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Diapause in response to seasonality is an important model for

rapid evolutionary adaptation that is highly genetically variable,

and experiences strong natural selection. Forward genetic

methods using various genomic and transcriptomic

approaches have begun to characterize the genetic

architecture and candidate genes underlying diapause

evolution. Largely in parallel, reverse genetic studies have

identified functional roles for candidate genes that may or may

not be genetically variable. We illustrate the disconnect

between the evolutionary and physiological literature using a

suite of studies of the role of the circadian clock in diapause

regulation. These extensive studies in two different disciplines

provide excellent opportunities for integration, which should

facilitate rapid progress in understanding both the regulation

and evolution of diapause.
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Introduction
Diapause, a form of dormancy in insects and other

arthropods, is an adaptive and plastic phenotype that

allows insects to persist in seasonally variable environ-

ments. Insects enter diapause in advance of unfavorable

conditions and in response to predictive environmental

cues (Box 1). Because it allows insects to persist and adapt

to new environments, diapause has been a powerful

model for understanding evolution by natural selection

[1]. Moreover, natural populations often harbor ample
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genetic variation affecting both the capacity for and the

timing of diapause (Box 1; [2,3]). This combination of

strong selection and segregating genetic variation allows

diapause to rapidly evolve over contemporary timescales,

including in response to changing climates [4�], develop-

ing agricultural practices [5], and during biological inva-

sions and range expansions [6]. Thus, genetics, selection

and evolution of diapause inform several basic and

applied topics, including the genetic architecture of rapid

adaptation, responses to climate change, evolutionary

physiology, ecological genetics, and opportunities to

uncover novel targets for pest control (Figure 1).

Studying diapause has provided many important insights

into adaptation to variable climates and how physiological

plasticity is regulated in animals. Recently, rapid

advances in ‘-omics’ technologies have led to exciting

progress in understanding the genetic and physiological

mechanisms of diapause regulation and evolution. Previ-

ous reviews discuss the physiological stages of diapause

progression [7], the hormonal regulation of diapause [8],

epigenetic regulation of diapause [9], and diapause ener-

getics [10]. Here, we focus on recent studies of genetic

variation in diapause, emphasizing the progress achieved

by ‘-omics’ approaches. We also point out a continuing

disconnect between forward genetic methods and

reverse, functional genetics, using the role of the circa-

dian clock in regulating diapause as an example. Com-

bining these tools provides a powerful approach to better

understand how diapause evolves, and to better leverage

genetic variation to elucidate how this complex pheno-

type is regulated.

Genetic variation for diapause phenotypes
over space and time
A rich history of studying genetic differentiation across

latitudinal gradients (i.e. ‘clines’) provides an expansive

view of how insects adapt to spatial environmental het-

erogeneity [11,12]. Clines in diapause incidence and/or

annual timing (Box 1) have been described in hundreds of

species and are among the most robust biogeographic

trends in animals [3,13]. These clines are formed as

geographic populations adapt to local conditions along

seasonal gradients. Geographic variation in diapause phe-

notypes (Box 1) has often been leveraged to infer genetic

architecture by crossing laboratory strains derived from

different geographic populations [14,15]. Early studies

often identified simple, nearly Mendelian factors under-

lying diapause variation. The advent of DNA sequencing

and genetic tools enabled finer, molecular genetic
www.sciencedirect.com
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Box 1 Diapause concepts and terms

Diapause: A physiologically dynamic and hormonally controlled state of decelerated or arrested morphological development that allows insects to

survive unfavorable conditions. Diapause is typically induced/terminated by environmental stimuli (e.g. photoperiod or temperature), though some

diapause responses may appear functionally obligate in the field (Figure B1).

Phases of diapause: Different eco-physiological states through which diapausing organisms progress (Figure B1). They are typically described as:

1 Initiation/Induction: The period before an insect enters diapause, characterized by some combination (but not always all) of:

a assessing environmental conditions which may be mediated through measuring daylength via the circadian clock

b regulating energetic resources (increased feeding, decreased insulin signaling/PI3K and upregulating fatty acid synthesis)

c upregulating stress responses (e.g. HSPs [pictured], FOXO activity, cryoprotectants, immune responses)

d regulating hormone levels, for example, prothoracicotropic hormone (PTTH; larval and pupal diapause), Ecdysone (20HE; pupal diapause) or

Juvenile Hormone (JH; adult diapause)

e seeking out protected overwintering sites

2 Maintenance: The period during which the organism is unresponsive to changes in the environment. This usually characterized by cell cycle

arrest and decreases in transcription, cellular respiration and metabolism, allowing organisms to conserve energy reserves.

3 Termination: The period during which the organism becomes competent to resume normal growth, development and activity in response to favorable

environmental conditions. This is generally characterized by increases in transcription, cellular respiration, metabolism, and hormonal signaling.

Population-level diapause metrics: Genetic, physiological and ecological studies generally focus on the photoperiodic initiation (more common)

or termination (less common) of diapause because it is closely tied to seasonal timing and phenology. Two common metrics include:

1 Diapause incidence: The proportion of individuals that enter diapause under unambiguous, diapause-inducing conditions (e.g. short days and/

or low temperatures).

2 Diapause timing: The seasonal timing of diapause initiation or termination.

a Timing is also inferred by measuring Critical photoperiod (CPP) in insects with photoperiodic diapause: The number of hours of light in a 24 h

Light/Dark cycle that will cause 50% of the population to enter or terminate diapause (may be inadequate in some cases, see Ref. [54])

Both diapause incidence and timing vary across latitudinal and altitudinal clines, for example, CPP and diapause incidence are typically positively

correlated with latitude and altitude.

Figure B1
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Phases of diapause development. In temperate environments diapause initiation, maintenance, and termination typically take place in the fall,

winter, and spring, respectively.

www.sciencedirect.com Current Opinion in Insect Science 2019, 36:74–81



76 Special section on evolutionary genetics

Figure 1
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Overview of experimental approaches investigating diapause genetics and evolution (a), potential future directions (b), and relevance of diapause

genetics and evolution to broader ecological and evolutionary questions (c). Panel (a) highlights many ways, in which genetic variation and

plasticity are evaluated. Studies analyze genetic variation in diapause by first documenting geographic variation in diapause phenotypes. Crossing

populations with divergent phenotypes can then allow researchers to identify the genetic variants that underlie the observed phenotypic variation.

Additionally, population genetics & genomics can be used to identify alleles that show coincident patterns of geographic variation. Alternatively,

many studies explore the genetic regulation of canalized plasticity in the diapause response by exposing experimental cohorts of a single

population to diapause-inducing and diapause-averting cues, and measuring differences in gene expression (RNAseq/microarrays) or determining

how manipulating the level of a transcript of interest (RNAi) or the genetic background (complementation) influences the diapause response. Panel

(b) highlights potential methods that are or can be used to identify genetic factors affecting diapause among and within populations, with the

suggestion that combining approaches provides a particularly strong basis for identifying causal genetic factors. Panel (c) highlights the potential

of understanding the regulation and evolution of diapause to inform research relating to several critical biological topics.
dissection, particularly for a few well-studied and experi-

mentally tractable organisms (Table 1). For example,

Williams et al. [16] crossed geographically derived lines

of Drosophila melanogaster and identified a locus of major

effect for diapause incidence. Deletion mapping further

resolved the locus to variants in the insulin-regulated

phosphatidylinositol 3-kinase (PI3-kinase) gene, Dp110,
which also contributed to diapause differences among

geographically disparate populations. Subsequent tests

for associations between the variants and gene expression

were equivocal, but the identification of Dp110 was

exciting because it supported years of comparative endo-

crinology suggesting a role for insulin signaling in dia-

pause. Paaby et al. [17] found similar clines in alleles of

the insulin-like receptor (InR) among D. melanogaster
populations from both North America and Australia,

though alleles were only indirectly related to diapause.

Schmidt et al. [18] also leveraged naturally segregating

geographic variation, performing Quantitative Trait
Current Opinion in Insect Science 2019, 36:74–81 
Locus (QTL) analysis and fine-mapping by crossing lines

of D. melanogaster derived from geographic populations

that differed in diapause incidence. Their experiments

identified a locus of major effect, couch potato (cpo), which

encodes an RNA binding protein that is highly expressed

in the ring gland, the primary endocrine tissue of D.
melanogaster. Polymorphisms at multiple SNPs were cor-

related with latitude, which also predicts diapause inci-

dence in North American D. melanogaster. Furthermore,

polymorphisms in cpo also change seasonally in synchrony

with diapause expression [19]. Thus, the frequency of cpo
polymorphisms is associated with diapause in both space

(clinal variation) and time (seasonal variation). Higher

levels of cpo expression are also associated with diapause

maintenance in the Northern house mosquito, Culex
pipiens, though this is the opposite relationship to that

observed in D. melanogaster [20].

Associations between diapause and polymorphisms in

genes involved in the circadian clock (Figure 2) have
www.sciencedirect.com
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Table 1

List of studies by species that apply various approaches that fall under the umbrellas of forward genetic approaches (unbiased screens for genetic variation) and reverse genetic or

targeted approaches (focusing on a candidate gene or genes). Organisms studied using four or more approaches are listed in bold. With the exception of D. melanogaster and C.

pipiens, most species have been studied using only one or two approaches. Moreover, single-species transcriptomics has been the most liberally applied approach

Class of Approach Forward Genetic (untargeted) Reverse Genetic or targeted

Approach Genetic Mapping

(line crossing)

Genetic Association

(outbred)

Single-Population

Transcriptomics

Comparative

Transcriptomics

Regulation

Genomics

Manipulative

Functional Genetics

Target Gene Variation

Questions/Goals candidate genes;

genetic architecture

candidate genes;

genetic architecture

Transcriptional basis Genetic variation

in transcription

regulatory

regions or

molecules

target gene

functional roles

targeted associations

with phenotype or

geography

Study organism

D. melanogaster

C. pipiens O. nubilalis

W. smithii

D. melanogaster

R. pomonella P. aegeria

D. melanogaster

R. pomonella

O. nubilalis

W. smithii

C. pipiens

S. crassipalpis

D. melanogaster

D. melanogaster

O. nubilalis

N. vitripennis

C. pipiens

R. pomonella

Ae. albopictus

B. minax

D. antiqua

S. crassipalis

D. montana

C. costata

M. rotunda

A. gifuensis C. pipiens

D. antiqua C. costata

B. mori S. crassipalpis

T. diversipes R. pedestris

H. cunea M. siamensis

Referencesa [1–3,4�] [5–7] [8–22] [23–25] [26��,27] [28–32] [33–35]

a Reference numbers refer to references listed in Supplemental Table S1, not to references in the main text.
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also been uncovered using both targeted and untargeted

approaches. Again studying different populations of D.
melanogaster, Tauber et al. [21] identified genetic variants

of timeless in isofemale lines varying in diapause inci-

dence. They identified a recently derived allele (ls-tim)
encoding an additional 23 N-terminal amino acids relative

to the ancestral (s-tim) allele. The derived ls-tim allele has

a weaker physical interaction with the circadian light

receptor Cryptochrome1 (CRY1) than the ancestral time-
less allele (s-tim). Thus, the ls-tim allele is predicted to

attenuate photosensitivy and promote entry into diapause

even under long photoperiods [22]. The allele exhibits a

latitudinal cline across North America coincident with the

cline in diapause incidence [23,24]. Surprisingly, in Eur-

ope, the ls-tim allele frequency decreases with increasing

latitude, but this is likely due to the recent spread of the

allele from Italy to Scandinavia [25]. Other taxa exhibit

geographic variation in tim sequence polymorphism [26��]
and expression levels [27]. Furthermore, polymorphism

in another core circadian clock gene, period, also varies

with latitude and is associated with diapause variation in

D. melanogaster [28], the European corn borer [29], the

parasitic wasp Nasonia vitripennis [30], and the speckled

wood butterfly, Pararge aegeria [26��]. Thus, studies of

geographic variation provide substantial evidence for a

link between clock gene polymorphisms and diapause

(see ‘The role of the circadian clock’ section below).

Quantitative trait locus (QTL) analyses of crosses

between seasonal populations of the European corn borer,

Ostrinia nubilalis [31], geographic populations of the

pitcher plant mosquito, Wyeomyia smithii [32], and mem-

bers of the C. pipiens complex [33] also identified loci of

major effect on diapause termination and diapause
Figure 2

PER 

TIM CRY2 

CRY1 

TIM 

The structure of the insect circadian clock in mosquitoes and other insects.

regulate the expression of the core clock genes, period ( per), timeless (tim)

of CLK and CYC, thereby repressing their own transcription. The TIM prote

[53]).
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incidence. These results suggest that major effect loci

may often segregate in natural populations. However,

QTL analyses are typically unable to detect and quantify

variation accounted for by loci of small effect. Further-

more, crosses between isogenic lines explore only a

subset of variation segregating in natural populations,

and thus may fail to detect polygenic variation. Recent

studies using genome-wide association techniques sug-

gest that segregating, polygenic variation affecting dia-

pause may indeed be abundant (see Table 1). For exam-

ple, a whole genome resequencing study in the speckled

wood butterfly [26��] used Genome Wide Association

(GWA) analysis to show that many loci of small effect

must contribute to population differences in diapause

incidence alongside several loci of major effect. A study

of temperature-sensitive diapause termination in the

apple maggot fly, Rhagoletis pomonella, also used GWA

with reduced representation genome resequencing [34].

Despite finding clear evidence for heritable genetic vari-

ation, there was no evidence for loci of major effect

contributing to that variation, thus supporting a polygenic

model. As diapause phenotypes are highly variable in

natural populations [3], it seems likely that loci of minor

effect play a critical role in the evolution of diapause

phenotypes, although the relative influence of loci of

major effect may vary across different species.

Transcriptomic variation
Many studies in a broad range of insects and other

invertebrates have compared the transcriptomes of dia-

pausing and nondiapausing individuals, but typically in a

single population of a single species (Table 1) [35,36��].
Observations of similar patterns of gene expression
CLK CYC 

per, tim, cry2 
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during diapause across species, first through studies on

single genes [37], then through transcriptomics, led to the

proposal that particular genes [38] or signaling pathways

[39�] may represent a common ‘genetic toolkit’ for dia-

pause due to evolutionary convergence. A meta-analysis

of single-species diapause transcriptomic studies indeed

revealed that a common set of transcripts (including

circadian clock genes) are differentially regulated during

diapause, consistent with convergent evolution rather

than shared evolutionary history [35]. Mechanisms that

regulate gene expression (DNA methylation, histone

modifications and/or individual miRNAs) have also been

implicated in diapause regulation in various insects [9],

but again, most of this work focuses on single populations

of diapausing and nondiapausing species, and there is

limited evidence that the same mechanisms are consis-

tently used to regulate diapause across species.

In contrast to the large number of single population

studies, only three studies have compared the diapause

transcriptomes of genetically distinct populations of the

same species. The first compared strains of the European

corn borer (O. nubilalis) [40��]; the second compared

apple-infesting and hawthorn-infesting populations of

R. pomonella [41]; and the third compared the diapause

transcriptome of southern and northern populations of W.
smithii [42]. The goal of all three studies was to identify

transcriptional changes contributing to population-level

differences in diapause timing (specifically, diapause

termination), and to link those changes to genetic

variants.

An important advantage of comparative transcriptomic

studies is the opportunity to simultaneously examine

genetic variation in transcript expression and transcript

sequence. Combining transcriptome comparisons with

QTL studies is also particularly powerful. For example,

all three comparative transcriptome studies identified

polymorphisms or gene expression differences potentially

related to differences in diapause termination. In the

European corn borer, 48 transcripts with either fixed

amino acid differences or differential expression during

diapause termination among strains mapped to a chromo-

somal rearrangement previously identified as a major

genetic factor influencing diapause termination [40��].
Several of these genes are involved in insulin signaling

and the circadian clock, which have previously been

implicated in diapause regulation as discussed above.

Meyers et al. [41] found between-population expression

differences in insulin and Wnt signaling, suggesting that

these pathways contribute to the early spring emergence

of apple-infesting flies relative to the hawthorn-infesting

flies. Finally, Emerson et al. [42] identified a transcript

designated WsPpdrg1 that was differentially expressed

among geographic populations during diapause termina-

tion. WsPpdrg1 maps to a major QTL affecting critical

photoperiod (CPP; Box 1) and is hypothesized to be
www.sciencedirect.com 
involved in photoreception or signal transduction based

on its similarity to D. melanogaster proteins. A cautionary

note relevant to all of these studies is that diapause

transcriptomes may differ substantially between labora-

tory and ecologically realistic field conditions [36��].

The intersection of evolutionary genetics and
functional studies: the role of the circadian
clock
Over eighty years ago the German botanist Erwin Bün-

ning hypothesized that the same mechanism that organ-

isms use to measure daily (circadian) time might also be

used to measure seasonal (photoperiodic) time and

thereby initiate responses such as diapause [43]. With

the advent of modern molecular genetics, evidence sup-

porting a role for circadian clock genes in the evolution of

photoperiodism comes from: 1) screens of geographic or

population-level genetic variation, 2) gene expression

assays, and 3) genetic knockdown to evaluate functional

consequences. In insects, the circadian clock is composed

of multiple feedback loops controlled by cycling levels of

key signaling proteins and transcription factors (Figure 2).

Studies of genetic variation, including those detailed

above, suggest that diapause is associated with variants

of the core clock genes period and timeless [21,26��].
Variation in clock gene expression has been linked to

natural variation in diapause [27,40��]. Furthermore,

knocking down clock gene transcripts with RNA inter-

ference (dsRNAi) also suggests a functional link between

the clock and photoperiodic diapause. For example, sup-

pressing period causes multiple species of insects to either

delay or avert diapause [44–47].

Nevertheless, the mechanistic link between the clock

and the photoperiodic timer remains unresolved. Clock

genes have been linked to a range of physiological pro-

cesses including metabolism and hormonal signaling (e.g.,

juvenile hormone in adult insects; [45,47,48]). However,

techniques such as transcriptome-wide screens have not

identified pathways from photoperiod perception to the

generation of the diapause phenotype. Additionally,

unbiased, genome-wide methods often identify variants

with no experimentally determined connections to the

circadian clock, for example, [18,26��,42]. Emerson et al.
[49�] noted that it is difficult to determine whether core

circadian genes influence seasonal responses via their role

in the circadian clock and perception of daylength or

whether they pleiotropically regulate genes outside of the

clock to generate diapause phenotypes. However, in the

intervening decade since that review, we have yet to

determine how clock gene variants mechanistically influ-

ence diapause (but see Ref. [50��], though the photoperi-

odic phenotype is not diapause).

Opportunities for future progress
We suggest that greater integration among what have

previously been largely parallel efforts in functional
Current Opinion in Insect Science 2019, 36:74–81
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genetics, transcriptomics, and evolutionary genomics

would enable more rapid progress towards identifying

the molecular regulators of diapause and the genetic basis

of diapause evolution. Table 1 illustrates that with a few

exceptions, most ‘-omics’ studies of diapause have been

carried out in separate species. Transcriptomics of single

populations of a single species are by far the most common.

These single population transcriptomic comparisons (dia-

pause to nondiapause) have uncovered similar molecular

regulators across species. However, comparative transcrip-

tomic approaches leveraging well-characterized intra-

specific variation in diapause phenotypes (e.g.

[40��,41,42]) provide a stronger connection between can-

didate genes and diapause phenotypes.

Likewise, forward genetic methods such as GWAS or

QTL analysis followed by reverse genetics (e.g. genera-

tion of null mutants or RNAi) provide more robust evi-

dence for the roles of candidate genes in diapause regu-

lation. The studies employing genetic screens followed

by deletion mapping described above illustrate the power

of these combined approaches in D. melanogaster [16,18].

In principle, reverse genetics (e.g. creating loss of func-

tion variants) followed by transcriptomics could also

identify novel mechanisms. Genome sequencing and de
novo assembly are increasingly accessible (e.g. [26��]),
RNAi has now been implemented in many species,

and transgenic approaches show great promise in non-

model systems (e.g. [51]) and are now becoming the

preferred approach in some well-established study spe-

cies [52]. We anticipate that these advances will enable

powerful integrative approaches to rapidly advance our

understanding of how diapause is regulated and evolves

in species with genetically variable diapause responses.

These advances will contribute significantly to broader

issues such as determining the genetic architecture of

rapid adaptation, evolutionary responses to climate

change, and the identification of novel targets for pest

control (Figure 1).
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