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As numerical calculations of inspiraling neutron-star binaries reach values of accuracy that are
comparable with those of black-hole binaries, a fine budgeting of the various sources of error becomes
increasingly important. Among such sources, the initial data are normally not accounted for, the rationale
being that the error on the initial spacelike hypersurface is always far smaller than the error gained during
the evolution. We here consider critically this assumption and perform a comparative analysis of the
gravitational waveforms relative to essentially the same physical binary configuration when computed
with two different initial-data codes, and then evolved with the same evolution code. More specifically, we
consider the evolution of irrotational neutron-star binaries computed either with the pseudospectral code
LORENE, or with the newly developed finite-difference code COCAL; both sets of initial data are
subsequently evolved with the high-order-evolution code WHISKYTHC. In this way we find that although
global quantities of the system, like the mass and angular momentum, have differences of the order of
≲0.02%, local quantities, like rest-mass density, extrinsic curvature or angular velocity, show pointwise
differences that are much larger, of the order of ≲1%. These local differences are then responsible for a
dephasing in the gravitational waves at the merger time (after approximately three orbits) of ∼1.4 radians.
Our results highlight the importance of using initial data that are pointwisely the same when comparative
studies are done and physical parameters are estimated.
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I. INTRODUCTION

With the first direct detection of gravitational waves from
a merging system of black holes [1], the long-awaited
gravitational-wave astronomy has finally become a reality
in which a series of advanced interferometers such as
LIGO, GEO, Virgo, KAGRA, and ET [2–6] is eagerly
operating to unveil that part of the Universe that can be
observed in terms of gravitational radiation. Neutron-star
binary systems are prime actors of this Universe and have
received enormous attention over the last ten years.
In addition, neutron-star binaries are leading candidates

for the engine of short gamma-ray bursts [7–11] and
possible sites for the production of the heaviest elements
in the Universe [12–21]. Starting from the first successful
simulations of binary neutron-star mergers [22] and the first
complete description of this process from the inspiral down
to the formation of an accreting black-hole–torus system
[23], considerable progress has been made, so that it is now
possible to consider rather realistic scenarios involving
nuclear physics equations of state [24,25], neutrino cooling
[18,19,26,27] and magnetohydrodynamics [28–32].

Obviously, any simulation of neutron-star binaries needs
initial data to get started, and this is carefully crafted
through standalone codes like COCAL [33,34], LORENE [35],
KADATH [36], and SCRID [37,38], or through the elliptic
solvers of evolution codes like SPEC [39], Princeton’s [40],

or BAM [41]. Although the first initial data for neutron-star
binaries have been computed for corotating systems [42],
the large majority of the simulations performed to date have
used irrotational configurations, since neutron-star viscos-
ity is believed to be too small to tidally lock the two stars
prior to merger [43,44]. At the same time, the most
advanced efforts over the last couple of years have been
concentrated on approaches to reduce the eccentricity of the
orbits or to produce binary systems with arbitrary neutron-
star spins [34,38,45–51].
In the past, the COCAL code has been used to compute

quasi-equilibrium sequences for binary black holes
[33,52,53], and a pointwise comparison was made with
the spectral code KADATH for the gravitational fields, as
well as for global quantities like the ADMmass and angular
momentum, finding excellent agreement. More recently,
the COCAL code has been used to compute quasi-
equilibrium sequences for neutron-star binaries that are
irrotational or spinning, with spins aligned with the orbital
angular momentum [34]; also in this case, the comparison
with the LORENE code for irrotational sequences has shown
excellent agreement. Overall, both sets of studies show that
when considering close binaries of compact objects, be
they black holes or neutron stars, the use of COCAL has
led to agreement in the global quantities within less than
0.03%, while for the individual metric components the
differences were less than 1%.
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In this work we focus on neutron-star binaries and
perform a close comparison with another spectral code,
LORENE, not only for the data on the initial slice, but also
for their subsequent evolution. More specifically, given
irrotational binaries of neutron stars produced by either
LORENE or COCAL, we consider the same physical initial
data in terms of gravitational mass, rest mass, and orbital
frequency, and we evolve both sets of initial data with the
high-order code WHISKYTHC [54–56].1 The evolutions are
performed at a number of resolutions, the highest of
which have spacings of δx ¼ 0.1M⊙ ≃ 150 m and re-
present a major computational cost, which has been used
in Ref. [56] only for a single binary and is referred to as
“very high.”2 Across all simulations, we have monitored
in detail the violations of the constraint equations, and we
have performed a gravitational-wave analysis with
respect to the phase of the l ¼ m ¼ 2 mode of the
Weyl scalar Ψ4.
Although global measurements, like mass and angular

momentum, show differences that are ≲0.02%, local
(i.e., pointwise) comparisons of initial-data quantities, such
as rest-mass density, extrinsic curvature, and angular
velocity,3 show differences that are ≲1%. Furthermore,
while the calculated waveforms have only very small
differences, with convergence properties that are almost
identical for the two sets of initial data, we find that the
Richardson-extrapolated gravitational-wave phases differ
by about 1.4 radians at the merger time, after ∼3 orbits.4

Stated differently, a relative difference of ∼0.02% in those
global initial-data quantities that are normally used as a
reference in neutron-star binary simulations (i.e., the
mass and angular momentum), can lead to relative phase
differences of ∼3.5%.
Given the strict restrictions for gravitational-wave data

analysis [57], these results highlight the extra care needed
when computing waveforms of neutron-star binaries span-
ning tens of orbits. More importantly, because this is the
first time that evolutions from different initial-data solvers
are presented, our results issue a warning signal about
the importance of using initial data that is pointwise the

same when comparative studies of neutron-star binary
evolutions, such as the ones carried out in Refs. [58,59],
are performed.
The plan of the paper is as follows: In Sec. II we provide

a review of the quasi-equilibrium equations and present the
COCAL driver to the CACTUS [60] infrastructure, while in
Sec. III we describe the techniques developed to import the
initial data produced by COCAL in an evolution code,
performing a global and local close comparison of an
irrotational binary as computed with LORENE and with
COCAL. Section IV is instead dedicated to the detailed
comparison of the evolution of the two sets of initial data
for the various configurations considered and to the
presentation of the corresponding convergence properties.
Finally, our conclusions are presented in Sec. V. As
complementary material, we present in the Appendix a
short study for corotating initial data produced by COCAL

and LORENE, again at 45 km, mostly as a benchmark of
future arbitrary spinning binaries.
Hereafter, spacetime indices running from 0 to 3 will

be indicated with Greek letters, while spatial indices
running from 1 to 3 will be indicated with Latin letters.
The metric has signature ð−;þ;þ;þ; Þ, and we use a
set of geometric units in which G ¼ c ¼ M⊙ ¼ 1, unless
stated otherwise (we recall that in these units 1M⊙ ¼
4.92674 μs ¼ 1.477 km).

II. REVIEW OF THE QUASI-EQUILIBRIUM
EQUATIONS

In this section, we only state the basic definitions and
equations that are solved; we refer the reader to Ref. [34]
and references within for more details. The spacetime
metric in a 3þ 1 decomposition is written as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where α, βi, and γij are, respectively, the lapse function, the
shift vector, and the three-metric on some spacelike slice
Σt, which is taken to be conformally flat:

γij ¼ ψ4δij: ð2Þ

Here we use the Cartesian components of the shift. The
extrinsic curvature is defined asKαβ ≔ − 1

2
Lnγαβ, whereLn

is the Lie derivative along the (timelike) unit vector normal
n to Σt. The assumption of stationarity, ∂tγαβ ¼ 0, yields
Kij ¼ 1

2αLβγij, while when assuming maximal slicing,
the conformally rescaled trace-free part of the extrinsic
curvature becomes

~Aij ¼ 1

2α

�
∂iβj þ ∂jβi −

2

3
δij∂kβ

k

�
¼ 1

2α
ð ~LβÞij: ð3Þ

1We note that this is also the first time that evolutions are
carried out using initial data of any type produced with the COCAL
code.

2Higher resolutions have been used by other authors to study
the merger of magnetized neutron-star binaries [31].

3In contrast with what happens for black-hole binaries, where
the angular velocity is a global quantity, since it is calculated, for
example, from the equality of the ADM and Komar masses, for
neutron-star binaries the angular velocity is a local quantity
computed as an eigenvalue problem that results by considering
the Euler integral at exactly three points, typically along the x axis
of the neutron star (see Sec. III B of Ref. [34]).

4If our analysis is restricted to the window in time over which
the waveforms are convergent (and which ends a bit before the
merger), then the phase difference is 0.5 radians, with a relative
difference of roughly 1.6%.
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Note that ~Aj
i ¼ Aj

i . The last term in Eq. (3) is the
longitudinal operator, and the tilde symbol denotes the
fact that it is related to the conformally flat geometry.
With the help of Eq. (3), the constraint equations and the

spatial trace of the time derivative of the extrinsic curvature
(assuming ∂tK ¼ 0) result in five elliptic equations for the
conformal factor ψ, the shift βi, and the lapse function α:

∇2ψ ¼ −
ψ5

32α2
ð ~LβÞabð ~LβÞijδiaδjb − 2πEψ5; ð4Þ

∇2ðαψÞ¼ 7ψ5

32α
ð ~LβÞabð ~LβÞijδiaδjbþ2παψ5ðEþ2SÞ; ð5Þ

∇2βi ¼ −
1

3
∂i∂jβ

j þ ∂j ln

�
α

ψ6

�
ð ~LβÞij þ 16παψ4ji; ð6Þ

where the matter sources are E ≔ nαnβTαβ, S ≔ γαβTαβ,
and ji ≔ −γiαnβTαβ. The boundary conditions for the
equations above are dictated by asymptotic flatness; i.e.,
limr→∞ψ ¼ 1, limr→∞α ¼ 1, and limr→∞β

i ¼ 0.
For the stress-energy tensor, we assume a perfect fluid

with

Tαβ ¼ ðϵþ pÞuαuβ þ pgαβ ¼ ρhuαuβ þ pgαβ; ð7Þ

where uα is the four-velocity of the fluid and ρ, ϵ, h, and p
are, respectively, the rest-mass density, the total energy
density, the specific enthalpy, and the pressure as measured
in the rest frame of the fluid (see Ref. [61] for details). The
specific internal energy e is related to the enthalpy through
h ≔ ðϵþ pÞ=ρ ¼ 1þ eþ p=ρ. The four-velocity is
decomposed as uα ¼ utðtα þ vαÞ or uα ¼ utðkα þ VαÞ,
which correspond to an inertial frame or the corotating
frame decomposition, respectively. For the fluid variables,
we assume helical symmetry,

LkðhuαÞ ¼ Lkρ ¼ 0; ð8Þ

where

kμ ≔ tμ þΩϕμ ð9Þ

is the helical Killing vector, and without loss of generality,

ϕi ¼ ð−y; x; 0Þ ð10Þ

is the rotational generator. For corotating binaries, Vα ¼ 0,
and the Euler equation results in a first integral

h
ut

¼ C; with ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ωiω

i
p ; ð11Þ

where ωi ≔ βi þ Ωϕi is the corotating shift. For irrota-
tional binaries, huα ¼ ∇αΦ, with Φ being the fluid velocity
potential, and the first integral of the Euler equation is

h
ut

þ VjDjΦ ¼ C; h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2=α2 −DiΦDiΦ

q
; ð12Þ

with λ ≔ Cþ ωiDiΦ. The fluid potential Φ is determined
from the conservation of rest mass, ∇αðρuαÞ ¼ 0, which
yields

∇2Φ ¼ −
2

ψ
∂iψ∂iΦþ ψ4ωi∂iðhutÞ

þ ½ψ4hutωi − ∂iΦ�∂i ln

�
αρ

h

�
; ð13Þ

with the boundary condition on the star surface

½ðψ4hutωi − ∂iΦÞ∂iρ�surf ¼ 0: ð14Þ

This condition is derived either from Eq. (13), assuming
that the baryon density vanishes on the stellar surface,
or by demanding that the fluid velocity be tangent to the
stellar surface in the corotating frame ½Vμ∇μρ�surf ¼ 0.
Equations (4)–(6) will be solved together with (11) for
corotating motion or with (12) and (13) for irrotational
motion, and the two involving constants Ω, C will be
determined in the process. Details about the methods we
use in COCAL to solve these equations are described
in Ref. [34].

III. INITIAL DATA IMPORT
AND COMPARISON

COCAL uses finite differences on spherical coordinates to
compute the various field variables. Importing the initial
data into an evolution code involves interpolating from the
COCAL grid to the one used by the evolution code, which in
most cases is in Cartesian coordinates. In this section we
describe the COC2CAC driver, which interpolates the COCAL

grid variables to the EINSTEIN TOOLKIT [62,63]. The full
description of the coordinate systems used by COCAL can be
found in Ref. [52] for black-hole binaries or Ref. [34] for
neutron-star binaries. Here, we review the most salient
features that will be necessary for the COC2CAC driver.

A. The COC2CAC driver

As is customary in a 3þ 1 decomposition, the spacetime
manifold M ¼ R × Σt is foliated by a family of spacelike
hypersurface Σt, parametrized by t ∈ R. These hypersur-
faces may represent data that are stationary (in equilibrium)
or quasi-stationary (in quasi-equilibrium), and they are
covered by overlapping multiple spherical coordinate
patches. In Fig. 1, three such coordinate systems are used
to cover the hypersurface. One can think of Fig. 1 as the
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equatorial plane of a neutron-star binary system. Two
spherical coordinate patches are used to cover the area
around each neutron star. They are called COCP-1 and
COCP-2 (from compact object coordinate patch) and are
plotted with red and blue colors, respectively. COCP-1
(COCP-2) includes all points inside the outer red (blue)
sphere Sb of radius rb,

5 but outside the red (blue) excised
sphere Se. Note that these two systems have opposite ðx; yÞ
coordinates, but the same z orientation. The reason for
introducing the excised sphere Se [64] is to be able to
resolve the second compact object with reasonable
resources. Without it, the size of the companion neutron
star has to be resolved by angular grids, while by using this
concept, it is enough to resolve the size of Se, which is
∼ds=2. This implies that the angle to be resolved is
∼2 arcsin 1=2 ¼ π=3. As a rule of thumb, the angular
resolution of a COCP is determined from the degree of
accuracy to resolve the deformation of the neutron stars
centered at the patch, and to resolve the size of their excised

sphere. The third patch, called the asymptotic region
coordinate patch or ARCP, is denoted by green lines and
includes all points outside the sphere Sa and infinity,
typically a sphere Sb not shown here at a very large
distance from the center of mass O.
The values of the radii ra, rb, and re that correspond to

spheres Sa, Sb, Se for each of the coordinate patches used
are set as follows. For the case of ARCP, the radius ra of the
inner boundary Sa is taken to be large enough to be placed
outside of the excised spheres Se for each COCP, but small
compared to the radius rb of the outer boundary Sb for each
COCP. Typically, for a neutron star with a mass M, rb ¼
Oð100MÞ and re ¼ OðMÞ for COCP, while ra ¼ Oð10MÞ
and rb ¼ Oð106MÞ or larger for ARCP. At present,
although no compactification of the ARCP is done, no
obvious problem related to our results has been detected.
Another important feature used in COCAL, which is

relevant for correctly importing the initial data to an
evolution code, is the normalization of all its quantities.
This is discussed in detail in Sec. III B of Ref. [34], but let
us mention the most important facts. In particular, we
rescale the spatial coordinates xi as

FIG. 1. Structure of a two-dimensional cross section of the COCAL grids (colored spherical coordinates) overlaid on a Cartesian
coordinate system used for the evolution of the initial data. Here we assume that the z ¼ 0 plane of the evolutionary grid coincides with
the corresponding COCAL plane. Evolution gridpoints Pðxp; yp; zpÞ inside the sphere of radius Ri are interpolated from the coordinate
patches COCP-1 or COCP-2 depending on whether xp ≤ 0 or xp > 0. Points outside that sphere are interpolated from the asymptotic
region patch ARCP. Note that the figure is not to scale; in particular, the size of the sphere of radius Ri is much larger than the size of the
inner boundary Sa of ARCP. The outer boundary of ARCP is not shown here and extends to very large values when compared to the
compact-object sizes. Typical values are rb ¼ 100, ds ¼ 2.5, d ¼ 1.25, Rs ¼ 98.75, Ri ¼ 69.125, and ra ¼ 5.0. The point where
the neutron star’s surface intersects the positive x axis of the COCP takes values rs ≤ 1 and is in general different for the two stars. The
cusps that appear in the figure are pictorial and do not represent any model used in this work.

5Note that the outer radii rb of COCP-1 and COCP-2 need not
be equal, but in most cases we make such a choice.
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x̂i ≔
xi

R0

: ð15Þ

We do this in order to stabilize the root-finding method for
the eigenvalues C, Ω, the constant of the Euler integral, and
the angular velocity of the compact object, as well as for
controlling the star surface. For single rotating neutron
stars [65,66], the rescaling factor R0 is chosen so that the
coordinate equatorial radius of the star is unity (stated
differently, the radius of the star along the positive x axis is
R0). For neutron-star binaries [34], the scaling factor is
chosen in such a way that the coordinate equatorial radius
of the star has a fixed value rs ≤ 1 (stated differently, the
radius of the star along the positive x axis is rsR0). In
typical evolution codes, such as the one employed here, the
units are also G ¼ c ¼ M⊙ ¼ 1, so that for an arbitrary
point ðx; y; zÞcac, the correspondent COCAL point is

ðx; y; zÞcac → ðx; y; zÞcoc ¼
�
xcac
R0

;
ycac
R0

;
zcac
R0

�
; ð16Þ

and similar care has to be taken when one is taking
derivatives, as, for example, in the extrinsic curvature, i.e.,

ðKijÞcac ¼
ðKijÞcoc

R0

: ð17Þ

For simplicity, hereafter we will assume that one has taken
into account the normalizing factor R0 when translating
points and variables from an evolution code to COCAL, and
we will describe only the choice that has to be made
regarding the coordinate systems.
Figure 1 shows with a light gray color the z ¼ 0 plane

of a Cartesian grid used by an evolution code, as well as
the three spherical coordinate systems that are typically
used by COCAL. The hypersurface Σt where a solution is
provided by COCAL has the same z ¼ 0 plane with the
evolutionary Cartesian grid whose origin is also identified
by the “center of mass” O of COCAL. In other words, the
asymptotic patch, ARCP, of COCAL has the same origin as
the evolutionary Cartesian grid, and the z ¼ 0 plane is the
same for all grids. The problem is then to interpolate for
each Cartesian gridpoint, Pðxp; yp; zpÞ, from the nearby
COCAL spherical points. We note that ðxp; yp; zpÞ are also
the coordinates of Pwith respect to ARCP. To perform such
an interpolation, a choice has to be made regarding the
position of P relative to the COCAL coordinate systems.
Since all distances are measured with respect to O, the

general rule of thumb is that if the distance rp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ y2p þ z2p

q
is large enough, then the interpolation will

be performed in the ARCP. Otherwise, for points close toO
the interpolation will be done from either COCP-1 or
COCP-2. Inside the COCPs (spheres Sb in Fig. 1), points
are not uniformly distributed and, in addition, there are

“holes”, i.e., regions devoid of coordinate points, which are
the regions inside the spheres labeled as Se. One simple
solution is to consider the xp coordinate of P. If xp ≤ 0,
then we perform a fourth-order Lagrange interpolation
from nearby COCP-1 points; otherwise we perform one
from COCP-2.
As a more concrete example of the procedure followed

in the driver, we can adopt the same notation as in
Refs. [34,52] and denote by ds the distance between the
two stars (i.e., between the geometric centers of the two
stars). We also denote by d the distance from the center of
mass of the system to the geometric center of the star on the
negative x axis of ARCP. Without loss of generality, we
then assume that the heavier star is on the negative x axis,
so that ds ≥ 2d, and that the radii rb of COCP-1 and
COCP-2 are the same (we can always make such a choice).
As a result, the outermost point of COCP-2 along the
negative ARCP x axis is at a distance rb − ds þ d from O,
while the outermost point of COCP-1 along the positive
ARCP x axis is at a distance rb − d. Let therefore

Rs ≔ minfrb − ds þ d; rb − dg ¼ rb − ds þ d; ð18Þ

and consider the cube centered atOwith each face having a
length 2Ri, Ri ≔ Rs=

ffiffiffi
2

p
. In practice we take Ri ¼ 0.7Rs.

Then, for each Cartesian point P, if rp ≥ Ri, we interpolate
from ARCP; otherwise, we examine the sign of xc. For
xc ≤ 0 and rp < Ri, we interpolate from COCP-1, while we
interpolate from COCP-2 otherwise. Notice also that in a
region with xc ≤ 0, COCP-1 is denser than COCP-2, so the
interpolations will be more accurate. The con+trary is true
for xp > 0. Typical values for the relevant quantities are
rb ¼ 100, ds ¼ 2.5 ¼ 2d, which means that Rs ¼ 98.75,
while Ri ¼ 69.125. As a concluding remark, we note that
Fig. 1 is not to scale. For example, the inner boundary of
ARCP (green sphere Sa) has radius ra ¼ 5.0, so in reality,
there is quite a large space between that and the sphere of
radius Ri, while in the figure they appear quite close.

B. Local and global comparison of initial data
from LORENE and COCAL

In this section, we carefully compare the initial data
produced by two different codes, namely COCAL and
LORENE, which use completely different numerical meth-
ods for the solution of the constraint equations. In particu-
lar, COCAL is a finite-difference code, while LORENE

employs pseudospectral methods. For this comparison,
we compute the solutions for the physically same irrota-
tional binary having the same gravitational (rest) mass, and
where the two stars are at a distance of approximately
44.7 km. The reason we use the adverb “approximately” is
because the two codes obtain the final solutions in rather
different ways. On the one hand, LORENE allows one to set
up explicitly the masses of the binary and the distance
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between the two stars, and an iteration is then carried out
until a circular solution is obtained at the desired accuracy.
In COCAL, on the other hand, distances are expressed in
terms of the normalizing factor R0, which is only found at
the end of the computation. The same is true for any other
quantity, such as angular velocity, mass, etc. [34].
Details of the logical flow followed by COCAL can be

found in Sec. III B of Ref. [34], with the relevant radii
summarized in Table I. Note that rs is the radius that
corresponds to the inner point of the neutron star’s surface
closer to the center of mass, and ds is the coordinate
distance between the two stars. The physical lengths,
though, are rsR0 and dsR0, so that as one sets the
coordinate distance ds and the star radius rs, COCAL

computes binaries whose separation is expressed in terms
of the star’s radius. When a converged solution is obtained,
the code finds the value of R0 (as well as of Ω and the
constant of the Euler integral C) and can then compute the
physical separation in km of the binary. As the resolution

changes, R0 also changes slightly, with the consequence
that the distance ds between the two stars changes too. Of
course, this change is very small, and we can safely assume
that the binary systems are at the same separation. In the
future, we plan to address this issue by changing rs and
employing a root-finding method to arrive exactly at the
requested distance between the two stars.
At present, however, we compute the initial data for an

irrotational binary at separation of ≃44.7 km by fixing
rs ¼ 0.7597667 and ds ¼ 2rc ¼ 2.5, and report in Table II
the four different resolutions used by COCAL to obtain the
solutions presented here. Each symbol is explained in
Table I and in more detail in Ref. [34]. For simplicity,
and because we are not interested in microphysical effects
here, the equation of state is set to be a simple polytrope
with polytropic index Γ ¼ 2 and polytropic constant
K ¼ 123.6.
The initial data computed by LORENE employs six

different domains to cover the computational region around

TABLE I. Summary of the grid parameters used for the binary systems computed here.

ra: Radial coordinate where the radial grids start. For the COCP patch, it is ra ¼ 0.
rb: Radial coordinate where the radial grids end.
rc: Center-of-mass point. Excised sphere is located at 2rc in the COCP patch.
re: Radius of the excised sphere. Only in the COCP patch.
rs: Radius of the sphere bounding the star’s surface. It is rs ≤ 1. Only in COCP.
Nr: Number of intervals Δri in r ∈ ½ra; rb�.
N1

r : Number of intervals Δri in r ∈ ½0; 1�. Only in the COCP patch.
Nf

r: Number of intervals Δri in r ∈ ½0; rs� in the COCP patch or r ∈ ½ra; ra þ 1� in the ARCP patch.
Nm

r : Number of intervals Δri in r ∈ ½ra; rc�.
Nθ: Number of intervals Δθj in θ ∈ ½0; π�.
Nϕ: Number of intervals Δϕk in ϕ ∈ ½0; 2π�.
d: Coordinate distance between the center of Sa (r ¼ 0) and the center of mass.
ds: Coordinate distance between the center of Sa (r ¼ 0) and the center of Se.
L: Order of included multipoles.

TABLE II. Four different grid structure parameters used for the circular binary computation in COCAL. All variables are explained in
Table I, and the distances are in normalized quantities. The COC2CAC driver interpolates from COCP-1 and COCP-2 when the
normalized distance of the point under consideration from the center of mass is less than Ri ¼ 69.125, while it interpolates from ARCP
for larger values.

Type Patch ra rs rb rc re Nf
r N1

r Nm
r Nr Nθ Nϕ L

Hs2.0d COCP-1 0.0 0.759 766 7 102 1.25 1.125 50 64 80 192 48 48 12
COCP-2 0.0 0.759 766 7 102 1.25 1.125 50 64 80 192 48 48 12
ARCP 5.0 106 6.25 16 20 192 48 48 12

Hs2.5d COCP-1 0.0 0.759 766 7 102 1.25 1.125 76 96 120 288 72 72 12
COCP-2 0.0 0.759 7667 102 1.25 1.125 76 96 120 288 72 72 12
ARCP 5.0 106 6.25 24 30 192 72 72 12

Hs3.0d COCP-1 0.0 0.759 766 7 102 1.25 1.125 100 128 160 384 96 96 12
COCP-2 0.0 0.759 766 7 102 1.25 1.125 100 128 160 384 96 96 12
ARCP 5.0 106 6.25 32 40 384 96 96 12

Hs3.5d COCP-1 0.0 0.759 766 7 102 1.25 1.125 150 192 240 576 144 144 12
COCP-2 0.0 0.759 766 7 102 1.25 1.125 150 192 240 576 144 144 12
ARCP 5.0 106 6.25 48 60 384 144 144 12
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each star, with a number of collocation points for the
spectral expansion given by Nr × Nθ × Nϕ ¼ 33 × 25×
24, where Nr, Nθ, and Nϕ denote the number of points for
the radial, polar, and azimuthal directions, respectively. In
our model, the ratio between the star radius and the
separation is roughly 3, so that, according to Ref. [67],
the resolution that we employ is sufficient to achieve a
fractional error of 10−5 in the ADMmass comparable to the
one obtained by COCAL.
The physical parameters of the binary are presented in

Table III. Each star of the binary is constructed to
correspond to a spherical solution of rest mass M0 ¼
1.62505 or MADM ¼ 1.51481, with a relative accuracy of
Oð10−6Þ in the rest mass, which is computed as

M0 ¼
Z
Σt

ρuαdSα; ð19Þ

while the ADM and Komar masses are computed as

MADM ¼ −
1

2π

Z
S∞

∂iψdSi; ð20Þ

MK ¼ 1

4π

Z
S∞

∂iαdSi: ð21Þ

The surface integrals are calculated at a certain finite radius,
typically around r ∼ 104M, and the relative differences
found between the Komar and ADM masses is of the order
of 10−5 even for the COCAL initial data with the coarsest
resolution Hs2.0d, thus providing a simple measure of the
overall error of the code. The ADM angular momentum is
instead computed as

J ¼ 1

8π

Z
S∞

Ka
bϕ

bdSa: ð22Þ

In Fig. 2, we report various quantities of the irrotational
solution along the positive x axis of the Cartesian grid, so
that x ¼ 0 is the center of mass of the binary. The star of

radius Req ≈ 9 M⊙ is positioned approximately at
x ≈ 15 M⊙. In both figures, on the left column we plot
the quantity as computed with COCAL (red lines) and
LORENE (blue lines), relative to the Hs3.0d resolution,
while on the right column we plot the relative difference

Δf ≔
����1 − fCOCAL

fLORENE

����: ð23Þ

Going from top to bottom in Fig. 2, the quantities plotted
are the metric gxx ¼ ψ4 (note that gij ¼ ψ4δij), the lapse
function α, the y component of the shift, the xy component
of the extrinsic curvature, and the rest-mass density, while
Fig. 3 plots the y component of the fluid velocity with
respect to the Eulerian observer and the corresponding
Lorentz factor.
The four-velocity can also be written as uμ ¼

αutðnμ þ UμÞ, with nμ the unit normal to the hypersurface
(Eulerian four-velocity) and

Uy ¼ 1

α

�
uy

ut
þ βy

�
¼ γyμuμ

αut
¼ α

ψ−4∂yΦ
λ

; ð24Þ

where we recall that λ ≔ Cþ ωiDiΦ. As can be seen in
Fig. 3, the difference in the computed variables between the
two codes is of the order of 1% or less, except for points at
or near zero crossings, where the relative error, Eq. (23),
produces large values.
Comparing the right column of Fig. 2 with that of Fig. 6

of Ref. [33], where a similar comparison was made
between COCAL and KADATH for black-hole binary initial
data, we note that the difference between the two codes
is approximately 1 order of magnitude larger than in
Ref. [33]. There are two main reasons behind this.
First, in Ref. [33], the comparison was direct in the sense

that the KADATH code evaluates the solution at exactly the
same gridpoints used by COCAL, so that no interpolation
needs to be done; here, on the other hand, the comparison is
done after the solutions of both LORENE and COCAL are
interpolated on the Cartesian grids. Second, and more
importantly, the black-hole binary problem is scale free,

TABLE III. Physical parameters of the irrotational binaries at the various resolutions of Table I. The columns denote the rest mass of
each star, the ADM mass of the binary, the Komar mass, the central rest-mass density, and the ADM angular momentum in units of
G ¼ c ¼ M⊙ ¼ 1, while the angular velocity, the separation, and the equatorial radius are in physical units. The separation changes
slightly with resolution as a result of the iteration procedure followed by COCAL. Similar quantities are reported for the solution
computed by LORENE. The ADM mass of a spherical solution that corresponds to a rest mass M0 ¼ 1.62505 is MADM ¼ 1.51481, and
the compactness is C ≔ M=R ¼ 0.1401.

Code M0 MADM MK ρc × 10−4 JADM Ω½rad=sec� ds½km� Req½km�
COCAL Hs2.0d 1.625 04 2.997 37 2.997 16 9.563 899 8.795 53 1856.75 44.735 13.595
COCAL Hs2.5d 1.625 05 2.997 33 2.997 18 9.577 718 8.810 18 1857.29 44.722 13.591
COCAL Hs3.0d 1.625 05 2.998 17 2.998 04 9.582 239 8.820 99 1857.42 44.718 13.590
COCAL Hs3.5d 1.625 05 2.998 22 2.998 11 9.585 707 8.825 49 1857.48 44.715 13.589
LORENE 1.625 04 2.998 34 9.569 626 8.818 79 1867.49 44.707 13.605
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thus allowing Ref. [33] to compare exactly the same
physical system. This is no longer true for the neutron-
star binaries that we explore here, since the two binaries
have slightly different central rest-mass densities and also
different separations, radii, etc. (see Table III). This is also
manifested by the fact that Figs. 2 and 3 do not change
considerably if we increase or decrease the COCAL reso-
lution, implying that the observed differences in the metric

functions are already dominated by the intrinsic differences
in the physical models considered.
Having examined some of the representative variables

of the initial-data set, we next move into an analysis of
the constraint equations on the initial spacelike hyper-
surface. In Fig. 4, we show the residuals for both the
Hamiltonian constraint equation and the y component of
the momentum-constraint equation along the x axis. Here
too, x ¼ 0 corresponds to the center of mass of the
binary, with the star surface located at x ≈ 6 M⊙ and at
x ≈ 24 M⊙. For the initial data computed with COCAL,
we show the three highest resolutions Hs2.5d,
Hs3.0d, Hs3.5d of Table I and note that since the
star radius is 13.59 km and the number of points across
the star are Nf

r ¼ 76, 100, and 150 at these three
resolutions, the spatial resolution along the x axis is
179, 136, and 91 m, respectively.
A first reading of these plots reveals that inside the star,

both codes produce errors of approximately the same
magnitude. For COCAL, however, the Hamiltonian viola-
tions have a spike at the center of the star, i.e., at
x ≈ 15 M⊙, which converges away with increasing reso-
lution (cf. initial-data set Hs3.5d). This spike, which
involves ∼4–5 points around the center, is not a reason of
major concern for two distinct reasons. First, the localized
violation is rapidly removed when the initial data are
actually evolved, leaving no apparent influence on the
evolution (see also the discussion in Sec. IV).
Second, as we can see from Fig. 2, the conformal factor

ψ is computed very accurately in the region around the
stellar center; indeed, a closer inspection of the terms that
produce this violation reveals that it is the result of the
location of the origin of the spherical COCP, which
induces local inaccuracies in the second spatial derivatives
of the conformal factor, ∂2

iψ , near the stellar center.

FIG. 2. Left column: From top to bottom, initial data quantities
relative to the metric function gxx ¼ ψ4, the lapse function α, the
y component of the shift, the xy component of the extrinsic
curvature, and the rest-mass density ρ, as computed by COCAL

(red lines) and LORENE (blue lines). The x axis is the positive x
axis of the Cartesian grid, with x ¼ 0 corresponding to the center
of mass of the binary. Right column: Relative difference between
COCAL and LORENE as computed from Eq. (23).

FIG. 3. The same as Fig. 2 for the y component of the three-
velocity relative to the Eulerian observers and the corresponding
Lorentz factor.
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Similarly, the violations of the momentum constraint
inside the star are of the same order as (or even smaller
than) those produced by LORENE. Around the stellar
surface, both codes exhibit a jump in the violations due
to the existing discontinuity in the first derivatives of the
matter fields. Outside the star and towards the center of
mass, the COCAL code produces violations that are 3
orders of magnitude larger than those produced by
LORENE in the Hamiltonian constraint, but of the same
order for the momentum constraint. The reason for this
behavior is probably to be found in the resolution of the
radial grid, since in that region we have an increasing step
of δx. We plan to study the source of this error in the future
by modifying the grid structure there. From the opposite
side of the star and moving towards spatial infinity, again
we have a reasonable agreement between the three sets of
initial data. It is also important to notice that the COCAL

violations converge away with the expected second-order
accuracy of the finite-difference scheme.

IV. IMPACT ON THE EVOLUTIONS OF
DIFFERENT INITIAL-DATA SOLVERS

In order to evolve the initial-data sets introduced in the
previous section, we have used the high-order evolution code
WHISKYTHC [54–56], which solves the equations of general-
relativistic hydrodynamics in the Valencia formulation [68]
using a finite-difference scheme that reconstructs the
fluxes in local-characteristic variables using a high-order
reconstruction scheme (MP5 [69]). In these simulations, we
also employed a positivity-preserving limiter, which is crucial
to treat properly the low-density regions of the flow [54]. The
evolution of the spacetime is provided by the MCLACHLAN

code [70], which solves a conformal-traceless “3þ 1”
formulation of the Einstein equations either in the
BSSNOK [71–73] or in the CCZ4 form [74]; we have here
employed the BSSNOK formulation, leaving to future
work the investigation with the CCZ4 formulation. The
MCLACHLAN code is part of the open-source software
framework EINSTEIN TOOLKIT [62,63], which is based on
the CACTUS [60] computational toolkit.We use a fourth-order
finite differencing and the very robust Gamma-driver shift
condition together with the “1þ log” slicing, which have
been shown to be numerically well behaved for spacetimes
describing both isolated and neutron-star binaries [23,75,76].
In particular, we use for these simulations a

computational domain in which 0 < x; z ≤ 1024 M⊙ and
−1024 M⊙ ≤ y ≤ 1024 M⊙; i.e., we assume π symmetry
along the ðx; zÞ plane and reflection symmetry on the ðx; yÞ
plane. It is important to remark that placing the outer
boundary at a sufficiently large radius is crucial to avoid
the possibility of spurious and constraint-violating reflections
from the outer boundaries spoiling the convergence order. For
example, we have experienced that having a computational
domain with the outer boundary at 512 M⊙ ≃ 755 km,
which is quite common for neutron-star binary simulations
[77], would not yield convergence waveforms.
An adaptive mesh-refinement grid (AMR) hierarchy is

provided by the CARPET driver [78,79], and we use six
levels of refinement, the finest of which has three different
resolutions: low (L), medium (M), and high (H). These
three resolutions correspond, respectively, to spatial mesh
spacings of h ¼ 0.2; 0.133; 0.1 M⊙ ≃ 295; 197; 148 m, or,
equivalently, to 80, 120, and 160 cells along the x axis for
the coarsest grid. See Table IV for more details on this grid
hierarchy.
The initial data, computed with either LORENE or COCAL

(for the latter, we use the Hs3.5d data set), are then
evolved with a Courant factor set to 0.3. We note that we
reset the shift vector to zero at the start of each evolution;
i.e., we do not use the shift as provided by the initial-data
codes. The two stars inspiral for about three orbits (i.e.,
approximately seven gravitational-wave cycles) and then
merge. Because the initial masses have been chosen to be
sufficiently large, the merger leads to a prompt collapse to a
black hole surrounded by an accretion torus [23].

FIG. 4. Hamiltonian (top) and momentum-constraint violations
(bottom) for the y component of the shift (βy) along the x axis for
the irrotational binary system at the initial time. The origin x ¼ 0
corresponds to the center of mass of the binary, with the surface
of the star to be located at x ≈ 6 M⊙ and at x ≈ 24 M⊙.
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A more complete picture of the constraint violations as a
function of time is shown in Fig. 5, where each panel shows
the constraint violations in the equatorial plane, or ðx; yÞ
plane, of the binary, focusing on the region from the center
of mass (middle of the left side on each panel) to
approximately six neutron-star radii. From top to bottom,
the first row represents COCAL Hs3.0d initial data, while
the second row shows the LORENE Hamiltonian violations
at three different times: at t ¼ 0, which corresponds to
the initial data, just after the simulation is launched, at
t ¼ 30.72 M⊙, and after one orbit, at t ¼ 660.48 M⊙.
When considering the properties of the initial data, it is
possible to note the characteristic spherical-coordinate
pattern of COCAL, while in the case of LORENE data, one
has a wavy kind of structure which reflects the spectral
methods used. The surface of the neutron star is easily
noticeable, as violations of the constraints tend to create a
discontinuity there. Also visible is the increase of COCAL’s
violations towards the center of mass as was seen in Fig. 4.
Apparently these violations exist in the region around the
ðy; zÞ plane close to the center of mass. The small spike of
violations at the center of the neutron star is also visible.
Soon after the beginning of the evolution, at t ¼

30.72 M⊙ (middle column), the stars have rotated about
10 degrees, and the violations of both codes become very
similar both inside the star as well as near the center of
mass. This tendency continues one orbit afterwards (third
column) at t ¼ 660.48 M⊙ up until the merger. In the third
and fourth rows, we show the momentum violations for
COCAL and LORENE, respectively. Again the characteristic
patterns of both codes are visible in the initial data of the
first column, with COCAL having fewer violations inside
and around the star. As the binary evolves, differences are
washed out, and both codes produce similar behaviors.
Up until now all convergence analysis has been done with

respect to the resolution of the initial data. In what follows,

we fix the initial data (Hs3.5d for COCAL) and perform a
convergence analysis with respect to the resolution of the
evolution code. In Fig. 6, we monitor the L2 norm indicator
for the Hamiltonian (first row) and the y component of the
momentum constraint (second row). It is defined as

jfj2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

jfij2
vuut ; ð25Þ

where N ¼ Nr × Nθ × Nϕ is the total number of points.
Merger happens at approximately 1600 M⊙ or 8 ms.
Every plot has three solid lines that correspond to the

three different evolution resolutions: red is for low, green is
for medium, and blue is for high, with outer boundaries at
1024 M⊙ as stated earlier. Among the first features to be
noticed in these plots are the presence of a local maximum
around 180 M⊙ and the behavior of the violations until that
time. It is possible to see in Fig. 6 that this maximum is
reduced as the resolution of the evolution increases, and
that its position in time changes as the position of the
second AMR refinement boundary is varied. Together,
these considerations clearly indicate that the first local
maximum in the constraint violations is simply due to the
position of the second AMR box and, albeit annoying, it
has a clear origin and is not particularly harmful for the
subsequent evolution.
Another feature to notice when considering the con-

straint violations in the time interval 0 < t < 180 M⊙ is
that although the ones coming from the Hamiltonian
equation scale according to the resolution (except for an
initial interval 0 < t < 50 M⊙), this is not happening for
the momentum-constraint equation. There, the violations
monotonically decrease until the starting of a “bump” at
t ¼ 180 M⊙, and increasing the resolution does not affect
them. At the moment we do not have a clear understanding
of this behavior, which cannot be attributed to either of the
numerical schemes employed (finite difference or pseudo-
spectral), since it is present both in the COCAL and LORENE

data sets. However, we do conjecture it is related to the
“mismatch” between the set of equations solved for the
initial data and those employed to evolve the system;
inevitably, this mismatch manifests itself in the early
evolution of the system. In particular, we speculate that
the initial-value problem solved here relies on assumptions,
such as those of a conformally flat geometry or a maximum
slicing K ¼ 0, that are no longer satisfied from the full
solution of the constraint equations as monitored by our
evolution code (cf. Fig. 6).6 These violations do not really

TABLE IV. AMR grid hierarchy: Reported are the boxes’
extents along the x, y, and z directions, which reflect the
symmetry conditions imposed on them, i.e., π symmetry along
the x coordinate at x ¼ 0 on the ðy; zÞ plane; reflection symmetry
along the z coordinate at z ¼ 0, i.e., on the ðx; yÞ equatorial plane.
The grid hierarchy was kept fixed throughout the simulation for
each one of the different simulations. The mesh spacings listed in
the last column are the ones used for the highest-resolution
simulation.

AMR box extent Mesh spacing

Level x y z h

0 [0, 1024] ½−1024; 1024� [0, 1024] 3.2
1 [0, 240] ½−240; 240� [0, 240] 1.6
2 [0, 120] ½−120; 120� [0, 120] 0.8
3 [0, 64] ½−64; 64� [0, 48] 0.4
4 [0, 40] ½−40; 40� [0, 22] 0.2
5 [0, 30] ½−30; 30� [0, 11] 0.1

6For example, one of the equations in the BSSN formulation
involves the evolution of the trace of the extrinsic curvature K.
When solved, this equation leads to a variation of K and therefore
introduces terms in the constraint equations that are not present in
the elliptic solvers of COCAL or LORENE.
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depend on the resolution of the evolution code (all lines
essentially overlap in the early stages of the evolution)
and are more severe for those constraint equations involv-
ing the bulk motion of the stars—namely, the momentum

constraints. Support for this conjecture comes from the fact
that as the binaries are evolved in time and the fluid
configurations reach a self-consistent equilibrium, the loss
of convergence disappears, and the evolutions for both the

4

FIG. 5. Logarithmic violations of the constraint equations shown at three different times in the different columns: initial time (t ¼ 0),
just after the beginning of the evolution (t ¼ 30.72 M⊙), and one orbit later (t ¼ 660.48 M⊙). From top to bottom, the first row shows
the violations of the Hamiltonian constraint on the ðx; yÞ plane from COCAL, while the second row shows the corresponding violations
from LORENE. The third and fourth rows show the violations of the y component of the momentum constraint from COCAL and LORENE,
respectively. Note that all panels show data on the three finest levels of refinement, with two borders clearly visible. The bounding box in
the ðx; yÞ plane encompassing each of the panels spans roughly the range ½0; 50� × ½−25; 25�M⊙. The oval shape indicates the neutron-
star surface at every moment.
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COCAL and LORENE data sets show the expected conver-
gence rate. Proving this conjecture is not trivial and is left
for future investigations.
After a certain time (180 M⊙ for LORENE, and 800 M⊙

for COCAL), this violation degeneracy is broken as the
truncation errors from coarser grids start to dominate the
error budget in the L2 norm computation, and then
evolution errors start to scale with resolution as expected
from the discretization scheme.
In addition to the L2 norm shown here, we have also

computed and studied the behavior of the L1 norm (i.e.,
jfj1 ≔

P
N
i¼1 jfij=N) and that of the L∞ norm (i.e.,

jfj∞ ≔ maxifjfijg). More specifically, the L1 norm is of
the order of ≲10−8 for all the resolutions considered, both
for the COCAL and for the LORENE initial data, while the L∞
norm is the largest of all, with values of the order of≲10−6.
This quantity, however, also shows a clear convergence
scaling in the Hamiltonian violations. Overall, it is evident
that the behavior of the evolution of the constraint viola-
tions is extremely similar for both COCAL and LORENE

initial data.

One of the main goals in this work is to estimate the
impact that slightly different initial data coming from
different codes can have on the observed gravitational-
wave signal. It is well known that the Einstein equations
are highly nonlinear, and it is therefore possible that even
minute differences in the initial data can result in large
and, indeed, measurable differences in the radiated
quantities. The ability to measure the size of this impact
is, of course, essential in order to weigh it in with the
overall budget of numerical-relativity calculations, and
hence to measure how the extraction of physical param-
eters of the sources can be affected. Hence, we next
concentrate here on the gravitational-wave emission on
the l ¼ m ¼ 2 mode of the Weyl scalar Ψ4, which we
extract at r̄ ¼ 450 M⊙:

ðΨ4Þ22 ¼ AðtÞeiϕðtÞ: ð26Þ

The real part of ðΨ4Þ22 with respect to the retarded time
t − r⋆ is plotted in the top row of Fig. 7, where

FIG. 6. Constraint violation L2 norms for COCAL and LORENE as a function of time. The first row shows the Hamiltonian constraint,
while the second row represents the y component of the momentum constraint. Each color refers to a given resolution for the evolution
grid: low (red), medium (green), and high (blue).
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FIG. 7. First row: Real part of ðΨ4Þ22 extracted at r̄ ¼ 450 M⊙ as a function of the retarded time for both COCAL Hs3.5d (left
panel) and LORENE (right panel) initial data and for the three evolution resolutions (L, M, H). On each plot, the dashed line denotes the
evolution with the highest resolution of the other code initial-data set so that the dephasing between the two data sets becomes
apparent. Second row: Dephasing between different resolutions and the rescaled dephasing between the high and medium
resolutions, assuming a convergence order p ¼ 2.75. The left panel is for COCAL, while the right one is for LORENE. Third row:
Relative phase difference for the l ¼ m ¼ 2 mode of Ψ4 with respect to the Richardson-extrapolated value (computed assuming a
convergence order of p ¼ 2.75).
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r⋆ ≔ rA þ 2MADM ln ðrA=2MADM − 1Þ ≈ 478.8 M⊙ ð27Þ

is the tortoise radius and rA ≔ r̄ð1þMADM=2r̄Þ2 is the
approximated areal radius.7

The left panel in the top row of Fig. 7 refers to the
COCAL Hs3.5d initial data, and we report the waveforms
as computed at the three different resolutions L (red line),
M (green line), and H (blue line), which, we recall, are
relative to spatial mesh spacings of 0.2, 0.1333, and
0.1 M⊙ on the finest grid. Note that at these resolutions
the differences among the various waveforms are
extremely small, both in phase and in amplitude, and
one needs to zoom in on the figure to appreciate them.
Similar waveforms are shown in the right panel in the top
row of Fig. 7, which instead refers to the LORENE initial
data. On each of these plots we also include a dashed
magenta line with the highest-resolution run of the other
initial-data set in order to emphasize the dephasing that
is instead observed when comparing the two initial-data
sets.
This dephasing observed in the top row of Fig. 7 is

reminiscent of the behavior observed in Ref. [55], where
a comparison between two evolution codes of different
convergence order, WHISKY [23,76] and WHISKYTHC, has
been made. In that work, it was shown that given the
exactly same initial data, a second-order evolution code
(WHISKY) produces a significant phase difference for the
gravitational wave at different resolutions. This phase
difference was as large as ∼2 radians between a low- and
a high-resolution simulation. When the same experiment
was repeated using the higher-order WHISKYTHC code,
the dephasing between different resolutions became as
small as ∼0.6 radians. Here, the evolution runs have been
done with WHISKYTHC only, and the small differences in
phase are due uniquely to small differences in the initial-
data sets. In other words, the evolution of the two slightly
different initial-data sets resembles the dephasing mea-
sured when using evolution codes with different orders of
accuracy.
To gain a better understanding of the dephasing and

to compare the convergence properties for both sets of
initial data, we report the change Δϕ between medium
and low, as well as that between the high and medium
resolutions, in the middle row of Fig. 7. The left plot
refers to the COCAL initial data, while the right plot
refers to the LORENE initial data. Also plotted is the
rescaled Δϕ for the high-minus-medium resolution,
after employing a convergence order of p ¼ 2.75 (see
Fig. 8 and the discussion below). This exponent p is a

genuine measure of the convergence order of our code,
and we believe similar measurements should accom-
pany any work reporting high-quality gravitational
waveforms. Here, p has been computed by solving
the equation [54,61]

ϕh1 − ϕh2

ϕh2 − ϕh3

¼ hp1 − hp2
hp2 − hp3

; ð28Þ

where ðh1; h2; h3Þ ¼ ð0.2; 0.1333; 0.1Þ are the intervals
of the three resolutions L, M, and H employed. Note
that because p is a function of time (see Fig. 8), the
value reported refers to the average over time of all
convergence orders, after discarding an initial noisy
time interval, and the evolution around the merger,
when the convergence is lost (see discussion in
Ref. [19]). In this way, we obtain p ¼ 2.75� 0.16
for the COCAL initial data and essentially the same
value, p ¼ 2.81� 0.18, for the LORENE initial data. A
convergence order of this magnitude is consistent with
previous studies [55] of binaries at close separations. In
the last row of Fig. 7 (again, the left plot refers to
COCAL, while the right plot refers to LORENE initial
data), we calculate the relative difference between the
Richardson-extrapolated phases for the three resolutions

FIG. 8. Convergence order p as a function of time as computed
by Eq. (28) for COCAL (top panel) and LORENE (bottom panel)
initial data. The average values for COCAL (LORENE), i.e., p ¼
2.75� 0.16 ð2.81� 0.18Þ, are computed as arithmetic averages
over the time interval ½650; 1500�M⊙, where outlier data points
p < 1 and p > 4 are excluded from the average and represent the
uncertainty range.

7We have compared this approximation against a numerical
computation of the areal radius based on the proper area
computation of the extraction surfaces. For a surface at
r̄ ¼ 450 M⊙, the relative differences between the approximation
and the numerically computed radius was ∼2 × 10−6 during the
inspiral and around ∼4 × 10−5 as it peaks during the merger.
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used. The value at infinite resolution (h ¼ 0) is calcu-
lated from Eq. (28) by setting, for example h1 ¼ 0, and
solving for ϕh1. Using the previously calculated con-
vergence order p ¼ 2.75, this is computed as

ϕh¼0 ¼ ϕh2 þ
ϕh2 − ϕh3

ðh3=h2Þp − 1
: ð29Þ

In Fig. 9, we plot the difference between the
Richardson-extrapolated (h ¼ 0) phases of the COCAL

and LORENE initial data using the L, M, H resolutions.
As is quite apparent, even after approximately one orbit,
the evolutions resulting from COCAL and LORENE initial
data differ by as much as 0.1 radians, and the difference
is approximately 1.4 radians after a bit more than three
orbits, thus yielding a relative difference of 3.5%.8 Stated
differently, despite employing initial data referring to
essentially the same physical binary and computed by
two highly accurate numerical codes measuring global
differences in mass and angular momentum that are
≲0.02%, and local differences in the whole initial-data
set fα;ψ ; Kij; ρ; ui;Ω; Cg that are ≲1%, the extrapolated
gravitational-wave phases at the merger time can have
relative differences of ∼3.5%. Considering that these
results have been obtained after using rather high spatial
resolutions, we believe that the use of a high-order
numerical code such as WHISKYTHC has been crucial
in bringing out these differences.

V. CONCLUSIONS

We have presented the first evolutions of our newly
constructed initial-data code COCAL [34] and performed an
accurate study on the role that slightly different initial
data play on the evolution of neutron-star binaries. The
COC2CAC driver, which enables communication with
existing evolution codes in the CACTUS toolkit, was
presented; and a detailed convergence analysis, both with
respect to the initial data itself, as well as with respect to the
WHISKYTHC evolution code, was performed for the case of
irrotational neutron-star binaries separated at 45 km. In
addition, for benchmark purposes regarding future spinning
simulations, we have also examined a corotating solution
at 45 km.
Our main goals in this work have been, on the one hand,

to validate the accuracy of the initial data constructed by
this new initial data code, which is based on finite
differences rather than spectral methods; and, on the other
hand, to estimate potential differences on the gravitational-
wave signal as it is produced by different initial-data codes.
For this purpose, we have used the widely used, open-
source code LORENE and have carried out a close com-
parison for the initial data computed with the codes when
considering the same physical binary. For the first time,
we have also explored the impact that the minute
differences in the two initial-data sets have on the extrapo-
lated gravitational-wave signal.
In this way, we have found that although the initial data

between the two codes have differences in global quan-
tities, such as mass and angular momentum, that are
≲0.02%, the local (i.e., pointwise) comparison of the
initial-data quantities, such as rest-mass density, extrinsic
curvature, or angular velocity, show differences of the order
of ≲1%. These differences, in turn, lead to a dephasing of
the extrapolated gravitational-wave signal at the merger
time (after about three orbits) of approximately 1.4 radians;
i.e., a relative phase error of 3.5%. Our results are a
reminder of the extra care that needs to be taken when
comparisons are performed between results that start from
slightly different initial data, or when the initial-data errors
are not properly taken into account in the simulation error
budget.
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FIG. 9. Difference between the Richardson-extrapolated phases
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M, and H. Shown with dashed vertical lines are the times relative
to one, two, and three orbital periods, while the green vertical line
at t − r⋆ ¼ 1614 M⊙ marks the merger—i.e., the time when jΨ4j
reaches its first maximum.

8To compute the relative phase difference, we consider the
phase difference normalized by the average total phase 39.58 ¼
42.33 − 2.75 radians (the latter being the average phase differ-
ence at t − r⋆ ¼ 0).

INITIAL-DATA CONTRIBUTION TO THE ERROR BUDGET … PHYSICAL REVIEW D 94, 044049 (2016)

044049-15



FETHPC-1-2014, project ExaHyPE). The simulations were
performed on SuperMUC at LRZ-Munich and on LOEWE
at CSC-Frankfurt.

APPENDIX: POINTWISE COMPARISON
OF COROTATING SOLUTIONS

Although corotating solutions are not considered as
physically realistic because the shear viscosity in neutron
stars is too small to guarantee that this tidal coupling
takes place [43,44], in this appendix we calculate a
corotating neutron-star binary at 45 km and compare
our solutions pointwise with a solution calculated from
LORENE. The reason is that corotating binaries are easier
to calculate, since the fluid rotates at the same angular
velocity as the binary, and hence they can be considered
as a benchmark for error estimation in binary calcula-
tions. Also, since they represent the simplest spinning-
binary configuration, they provide insight for the
magnitude of the error introduced by more complicated
arbitrary spinning solutions.
To enforce corotation, we set Vα ¼ 0, and the Eulerian

velocity is then given by

Ui ¼ ωi

α
: ðA1Þ

We only consider the Hs3.0d resolution, and the main
physical quantities for both COCAL and LORENE are
reported in Table V. Note that the central rest-mass density
is smaller than for the irrotational binary, while the ADM
mass and angular momentum are slightly larger. This is
simply due to the stellar rotation, which tends to stabilize
the binary by including rotational kinetic energy.
In Fig. 10, we plot along the positive x axis the

conformal factor, the lapse function α, the xy component
of the extrinsic curvature, the rest-mass density ρ, the y

TABLE V. Physical parameters for a corotating binary com-
puted with either COCAL or LORENE (see Table III for a
description of the various quantities). The resolution used for
COCAL is Ha3.0d of Table I, except for the parameter
rs ¼ 0.7925, in order to create a binary at separation 44.7 km.

LORENE COCAL

M0 1.625 04 1.625 05
MADM 3.002 74 3.002 75
MK 3.002 43
ρcð×10−4Þ 9.046 01 9.049 69
JADM 9.762 87 9.759 09
Ω½rad=sec� 1857.82 1848.84
ds½km� 44.731 44.736
Req½km� 14.193 14.181

FIG. 10. The same as in Fig. 2, but for a corotating binary. The
dashed green line refers to the irrotational solution in Fig. 2,
which has a very similar mass (cf. Tables III and V).
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component of the velocity, and the Lorentz factor for both
the COCAL (red lines) and LORENE (blue lines) solutions.
As in Fig. 2, x ¼ 0 corresponds to the center of mass of
the system. Also plotted with a dashed green line is the
corresponding irrotational solution as reported in Fig. 2.
A rapid inspection shows that the conformal factor and
the lapse are slightly smaller inside the star, while the
extrinsic curvature increases (decreases) towards the
outer (inner) part of the star. Also, the velocity profile
has much larger values in the outer parts of the star (i.e.,
those farther away from the center of mass), and this is an
obvious manifestation of the large spin component
introduced by the corotation that is reflected in the
Lorentz factor too. Overall, and as for the irrotational
case, here the differences between the two data sets are
also ≲1%.
In Fig. 11, we plot the constraint violations as we have

done in Fig. 4 for the irrotational binaries. Only one
resolution for COCAL, the Hs3.0d, is plotted, together
with the corresponding violations from the irrotational
solutions (shown with dashed lines; cf. Fig. 4), for
comparison.
The comparison with the results from LORENE shows

a very similar behavior to the one already discussed for
the irrotational case: the Hamiltonian violations are
larger, but the violations of the momentum constraint
are smaller. Comparing instead the COCAL irrotational
data with the corotating cases, we see that the violations
are larger in the corotating binary. Hence, although the
fluid formulation is significantly more complicated in
the case of irrotational binaries, the large rotation
present in corotating binaries induces a small amount
of extra violations for both finite-difference and spec-
tral-method codes. We expect that a similar behavior
will be shown also by neutron-star binaries with
arbitrary spins.
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