mostly (0, k) degree nodes. This could be due to
the average degree of nodes being less than the corresponding k
values. While this would not be an optimal return set, it still gives
most of the desired functionality of the FSE for users. With no
nodes having higher than k degree, our approach gives most users
full or close to full k sets from the FSE without any vulnerabilities.
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Figure 11: Percentage of Nodes with Degrees Between 0 and k

Since our system, in theory, may cause some nodes to have no
friends to report, we hereby evaluate its effect in the real datasets.
With small values of k, the percentage of unusable nodes having 0
connections is between 5 - 24 % in Figure 12. This is not the majority
of nodes, but still heavily reduces the functionality of the FSE.
Because our testing method keeps k constant for all users, having
low k values heavily affects nodes that have a low degree in the
original OSN. This drawback is substantially reduced as k increases.
Across all datasets, the percent of nodes with 0 connections is
between 2 - 9 % for k = 20. This could be perceived as the expected
number of users who have a k friend policy of 0. While these are
average results across three different datasets, the percentage of
nodes in the FSE sub-networks will heavily depend on the average
degree of nodes, and the adopted k friend policies for each user. It is
likely that most results will be similar or better as OSNs are usually
highly connective. Our average degree per node in the Facebook
dataset is around 22 friends whereas the real average is 338 friends
[13]. This should help to increase the functionality of our defense
scheme when utilized in a very large OSN.

5.2 Node Connections Optimized by Weight

The Bitcoin dataset was used to measure the aggregated weight of
all connections in the FSE sub-network. This test was preformed
using the two methods shown by Algorithms 4 and 5, respectively.
Tests were done for both the Path Traversal User Selection and
Independent User Selection versions of the algorithms, varying
1-20 k policies. As in the prior experiment, the policies were kept
constant for every node.

Shown in Figure 13 is the aggregated weight for both the tested
algorithms with two different choices. Directional Weight Selection
was done by picking weights in deceasing order of connections
from source to destination node. Bidirectional Weight Selection
was also picked in decreasing order, but picked by sum of weights
from source to destination and destination to source.

We find these results not surprising. Due to prior testing done
in 5.1, it was expected that weights for both Path Traversal User
Selection and Independent User Selection algorithms would be
similar due to their near identical node degrees across the datasets.
The Independent User Selection algorithm did have a slightly lower
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total weight across all nodes. This could be due to the fact that it
selects highest weight nodes for one user at a time, whereas the Path
Traversal User Selection algorithm selects a single highest degree
node at each iteration in the path from the starting node. This could
allow for more nodes to get their highest pick which would result
in a higher net weight if each method has a similar percentage
of degree among the nodes. Bidirectional weight selection was
consistently higher than than directional weight selection. This is
again due to the fact that this method optimizes picks based on
both the source and destination weights. Because node selections
must be bidirectional, a directional weight scheme can lead to a
situation where one node has a high weight and its selection a
low one. This will usually result in a lower total weight than a
compromised selection.

Both weight selection techniques have very similar runtimes
compared to one another. In this experiment, bidirectional weight
selection makes consistently higher weighted picks in this test
network. While the Independent User Selection algorithm performs



slightly worse by comparison with the Path Traversal User Selection
method, either algorithm can be run with similar results. This test
emphasizes that our method can be run under various settings,
produce similar results and still be able to maintain a strong defense
against information overexposure.

5.3 Full Sub-Network Runtime
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Figure 15: Twitter FSE Runtime

Lastly, all unweighted datasets were tested to measure time
performance. In this test, Twitter and Google+ were capped at 8000
node networks. Results are reported in Figure 16, Figure 14 and
Figure 15. The Independent User Selection algorithm had a much
lower runtime than the both the Path Traversal User Selection,
and Degree Based Path Traversal User Selection algorithms. While
both Path Traversal User Selection algorithms perform similarly,
it must be noted that our reported results do not account for the
creation of a sorted list needed for the Degree Based Path Traversal
User Selection. The sorted list took some time to create putting
this algorithm behind the speed of the original Path Traversal User
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Figure 16: Google+ FSE Runtime

Selection when accounting for the creation of a sorted list. While
all algorithms show a fairly linear runtime, the sub-network does
not need to be created before any nodes are queried by the FSE.

Running each algorithm as a node is queried seems to be the
optimal way of making the FSE sub-network. While the Degree
Based Path Traversal User Selection algorithm gives slightly better
performance in node degree and optimized picks noted in Section
5.1, this algorithm cannot be made at runtime. Our results show
that both the Path Traversal User Selection and Independent User
Selection algorithm at k = 8 (the standard for the original Facebook
FSE when vulnerabilities were found [1]) average below 1ms for
each node. This would allow our sub-network to be set up in iter-
ations which additionally helps to make connections with more
recent data. Due to the low average runtime of each node, this
type of setup would have little to no impact on a user making FSE
queries.

6 DISCUSSION

As security grows, most companies still see optimization of pro-
cesses as one of their biggest concerns. If a solution can not be
optimized in a way where normal actions do not impede the user, it
is unlikely the solution will be adopted by the companies. Therefore,
our proposed friend search engine strives to achieve high efficiency
while adding extra privacy protection. Employing either the Path
Traversal User Selection or Independent User Selection algorithm
works very quickly when only run on one node. This allows a sub-
network to be setup incrementally, enabling quick friend search
engine queries, while offering a secure environment in the back
end.

It is worth noting that our defense scheme requires updates to
the constructed sub-network when someone changes his/her friend
policy to a lower k value. This is due to the fact that sets from
the friend search engine are given from sub-network connections
rather than being created in real time. In this case, parts of the
sub-network must be removed so that the security integrity of our
approach is kept. This would require a complexity of O(2kc) in the
worst case because all connections to the changed node must be
removed. This is equally true when the popularity scores of users



are changed during the use of the OSN. While this is a low impact
on the performance of our solution, it must be kept in mind that
the sub-network will be continuously changing in response to user
policy changes and social activities .

The change to the sub-network leads to another possible attack
that has not been discussed in the existing friend search engine de-
fense schemes [6, 12]. That is attackers may leverage the historical
query results to gain more knowledge. For example, consider user
A with a friend policy k of 3. Assume that at the beginning user
A’s top friends are users B, C, and D, but after one year their top
friends change to users E, F, and G. If someone had tracked this
information over time, it is likely to say that they now know user
A is still connected to users B-D, and is also connected to users
E-G. This violates user A’s friend policy which only allows the dis-
closure of 3 of his/her friends. This is true for our defense scheme
and possibly the defense schemes in [6] and [12] if common and
popular connections change over time. While our defense can miti-
gate this by never changing the original setup of the friend search
engine sub-network, this heavily mitigates the overall relevance of
the friend search engine. This is just another consideration to be
made when setting up defense schemes, and if security should be
consistent for its original design or should be consistent across its
lifetime. Due to the nature of the friend search engine though, it
is hard to say if any defense scheme can be resistant to this attack
without heavily reducing the relevance of the friend search engine,
which is the trade off that our defense scheme can make.

7 CONCLUSION

In this paper, we have proposed a novel friend search engine called
FriendGuard which honors users privacy policies and guarantees
friend exposure degree. The FriendGuard system is based on the
idea of constructing a reliable sub-network that eliminates vulnera-
bilities brought by aggregating query results from different rounds
to a friend search engine. This sub-network can be created prior
to and updated incrementally in response to the changes of social
network connections as well as users’ social activities. The Friend-
Guard supports two kinds of friend searches including unweighted
and popularity-based friend search, and we have developed several
algorithms. In the experiments, we have evaluated and compared
our algorithms in different real network datasets. The experimental
results demonstrate both efficiency and effectiveness of our ap-
proach. It is believed that by using our system, the friend search
engine will be a more secure environment at the time of imple-
mentation while additionally giving users more flexibility in their
privacy controls.
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