
Classical and Quantum Gravity

PAPER

The initial boundary value problem for free-
evolution formulations of general relativity
To cite this article: David Hilditch and Milton Ruiz 2018 Class. Quantum Grav. 35 015006

 

View the article online for updates and enhancements.

Related content
Stable radiation-controlling boundary
conditions
O Rinne

-

Boundary conditions for the gravitational
field
Jeffrey Winicour

-

Outer boundary conditions for Einstein's
field equations in harmonic coordinates
Milton Ruiz, Oliver Rinne and Olivier
Sarbach

-

Recent citations
Hyperbolicity of divergence cleaning and
vector potential formulations of general
relativistic magnetohydrodynamics
David Hilditch and Andreas Schoepe

-

The weak null condition in free-evolution
schemes for numerical relativity: dual
foliation GHG with constraint damping
Edgar Gasperín and David Hilditch

-

This content was downloaded from IP address 128.174.166.57 on 04/10/2019 at 19:11

https://doi.org/10.1088/1361-6382/aa96c6
http://iopscience.iop.org/article/10.1088/0264-9381/23/22/013
http://iopscience.iop.org/article/10.1088/0264-9381/23/22/013
http://iopscience.iop.org/article/10.1088/0264-9381/29/11/113001
http://iopscience.iop.org/article/10.1088/0264-9381/29/11/113001
http://iopscience.iop.org/article/10.1088/0264-9381/24/24/012
http://iopscience.iop.org/article/10.1088/0264-9381/24/24/012
http://dx.doi.org/10.1103/PhysRevD.99.104034
http://dx.doi.org/10.1103/PhysRevD.99.104034
http://dx.doi.org/10.1103/PhysRevD.99.104034
http://iopscience.iop.org/0264-9381/36/19/195016
http://iopscience.iop.org/0264-9381/36/19/195016
http://iopscience.iop.org/0264-9381/36/19/195016
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsthfpgeDepy-Qi5WWDmQQKKYFX4QxglsfYFJTMUv5rLKMV1UVQqKhQTAZ5avs0JN3zyNnT2ufJVrSUKcmKgbMlXGj_GW8I5j9ZtQgh6Pwyvdivio6bH2DUr1YdmiYRwx0Vu8lAP1ojFRa4G7PFRdNyIEao8d84PT6LpMRq7EDnGD-vk9pPSG83MroY4yj7fBipInGXAGSn8h-HPNIZsJcyudhlRqY0TvPs906mIaEPhu9VIzFtR&sig=Cg0ArKJSzHH7tfXozykp&adurl=http://iopscience.org/books/aas


1

Classical and Quantum Gravity

The initial boundary value problem for  
free-evolution formulations of general 
relativity

David Hilditch1  and Milton Ruiz2,3,4

1  Theoretical Physics Institute, University of Jena, 07743 Jena, Germany
2  Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 
61801, United States of America
3  Escuela de Física, Universidad Industrial de Santander, Ciudad Universitaria,  
Bucaramanga 680002, Colombia
4  Departament de Física, Universitat de les Illes Balears, Palma de Mallorca, 
E-07122, Spain

E-mail: ruizm@illinois.edu

Received 22 August 2017, revised 2 October 2017
Accepted for publication 30 October 2017
Published 5 December 2017

Abstract
We consider the initial boundary value problem for free-evolution formulations 
of general relativity coupled to a parametrized family of coordinate conditions 
that includes both the moving puncture and harmonic gauges. We concentrate 
primarily on boundaries that are geometrically determined by the outermost 
normal observer to spacelike slices of the foliation. We present high-order-
derivative boundary conditions for the gauge, constraint violating and 
gravitational wave degrees of freedom of the formulation. Second order 
derivative boundary conditions are presented in terms of the conformal 
variables used in numerical relativity simulations. Using Kreiss–Agranovich–
Métivier theory we demonstrate, in the frozen coefficient approximation, that 
with sufficiently high order derivative boundary conditions the initial boundary 
value problem can be rendered boundary stable. The precise number of 
derivatives required depends on the gauge. For a choice of the gauge condition 
that renders the system strongly hyperbolic of constant multiplicity, well-
posedness of the initial boundary value problem follows in this approximation. 
Taking into account the theory of pseudo-differential operators, it is expected 
that the nonlinear problem is also well-posed locally in time.

Keywords: numerical relativity, boundary conditions, initial value problem, 
free-evolution formulations of general relativity

(Some figures may appear in colour only in the online journal)

D Hilditch and M Ruiz

The initial boundary value problem for free-evolution formulations of general relativity

Printed in the UK

015006

CQGRDG

© 2017 IOP Publishing Ltd

35

Class. Quantum Grav.

CQG

1361-6382

10.1088/1361-6382/aa96c6

Paper

1

1

33

Classical and Quantum Gravity

IOP

2018

1361-6382/18/015006+33$33.00  © 2017 IOP Publishing Ltd  Printed in the UK

Class. Quantum Grav. 35 (2018) 015006 (33pp) https://doi.org/10.1088/1361-6382/aa96c6

https://orcid.org/0000-0001-9960-5293
https://orcid.org/0000-0002-7532-4144
mailto:ruizm@illinois.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/aa96c6&domain=pdf&date_stamp=2017-12-05
publisher-id
doi
https://doi.org/10.1088/1361-6382/aa96c6


2

1.  Introduction

For standard applications in numerical relativity we are forced to consider the mathematical 
properties of the initial boundary value problem (IBVP) for general relativity. An essential 
property of the IBVP is that it should be well-posed. The requirement of well-posedness is 
three-fold. We require that a solution exists, is unique, and depends continuously on given 
initial and boundary data [1, 2].

There are further complications. Formulations of general relativity (GR) typically have 
constraints which must be satisfied in order to recover a full solution of the Einstein equa-
tions. If the boundary conditions (BCs) are not constraint preserving then, even if the IBVP 
is well-posed, as illustrated for example in [3–5], constraint violations will enter through the 
boundary and render the solution of the partial differential equation (PDE) system unphysical. 
Furthermore, since we are often interested in solutions that are asymptotically flat, we would 
like the BCs to be as transparent as possible to outgoing radiation, be it physical or gauge, in 
the sense that these conditions do not introduce large spurious reflections from the boundary. 
Such reflections would either be unphysical, or simply produce undesirable gauge dynamics. 
A general discussion of non-reflecting BCs of the wave problem in applied mathematics and 
engineering can be found in [6]. Two formulations of GR are currently known to admit a well-
posed IBVP with constraint preserving boundary conditions (CPBCs) [7–12]. They are the 
generalized harmonic gauge (GHG) [13–15] and Friedrich–Nagy formulations [7]. Of these, 
GHG has been used widely in numerical relativity simulations [16–20]. Boundary conditions 
employed in GHG numerical simulations are described, for instance, in [9, 21, 22]. On the 
other hand, many numerical relativity groups use formulations involving a conformal decom-
position of the field equations, such as the Baumgarte–Shapiro–Shibata–Nakamura–Oohara–
Kojima (BSSNOK) formulation [23–25] or a conformal decomposition of the Z4 formulation 
[26, 27] as developed in [5, 28–32]. These formulations are normally used in combination 
with the moving puncture gauge condition [33–38].

The IBVP for these ‘conformal’ formulations is less well understood. The key difficulty, 
as we shall see, is the complicated structure of the principal part of the equations with the 
moving puncture gauge. Thus most codes use so-called radiative boundary conditions on 
every evolved field [39], which overdetermine the IBVP and therefore are expected to render 
it ill-posed. These conditions do not preserve the constraints. Well-posedness of the IBVP 
of BSSNOK has been studied in a number of places. For instance, in [40] the dynamical 
BSSNOK system is recast as a first order symmetric hyperbolic system and the corresponding 
IBVP shown to be well-posed through a standard energy method. However, the boundary 
conditions presented in [40] do not preserve the constraints, and the analysis of the IBVP 
does not include the moving puncture gauge condition. In [41] constraint preserving bound-
ary conditions for the BSSNOK formulation were shown to give a well-posed IBVP when the 
system is linearized around flat-space. These conditions have not yet been tested in numerical 
relativity simulations. A numerical implementation of CPBCs in spherical symmetry for the 
above system were presented in appendix B of [42], and extensively tested in [43]. The key 
point of this implementation is to numerically construct the outgoing and incoming modes, 
and to express the latter in terms of the constraints where possible. BCs are then set to enforce 
that the incoming modes do not introduce spurious reflections. For a detailed discussion of the 
IBVP in GR, see the review [44]. For the Z4 formulation CPBCs are straightforward, since 
the constraint subsystem consists entirely of wave equations, whereas the BSSNOK constraint 
subsystem contains a characteristic variable with vanishing speed. Using this fact, CPBCs 
were implemented, in explicit spherical symmetry, and shown very effective at absorbing 
constraint violations [5]. Moreover BCs compatible with the constraints for a symmetric 
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hyperbolic first order reduction of Z4 were specified and studied in numerical applications in 
[45, 46]. The conditions are of the maximally dissipative type and so well-posedness of the 
resulting IBVP could be shown with a standard energy estimation, although harmonic slicing 
and normal, or vanishing shift, coordinates were employed, and it is not clear how generally 
the results can be extended to other gauge choices. Full 3D numerical relativity simulations 
using Z4c and radiation controlling, CPBCs were presented [47]. But no attempt was made to 
analyze well-posedness of the IBVP.

In this work, we therefore attempt to complete the theoretical story, in the sense that we 
prove well-posedness of the IBVP, in the frozen coefficient approximation, of particular for
mulations of GR coupled to a parametrized family of gauge conditions including both the 
harmonic and moving puncture gauges. Our discussion will focus primarily on the form
ulation of [48]. From the PDEs point of view this is the preferred choice of formulation 
because it decouples the gauge and constraint violating degrees of freedom to the greatest 
degree possible for the live gauges under consideration. This formulation has not yet been 
used in numerical relativity but is expected to have all of the advantages of Z4 over BSSNOK, 
most notably propagating constraints, whilst simultaneously avoiding possible breakdown of 
hyperbolicity associated with the clash of gauge and constraint violating characteristic speeds. 
The Mathematica notebooks that accompany the paper can be modified to treat the Z4 and 
BSSNOK formulations. By the theory of pseudo-differential operators, our calculations are 
expected to extend locally in time to the original nonlinear equations [2, 49].

We begin in section 2 with a summary of the formulation, a geometric formulation of the 
problem and the identification of the BCs taken in the subsequent analysis. Our geometric 
formulation fixes the outer boundary to be that timelike surface generated by the outermost 
observers in the initial data as they are Lie-dragged up the foliation by the timelike normal 
vector. This results in an outer boundary that may drift in local coordinates. The numerical rel-
ativist interested in implementing a basic approximation to our conditions need only concern 
themselves with sections 2.3 and 2.4. Section 3 contains our well-posedness results with high 
order BCs, and discussion of the difficulties that arise if we try to fix the coordinate position 
of the outer boundary, plus gauge conditions in which this is straightforward, and in which the 
fewer derivatives are required to achieve boundary stability. We conclude in section 4.

2.  Formulation of the IBVP

In this section, we summarize the geometrical setup of the IBVP, present the formulation of 
[48] in the ADM and conformal variables and discuss the high-order BCs analyzed in sec-
tion 3. Finally, we display the second order special case of the BCs in terms of the conformal 
variables that are used in standard numerical applications. Here ‘order’ refers to the highest 
derivative of either the metric, lapse or shift components appearing in the boundary condition.

2.1.  Analytical setup

2.1.1.  Manifold structure and geometry of the boundary.  We investigate the evolution equa-
tions on a manifold M = [0, T]× Σ. The three dimensional compact manifold Σ has smooth 
boundary ∂Σ. We assume that the gravitational field is weak near the boundary so that the 
boundary of the full manifold T = [0, T]× ∂Σ is timelike and the three dimensional slices 
Σt = {t} × Σ are spacelike as shown in figure 1. The boundary of a spatial slice is denoted 
St = {t} × ∂Σ. We define na, the future pointing unit normal to the slices Σt , and similarly 
employ the standard notation for the induced metric γab and extrinsic curvature Kab of the 
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foliation. The spatial covariant derivative is denoted D. Initial data will be specified on some 
constant t slice, and boundary conditions, yet to be determined, on T . The outer boundary T  
can be characterized as the level set of a scalar field r = rB, defined at least in a neighborhood 
of T . We may then perform a 2+ 1 split relative to the unit spatial vector,

sa = LDar,� (1)

where we define the length scalar L−2 = γabDarDbr, to study the geometry of the boundary. 
We will however only introduce the quantities to be employed in the boundary conditions. The 
vector sa is thus the unit normal to the two-surface {t} × ∂Σ as embedded in Σt . The standard 
approach in numerical relativity is to take r to be a radial-type coordinate built in the normal 
way from the asymptotically Cartesian coordinates defining the tensor basis used to represent 
the evolved variables. In this case we have ∂tr = 0 and so the coordinate position of the outer 
boundary is fixed in time. Perhaps a more geometrically natural condition is to insist that the 
future pointing normal na to slices of the foliation point directly up the boundary. This can be 
achieved by requiring instead Lnr = 0, which must be solved at least in a neighborhood of 
the outer boundary. One may then think of r as a natural radial coordinate of normal observers 
to the slice. When working under this assumption we say that we work ‘under the boundary 
orthogonality condition’. Notice that this leads to a hyperbolic equation of motion,

∂t(∂ir) = β j∂j(∂ir) + (∂jr)∂iβ j,� (2)

for the appropriate components of the Jacobian mapping between the two coordinate systems, 
since the second term is non-principal, as it may be replaced by a first-order reduction variable 
in any such reduction. The numerical implementation of this idea is left to future work, but we 
note that the approach fits naturally within the dual foliation formalism [50]. A consequence 
of insisting on working with the boundary orthogonality condition is that the outer boundary 
will drift in local coordinates. Geometrically this condition is the same as that for the longitu-
dinal component of the shift in [41] for BSSNOK. But now r is not one of our coordinates, and 

nor is the associated vector ( ∂
∂r )

a  necessarily a member of the tensor basis in which we work 
for the 3+ 1 evolution. The motivation for choosing this orthonormality in the BSSNOK case 
was that in this way the number of incoming characteristic fields at the outer boundary can 
be fixed, removing the need to treat various special cases. With the present formulation that 

Figure 1.  Manifold setup for the IBVP. The manifold is foliated by three dimensional 
surfaces Σt . We impose a timelike boundary condition St in a compact region of each 
surface Σt , which restricts the domain of dependence of the initial data to the inner 
conical region of the timelike tube T .
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motivation is absent because there are no shift-speed characteristic variables. This imposes a 
major difference in our analysis as compared to the standard boundary treatment in numerical 
relativity, where the outer boundary remains at fixed coordinates. We expect that this com-
plication can be sidestepped by working with the dual-foliation formalism, but this will be 
investigated elsewhere. The problems that arise in the PDEs analysis if we do not work with 
the boundary orthogonality condition are discussed in section 3.8.

2.1.2.  Newman-Penrose null tetrad.  The previous vector fields allow us to introduce, for later 
convenience, the following Newman-Penrose null vectors,

la =
1√
2
(na + sa) , ka =

1√
2
(na − sa) ,

ma =
1√
2
(ιa + i υa) , m̄a =

1√
2
(ιa − i υa) ,

� (3)

where ιa and υa are spatial unit vectors mutually orthogonal to both na, sa and each other.

2.1.3.  Equations of motion.  Following [48], in which the formulation was first presented, we 
replace the Einstein equations with the expanded set of equations,

∂tγij = −2αKij + Lβγij,

∂tKij = −DiDjα+ α[Rij − 2Ki
kKkj + KKij + 2D̂(iZj) − κ1(1+ κ2)γijΘ]

+ 4πα[γij(S− ρ)− 2Sij] + LβKij,�
(4)

where Θ and Zi are a set of four variables defining an expanded phase space in which our 
PDEs analysis is performed, and we must have Θ = Zi = 0 to recover solutions of GR. The 
equations of motion for these variables are given momentarily. We write,

D̂iZj ≡ γ− 1
3 γkj∂iZ̃k, Z̃i = γ

1
3 Zi.� (5)

The free parameters κ1 and κ2 serve to parametrize the strength of constraint damping in the 
evolution equations [51]. These terms were not included in the discussion of [48] and, as non-
principal terms will play no fundamental role in the discussion of boundary stability, but are 
expected to effectively damp away constraint violation in numerical applications. Here we 
also modify the constraint addition as compared with [48] so that the equations of motion look 
as natural as possible when written in terms of the conformal variables. The dynamical ADM 
equations are of course recovered when the constraints Θ and Zi vanish.

2.1.4.  Constraints.  The set of constraints Θ, Zi are completed by the Hamiltonian and 
momentum constraints,

H ≡ R− KijKij + K2 − 16πρ = 0,

Mi ≡ Dj (Kij − γijK)− 8πSi = 0.
� (6)

Their equations of motion are,

∂tΘ = α

[
1
2
H + D̂iZi − κ1(2+ κ2)Θ

]
+ LβΘ,

∂tZi = α

[
Mi +

1
3
(
4− ηχ

)
DiΘ− κ1Zi

]
+ γ

1
3 Z j∂t

[
γ− 1

3 γij

]
+ β jD̂jZi,

�

(7)
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where the scalar ηχ is determined by the gauge choice as discussed below. The time depend
ence of the constraints can be computed from (4), and is found to be,

∂tH =− 2αDiMi − 4MiDiα+ 2αK H + 2α
(
2K γij − Kij) D̂(iZj)

− 4κ1 (1+ κ2)αKΘ+ LβH,
�

(8)

for the Hamiltonian constraint and

∂tMi =− 1
2
αDiH + αKMi − (Diα)H + Dj

(
2α D̂(iZj)

)
− Di

(
2αγkl D̂(kZl)

)

+ 2κ1 (1+ κ2)Di(αΘ) + LβMi,
�

(9)

for the momentum constraint. It is clear that this formulation is a mild modification of the Z4c 
system, the only difference in the principal part occurring in (7).

2.1.5.  Gauge conditions.  We close the evolution system with a parametrized gauge condi-
tion, consisting of the Bona–Massó lapse condition [33] and the shift condition,

∂tα = −α2 µL K̂ + βi ∂iα,

∂tβ
i = α2 µS χ

[
Γ̃i +

1
2
ηχγ̃

ij ∂j lnχ
]
− α ηL χ γ̃ij∂jα− η βi + β j ∂jβ

i,
�

(10)

where K̂ = K − 2Θ, the contracted conformal Christoffel is a shorthand for,

Γ̃i = γ
1
3 γij

[
2 Zj + γkl(∂kγlj −

1
3
∂jγkl)

]
,� (11)

and the conformal metric is defined by γ̃ij = χγij, with χ = γ−1/3. The harmonic gauge is 
recovered with the choice µL = ηχ = 1, µS = ηL = 1, and η = 0. The standard moving punc-
ture gauge choice is the ‘1  +  log’ variant of the Bona–Massó condition, µL = 2/α, combined 
with the Gamma-driver shift [52], with ηχ = ηL = 0, and various choices for µS. The effect 
of the gauge damping term η on numerical simulations with the Gamma-driver shift has been 
studied in [53–55].

2.1.6.  Projection operators.  We define the projection operators into directions tangential to 
the boundary St, and onto the ‘physical’ degrees of freedom by,

qij = δij − sisj, q(P)ijkl = qi(kq j
l) −

1
2
qklqij,� (12)

respectively. We use the notation,

DsDsα ≡ si s j DiDjα,� (13)

for longitudinal derivatives; we do not commute the spatial normal vector with any derivative 
operator. Likewise, we never commute the projection operator with any derivative operator, 
so for example,

DADBα ≡ qiA q j
B DiDjα,� (14)

where we use upper case Latin letters to denote indices that have been projected into the direc-
tions tangential to St.

D Hilditch and M Ruiz﻿Class. Quantum Grav. 35 (2018) 015006
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2.2.  Boundary conditions

We want to impose BCs on the formulation. Following [9, 56], these conditions should satisfy 
the following conditions:

		 Well-posedness: The IBVP must be well-posed. Without this requirement, existence of 
a solution, even locally in time, is not guaranteed. Without continuous dependence on 
given data at the continuum level, no numerical method can converge to the continuum 
solution. Furthermore, in principle without continuous dependence the PDE formulation 
of the physical problem has no predictive power.

		 Constraint preservation: The conditions should be constraint preserving. Otherwise the 
physical solution will be compromised as soon as it is reached by the constraint violations 
propagating from the outer boundary into the domain.

		 Radiation control: The BCs should minimize spurious reflections and allow us to control 
the incoming gravitational radiation. Without this property, the solution can not necessarily 
be viewed as an isolated body unperturbed by incoming waves. Note that this characteriza-
tion relies on the assumption that the gravitational field near the boundary is weak.

With these considerations in mind, we propose the following set of BCs:

2.2.1.  Gauge boundary conditions.  Following [5], for the lapse we choose the boundary 
condition,

(
r2 iaµL

∂a

)L+1
α =̂ (r2 Ln)

L+1hL,� (15)

where iaµL
 the vector pointing along the outgoing characteristic surfaces of the Bona–Massó 

lapse condition, defined according to,

iaµ =
1√
2

(
na +

√
µ sa

)
,� (16)

a shorthand valid for arbitrary µ > 0, and Ln the derivative along the na direction. Here, and 
in what follows, =̂ denotes an equality which holds only in the boundary St. We take L to be 
a natural number, and hL an arbitrary smooth scalar function in the boundary which can be 
interpreted as the given boundary data.

Next, in order to specify BCs on the components βi , define the shorthands µSL =

(4− ηχ)µS/3 and,

Bs = iaµSL
∂a(∂iβ

i)−
(
ηLµL − µSL

µL − µSL

)
α iaµSL

∂aK̂.� (17)

We emphasize that this variable has nothing to do with the standard reduction variable ‘Bi’ 
used sometimes with the moving-puncture gauge. The reason for choosing this particular 
combination will become clear during the following analysis. We choose the BC,

r4
(
r2 iaµSL

∂a

)L−1
Bs =̂ (r2Ln)

L+1hSL ,� (18)

for the longitudinal component of the shift. The given data here is the scalar hβs. Next we 
define the shorthand,

BA = γiks[k qj]A∂iβ j.� (19)

D Hilditch and M Ruiz﻿Class. Quantum Grav. 35 (2018) 015006
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For the transverse components of the shift we choose,

(
r2 iaµS

∂a

)L
BA =̂ (Ln)

L−1(L2
n − µS∆/

)
hAµS

.� (20)

The given data hAµS
 are to be treated as two smooth scalar functions in the boundary. The 

operator ∆/  is the two dimensional Laplacian associated with the induced metric qAB. The 
inclusion of this made in order to cancel bad terms in the following Laplace–Fourier analysis. 
Note that from the point of view of absorption of outgoing gauge waves this condition is not 
optimal, but since we are also concerned with minimizing the number of derivatives in the 
conditions, we accept this potential shortcoming. We will see in the following analysis that the 
complicated characteristic structure of the gauge conditions forces us to take high order BCs 
(L = 4) so that we can obtain boundary stability in the analysis. The key point is to choose 
given data containing particular combinations of derivatives. To obtain boundary stability in 
the rest of the formulation we need only take L = 1. We can adjust the gauge so that there too, 
only L = 1 is required. For details see [57] and the Mathematica notebooks that accompany 
the paper.

2.2.2.  Constraint preserving boundary conditions.  In [5], we studied high order BCs for the 
constraints Θ and Zi for the Z4c formulation. Here we are forced to modify those conditions 
because the characteristic structure of the constraint subsystem for the present formulation is 
slightly more complicated than that of Z4c. First for the scalar constraint Θ we choose,

r2
(
r2 iaµC

∂a

)L
Θ=̂

(
r2 Ln

)L+1
hΘ,

� (21)
where we have defined µC = µSL/µS = (4− ηχ)/3 and choose given data hΘ which will be 
taken to vanish in applications. For the lowest derivative order L = 1 boundary we choose,

la∂aZ̃i =̂L2
nh̃

i
Z ,� (22)

where we write Z̃i = γ̃ijZj and h̃iZ = γ̃ijhZj. This choice is made so that the boundary con-
ditions become more convenient when written in terms of the conformal variables used in 
numerical applications (see section 2.3). For higher order conditions, however, it turns out to 
be more natural to make some adjustment. We use the shorthands,

X̃i = LnZ̃i − µC γ̃
ijDjΘ.� (23)

The remaining constraint conditions are then,

(
r2 la∂a

)L−1
X̃i =̂ (r2 Ln)

L−1(L2
n −∆/

)
h̃iZ .� (24)

Again the given data h̃iZ  will typically be taken to vanish in applications, but we have to 
include it to show estimates in the free-evolution approach.

2.2.3.  Radiation controlling boundary conditions.  A standard BC for the GHG formulation 
that controls the incoming gravitation radiation is the Ψ0- freezing condition [7–9, 11, 12, 
18, 56, 58, 59] which serves as a good first approximation to an absorbing condition [4, 60]. 
In particular, freezing Ψ0 to its initial value allows the absorption of outgoing gravitational 
waves by minimizing spurious reflections. It has been shown analytically [4] that the spuri-
ous reflections from the freezing-Ψ0 condition decay as fast as (k R)−4, for monochromatic 
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radiation with wavenumber k and for an outer boundary with areal radius R. This condition has 
also been considered with the BSSNOK formulation [41].

To impose Ψ0-freezing conditions, we take the electric and magnetic parts of the Weyl 
tensor [39],

Eij =
[
Rij + K Kij − Kl

iKil + 2 D̂(iZj) − 4π Sij
]TF

,

Bij = ε(i|
klDkKl| j).

� (25)

The Weyl scalar Ψ0 is given by,

Ψ0 = (Emm − iBmm) ,� (26)

where the index m refers to contraction with the null vector ma. To motivate our choice of 
given data recall that, for linear plane gravitational waves propagating on flat space, we 
have [39]

Ψ0 = −1
4
(
∂2
t h

+ + 2∂t∂rh+ + ∂2
r h

+
)
− i

4
(
∂2
t h

× + 2∂t∂rh× + ∂2
r h

×),� (27)

with h+ and h× the independent components of the transverse-traceless part of the metric per-
turbation. Assuming that we have an incoming gravitational wave, then h+ ∼ h× ∼ h(t + r) 
and then,

Ψ0 = −∂2
t h

+ − i ∂2
t h

×.� (28)

Thus, for the lowest order boundary we choose,

Ψ0 =̂ (r2Ln)
2hΨ0 ,� (29)

where hΨ0 is smooth given data at the boundary. For higher order BCs, One naively could hit 
the left-hand side of the above condition by a Sommerfeld boundary operator as many times 
as is desired. However since Ψ0, depending on the particular gauge, satisfies in the principal 
part a wave equation only up to a coupling with Θ, the necessary analysis for arbitrary values 
of L becomes messy. To avoid this we choose,

r4
(
r2 la∂a

)L−2
Ψ̂0=̂ (r2Ln)

L+1hΨ0 ,� (30)

for L � 2, where the shorthand Ψ̂0 is given by

Ψ̂0 = LnΨ0 − 2µC Dm DmΘ.

2.3.  Conformal decomposition

For numerical integration favorable PDE properties, such as well-posedness, may not be 
enough to guarantee robust evolution. It is therefore common to work with conformally 
decomposed variables. We define the variables [28],

γ̃ij = γ− 1
3 γij, χ = γ− 1

3 , K̂ = γij Kij − 2Θ,

Ãij = γ− 1
3 (Kij −

1
3
γij K), Γ̃i = 2 γ̃ij Zj + γ̃ij γ̃kl ∂lγ̃jk, (Γ̃d)

i = γ̃ jk Γ̃i
jk,

�

(31)

the idea of which is to make as many variables as possible non-singular, so that for example 
puncture black holes can be treated numerically. Variations on this decomposition have been 
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studied in the literature [61, 62], but here we will be satisfied with the vanilla form. Note that 
the definition of Γ̃i  is compatible with the shorthand given in (11). Under this change of vari-
ables the equations of motion become,

∂tχ =
2
3
χ
[
α (K̂ + 2Θ)− Diβ

i
]
,

∂tγ̃ij = −2α Ãij + βk∂kγ̃ij + 2 γ̃k(i∂j)βk − 2
3
γ̃ij∂kβ

k,
� (32)

for the metric and,

∂tK̂ = −DiDiα+ α

[
ÃijÃij +

1
3
(K̂ + 2Θ)2

]
+ 4π α [S+ ρ ] + ακ1 (1− κ2)Θ + βi∂iK̂,

∂tÃij = χ
[
− DiDjα+ α (Rij − 8π Sij)

]tf
+ α

[
(K̂ + 2Θ)Ãij − 2 Ãk

iÃkj

]

+ βk ∂kÃij + 2 Ãk(i ∂j)β
k − 2

3
Ãij ∂kβ

k,
�

(33)

for the extrinsic curvature. For the contracted conformal Christoffels we have,

∂tΓ̃
i = −2 Ãij ∂jα+ 2α

[
Γ̃i

jk Ã jk − 3
2
Ãij ∂j ln(χ)−

2
3
γ̃ij ∂j K̂ − 8π γ̃ij Sj

]
+ γ̃ jk ∂j∂kβ

i

+
1
3
γ̃ij∂j∂kβ

k + β j ∂jΓ̃
i − (Γ̃d)

j ∂jβ
i +

2
3
(Γ̃d)

i ∂jβ
j − 2ακ1

[
Γ̃i − (Γ̃d)

i].
�

(34)

The difference between Z4c and the present formulation, displayed in (7), propagates through 
the change of variables resulting in the disappearance of the Θ constraint from this equation. 
Finally we have,

∂tΘ =
1
2
α
[
R− Ãij Ãij +

2
3
(K̂ + 2Θ)2

]
− α

[
8π ρ+ κ1 (2+ κ2)Θ

]
+ βi∂iΘ.

�
(35)

This system can be trivially implemented in a moving puncture code as a modification of 
either the Z4c or BSSNOK formulations. Within this decomposition the intrinsic curvature is 
written as,

Rij = Rχ
ij + R̃ij,

R̃χ
ij =

1
2χ

D̃iD̃jχ+
1
2χ

γ̃ij D̃lD̃lχ− 1
4χ2 D̃iχD̃jχ− 3

4χ2 γ̃ij D̃
lχD̃lχ,

R̃ij = −1
2
γ̃lm ∂l∂mγ̃ij + γ̃k(i ∂j)Γ̃

k + (Γ̃d)
kΓ̃(ij)k + γ̃lm

(
2Γ̃k

l(i Γ̃j)km + Γ̃k
im Γ̃klj

)
.

�
(36)

The equations  above are constrained by two algebraic expressions, ln(det γ̃) = 0 and 
γ̃ijÃij = 0, which we stress must be explicitly imposed in numerical applications if the analy-
sis contained in this work is to be valid.

2.4.  Second order boundary conditions on the conformal variables

Suitably constructed high order BCs, namely those in which L is taken to be a large number, 
are expected to more efficiently absorb outgoing gauge, constraint violating, and gravitational 
waves [4, 11, 60, 63]. Unfortunately, their implementation requires the definition of auxiliary 
fields confined to the boundary St, which is an involved technical exercise. The improved 
absorption properties of high order conditions has been demonstrated in an implementation 
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for a first order reduction of the GHG formulation [64]. For the GHG system the task is made 
more straightforward by the simple characteristic structure of the formulation. As a compro-
mise we start by considering the simple case L = 1, the highest order BCs that do not require 
the definition of auxiliary variables for implementation. These conditions have the advantage 
that they can be easily implemented in a code, but the serious disadvantage that we can not 
show estimates for the initial boundary value problem. They are however constraint preserving, 
and in some approximation do minimize spurious reflections of gravitational waves from the 
outer boundary. We will see in the analysis that the failure to obtain estimates with low order 
derivative boundary conditions is caused primarily by the complicated characteristic structure 
of the gauge conditions. The boundary orthogonality condition adds another unwanted com-
plication to the implementation of the boundary conditions. We are thus interested here in giv-
ing a prescription to implement an approximation to our true conditions easily in a standard 
numerical relativity code, which we hope can serve as a holdover giving improved behavior 
until the boundary orthogonality condition can be properly managed and our higher order 
conditions can be employed. Therefore we also modify the conditions by lower order terms, 
and adjust the given data so as to drop the boundary orthogonality condition.

2.4.1.  Gauge boundary conditions.  We assume in this section  that ηχ = ηL = 0. We start 
with the lapse condition (15) with L = 1, which becomes,

∂tK̂ =̂− α
√
µL ∂sK̂ − 1

2
∂A∂Aα+ α∂2

t hα + βi∂iK̂,� (37)

for the extrinsic curvature. Note that in this equation we have adjusted the expressions by 
non-principal terms, and redefined the given data. Altering these terms does not affect well-
posedness of the IBVP. We have chosen this type of condition because it minimizes the num-
ber of derivatives required to show boundary stability. Numerically, however, these conditions 
have been found to cause a drift of the lapse. Therefore, in practice, it may be more useful to 
use similar high-order conditions, but with the iaµL

∂a  operator applied to K̂ .
Next is the boundary condition for the longitudinal component of the shift. Using the equa-

tions of motion (10) and (34) we arrive at,

∂tΓ̃
s=̂− α

√
µSL ∂iΓ̃

i + χ−1∂A(∂Aβ
s − ∂sβA)−

4α
3χ(µL − µSL)

(√
µSLLnK̂ + µLLsK̂

)

+ α∂2
t hSL + βi∂iΓ̃

s.
� (38)

The LnK̂  term can be substituted from the lapse boundary condition. Here we have dropped 
several non-linear terms, but also terms involving the gamma-driver damping term η. For 
applications one will have to experiment with including this term to be sure that the longitudi-
nal part of the shift does not grow in an uncontrolled way.

The remaining two BCs for the gauge conditions are,

∂tΓ̃
A =̂− α

√
µS

[
∂sΓ̃

A − ∂AΓ̃s
]
− 4α

3χ
∂AK̂ +

1
χ
∂B∂Bβ

A

+
4
3χ

∂A∂sβ
s +

1
3χ

∂A∂Bβ
B + βi∂iΓ̃

A,
� (39)

in the vector sector. Here we have dropped non-principal terms and set the given data to 
vanish.
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2.4.2.  Constraint preserving boundary conditions.  In terms of the conformal variables, the 
constraint preserving conditions for Θ with L = 1 can be written,

∂tΘ=̂− α
√
µC

(
∂sΘ+

1
r
Θ
)
+ βi∂iΘ.� (40)

The longitudinal part of the Zi boundary condition (22) is given by,

∂tÃss =̂ − αχ

{
2 D̃iÃis −

4
3
D̃sK̂ − 2

3
Rss +

2
3
χ∂s

[
Γ̃s − (Γ̃d)

s
]
− 1

3
χ∂A

[
Γ̃A − (Γ̃d)

A
]

+
1
3
Rqq − 3 D̃i(lnχ)Ãis − κ1

[
Γ̃s − (Γ̃d)s

]}
+ α

[
Ãss (K̂ + 2Θ)− 2 Ãi

s Ãis

]
− 2

3
χDsDsα

+
1
3
χDADAα+ LβÃss,

�

(41)

in the scalar sector. In the vector sector, the low order conditions (22) become,

∂tÃsA =̂− αχ

{
D̃iÃiA −

2
3
D̃AK̂ − RsA − 3

2
D̃i(lnχ) ÃiA −

1
2
κ1

[
Γ̃A − (Γ̃d)A

]

+
1
2
χ qAi ∂s

[
Γ̃i − (Γ̃d)

i
]}

− χDADsα+ α
[
ÃsA (K̂ + 2Θ)− 2 Ãi

AÃis

]
+ LβÃsA.

� (42)
In the conformal decomposition of these BCs, it is important to keep all of the non-principal 
terms. Otherwise, the BCs will not be truly constraint preserving. Note that we are assuming 
compact support, away from the boundary of matter fields.

2.4.3.  Radiation controlling boundary conditions.  After the conformal decomposition, 
lengthy calculations reveal that the L = 1 radiation controlling condition is

∂tÃTF
AB =̂− α

[
D̃sÃAB − D̃(AÃB)s +

1
2
Ãs(AD̃B)(lnχ)−

1
2
ÃABD̃s(lnχ) + Ãi

A ÃiB −
2
3
ÃAB (K̂ + 2Θ)

]TF

+ αχ
[
(ιA ιB − υA υB)Re(∂2

t hΨ0) + 2 ι(A υB) Im(∂2
t hΨ0)

]
− χDADTF

B α+ LβÃTF
AB,

� (43)
where Re(hΨ0) and Im(hΨ0) denote the real and imaginary parts of the boundary data hΨ0, 
respectively. Similarly to the constraint preserving conditions, for true control of the Weyl 
scalar Ψ0, all of the non-principal terms are required in these conditions. Note that in this sub-
section the spatial Ricci tensor as given in (36) should be evaluated without using the evolved 
contracted conformal Christoffels Γ̃i , but rather with (Γ̃d)

i. This happens because we use the 
boundary conditions to manipulate the equations of motion.

2.4.4.  Implementation.  Remarkably, these expressions for the BCs suggest a natural gen-
eralization to three-dimensions of the approach used for implementation inside a numerical 
relativity code in spherical symmetry [5]. Given a smooth boundary, the recipe is to popu-
late as many ghostzones as required to compute finite differences and artificial dissipation 
at the boundary as in the bulk of the computational domain. Then, the standard evolution 
equations are used to update the metric components at the boundary, whilst the remaining 
variables are updated with (38)–(43). This recipe has been used successfully in the evolution 
of blackhole and neutron star spacetimes [5] in spherical symmetry. Similar conditions were 
also used in full 3D numerical relativity simulations of compact binary objects with the Z4c 
formulation, so there is reason to be optimistic that the recipe will work, although naturally a 
proof of numerical stability is desirable, at least for the linearized problem.
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3.  Well-posedness analysis

To prove that the resulting IBVP with the proposed BCs, namely equations (15), (18), (21), 
(24) and (30), is well-posed, we work in the frozen coefficient approximation, where one con-
siders small amplitude, high-frequency perturbations of a smooth background solution [2, 65]. 
As pointed out before, this is the regime important for continuous dependence of the solution 
on the given data. It is expected that if the resulting problem is well-posed in this approx
imation the original nonlinear system will also be locally well-posed [1, 2].

3.1.  Basic strategy

Since there are a number of different ingredients in the analysis, we begin by summariz-
ing our basic strategy. There are six key points. First we make a gauge choice that renders 
the PDE system strongly hyperbolic of constant multiplicity, which guarantees applicability 
of the Kreiss–Agranovich–Métivier theory. Second, to apply the theory we work in the lin-
ear high-frequency frozen coefficient approximation. Third, we perform the Laplace–Fourier 
transform, and make a pseudo-differential reduction to first order, resulting in a first order 
ODE system. Fourth, to represent the general solution of the system in a convenient form 
we choose dependent variables in which the equations of motion have a particular structure. 
This choice enables us to compute the solution easily in computer algebra (see Mathematica 
notebooks [66]). With the solution in hand we transform back to the original variables. Fifth, 
we express the high order boundary conditions in an algebraic form. Finally we substitute the 
general solution into the boundary conditions and solve in order to show boundary stability.

3.2.  Strong hyperbolicity and multiplicity of speeds

To apply the theory outlined in the following subsection we need conditions under which the 
system is strongly hyperbolic of constant multiplicity. Choosing an arbitrary unit spatial vec-
tor si, not to be confused with the outward pointing normal used elsewhere in the paper, the 
principal symbol of the system coupled to the puncture gauge can be trivially read off from the 
principal part of the equations of motion under a 2+ 1 decomposition against si and discard-
ing transverse derivatives. For convenience in this section we denote,

Γ̂i = χ Γ̃i +
1
2
ηχ γ̃ij∂jχ.� (44)

In the scalar sector we have,

∂tα � −α2 µL K̂ + βs ∂sα,

∂tK̂ � −∂s∂sα+ βs ∂sK̂,

∂tβ
s � α2 µS Γ̂

s − α ηL ∂sα+ βs ∂sβ
s,

∂tΓ̂
s � µC ∂s∂sβ

s − αµC ∂s K̂ + βs ∂sΓ̂
s,

∂tγqq � −2αKqq + βs ∂sγqq,

∂tKqq � −1
2
α∂s∂sγqq + βs ∂sKqq,

∂tΘ � −1
2
α∂s∂sγqq + α∂sZs + βs ∂sΘ,

∂tZs � −α∂sKqq + αµC ∂sΘ+ βs ∂sZs.

� (45)
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where ≃ denotes equality up to transverse derivatives and non-principal terms. In the vector 
sector,

∂tβ
A � α2 µS Γ̂

A + βs ∂sβ
A,

∂tΓ̂
A � ∂s∂sβ

A + βs ∂sΓ̃
A,

∂tKsA � α∂sZA + βs ∂sKsA,
∂tZA � α∂sKsA + βs ∂sZA.

�

(46)

Finally, in the tensor sector

∂tγ
TF
AB � −2αKTF

AB + βs ∂sγ
TF
AB,

∂tKTF
AB � −1

2
α∂s∂sγ

TF
AB + βs ∂sKTF

AB.
� (47)

Strong hyperbolicity, that is the existence of a pseudo-differential reduction to first order pos-
sessing a principal symbol with a complete set of eigenvectors and imaginary eigenvalues 
[67], is equivalent to the existence of a complete set of characteristic variables [68] subject 
to a suitable uniformity condition. Except in special cases discussed below the equations of 
motion are strongly hyperbolic. The characteristic variables of the scalar sector are,

u±µL = K̂ ± 1
µL

∂s lnα,

u±µSL
= Γ̂s ±

√
µSL

αµS
∂sβ

s −
√
µSL

µS(µL − µSL)

[√
µSL(1− ηL) ∂s lnα∓ (µSL − ηL µL)K̂

]

u±1H,M = Kqq ±
1
2
∂sγqq,

u±1Θ,Z = −1
2
∂sγqq ±Θ+ Zs,
�

(48)

with speeds seen by the normal observer in the foliation ∓√
µL ,±

√
µSL ,∓1 and ±1. These 

variables are degenerate when µSL = µL, unless the harmonic gauge is chosen. The character-
istic variables in the vector sector are,

uA±µS
= Γ̂A ± 1

α
√
µS

∂sβ
A,

uA±1 Z,M = ZA ± KsA,
� (49)

with speeds ±√
µS  and ±1. In the tensor sector we have characteristic variables

uTF±1 AB = ∂sγ
TF
AB ± 1

2
KTF
AB,� (50)

with speeds ±1.
In typical evolutions of asymptotically flat data we have that 0 � α � 3/2 and γ � 1. 

Therefore, by choosing µS sufficiently large we may expect to avoid the degenerate special 
case mentioned above, and clashing speeds so that for example either µL < µS = µSL or 
µL < µS < µSL.

3.3.  Kreiss–Agranovich–Métivier Theory

In order to prove that the resulting IBVP of the system is well-posed, we use a theory devel-
oped by Kreiss [69] which gives us necessary and sufficient conditions for the well-posedness 
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of the IBVP for strictly hyperbolic systems. Agranovich has extended this theory to the case in 
which the system is strongly hyperbolic and the eigenvalues have constant multiplicity [70]. A 
more recent, and more digestible, demonstration of the theory can be found in [71], although 
there the terminology differs slightly from ours. Here we briefly review this theory.

3.3.1.  Basic system.  Consider a hyperbolic first order system

∂tu = Ai ∂iu+ F = Ax ∂x u+
d∑

A=2

AA ∂Au+ F,� (51)

with variable coefficients on the half-space t � 0, x � 0 and −∞ < xA < ∞, where the index 
A ∈ [2, · · · , d], where u is an d-dimensional vector, Ax  and AA are d × d matrices and F  is a 
source term. We assume that (51) is strongly hyperbolic with constant multiplicity. This means 
that the principal symbol P = Ai si, where si is an arbitrary spatial vector at any point in space, 
has a complete set of eigenvectors, which depend smoothly on si, such that the number of 
coincident eigenvalues is constant over si and in space. With this assumption we furthermore 
restrict our attention to an arbitrary point on the boundary and work in the frozen coefficient 
approximation, so from here we assume that Ai is constant.

3.3.2.  Boundary conditions.  Assuming that Ax  is non-singular, it can be rewritten in the form,

Ax =

(
−ΛI 0
0 ΛII

)
,� (52)

with ΛI and ΛII real and positive definite diagonal matrices of order m and d − m, respectively. 
We impose m BCs at x = 0 in the form

LI uI(t, x)
∣∣
x=0 =̂ LII uII(t, x)

∣∣
x=0 + g(t, xA),� (53)

where LI  and LII  are d × m and d × (d − m) constant matrices, respectively, and g = g(t, xA) 
is given boundary data vector. Finally, we consider trivial initial data u(0, x, xA) = 0.

3.3.3.  Laplace–Fourier transform.  In the following, we solve the above IBVP by performing 
a Laplace–Fourier (LF) transformation with respect to the directions t and xA tangential to the 
boundary x = 0. Let ũ = ũ(s, x,ωA) denote the LF transformation of u(t, x). Then, ũ satisfies 
the ordinary differential system

∂xũ = M(s,ω) ũ+ F̃, on x ∈ (0,∞),

LIũI =̂ LII ũII + g̃, at x =̂ 0,
� (54)

where ̃g and F̃  denote the LF transformation of g and F , respectively. In applications boundary 
conditions typically contain derivatives, but after LF transform we see that such conditions 
can nevertheless be written in this form, although we need then to take care of the norms in 
which estimates can be obtained. The matrix M is given by,

M(s,ω) = (Ax)−1 (s Id×d + iωA AA),� (55)

and Im×m  is the identity matrix.

3.3.4.  General solution and theorems.  If τi and ei(s,ω) are the corresponding eigenvalues, 
with negative real part, and eigenvectors of M respectively then, assuming that F̃  vanishes, the 
L2 solution of the above ODE system is given by,
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ũ =
m∑
i=1

σi ei(s,ω) exp(τi x),� (56)

where σi’s are complex integration constants which are determined by the boundary condi-
tions. In the case that M is missing eigenvectors the general solution is modified in a standard 
way by a polynomial expression in x and using generalized eigenvectors. By substituting (56) 
into the expression (54) we obtain a system of m linear equations for the unknown σi’s.

Definition.  The IBVP above system is called boundary stable if, for all Re(s) > 0 and 
ω ∈ R, there is a positive constant C which does not depend on s, ω and g̃ such that

|ũ(s, 0,ω)| � C |g̃(s,ω)|.� (57)

It is straightforward to show that boundary stability is a necessary condition for well-pos-
edness [65]. Agranovich showed that if the system is strongly hyperbolic with eigenvalues of 
constant multiplicity and boundary stable then there exists a smooth symmetrizer R̂ = R̂(s,ω) 
with the following properties [70]:

	 •	 R̂ is a Hermitian matrix,
	 •	there is a positive constant C1 such that

R̂MI +M∗
I R̂ � C1 Re(s) Im×m,

	 •	for all ũ which satisfy the boundary conditions (54), there are positive constants C2 and 
C3 such that

〈
R̂ ũ, ũ

〉
+ C2 |g̃| � C3 |ũ|2, at x = 0,

where 〈·, ·〉 and | · | denote the scalar product in Cd and the corresponding norm, respectively. 
Therefore, using this symmetrizer, the well-posedness of the above IBVP can be established 
via a standard energy estimation in the frequency domain. By inverting the LF transformation, 
one can show that [8, 69, 70]

Theorem.  If the above IBVP is boundary stable then it is strongly well-posed in the gener-
alized sense. The solution u = u(t, xi) satisfies the estimation
∫ t

0
‖u(·, τ)‖2Σ dτ +

∫ t

0
‖u(·, τ)‖2∂Σ dτ � KT

{∫ t

0
‖F(·, τ)‖2Σdτ +

∫ t

0
‖g(·, τ)‖2∂Σ dτ

}
,

� (58)

in the interval 0 � t � T  for a positive constant KT which does not depend on F and g. Here 
‖ · ‖Σ, ‖ · ‖∂Σ denote the L2 norm with respect to the half-space and the boundary surface, 
respectively.

As pointed out earlier (see for instance [2]), using pseudo-differential operators and the 
symmetrizer R̂, well-posedness can be established in the variable coefficient and quasilinear 
case.

3.3.5.  Second order systems.  The equations of motion are not a first order system of the form 
(51), but fortunately this issue can be side-stepped by following [8]. Since the theory summa-
rized here is developed with pseudo-differential calculus, the results carry over to hyperbolic 
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systems of higher order by working with an appropriate first order pseudo-differential reduc-
tion of the form (54), which is the strategy we adopt.

3.4.  Laplace–Fourier transformed system

In the frozen coefficient approximation, only the principal part of the equations of motion is 
considered and the coefficient appearing in front of any operator is frozen to its value at an 
arbitrary point p. By performing a suitable coordinate transformation which leaves the folia-
tion Σt = {t} × Σ invariant, it is possible to bring the background metric into the form [11],

ds2( p)|p = −dt2 + (dx+ β̊ dt)2 + dy2 + dz2,� (59)

where β̊ is a constant, which we will assume to be smaller than one in magnitude. This is a 
condition which holds near the boundary since the boundary surface T  is, by assumption, 
time-like. If, as will typically be the case, we insist on imposing boundary conditions under 
the boundary orthogonality condition we have β̊ = 0. We will, nevertheless, keep track of the 
background shift for as long as possible to help clarify the resulting difficulties.

The non-linear IBVP for the formulation is thus reduced to a linear constant coefficient 
problem on the manifold Ω = (0,∞)× Σ, where Σ = {(x, y, z) ∈ R3 : x > 0} is the half-
plane. Restricting our attention to the high-frequency frozen coefficient limit, and performing 
the LF transform, we define a triad from the vectors x̂i, ω̂A, ν̂A, where x̂i = −si with si the 
unit normal to the boundary as before, ωA is the wave vector from the Fourier transform, and 
ωA = ω ω̂A with ω =

√
ωA ωA . Note again that these quantities are now defined with respect 

to the background metric. We form a projection operator into the boundary from the two 
members of the basis,

qij = ω̂iω̂j + ν̂iν̂j,� (60)

which is compatible with the projection operator used in the strong hyperbolicity analysis. 
For later convenience, we introduce the normalized quantities ω′ = ω/κ and s′ = s/κ with 
κ =

√
|s|2 + ω2 . We decompose the resulting ODE system against the triad as,

γ̃ij = x̂i x̂jγ̃x̂x̂ +
1
2
qij γ̃qq + 2 x̂(i ω̂j) γ̃x̂ω̂ + 2 x̂(i ν̂j) γ̃x̂ν̂ + 2 ω̂(i ν̂j) γ̃ω̂ν̂ + ν̂i ν̂j γ̃ν̂ν̂ ,

� (61)
where here and in what follows, lapse, shift and metric components marked with a tilde denote 
the corresponding Laplace, with respect to t, and Fourier transformed, with respect to y and 
z, quantity, and are not to be confused with the conformal metric used in numerical applica-
tions. For details on the LF approach please refer to e.g. [44]. This decomposition results in 
the second order ODE system,

κ2L2
0 α̃ = µL (∂

2
x − ω2) α̃,

κ2L2
0 β̃x̂ = µS (µC ∂

2
x − ω2) β̃x̂ + µS (µC − 1) iω ∂xβ̃ω̂ +

(µSL

µL
− ηL

)
κL0 ∂xα̃,

κ2L2
0 β̃ω̂ = µS (∂

2
x − µC ω

2) β̃ω̂ + µS (µC − 1) iω ∂xβ̃x̂ +
(µSL

µL
− ηL

)
iω κL0α̃,

κ2L2
0 β̃ν̂ = µS (∂

2
x − ω2) β̃ν̂ ,

� (62)
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for the gauge variables and

κ2L2
0 γ̃x̂x̂ = (∂2

x − ω2) γ̃x̂x̂ +
1
3
(1− ηχ) ∂

2
x (γ̃x̂x̂ + γ̃qq) + 2

(
1− ηL

µS

)
∂2
x α̃+ 2

(
1− 1

µS

)
κL0 ∂xβ̃x̂,

κ2L2
0 γ̃qq = (∂2

x − ω2) γ̃qq −
1
3
(1− ηχ)ω

2 (γ̃x̂x̂ + γ̃qq)− 2
(
1− ηL

µS

)
ω2 α̃+ 2

(
1− ηL

µS

)
iω κL0 β̃ω̂ ,

κ2L2
0 γ̃x̂ω̂ = (∂2

x − ω2) γ̃x̂ω̂ +
1
3
(1− ηχ) iω ∂x(γ̃x̂x̂ + γ̃qq) + 2

(
1− ηL

µS

)
iω ∂xα̃

+ 2
(
1− 1

µS

)
κL0 (∂xβ̃ω̂ + iω βx̂),

κ2L2
0 γ̃x̂ν̂ = (∂2

x − ω2) γ̃x̂ν̂ +
(
1− 1

µS

)
κL0 ∂xβ̃ν̂ ,

κ2L2
0 γ̃ω̂ν̂ = (∂2

x − ω2) γ̃ω̂ν̂ +
(
1− 1

µS

)
iω κL0 β̃ν̂ ,

κ2L2
0 γ̃ν̂ν̂ = (∂2

x − ω2) γ̃ν̂ν̂ ,
�

(63)

for the metric, where we use the shorthand L0 = s′ − κ−1 β̊ ∂x. To reduce the system to first 
order we use the normalized pseudo-differential reduction variables,

dα̃ = κ−1∂xα̃, dβ̃i = κ−1∂xβ̃i, dγ̃ij = κ−1∂xγ̃ij,� (64)

and decompose them as above. Substituting these definitions into (62) and (63), we can solve 
for the LF equations of motion for the new variables. The reduction is crucial for the applica-
tion of the Kreiss–Agranovich–Métivier theory. We suppress the equations to avoid repetition, 
but they can be found in the Mathematica notebooks that accompany the paper. The symbol 
M(s,ω) of the ODE system resulting from the LF transform can be straightforwardly read off 
from the reduced equations.

3.5.  L2 solution of the reduction

3.5.1.  Change of variables.  To construct the general L2 solution of the first order reduction, 
we begin by transforming to a convenient choice of variables, which we find greatly speeds up 
the calculations in computer algebra. We remove,

{β̃x̂, γ̃x̂x̂, γ̃qq, γ̃x̂ω̂ , γ̃x̂ν̂ , γ̃ν̂ν̂ }

and their corresponding first derivative reduction variable from the state vector and replace 
them with the variables,

Λ̃ = γ̃x̂x̂ + γ̃qq + 2
1− ηL
µSL − µL

α̃,

Θ̃ =
1

2µL
L0α̃− 1

4
L0(γ̃x̂x̂ + γ̃qq) +

1
2
(dβ̃x̂ + iω′β̃ω̂),

Z̃x̂ =
1

2µS
L0β̃x̂ +

ηL
2µS

dα̃− 1
4
µC dγ̃x̂x̂ +

1
4
(2− µC) dγ̃qq −

i
2
ω′ γ̃x̂ω̂ ,

Z̃ω̂ =
1

2µS
L0β̃ω̂ +

ηL
2µS

iω′ α̃+
1
4
(2− µC) iω′ γ̃x̂x̂ −

1
4
µC iω′ γ̃qq +

i
2
ω′ γ̃ν̂ν̂ − 1

2
dγ̃x̂ω̂ ,

Z̃ν̂ =
1

2 µ̃S
L0β̃ν̂ − 1

2
iω′γ̃ω̂ν̂ − 1

2
dγx̂ν̂ ,

γ̃ω̂ω̂ = γ̃qq − γ̃ν̂ν̂ ,
�

(65)
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and also,

DΛ̃ = LµSL
x Λ̃, DΘ̃ = LµC

x Θ̃,

DZ̃x̂ = LxZ̃x̂, DZ̃ω̂ = LxZ̃ω̂ ,

DZ̃ν̂ = LxZ̃ν̂ , Dγ̃ω̂ω̂ = LxDγ̃ω̂ω̂ .

� (66)

Here we have defined,

Lµ
x = κ−1 ∂x + γ2

µ β̊ s′,� (67)

and write L1
x = Lx . We furthermore introduce the shorthand γ−2

µ = µ− β̊2. Note that γ in this 
section is not to be confused with the determinant of the spatial metric, which is fixed in the 
frozen coefficient approximation. We also use,

λµ =

√
s′2 + γ−2

µ ω′2, τµ± = −κ γ2
µ (s

′ β̊ ∓ √
µλµ),� (68)

and write τ ′µ± = τµ±/κ. In the definition of λµ we take the square root to have positive real 
part. We likewise write γ1 = γ, λ1 = λ and τ1± = τ±. To further simplify the form of the 
ODE system we replace dα̃, dβ̃ω̂ , dβ̃ν̂ , dγ̃ω̂ν̂ , with

Dα̃ = LµL
x α̃, Dβ̃ω̂ = LµS

x β̃ω̂ ,

Dβ̃ν̂ = LµS
x β̃ν̂ , Dγ̃ω̂ν̂ = Lxγ̃ω̂ν̂ .

� (69)

The choice of variables here seems natural except that one would naively prefer to use β̃x̂ 
rather than Λ̃ and γ̃qq − 2γ̃ν̂ν̂ rather than γ̃ω̂ω̂. Indeed, when working under the boundary 
orthogonality condition this is possible, but if β̊ �= 0 the resulting transformation is not invert-
ible for some s′  with positive real part. Therefore, we make this minor compromise so that we 
can construct the general L2 solution easily in the more general case as well. The composite 
transformation has determinant,

γ2
µC

τ ′3+ τ ′3− τ ′µS+ τ ′µS−

256 γ2
µS

µS
,

and since the real part of s′ is greater than zero the transformation is always invertible. We do 
not require any boundedness property on this transformation. We use it only to arrive at equa-
tions of motion with the convenient lower block diagonal form, which allows us to easily con-
struct the general solution to the ODE system in computer algebra. Once we have the various 
eigenvectors we immediately transform back to the original variables. Note that the constraint 
violating variables are the LF transform of the constraint violations normalized by a factor of κ.

3.5.2.  Reduced equations  of motion.  In terms of these variables, the system splits into a 
number of decoupled or closed subsystems, starting with the Laplace–Fourier transformed 
constraint subsystem,

LxΘ̃ = DΘ̃, LxDΘ̃ = µC γ
4
µC

λ2
µC

Θ̃,

LxZ̃x̂ = DZ̃x̂, LxZ̃ω̂ = DZ̃ω̂ ,

LxDZ̃x̂ = λ2 Z̃x̂ + γ2 (µC − 1)κ−1L0∂xΘ̃,

LxDZ̃ω̂ = λ2 Z̃ω̂ + γ2 (µC − 1) iω′L0Θ̃,

LxZ̃ν̂ = DZ̃ν̂ , LxDZ̃ν̂ = −λ2 Z̃ν̂ .

� (70)

which is coupled to the equations for the gauge variables,
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LµL
x α̃ = Dα̃,� (71)

LµL
x Dα̃ = µL γ

4
µL

λ2
µL

α̃,

LµSL
x Λ̃ = DΛ̃,

LµSL
x DΛ̃ = µSLγ

4
µSL

λ2
µSL

Λ̃− 4 γ2
µSL

(µS − 1)L0Θ̃,

LµS
x β̃ω̂ = Dβ̃ω̂ ,

LµS
x Dβ̃ω̂ = µS γ

4
µS

λ2
µS

β̃ω̂ + γ2
µS

(µL − µS)(ηLµL − µSL)

µL(µL − µSL)
iω′ L0α̃+

1
2
γ2
µS

(µS − µSL) iω
′ (L0Λ̃ + 4 Θ̃

)
,

� (72)
and the metric components,

Lxγ̃ω̂ω̂ = Dγ̃ω̂ω̂ ,

LxDγ̃ω̂ω̂ = γ4λ2 γ̃ω̂ω̂ + γ2(µC − 1)ω′2 Λ̃ +
2 γ2

µL − µSL

[
µL − µSL + µC − 1+

ηL
µS

(µL − µS)
]
ω′2 α̃

+ 2 γ2 1− µS

µS
iω′L0β̃ω̂ .

�

(73)

The second subsystem is completely decoupled, and is formed from the remaining shift and 
metric components,

LµS
x β̃ν̂ = Dβ̃ν̂ , LµS

x Dβ̃ν̂ = µS γ
4
µS

λ2
µS

β̃ν̂ ,

Lxγ̃ω̂ν̂ = Dγ̃ω̂ν̂ , LxDγ̃ω̂ν̂ = γ4λ2 γ̃ω̂ν̂ + γ2 1− µS

µS
iω′L0β̃ν̂ .

�
(74)

3.5.3.  Properties of the symbol.  The two decoupled subsystems (70)–(73) and (74) can be 
written in the form,

∂xũ = κMũ.� (75)

Ordering the state vector according to equations (70)–(73) and (74), the symbol of these two 
subsystems has a lower block diagonal form, a familiar structure as identified in [48],

M =

(
A 0
B C

)
.� (76)

In the first decoupled subsystem (70)–(73) there are in fact two natural places for such a 
partition, namely after DZ̃ν̂ and similarly after after Dβ̃ω̂ in the state vector. For the second 
decoupled subsystem (74) the partition lies after Dβ̃ω̂. The upper left block of the first system, 
corresponding to the constraint subsystem, has eigenvalues τ ′µC±, and τ ′± of multiplicity three, 
and a complete set of eigenvectors for every s′  and ω′. The central block of (70)–(73), corre
sponding to part of the pure gauge subsystem, has eigenvalues τ ′µL±, τ

′
µSL±

τ ′µS±, each of mul-
tiplicity one and likewise a complete set of eigenvectors for every frequency. The lower right 
block has eigenvalues τ ′± and a complete set of eigenvectors. The decoupled subsystem (74) 
has eigenvalues τ ′µC±, τ

′
± and again a complete set of eigenvectors at every frequency. The 

eigenvalues of the full principal symbol are simply the union of those of the various subsys-
tems. For a generic gauge condition, the full principal symbol of the subsystem (70)–(73) is 
diagonalizable unless s′ = ±β̊ ω′. Diagonalizability when s′ = ±β̊ ω′ is restored by restrict-
ing the gauge choice to,

µSL = µS = ηL,� (77)
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a special case that includes the harmonic gauge. Since the square root in λµ has positive real 
part for Re(s′) > 0,

Re(λµ) � Re(s′),� (78)

and since Re(s′) is a strictly positive parameter it follows that Re(τµ−) < 0 < Re(τµ+). So 
all of the eigenvalues with ‘-’ have negative real part and have corresponding solutions which 
are L2. For s′ �= −β̊ ω′ the eigenvalues τµL−, τµSL−, τµS− , τ− are pairwise distinct, and the full 
principal symbol has a complete set of eigenvectors, thus the L2 solution of the IBVP is of the 
type (56). When s′ = −β̊ ω′, all of the eigenvalues with negative real part clash, with value 
−ω′, and the full principal symbol is missing two eigenvectors, so a polynomial ansatz is 
needed for the associated eigensolutions.

3.5.4.  General Solution for s′ �= −β̊ ω′.  The general L2 solution can be computed from the 
eigenvectors of M. In practice to do this we work with the matrices described in the last sec-
tion and then transform back to the original variables. We now define the abbreviation,

χµ = (β̊ λµ +
√
µ s′) γ2

µ

√
µ.� (79)

For s′ �= −β̊ ω′, the solution at the boundary x = 0 is given by the remarkably simple 
expressions,

α̃ = σα̃,

β̃x̂ =
µSL τ

′
µSL−

2χµSL

σΛ̃ −
(µSL − ηL µL) τ

′
µL−

(µSL − µL)χµL

σα̃ − iω′

τ ′µS−

σβ̃ω̂
,

β̃ω̂ = σβ̃ω̂
+

µSL

2χµSL

iω′ σΛ̃ − µSL − ηL µL

(µSL − µL)χµL

iω′ σα̃,

β̃ν̂ = σβ̃ν̂
,

� (80)

for the gauge variables restricted to the boundary. For the metric we find,

γ̃x̂x̂ = −ω′2

τ ′2−
σγ̃ω̂ω̂

− 2
(1− ηL)µL τ

′2
µL−

(µSL − µL)χ2
µL

σα̃ +
µSL τ

′2
µSL−

χ2
µSL

σΛ̃ − 2 iω′

χµS

σβ̃ω̂
− 4

µC τ
′2
µC−

χ3
µC

σΘ̃ − 2
τ ′−

σZ̃̂x +
2 iω′

τ ′2−
σZ̃ω̂

γ̃qq =
ω′2

τ ′2−
σγ̃ω̂ω̂

+ 2
(1− ηL)µL ω

′2

(µSL − µL)χ2
µL

σα̃ − µSL ω
′2

χ2
µSL

σΛ̃ +
2 iω′

χµS

σβ̃ω̂
− 4

µC ω
′2

χ3
µC

σΘ̃ +
2
τ ′−

σZ̃̂x −
2 iω′

τ ′2−
σZ̃ω̂ ,

� (81)
for the components that would appear in the scalar sector of the principal symbol in the x̂ 
direction. Next we have,

γ̃x̂ω̂ = − iω′

τ ′−
σγ̃ω̂ω̂

− 2
(1− ηL)µL τ

′
µL−

(µSL − µL)χ2
µL

iω′ σα̃ +
µSL τ

′
µSL−

χ2
µSL

iω′ σΛ̃ +
τ ′2µSL−

+ µSω
′2

µS τ ′µSL−
χµS

σβ̃ω̂
+ 4

µC τ
′
µC−

χ3
µC

iω′ σΘ̃ − 2
τ ′−

σZ̃ω̂ ,

γ̃ν̂ν̂ = − χ2

τ ′2−
σγ̃ω̂ω̂

+
2
τ ′−

σZ̃̂x −
2 iω′

τ ′2−
σZ̃ω̂ ,

� (82)
and finally,

γ̃x̂ν̂ = − iω′

τ ′−
σγ̃ω̂ν̂

+
τ ′µS−

χµS

σβ̃ν̂
− 2

τ ′−
σZ̃ν̂ , γ̃ω̂ν̂ = σγ̃ω̂ν̂

+
iω′

χµS

σβ̃ν̂
,� (83)

for the remaining components. Here the σ’s are complex constants to be determined by sub-
stituting the general solution into the boundary conditions. The solution for the reduction 
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variables such as the ones in (69) are given by taking the expression for the corresponding 
metric component and replacing,

σα̃ → τ ′µL−
σα̃, σΛ̃ → τ ′µSL−

σΛ̃, σβ̃ω̂
→ τ ′µ̃S−

σβ̃ω̂
, σβ̃ν̂

→ τ ′µS−
σβ̃ν̂

, σΘ̃ → τ ′µC−
σΘ̃,

� (84)
and σ → τ ′−σ for the remaining free parameters. One can easily show that this functional form 
for the reduction variables follows for such a pseudo-differential reduction of a second order 
system.

3.5.5.  General Solution for the special case s′ = −β̊ ω′.  In the special case, the eigenvectors 
associated with the parameters σZ̃x̂ ,σZ̃ω̂ ,σZ̃ν̂ ,σγ̃ω̂ω̂

 and σγ̃ω̂ν̂ are unaltered, and can be obtained 
just by taking the generic solution at the special frequency. On the other hand, at least for generic 
gauge choices, the eigenvectors associated with the parameters σβ̃ω̂

,σβ̃ν̂
 must be replaced by 

eigenvectors of a different form. All three of the vectors associated with σα̃,σΛ̃ and σΘ̃ are 
replaced by vectors of a different form; two are generalized eigenvectors, the other a true eigen-
vector. Since this part of the solution will not be used in what follows we do not give details.

3.5.6.  Solution with the restricted gauge (77) and s �= −β̊ ω.  Employing the restricted gauge 
(77), the natural form of the solution for general frequencies is altered slightly because we 
can take linear combinations of the previous eigenvectors which now have shared eigenvalues 
in order to simplify the expressions. This amounts to a redefinition of the σ parameters. The 
components α̃, β̃ν̂ , γ̃x̂ν̂ and γ̃ω̂ν̂ are unaffected by the restriction, and can be evaluated just by 
taking the appropriate parameters in the earlier expressions. The remaining components are 
modified, and become

β̃x̂ =
χµSL

2 τ ′µS−

σΛ̃ +
(µL − 1)µS τ

′
µL−

(µS − µL)χµL

σα̃ − iω′

τ ′µS−

σβ̃ω̂
,

β̃ω̂ = σβ̃ω̂
+

(µL − 1)µS

(µSL − µL)χµL

iω′ σα̃,

γ̃x̂x̂ = σβ̃x̂
− 2

τ ′−
σZ̃̂x + 2

(µS − 1)µLτ
′2
µL−

(µS − µL)χµL

σα̃ +
2
τ ′2−

iω′ σZ̃ω̂ − 2 iω′

χµS

σβ̃ω̂
− ω′2

τ ′2−
σγ̃ω̂ω̂

− 2
τ ′2− + ω′2

χ τ ′2−
σΘ̃,

γ̃qq =
2
τ ′−

σZ̃̂x − 2
χ

τ ′2−
σΘ̃ − 2

τ ′2−
iω′ σZ̃ω̂ +

2 iω′

χµS

σβ̃ω̂
+

ω′2

τ ′2−
σγ̃ω̂ω̂

+ 2
µS − 1

(µS − µL)χ2
µL

ω′2 µLσα̃,

γ̃x̂ω̂ = − 2
τ ′−

σZ̃ω̂ − iω′

τ ′−
σγ̃ω̂ω̂

+
i′ ω′

2 τ ′µS−

σβ̃x̂
− 2 iω′

χ τ ′−
σΘ̃ −

2 (µS − 1)µL τ
′
µL−

(µS − µL)χ2
µL

iω′ σα̃ +
(2 τ ′µS−

χµS

− χµS

µSτ ′µS−

)
σβ̃ω̂

,

γ̃ν̂ν̂ =
2
τ ′−

σZ̃̂x −
2χ
τ ′2−

σΘ̃ − 2 iω′

τ ′2−
σZ̃ω̂ − χ2

τ ′2−
σγ̃ω̂ω̂

.

�
(85)

The ‘d’ reduction variables can be evaluated as before, again adjusting the parameters appro-
priately. Note that with the restriction (77) the formulation is really the same as the Z4 system 
coupled to our particular condition on the lapse and shift.

3.5.7.  Solution with the restricted gauge (77) for the special case s = −β̊ ω .  Using the 
restricted gauge the symbol M remains diagonalizable in the special case s = −β ω, but some 
of the eigenvectors do take a different form. The solutions for α̃ and β̃ν̂ are once again unaf-
fected and can be obtained by evaluating the standard previous expressions at the particular 
frequency. The remaining components are modified. The interested reader is directed to the 
Mathematica notebooks that accompany the paper. To show boundary stability we must dem-
onstrate both that the solution is well-behaved at generic frequencies and with this form at this 
special frequency.

D Hilditch and M Ruiz﻿Class. Quantum Grav. 35 (2018) 015006



23

3.5.8. The harmonic gauge.  For the harmonic gauge a possible approach to the IBVP is 
instead to put Sommerfeld boundary conditions on the combinations, see for example equa-
tions (33)–(35) in [11],

−α̃+ β̃x̂ +
1
2
γ̃x̂x̂, β̃ω̂ + γ̃x̂ω̂ , −α̃− 1

2
γ̃x̂x̂, β̃ν̂ + γ̃x̂ν̂ .

These conditions seem a little unnatural from the point of view of the physicist, who may 
view the lapse and shift as encoding the coordinate choice and prefer to specify boundary 
conditions on them directly. Nevertheless, the issue does not pose any mathematical problem 
because in the harmonic gauge these combinations also satisfy wave-equations, and a cascade 
structure of boundary conditions [8] is obtained. It may be possible to extend this construc-
tion to a larger class of gauge conditions, but here we are primarily concerned with generic 
members of the family (10), and so will not attempt to do so. The price we will pay for treating 
generic gauges is that boundary stability can only be obtained by taking high order derivative 
conditions, where as with the cascade structure first derivatives suffice.

3.5.9.  L2 solution for Laplace–Fourier transformed Z4.  In the notebooks that accompany the 
paper [66] we construct for completeness also the general L2-solution for the Z4 formulation 
in the approximation treated here. This should allow the interested reader to investigate bound-
ary stability for a variety of different boundary conditions for that formulation.

3.6.  Laplace–Fourier transformed boundary conditions with the boundary orthogonality 
condition

We perform a LF transformation of the high order BCs, equations (15), (18)–(21), (24), and 
(30). Following [5, 11], we rewrite these conditions in a suitable algebraic form which allows 
one to write down the resulting IBVP for the system as in (54). Defining the linear operator

Lµ =
√
µ s′ − 1

κ
µ ∂x,

� (86)
it turns out that the high order BCs can be rewritten as follows:

3.6.1.  Lapse condition.  The BC (15) becomes

LL+1
µL

α̃ =̂ s′L+1 g̃L,� (87)
with g̃L = µL

(L+1)/2 h̃L the LF transformation of the boundary data gα. Following [5, 11], it 
can be shown show that, using the equations of motion (72), the above condition with L = 0 
can be written as,

LµL

(
α̃

Dα̃

)
= A

(
α̃

Dα̃

)
,� (88)

where the matrix A is given by,

A =

(√
µL s′ −µL

−λ2
µL

√
µL s′

)
.� (89)

Since LµL is a linear operator, it is straightforward to show that, after applying this operator 
m times, we obtain,
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Lm
µL

(
α̃

Dα̃

)
= Am

(
α̃

Dα̃

)
,� (90)

where the matrix Am satisfies

Am =
1
2


 am+ + am− − 1

−τ ′
µL−

(am+ − am−)

− 1
−τ ′

µL−
(am+ − am−) am+ + am−


 .

Here a± =
√
µL (s′ ∓

√
µL τ

′
µL−) are the eigenvalues of the matrix A. Therefore, the BC oper-

ator in (87) can be brought into the form (54) with

Lα =
1
2

(
aL+1
+ + aL+1

− , − (aL+1
+ −aL+1

− )

−τ ′
µL−

)
,� (91)

for any integer L � 1.

3.6.2.  Longitudinal component of the shift vector.  After the change of variables (34), the LF 
version of the shorthand Bx̂  is B̃x̂ = 2 Θ̃ + s′ Λ̃/2. The BC (18) becomes

LL−1
µSL

B̃x̂ =̂ s′L+1 g̃SL ,� (92)

where g̃SL = µSL
(L+1)/2 h̃SL. Notice that since B̃x̂  satisfies the wave equation we have

∂2
x B̃x̂ + τ ′

2
µSL−

B̃x̂ = 0,� (93)

then, by using the above procedure, it is easy to show that the BC operator (92) can be written 
as

Lβx̂ =
1
2

(
bL−1
+ + bL−1

− , − (bL−1
+ −bL−1

− )

−τ ′
µSL−

)
,� (94)

where b± =
√
µSL (s

′ ∓√
µSL τ

′
µSL−

) for any integer L � 1.

3.6.3. Transversal components of the shift vector.  The LF version of the condition (20) is,

LL
µS
B̃A =̂ s′L−1 −τ ′

2
µS− g̃AS ,� (95)

where the shorthand B̃A and the boundary data are

B̃A = (Dβ̃ω̂ − iω′ β̃x̂) δ
A
ω̂ + Dβ̃ν̂ δ

A
ν̂ ,

g̃AS = 2µ(L−1)/2
S

(
h̃ω̂S δAω̂ + h̃ν̂S δ

A
ν̂

)
.

� (96)

Once again the combination Dβ̃ω̂ − iω′ β̃x̂, which can be written as

Dβ̃ω̂ − iω′ β̃x̂ =
i s′ ω′ (ηL µL − µSL)Dα̃

λµS (µL − µSL)
+

s′2 Dβ̃ω̂

λµS

− 2 iµS ω
′ DΘ̃

λµS

− i s′ µSL ω
′ DΛ̃

2λµS

,

� (97)
satisfies a wave equation with propagation speed µS. Therefore, the boundary conditions on 
the transversal components of the shift vector can be recast in the form

LAS =
1
2

(
cL+ + cL−, − (cL+−cL−)

−τ ′
µS−

)
,� (98)

with c± =
√
µS (s′ ∓

√
µS τ

′
µS−

) for any integer L � 1.
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3.6.4.  Constraint preserving BCs.  The BC on the Θ̃ constraint in the LF space is given by,

LLΘ̃ =̂ s′L+1 g̃Θ,� (99)

with g̃Θ = µ
L/2
C h̃Θ and, since the constraints satisfy a wave equation the boundary operator 

can be written as

LC =
1
2

(
dL+ + dL−, − (dL+−dL−)

−τ ′
µC−

)
,� (100)

with d± =
√
µC (s′ ∓

√
µC τ

′
µC−) for L � 1. The lowest order BC for Zi can be specified in 

the above form with d± = s′ ∓ τ ′−. For the remaining conditions we have

LL−1X̃i =̂ s′L−1 λ2 h̃iZ ,� (101)

where

X̃i =
(
s′Z̃x̂ − µC DΘ̃

)
δix̂ +

(
s′Z̃ω̂ − µC iω Θ̃

)
δiω̂ + s′Z̃ν̂ δiν̂ .� (102)

Therefore, the LF version of the boundary operator in the condition (24) can be written as

LZ =
1
2

(
f L−1
+ + f L−1

− , − ( f L+−f L−)

−τ ′
−

)
,� (103)

with f± = s′ ∓ τ ′− for L � 2.

3.6.5.  Radiation controlling BCs.  To obtain the LF version of the condition on the incoming 
gravitational radiation (30), we perform a LF transformation in both the orthogonal vectors ιi 
and υi defined in (3) and the electric and magnetic parts of the Weyl tensor which allows the 
construction of Ψ̃0 in the LF space. The resulting basis must be related with (ω̂, ν̂) through an 
SO(2)-rotation of angle θ, namely,

ι = ν̂ cos θ − ω̂ sin θ,
υ = ν̂ sin θ + ω̂ cos θ.
� (104)

Therefore, the LF version of the radiation controlling condition can be written in the form,

LL−1Re( ˜̂Ψ0) =̂ s′L+1 g̃Re(Ψ0),

LL−1Im(
˜̂
Ψ0) =̂ s′L+1 g̃Im(Ψ0),

� (105)

with

Re( ˜̂Ψ0) = Re(Ψ̃0), Im(
˜̂
Ψ0) = Im(Ψ̃0),� (106)

for L = 1. For higher order conditions (L � 2) we have,

Re( ˜̂Ψ0) = Re(Ψ̃0)− µC ω
′2 cos(2θ) Θ̃,

Im(
˜̂
Ψ0) = Im(Ψ̃0) + µC ω

′2 sin(2θ) Θ̃,
� (107)

where the shorthand Ψ̃0 is the LF transformation of Ψ0. The LF transformation of the given 
boundary data is given by

g̃Re(Ψ0) = Re(h̃Ψ0), g̃Im(Ψ0) = Im(h̃Ψ0).� (108)
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As before, for high derivative order, we can rewrite the conditions (105) in algebraic form 

by using that ˜̂Ψ0 satisfies a wave equation. One can show that the boundary operator can be 
brought into the form

LΨ0 =
1
2

(
gL−1
+ + gL−1

− , − (gL−1
+ −gL−1

− )

−τ ′
−

)
,� (109)

with g± = s′ ∓ τ ′− for L � 2.

3.7.  Well-posedness results using fifth order BCs, the boundary orthogonality condition and 
general gauges

3.7.1. The solution.  In the following calculations we employ the final shorthand 
Π′

µ = s′ −√
µ τ ′µ−. As before, we write Π′

1 = Π′. In the LF space, the L2 solution for the 
gauge variables at the boundary with fifth order BCs (L = 4) is given by:

α̃ =̂
s′5

Π′5
µL

g̃α,

β̃x̂ =̂ −
(ηL µL − µSL) s

′4 τ ′µL−

Π′5
µL

(µL − µSL)
g̃α +

µSL s
′3 τ ′µSL−

Π′4
µSL

g̃βx̂ −
iω′ µ2

S s
′ τ ′2µS−

Π′4
µS

g̃βω̂ ,

β̃ω̂ =̂ −
(
ηL µL − µSL

)
iω′ s′4

Π′5
µL

(µL − µSL)
g̃α +

iω′ µSL s
′3

Π′4
µSL

g̃βx̂ +
iµ2

S s
′ τ ′3µS−

Π′4
µS

g̃βω̂ ,

β̃ν̂ =̂
µS s′3 τ ′µS−

Π′4
µL

g̃ν̂ .

� (110)
The expressions for the metric are slightly more complicated. The longitudinal component of 
the metric perturbation is

γ̃x̂x̂ =̂
2 (1− ηL) µL s′3 τ ′2µL−

Π′5
µL

(µL − µSL)
g̃α +

2 s′ τ ′2−
Π′3 g̃Zx̂ +

2µSL s
′2 τ ′2µSL−

Π′4
µSL

g̃βx̂ +
4 iω′ s′ τ ′2−

Π′4 g̃Zω̂

+
4 (s′ + τ ′−) s

′2

Π′3

[
g̃Re(Ψ0) cos(2 θ)− g̃Im(Ψ0) sin(2 θ)

]
−

2 iω′ µ2
S τ

′3
µS−

Π′4
µS

g̃βω̂
−

4µC s′2τ ′2µC−

Π′4
µC

g̃Θ.

� (111)
The trace of the metric perturbation at the boundary is

γ̃qq =̂
2 s′3 (1− ηL)

(
s′ +

√
µL τ

′
µL−

)

Π′4
µL

(µL − µSL)
g̃α −

2 s′ τ ′2−
Π′3 g̃Ẑx +

2 s′2
(
s′ +√

µSL τ
′
µSL−

)

Π′3
µSL

g̃βx̂ −
4 iω′ s′ τ ′2−

Π′4 g̃Zω̂

+
4 (s′ + τ ′−) s

′2

Π′3

[
g̃Im(Ψ0) sin(2 θ)− g̃Re(Ψ0) cos(2θ)

]
+

2 iω′ µ2
S τ

′3
µS−

Π′4
µS

g̃βω̂
+

4µC s′2 ω′2

Π′4
µC

g̃Θ.

� (112)
For the mixed longitudinal transverse components of the metric perturbation we find

γ̃x̂ω̂ =̂ −
4 s′ τ ′3−
Π′4 g̃Zω̂ +

2 iω′ (1− ηL)µL s′3 τ ′µL−

Π′5
µL

(µL − µSL)
g̃α −

µS (s′2 − 2µS τ
′2
µS−) τ

′2
µS−

Π′4
µS

g̃βω̂
−

2 iω′ s′ τ ′2−
Π′4

g̃Zx̂

−
4 iω′ s′2 τ ′−

Π′4 [g̃Re(Ψ0) cos(2 θ)− g̃Im(Ψ0) sin(2θ)] +
2µSL iω

′ s′2 τ ′µSL−

Π′4
µSL

g̃βx̂ −
4 iµC ω

′ s′2 τµC−

Π′4
µC

g̃Θ.

� (113)
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Next,

γ̃x̂ν̂ =̂
µS s′2 τ ′2µS−

Π′4
µS

g̃βν̂
+

4 s′2 τ ′2−
Π′4 g̃Zν̂ +

4 iω′ s′3

Π′4

[
g̃Im(Ψ0) cos(2θ) + g̃Re(Ψ0) sin(2θ)

]
.

� (114)
Finally, for the transverse-transverse components of the perturbation we have,

γ̃ω̂ν̂ =̂
µS iω′ s′2 τ ′µS−

Π′4
µS

g̃βν̂
−

2 iω′ s′2 τ ′2−
Π′5 g̃Zν̂ −

4 s′3 τ ′−
Π′4 [g̃Im(Ψ0) cos(2θ) + g̃Re(Ψ0) sin(2θ)].

� (115)
and,

γ̃ν̂ν̂ =̂ −
2 s′2 τ ′2−
Π′5

(Π′ g̃Ẑx + iω′ g̃Zω̂ ) +
4 s′4

Π′4

[
g̃Im(Ψ0) sin(2 θ)− g̃Re(Ψ0) cos(2 θ)

]
.

� (116)
The reduction ‘d’ reduction variables can be obtained by replacing the given data in these 
expressions according to the rules,

g̃α → −τ ′µL−
g̃α, g̃βx̂ → −τ ′µSL−

g̃βx̂ ,

g̃βω̂
→ −τ ′µS−

g̃βω̂
, g̃βν̂

→ −τ ′µS−
g̃βν̂

,

g̃Θ̃ → −τ ′µC−
g̃Θ̃,

� (117)

and g̃ → −τ ′− g̃ for the remaining given data. Note that this need not be the case, and is a 
result of the fact that our boundary conditions are very carefully chosen so as not to mix the 
eigensolutions associated with different speeds.

3.7.2.  Boundary stability.  The next step is to show that the above system is boundary stable. 
Examining the right hand sides of the L2 solution, equations (110)–(116), it is clear that we 
must estimate Π′

µ. But following [8, 11] there is a strictly positive constant δ such that,
∣∣Π′

µ

∣∣ =
∣∣∣s′ +

√
s′2 + µω′2

∣∣∣ � δ > 0,� (118)

for all Re(s′) > 0 and ω′ ∈ R with |s′|2 + |ω′|2 = 1. Therefore, the solution of the gauge and 
metric components at the boundaries are bounded by the given boundary data. Figure 2 dis-
plays the largest coefficient of the above L2 solution for ω′ → 1 (|s′| → 0). We note that the 
solution remains continuously bounded. Thus, there is a positive constant C such that,

|α̃(s, 0,ω)| � C |g̃α|.� (119)

Similar arguments hold for the other components. We conclude that the full solution of the 
system with fifth order BCs satisfies the estimate

|ũ(s, x = 0,ω)| � C′ |g̃(s,ω)|,� (120)

for all Re(s) > 0 and ω ∈ R with C′ > 0 a positive constant. We then conclude that the above 
system is boundary stable [69]. As we have seen in section 3.3, it implies that there is a sym-
metrizer R̂ = R̂(s′,ω′) such that [11],

∂x

〈
ũ, R̂ ũ

〉
= 2

〈
ũ, R̂ ∂xũ

〉
=

〈
ũ,
(
R̂M +M∗ R̂

)
ũ
〉
.� (121)

Here we have used the equations of motion. Using the first and second properties of R̂, we 
obtain
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∂x

〈
ũ, R̂ ũ

〉
� C1 η |ũ|2,� (122)

with η = Re(s). Integrating both sides from x = 0 to x = ∞ and using the last property of the 
symmetrizer R̂, it follows that

η

∫ ∞

0
|ũ|2 dx � − 1

C1

〈
ũ, R̂ ũ

〉∣∣∣
x=0

�
1
C1

(
−C3 |ũ|2

∣∣
x=0 + C2 |g̃|2

)
.� (123)

This inequality is the basic estimate in the Laplace–Fourier space, but because our bound-
ary conditions contain many derivatives of the primitive fields, a little more book-keeping is 
required to build an estimate that can be inverted to give an estimate in an appropriate norm, 
involving higher derivatives of the primitive variables in the physical space. Note, crucially, 
that the form of the given data, in particular the choice of derivatives, in the boundary condi-
tions is needed to obtain boundary stability. This form cancels terms that would otherwise 
result in singular behavior breaking boundary stability. This is what prevents us from choosing 
for example lower order L = 1 conditions.

3.7.3. The final estimate.  Following [11], where the estimate (58) has been generalized in 
order to estimate the L2-norm of the higher derivatives of the primitive fields in terms of the 
L2-norm of the given boundary data for all Re(s) > 0 and all smooth solutions u with the 
property that its L+ 1-time derivatives vanish identically at t = 0, we multiply the inequality 
(123) by κ8 to obtain an estimate for the tangential derivatives to the boundary. For the normal 
derivatives, namely second or higher derivatives of the fields, we use the equations of motion 
(75) to obtain,

η

∞∫

0

5∑
l=0

( ∣∣κ5−l ∂l
xα̃

∣∣2 +
3∑

i=1

∣∣∣κ5−l ∂l
xβ̃i

∣∣∣
2
+
∣∣κ5−l ∂l

xγ̃ij
∣∣2 ) dx+

( ∣∣κ5−l ∂l
xα̃

∣∣2 +
3∑

i=1

∣∣∣κ5−l ∂l
xβ̃i

∣∣∣
2

+
∣∣κ5−l ∂l

xγ̃ij
∣∣2 )∣∣∣

x=0
� C

(
|κ5 h̃α|2 + · · ·+ |κ5 Im(h̃Ψ0)|2

)
,

�

(124)

for some strictly positive constant C > 0. Finally, integrating over Im(s) and over all frequen-
cies ωA and using Parseval’s relation we obtain [11],

η ‖α‖2η,5,Ω + η
∑
i

‖βi‖2η,5,Ω + η
∑
ij

‖γij‖2η,5,Ω + η ‖α‖2η,5,T + η
∑
i

‖βi‖2η,5,T + η
∑
ij

‖γij‖2η,5,T

� C5
(
‖hα‖2η,5,T + · · ·+ ‖hΨ0‖2η,5,T

)
,

�
(125)

where C5 is a positive constant, Ω is, as we have mentioned before, the domain of integration, 
T  is the boundary surface and the above L2-norms are defined by,

‖u‖2η,5,Ω =

∫

Ω

e−2 η t
∑
|ρ|�5

|∂ρt
t ∂ρx

x ∂
ρy
y ∂ρz

z u(t, x, y, z)|2 dΩ,� (126)

‖u‖2η,5,T =

∫

T
e−2 η t

∑
|ρ|�5

|∂ρt
t ∂ρx

x ∂
ρy
y ∂ρz

z u(t, 0, y, z)|2dT .� (127)

Here ρ = (ρt, ρx, ρy, ρz) is a multi-index, and we denote dΩ = dt dx dy dz and dT = dt dy dz. 
Adding forcing terms to the equations of motion modifies the estimate (125) in the standard 
way. Here we have dropped the forcing terms F from the estimates, but these can also be dealt 
with exactly as in [11].
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The above result can be easily generalized for high order conditions. One can show that, 
once we have a regular L2-solution for given BCs, i.e. regular coefficients for all ω′ ∈ R and 
Re(s′) > 0, increasing the order the derivatives at the boundary does not generate singular 
coefficients. One then can show that the resulting IBVP is boundary stable and use the above 
procedure to show that the problem is well-posed.

3.8.  Why work under the boundary orthogonality condition?

We saw in the previous sections that using the boundary orthogonality condition results in the 
simplification that β̊ = 0 in the Laplace–Fourier analysis. Since we are able to construct the 
general L2 solution even without this restriction it is natural to ask why we do so. The reason is 
that to pick natural boundary conditions it is very helpful if the symbol M has a simple eigen-
decomposition, for then we may look at the left eigenvectors of M contracted with the state 
vector ũ and essentially read off sensible boundary conditions. Therefore the deficiency of M 
in the special case s′ = −β̊ ω′ is a very serious problem, because conditions that work else-
where in frequency space fail to give control at these special points. The special case appears 
because at this particular frequency all of the relevant eigenvalues, the different τµ−, many of 
which are generically distinct, clash. When this happens the associated eigenspace has to sup-
port many more eigenvectors, but can not. Under the boundary orthogonality condition with 
β̊ = 0 this breakdown of diagonalizability occurs at s′ = 0, but is not a problem because for 
boundary stability we are concerned with the solution in the limit s′ → 0. It may be possible to 
find boundary conditions that are well-behaved also across the bad frequency s′ = −β̊ ω′, but 
doing so will result in several other deficiencies. Such conditions will necessarily require more 
complicated mixing of the eigensolutions in the analysis. This will result in more complicated 
absorption properties and in difficult estimates to perform, for which we do not presently have 
adequate computer algebra tools.

Therefore it is highly desirable to side-step the special case completely. Several strategies 
for this are apparent. The first of these is to try and choose a formulation for which the special 

Figure 2.  The magnitude of the coefficient of the L2 solution in equations (110)–(116) 
with the largest peak. In this particular plot we chose µL = 2,µS = 9/4,µSL = 3, ηL = 0 
and also ω = 1. We see that the coefficients are bounded at this ω even as Re(s′) → 0. 
The estimate (118) shows that this holds at every ω.
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case does not appear. Even if we fix the gauge choice, one might hope that this is possible 
by adjusting the constraint subsystem, and how it is coupled to the gauge variables. We have 
attempted this [66] within the large class of formulations considered in [48], but to no avail. 
The missing eigenvectors are associated with the Λ̃ variable but since this is not a constraint, 
such adjustments do not help. Thus the next option is to change the gauge conditions, which 
we do under duress, because we would like to show well-posedness for arbitrary hyperbolic 
gauges. The highly restricted class containing the harmonic gauge (77) suffices. From the 
PDEs point of view is perhaps not surprising; the simple characteristic structure of the restric-
tion eradicates nearly all coupling between different metric components, but this it must do so 
that hyperbolicity can be achieved with many shared speeds. The symbol M inherits, to a large 
extent, the same decoupling. It may be that these gauges then allow for estimates with fewer 
derivatives, and without using the boundary orthogonality condition. Certainly this is the case 
for the harmonic gauge. Throughout we have focused on evolved gauge conditions where the 
time derivative is naturally given in the form α−1(∂t − βi∂i). The next option for adjusting the 
gauge, which we have not investigated but which we do think may help avoid the special case, 
is to switch to conditions built naturally on the time derivative ∂t. In applications one can eas-
ily transition from the first form to the second, and we expect that in this way the special case 
can be cured, at least for some gauge conditions. As mentioned earlier on, we also expect that 
once a well-posed IBVP is obtained with a particular formulation it will be straightforward 
to obtain well-posedness by employing the dual-foliation formalism [50]. We furthermore 
expect that in this way one will naturally obtain geometric uniqueness.

The final obvious strategy is to work under the boundary orthogonality condition so that 
the special case simply does not occur. This solution is inconvenient the point of view of 
numerical implementation both because of the drifting boundary, and, depending on the gauge 
choice, because of the number of derivatives present in the boundary conditions. But this 
approach is geometrically natural, allowed us to demonstrate boundary stability for a wide 
range of gauge conditions and as shown in section 2.4 allows reasonable approximations of 
the desired conditions to be implemented straightforwardly.

4.  Conclusion

To obtain solutions of the Cauchy problem for asymptotically flat spacetimes in numerical 
GR, one option is to make the computational domain as large as possible so that the boundary 
remains causally disconnected from the central body. Unfortunately the computational cost 
of this option is prohibitive, even if one uses mesh-refinement or compactification to spatial 
infinity, because numerical error can travel faster than physical effects. A second, much more 
elegant, possibility is to evolve initial data which is hyperboloidal, that is, compactified to null 
infinity [72–79], or, along similar lines of thought data in which a Cauchy region is attached 
to a null outer zone [80, 81]. Many obstacles are still to be overcome before such data can be 
routinely evolved, which means that in the immediate future we are left with one option; the 
specification of improved outer boundary conditions for applications. As greater accuracy is 
required of numerical data, or when the boundary becomes an integral part of the physics of 
the system, as in the case of asymptotically AdS spacetimes [82–84], boundary conditions 
must be carefully considered.

In this paper, we were concerned with boundary conditions appropriate for the evolution 
of asymptotically flat spacetimes with the moving puncture method. We considered constraint 
preserving conditions for free-evolution formulations of the Einstein equations coupled to a 
parametrized set of dynamical gauge choices. We derived a new class of high order boundary 
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conditions for this family of gauge conditions. To reduce the amount of spurious gravitational 
wave reflections, we also employ a high order freezing-Ψ0 condition [4, 60]. We analyzed well-
posedness of the resulting initial boundary value problem on a four dimensional spacetime 
with timelike outer boundary by considering high-frequency perturbations of a given smooth 
background solution. Using the Laplace–Fourier transform we showed that the resulting IBVP 
is boundary stable. The Kreiss–Agranovich–Métivier theory, valid even when the system is 
only strongly hyperbolic of constant multiplicity, guarantees that the IBVP is well-posed in 
the frozen coefficient approximation. By virtue of the theory of pseudo-differential operators, 
the general problem is expected to be well-posed too. These results generalize our previous 
study [5] in which the constraint absorption properties of the CPBCs were considered.

This work could be generalized in a number of ways. Firstly one could consider a larger 
family of dynamical gauge conditions. We do not expect such a generalization to be very tax-
ing, provided that one is still able to make the necessary manipulation of the symbol M by 
computer algebra. Another possibility is to maintain the same family of gauge conditions but 
to alter the boundary conditions. By construction our boundary conditions are those that ren-
der the proof of boundary stability as close as possible to that of the wave equation. Therefore, 
besides the trivial reflecting case, we expect that other choices will rapidly become intractable. 
One might also consider in what approximation, if any, a finite difference approximation to 
the IBVP could be shown to be formally numerically stable. Finally one could examine how 
readily the present calculations could be extended to other formulations of GR.
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