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Abstract
Gottesman–Kitaev–Preskill (GKP) states appear to be amongst the leading candidates for correcting
errors when encoding qubits into oscillators. However the preparation ofGKP states remains a
significant theoretical and experimental challenge. Until now, no clear definitions for fault-tolerantly
preparingGKP states have been provided.Without careful consideration, a small number of faults can
lead to large uncorrectable shift errors. After proposing ametric to compare approximateGKP states,
we provide rigorous definitions of fault-tolerance and introduce a fault-tolerant phase estimation
protocol for preparing such states. The fault-tolerant protocol uses oneflag qubit and accepts only a
subset of states in order to preventmeasurement readout errors from causing large shift errors.We
then showhow the protocol can be implemented using circuit QED. In doing so, we derive analytic
expressions which describe the leading order effects of the nonlinear dispersive shift andKerr
nonlinearity. Using these expressions, we show that tomitigate the nonlinear dispersive shift andKerr
termswould require the protocol to be implemented on time scales four orders ofmagnitude longer
than the time scales relevant to the protocol for physicallymotivated parameters. Despite these
restrictions, we numerically show that a subset of the accepted states of the fault-tolerant phase
estimation protocolmaintain good error correcting capabilities even in the presence of noise.

1. Introduction

Fault-tolerant quantum computingwill be essential for implementing large scale quantumalgorithms that offer
provable speed-ups over the best known classical algorithms. Currently there aremany proposals for encoding
qubits into error correcting codes in order to performuniversal fault-tolerant quantum computation.
Depending on the underlying physical architecture, some encoding schemes aremore suitable than others.

Onemethod proposed byGottesman, Kitaev and Preskill is to encode a qubit into an oscillator such that
small shift errors in both position andmomentum can be corrected. Although some bosonic codes have been
designed to correct realistic errors arising fromnoisemodels encountered in the experiment (e.g. photon loss),
recently it has been shown that GKP codes have better error correction capabilities than such codes under the
assumption of perfect encoding and decoding [1–3]. In addition, it has been shownhowGKP codes can be
concatenatedwith the toric code in order to achieve larger threshold values compared to toric codes with bare
physical qubits [4–6]. Lastly, given a supply ofGKP-encoded Pauli eigenstates, universal fault-tolerant quantum
computation can be achieved using onlyGaussian operations [7].

Given the above, it is clear that the fault-tolerant preparation of encodedGKP states is an important problem
that needs to be addressed. Various proposals for preparingGKP states have been outlined [3, 8–15]. However to
our knowledge, no clear definitions for fault-tolerantly preparingGKP states using qubit-cavity couplings have
been proposed. As such, without careful consideration, it is possible that a small number of faults lead to large
uncorrectable shift errors. Inspired by [16], in this workwe propose new fault-tolerant definitions for preparing
GKP states which tolerate small shift errors and a small number of faults occurring on ancilla qubits during the
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protocol.We then showhow the phase estimation protocol proposed in this work satisfies our fault-tolerance
criteria. In particular, the protocol is robust to a single fault occurring on the ancilla qubits in addition to shift
errors ofmagnitude atmost 0.06. In order to be fault-tolerant, the protocol uses oneflag qubit (and thus requires
a total of two ancilla qubits) to prevent damping errors and imperfect implementations of the required gates
from causing large shift errors. In addition, we provide an algorithmwhich only accepts a subset of all output
states of phase estimation in order to prevent a singlemeasurement readout error from causing large
uncorrectable shift errors.We then proceed to showhowour protocol can be implemented using circuitQED.
Wefirst analytically derive expressions describing the effects of the nonlinear dispersive shift andKerr
nonlinearity on the evolution of the cavity.We then numerically show that certain states output from the phase
estimation protocol are robust to noise processes found in current 2D and 3D cavities since these can still correct
small shift errors with high probability.

Our paper is structured as follows. In section 2, we provide newmetrics whichwe use throughout the
remainder of the paper to characterize the error correction capabilities of approximate GKP states. The fault-
tolerance definitions used throughout this paper are given in section 3. In section 4.1, we briefly review the phase
estimation protocol described in [3]. In section 4.2, we obtain a new phase estimation protocol and prove that it
is fault-tolerant under our definitions. In section 4.3, we compare the error correction capabilities of various
states obtained from the phase estimation protocol in the noise free case. Section 5 is devoted to the
implementation and error analysis of our protocol in circuitQED. In section 5.1, we provide analytic
expressions for the time evolution of the qubit-cavity couplingwhen implementing a controlled-displacement
gate. The expressions are derived in appendix B. In section 5.2, we numerically solve amaster equationwhich
includes all considered noise processes, such qubit damping and dephasing, photon loss in addition to
measurement, ancilla state-preparation and gate errors which arise from a depolarizing noise channel. In
section 6we summarize our results and discuss possible future directions.

2.Goodness of approximateGKP states

Aswas explained in [3, 17], preparing perfect GKP states would require an infinite amount of squeezing. In a
realistic setting, one can only prepare approximateGKP states with finite squeezing. Perfect GKP states, which
are+1 eigenstates of themutually commuting operators = p-S ep

p2i and = pS eq
q2i , can correct shift errors

of size atmost p
2
. Note that for the displacement operator *a = a a-( ) †

D e a a, we canwrite p= ( )S D 2p and

p= ( )S D i 2q . The goal of this paper will be to fault-tolerantly prepare approximateGKP states which can
correct small shift errors correctable by perfect GKP states with high probability (in section 3wewill specify what
wemean by correctable shift errors). Therefore, it is important to have ametric which allows us to compute the
‘goodness’ of an approximateGKP state.

Recall that for perfect GKP states, the logical ñ∣0 and ñ∣1 states are given by
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up to normalization. In practice, approximateGKP states analogous to those in equation (1) can be prepared by
first preparing finitely squeezed states in q space and approximately projecting these states onto the Sp=1
eigenspace. For instance, the = ñ∣q 0 state can bewritten as a squeezed vacuum state ñ∣sq with squeezing
parameterΔwhich is given by
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One can then apply a sumof displacements with aGaussianfilter to obtain
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whereC is a normalization coefficient. Aswas shown in [3], it is natural to haveD = D˜ . In section 4, wewill
present a fault-tolerant version of phase estimation for approximately projecting the state in equation (2) onto
the+1 eigenspace of Sp (see [3]which provides the first description for using phase estimation to prepare
approximateGKP states).

Naturally because of the finite width of the peaks of approximateGKP states, it will not be possible to correct
a shift error in p or q ofmagnitude atmost p

2
with certainty. For example, supposewe have an approximate ñ∣0

GKP state with a peak at q=0 subject to a shift error -e vpi with  p∣ ∣v
2
. Thefinite width of theGaussian peaks

2
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will have a non-zero overlap in the region < <p pq
2

3

2
and < <p p- -q3

2 2
. Thuswith non-zero

probability the state can be decoded to ñ∣1 instead of ñ∣0 (see figure 1 for an illustration).
In general, if an approximateGKP state is afflicted by a correctable shift error, wewould like the probability

of decoding to the incorrect logical state to be as small as possible. A smaller overlap of the approximateGKP
state in regions in q and p space that lead to decoding the state to thewrong logical statewill lead to a higher
probability of correcting a correctable shift error by a perfect GKP state. These remarksmotivate the following
definition

Definition 1. Let ñ∣0̃ be an approximate logical ñ∣0 GKP state.We say that ñ∣0̃ is d-p( ),
q2
-GKP correctable if

and only if for a given tuple d( ), with d p
2
, and  0 1, we have
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We say that ñ∣0̃ is d-p( ),
p2
-GKP correctable if and only if for a given tuple d( ), with d p
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, and

 0 1, we have

òå á ñ > -
p d

p d

=-¥

¥

-

+
∣ ∣˜ ∣ ( )p p0 d 1 . 5

k k

k
2

Note that the bounds in equations (4) and (5) are different sinceGKP states have peaks defined on a rectangular
lattice. Similarly, for an approximate logical +ñ∣ state, we have the following definition

Definition 2. Let +ñ∣ ˜ be an approximate logical +ñ∣ GKP state.We say that +ñ∣ ˜ is d-p( ),
p2
-GKP

correctable if and only if for a given tuple d( ), with d p
2
, and  0 1, we have
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We say that +ñ∣ ˜ is d-p( ),
q2
-GKP correctable if and only if for a given tuple d( ), with d p
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As an example, supposewe have two approximateGKP states ñ∣0̃ 1 and ñ∣0̃ 2which are d-p( ),
q2 1 and

d-p( ),
q2 2 correctable for a shift of size d-p( )e pi 2 (which is correctable by a perfect ñ∣0 GKP state). If  <1 2,

then ñ∣0̃ 1will correct a shift of size d-p
2

with greater probability than ñ∣0̃ 2. This is due to the fact that ñ∣0̃ 1has a

smaller overlap in regionswhich result in decoding the logical ñ∣0 state to the logical ñ∣1 . In this sensewe say that
ñ∣0̃ 1 is better than ñ∣0̃ 2 at correcting shift errors in q space.

Figure 1.Peaks centered at even integermultiples of p in q space. The peak on the left contains large tails that extend into the region
where a shift error is decoded to the logical ñ∣1 state. The peak on the right ismuch narrower. Consequently for some interval δ, the

peak on the right will correct shift errors of size d-p
2

with higher probability than the peak on the left.

3
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3. Fault-tolerant definitions

Given a protocol for preparing an approximateGKP state, errors that occur during the protocol can potentially
accumulate resulting in a large shift error in addition to deforming the output state. This can then result in an
output state which significantly differs from a good approximateGKP state. By good, wemean a state that for a

desired value of δ, the state is d-p( ),
q2 1 and d-p( ),

q2 2 correctable with   , 11 2 .

The desired values for δ depend on the particular fault-tolerant error correction protocol used to correct
shift errors on encoded data qubits (see for instance [18–22]). For example, one can use a version of the error
correction scheme (which reduces to Steane error correction for qubit CSS stabilizer codes) as proposed by
Glancy andKnill in [9]. In this scheme, logical ñ∣0 and +ñ∣ ancillas are prepared and interact with the encoded
data qubit via a CNOT gate to correct the shift errors afflicting the data qubit. It is shown that the largest shift

error that can be corrected is p
6
. The threshold of p

6
arises fromhow shift errors that are initially afflicting the

encoded data qubit and ancilla states propagate through theCNOTgates and combine prior to the
measurement. In practice, if additional shift errors occur during the the error correction scheme (say after
applying theCNOT gates), the largest correctable shift error could potentially be smaller than p

6
5. Inwhat

follows, wewill assume that after preparing the desired ancilla states using some state preparation protocol, the
ancillas will be used in the error correction scheme of [9] (assumed to be fault-free) to correct shift errors on
encoded data qubits.We also point out that due to the propagation of shift errors in the error correction scheme
of [9], it is important to prepare approximate ñ∣0̃ and +ñ∣ ˜ states that have small shift errors in both p and q.

If a small number of errors that occur during the preparation of an approximateGKP state result in large
shift errors (or linear combinations of large shift errors) on the output state, then clearly the protocol usedwould
not be practical. Thus it is important that a given state preparation protocol be fault-tolerant. Inwhat followswe
will definewhat wemean by fault-tolerant.We start with the following two definitions:

Definition 3.A shift error is said to be correctable if themagnitude of the shift is less than or equal to p
6
.

Otherwise, wewill say that the shift error is uncorrectable.

Definition 4. Supposewe have a protocol for preparing an approximateGKP state.Wewill say that the output
state is an ideal approximateGKP state if no faults occur during the protocol.

Thus by definition 4, any approximateGKP state obtained from a state preparation protocol will be called an

ideal approximateGKP state if the protocol is implemented fault free, even if the output state is d-p( ),
p q2 ,

correctable for some desired δwith large ò (so that the probability of correcting a shift d-p
2

is small).
Note that the notion of correctable in definition 3 assumes that only the data and ancilla qubits used in the

error correction scheme of [9] have shift errors. If other operations such as theCNOTgates introduce additional
errors, the correctable thresholdwould be smaller than p 6.

With the above definitionswe are now ready to definewhat itmeans for a state preparation protocol of an
approximateGKP state to be fault-tolerant.We point out that in section 4we consider a fault-tolerant state
preparation protocol based on phase estimation.Hence the definitions given below are specific to the case where
an approximateGKP state is obtained by coupling a qubit to an oscillator.

Definition 5. d( ˜ )m, -fault-tolerant state preparation of an approximateGKP state: Supposewe have a protocol
for preparing an approximate GKP statewhich is obtained by coupling qubits to a harmonic oscillator. Suppose
also that atmostm faults occur during the protocol on the qubitHilbert space and in addition, a correctable shift
error in either p or q of size atmost d̃ occurs on the oscillatorHilbert space.Wewill say that the protocol is an

d( ˜ )m, -fault-tolerant state preparation of an approximateGKP state protocol if the output state differs from an
ideal approximateGKP state by a correctable shift error.

A few clarifications are necessary. Firstly, a fault on the qubitHilbert space corresponds to a locationwhere
an error can occur (see for instance [16]). By locationwe are referring to a particular time stepwhere either a gate
is implemented, a qubit is prepared, a qubit ismeasured or a qubit is idling. On the oscillatorHilbert space, if an
error occurs, we can always expand that error into shift errors (see for instance equation (7.12) in [1] and also
[3]). By performing the error correction scheme of [9], measuring the q and p quadratures to perform error
correctionwill always project the state onto a state with a single shift error in q and p. Lastly, we point out that d̃
in definition 5 relates to the largest allowed size of the shift errorwhich occurs during the protocol. This should

5
Using the optimizations considered in [18], usingKnill error correction could potentially increase the threshold of p

6
to a larger value.
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not be confusedwith δ in definitions 1 and 2which relates to the size of a shift error that can be corrected by an
approximateGKP state6.

Intuitively, a fault-tolerant protocol should have the property that if both the number of qubit errors and the
size of shift errors are small, the resulting shift error on the output state should be correctable. Depending on the
desired value for d̃ , a particular fault-tolerant error correction protocolmight be less tolerant to the size of the
shift errors that occurred during the preparation of the approximateGKP state (in practice a different error
correction scheme than Steane error correction could be used).

Suppose a state preparation protocol satisfies definition 5. If during the preparation of the state,m faults
occur on the qubitHilbert space in addition to a shift error of size atmost d̃ on the oscillatorHilbert space, the
remaining shift error on the output state will be corrected in a perfect version of the error correction protocol in
[9]. Aswewill see in section 4, due tomeasurement errors, the phase estimation protocol presented in [3]needs
to bemodified in order to be a d( ˜ )1, fault-tolerant protocol. There are additional fault locations (apart from
measurement errors)which can result in large shift errors that need to be treatedwith care.

Lastly we describe howwewill evaluate the error correction properties of an approximateGKP state
obtained from anoisy state preparation protocol. It is important to compare the goodness of aGKP state
prepared from anoisy circuit to that of an ideal circuit. If the output state of a noisy state preparation protocol is
correctable, the shift errorwill be removedwhen performing error correction. Thereforewewill compare the

d-p( ),
p q2 ,

correctable properties of output states after performing an optimal shift back correction (as long

as the shift error is correctable) to the output state. If the shift error is not correctable, the protocol will be
deemed too noisy.

The optimal shift back correction is found as follows. In q space, the optimal shift back c qmax is computed as

òå= á ñ
p d

p d
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¥

+ -

+ +
∣ ∣˜ ∣ ( )c q qarg max 0 d . 8q

c k k c
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Similarly, in p spacewe have
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p d
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c k k c
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2

For protocols preparing +ñ∣ ˜ , themetric can be defined analogously, butwith the integral bounds for p and q
switched.

4. Fault-tolerant phase estimation protocol

In section 4.1wewill give a brief review of the phase estimation protocol presented in [3]. In section 4.2, wewill
showhow the protocol can bemodified so that it becomes a d( ˜ )1, -fault-tolerant state preparation of an
approximateGKP state andwewill provide the value of d̃ .

4.1. Brief review of the phase estimation protocol for preparing approximateGKP states
The phase estimation circuit for preparing an approximate ñ∣0̃ GKP state is given infigure 2. TheH gate is the
Hadamard gate and L =g g( ) ( )e diag 1, ei i . After applying several rounds of the circuit infigure 2, the input
squeezed vacuum state (given in equation (2)) is projected onto an approximate eigenstate of Spwith some

Figure 2.Phase estimation circuit for preparing an approximate ñ∣0̃ GKP state. The initial state of the cavity is taken to be the squeezed
vacuum state defined in equation (2). The circuit effectively projects the input squeezed vacuum state onto an approximate eigenstate
of the Sp operator while at the same time estimating the phase of the eigenvalue. The phase can be computed so that the output state
can be shifted back to an approximate+1 eigenstate of Sp.

6
The probability -1 of correcting a shift of size d-p

2
depends on the location andwidth of the peaks.
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random eigenvalue7 qei . Additionally, an estimated value for the phase θ is obtained. After computing the phase,
the state can be shifted back to an approximate+1 eigenstate of Sp.

There are a variety of ways to choose the phases γ at each round in the gate L g( )ei . In a non-adaptive phase
estimation protocol, half of the values for γ can be chosen to be 0 and the other half can be chosen to be p 2. In
an adaptive phase estimation protocol, if the phase to be estimated is θ and assuming no prior knowledge of θ,
during the first round the phase can be chosen as g = 01 . For later rounds, it was shown in [3] that the next
phases can be chosen as

òåg q q=
g

q
g

=

∣ ( [ ]∣ )∣ ( )P x marg max d e . 10m
x 0,1

i

m

In equation (10), the probability qg ( [ ]∣ )P x m is the probability of obtainingmeasurement outcomes x x, , m1

when the produced output eigenstate y ñq∣ has eigenvalue qei . Since themeasurement results for each round are
independent, the estimated probability is given by

q
q g p

=
+

+g g=
=

⎜ ⎟⎛
⎝

⎞
⎠( [ ]∣ ) ( )P x m xcos

2 2
. 11

i

m
i

i
1

2
m

By analytically computing the evolution of the state, the exact probability of obtaining the outcomes [ ]x M is
derived in appendixD.

Given the finalmeasurement record [ ]x M , the estimated phase q̃ is chosen as

òq q q=
p

p
q

-
˜ ( [ ]∣ ) ( )P x Marg d e . 12i

The shift back correction based on the estimated phase q̃ is given by q
p

˜
e qi 2 . Note that for either the adaptive or

non-adaptive protocol, the estimated phase and probabilities are computed using equations (11) and (12).

4.2. d( ˜ )1, fault-tolerant state preparation using phase estimation
From the circuit offigure 2 and from equation (12), ameasurement readout error can result in thewrong
estimated phasewhich in turn results in an incorrect shift-back correction (application of e vqi where v is
computed using equations (10) and (11)). Now suppose that the output state is afflicted by a shift error of the
form -e wqi . In this case, thefinal output state will have a total shift error of the form - -( )e v w qi . If

p p- >∣ ∣v w mod 6, then the shift error will be uncorrectable and thus the phase estimation protocol will
not be fault-tolerant8. Inwhat followswewill identify an output state of the phase estimation protocol as [ ]x m if
it arises from themeasurement outcomes x x, , m1 in the fault-free case.

Consider the casewhere thephase estimationprotocol is implemented inm rounds and let us assume that a
singlemeasurement readout error occurs and that all other operations are fault free. In this case the output state

[ ]x mout will have onebitwhichdiffers from thebit string [ ]x mcorr thatwouldhave beenobtained in the fault free
case (so that theHammingdistance =( [ ] [ ])d x m x m, 1H out corr ). The shift-backoperationof equation (10) applied
to the output statewill be the shift correctionof anoutput state that is oneHammingdistance away from the actual
state thatwas produced.Thus to ensure that the protocol is d( ˜ )1, fault-tolerant for some d̃ , we shouldonly accept
output states [ ]x mout whichhave theproperty that applying the shift back correction corresponding to anyother
state ¢[ ]x m with ¢ =( [ ] [ ])d x m x m, 1H results in a correctable left-over shift error. These remarksmotivate the
followingprotocol to prepare an approximate ñ∣0̃ statewhich is fault-tolerant to a singlemeasurement readout error.

Calculation of acceptance setAm and d̃ . Consider all output states obtained from anm round fault-free
phase estimation protocol of section 4.1. Let = ÆAm (whichwe call the acceptance set) and G = Æm . For
each output state [ ]x m , do the following

1. Compute the shift correction ò q q=
p p

p q
-

( [ ]∣ )v P x marg d em
1

2
i .

2. Let [ ]j m be a bit string of sizem. For all Î { }j m1, , such that =( [ ] [ ])d x m j m, 1H , compute

the shift correction ò q q=
p p

p q
-

( [ ]∣ )( )v P j marg d em
j 1

2
i .

3. If j such that p- > p∣ ∣( )v v modm m
j

6
, append [ ]x m toAm and " Î { }j m1, , , append

-∣ ∣( )v vm m
j to Gm.

If ¹ ÆAm , d = G˜ maxm m.

7
The phase θ that is obtained depends on themeasurement outcome of the ancilla qubit in each round.

8
Note that -∣ ∣v w should be takenmodulo p since a perfect ñ∣0 GKP state in p space has peaks at any integermultiple of p .
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d( )1, fault-tolerantm roundphase estimation protocol formeasurement readout errors.Consider the
acceptance set ¹ ÆAm and d̃ computed from the procedure described above. During an implementation
of the phase estimation protocol subject tomeasurement readout errors, if the obtained output state

Ï[ ]x m Am, abort the protocol and start anew.

Note that during the protocol, there can bemore than onemeasurement readout error. However ifmore
than one readout error occurs, it is possible that the output state is afflicted by a shift error ofmagnitude greater
than p 6. Our protocol only guarantees protection against a single readout error.

As an example, consider the four round phase estimation protocol. Applying the procedure described above
for the adaptive phase estimation protocol, wefind thatA4 is emptywhen choosing the initial phase to be g = 00

or g = p
0 2

. This indicates that the adaptive phase estimation protocol of four rounds described in section 4.1 is

not fault-tolerant to singlemeasurement readout errors9. If the phases are computed using the non-adaptive

phase estimation protocol and applying the protocol described above, wefind that d = - »p˜ 0.235 0.0604
6

.

The setA4 of acceptedmeasurement strings is given in table 1 and has =∣ ∣A 54 . The total probability of
obtaining a state inA4 is roughly 48.3%. For the phase estimation protocol withmore than four rounds, the
acceptance set and the acceptance probability is very sensitive to the initial phase g0 and the domain of the
optimized γ. For example, if we choose the initial phase g0 to be

p
2
and the range of γ to be p[ ]0, 2 , we get 18

accepted states (for the adaptive protocol). In this case the total probability of obtaining a state inA8 is 6.25%. If
we choose the initial phase g0 to be 0, the acceptance set has four states and the probability of obtaining a state in
A8 is 1.3%. For the non-adaptive phase estimation protocol, =∣ ∣A 668 but the total probability of obtaining a
state inA8 is roughly 79.2%. These results indicate that although the adaptive phase estimation protocol
outperforms the non-adaptive protocol in the fault-free case [3, 23] the adaptive phase estimation protocol
cannot be used in the presence ofmeasurement readout errors for four rounds, and has significantly fewer states
inA8 for eight rounds. Therefore in a noisy implementation of phase estimation, the non-adaptive protocol is
preferable. A list of the states belonging to the acceptance setA8 for both the adaptive and non-adaptive
protocols can be found at https://github.com/godott/GKP_phase_estimation.git.

Suppose now that form rounds the setAm is not empty.We then know there exists a d̃ such that the protocol
is a d( ˜ )1, fault-tolerantm roundphase estimation protocol formeasurement readout errors.However there are
other fault locationswhere a single fault resulting in a qubit error could potentially lead to an uncorrectable shift
error onoutput states.Note that anX error prior to applying the controlled- p( )D 2 gatewill do nothing since
the qubit is in the +ñ∣ state. AZ errorwill just change the sign of one of the peaks of the output state in p space.
However a damping event occurring on the ancilla qubit before or during the application of the controlled-

p( )D 2 gate can result in incorrectly applying the p( )D 2 displacement on the cavity. If several damping events
occur during the protocol, the output state in p space could potentially be badly deformed. In [3] it was proposed
to replace the ancilla qubit by a k-qubit cat state so that if a single qubit undergoes damping, a single shift error of

size p( )D
k

2 would occurwhich canbemade small for large k. However this approachwould require the fault-

tolerant preparation of a large k-qubit cat statewhichwould significantly increase the required resources in
addition to adding substantiallymore locationswhere errors can occur. Similar issueswere observed in [24] for
preparing cat codes.However large cavity displacementsweremitigated by interacting the cavitywith a three level
system ñ∣ f , ñ∣e and ñ∣g instead of a qubit. A transition from ñ∣ f to ñ∣e wouldnot cause the incorrect gate frombeing
applied. Thus twodamping eventswould be required to cause the incorrect gate frombeing applied.

Here we propose an alternative solution formitigating damping errors during the application of the
controlled- p( )D 2 gate which uses a single extraflag qubit [25–30]. Consider the circuit infigure 3. If a bit flip
error occurs before or during the application of the controlled- p( )D 2 gate, theflag qubit will bemeasured as 1
instead of 0. In such a case the strategy will be simply to abort the protocol and start anew. The analysis for a

Table 1.The first row displays the acceptedmeasurement strings (setA4) for the four round non-adaptive phase estimation protocol. If the
protocol does not output an element ofA4, the output is rejected and the protocol begins anew. The second rowdisplays the largest shift
difference that can occur when applying the phase estimated shift in the presence of a singlemeasurement readout error. As can be seen,
these are all less than p »6 0.295. The third row gives the probabilities of obtaining each state at the output of the phase estimation
protocol.

Four round phase estimation protocol acceptance setA4 1111 1010 0101 1000 0010

Largest shift difference 0.235 0.225 0.225 0.225 0.225

Probability of obtaining output state 0.1258 0.1287 0.1279 0.0505 0.0499

9
However it is possible that the adaptive phase estimation protocol described in section 4.1 could bemodified to be fault-tolerant to

measurement readout errors.We leave such analysis to future work.
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general damping event using theflag qubit is given in appendix A. It is shown that if ever a damping event on the
+ñ∣ ancilla qubit causes thewrong p( )D 2 gate to be applied, the flag qubit will bemeasured as 1 instead of 0 in
which casewe abort the protocol and start anew. Thuswith theflag qubit, the phase estimation protocol is
robust to a damping error during the application of the controlled displacement gate. Note however that if a fault
occurs in addition to a damping event, the shift error resulting from the damping event can potentially go
undetected. For instance, if in addition to damping, theflag qubit is subject to ameasurement error, the
measurement outcome can be 0 instead 1 resulting in acceptancewhen the protocol should have been aborted.

Suppose that only a single damping event occurs during the four round phase estimation protocol, and that
all other operations are fault-free. Using the analytic expressions derived in appendix A and for a damping rate
of =p 0.5, we performed simulations to numerically characterize the effects of qubit damping on the prepared
GKP state.We found that the shift error resulting from a single damping eventwas negligible compared to the
largest shift error resulting from a singlemeasurement readout error.

Lastly, anX error prior to the L g( )ei gate will change the sign of γ. After propagating through theHadamard
gate, theX errorwill become aZ error whichwill not affect themeasurement outcome of the ancilla qubit. For
the four round non-adaptive phase estimation protocol, we performed a simulationwhich showed that the shift
error resulting froma singleX error prior to the L g( )ei gate ismuch smaller than the largest shift error arising
fromameasurement readout error on the ancilla qubit.

Let us assume that the noisemodel afflicting the oscillator can cause a shift error of size atmost d̃ in p space
(i.e. a shift of the form d- ˜e qi ). From the above, the largest shift error that can arise from a single fault afflicting the
qubit space during the four round fault-tolerant phase estimation protocol is p<0.235 6. Following
definition 5, we conclude that the protocol described in this section is a d( ˜ )1, -fault-tolerant state preparation of
an approximate logical ñ∣0 GKP state with d p= - »˜ 6 0.235 0.06.

In section 5wewill discuss a physical implementation of the phase estimation protocol using circuitQED. A
muchmore detailed analysis of the noise afflicting the cavity and the resulting shift errors will be provided.

4.3. Goodness of approximate ñ∣0̃ states obtained from the noise free phase estimation protocol
In section 5.2, the fault tolerant implementation of phase estimation described in this section is analyzed for a
noisemodel which introduces gate noise,measurement readout errors and ancilla state preparation errors in
addition to photon loss, amplitude damping and dephasing. Herewe consider a noiseless implementation of the
four round non-adaptive phase estimation protocol described in this sectionwhichwill be used to benchmark
the noisy implementation.

Since the shift correction obtained fromnon-adaptive phase estimation is in p space, for a range of values for
δ, we computed ò using the integral in definition 1 after performing a shift back correction using equation (9).
This allowed us to compute the probability of correcting shift errors in p of size d-p

2
. Plots for the states 0101

and 1000which belong toA4 (see table 1) are given infigure 4. The d-p( ),
p2
correctable properties of the

other states inA4 are similar to the ones shown infigure 4. It can be seen that for small values of size d-p
2

,

both states can correct the shift errorwith probability close to 1.

5. Circuit QED implementation

5.1. State evolution in the dispersive regime
In this sectionwewill describe a direct implementation of the controlled- p( )D 2 gate. From [31, 32], the
Hamiltonian describing the coupling between a qubit and a cavity in the dispersive regime is given by

Figure 3.Phase estimation circuit with an additionalflag qubit. If a damping event occurs during the application of the controlled-
p( )D 2 gate resulting in a p( )D 2 error, theflag qubit will bemeasured as 1 instead of 0. If theflag ismeasured as 1, we abort the

protocol and start anew.
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w w c f= + + -˜ ˜ ( ) ( )† † †H a a Z a aZ a a Z , 13s r a
2

where f =
D
g 4

3 , c f= -
D
g 2

, w w f= +˜ r r and w = w c+˜a 2
a . Here g is the coupling strength between the qubit

and the cavity and w wD = -∣ ∣r a . The term f ( )†a a Z2 corresponds to the nonlinear dispersive shift. The
Hamiltonian in equation (13) can be derived by performing an exact diagonalization of the Jaynes–Cummings
Hamiltonian and keeping only leading order terms inf [32]. Note that amore systematic treatment of the qubit
as an anharmonic oscillator leads to an additional term in equation (13) given by- ( )†a aK

2
2which is referred to

as theKerr nonlinearity [33]. Hence, in our analysis, we choose the systemHamiltonian to be given by

w w c f= + + - -˜ ˜ ( ) ( ) ( )† † † †H a a Z a aZ a a Z
K

a a
2

. 14s r a
2 2

The direct implementation of the controlled- p( )D 2 gate can be achieved using the driveHamiltonian

* = +w w-( ) ( ) ( ) ( )†H t t a t ae e , 15d
t ti id d

where ( )t describes the pulse shape of the drive and wd is the drive frequency. Thus the totalHamiltonian
describing the evolution of the qubit-cavity systemduring the implementation of the controlled- p( )D 2 gate is
given by

= +( ) ( ) ( )H t H H t . 16s d

Going into the rotating frame of the qubit and the cavity and defining f f=  K and w c=  , in
appendix Bwe show that

Figure 4. (Left)Plot illustrating the probability of correcting a shift error of size d-p
2

for the states 0101 and 1000 obtained via a

non-adaptive noise free simulation of the phase estimation protocol presented in section 4. (Right)Wave function density y∣ ( )∣p 2 of
the states 0101 and 1000 illustrated in p space. The horizontal axis corresponds to values of p.
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In deriving equations (18)–(20), we kept only leading order terms in f since theHamiltonian in equation (14)
neglects higher order terms inf andK.We keep only leading order terms sincewith current experimental
parameter values, f is roughly three orders ofmagnitude smaller thanχ.

Firstly, notice that the terms ( )R T introduce a relative rotation between the ñ∣0 and ñ∣1 state of the qubit.
Neglecting the terms proportional to f, it was shown in [3] that by choosing the total interaction time to be

p c=T , the relative rotation between ñ∣0 and ñ∣1 can be set to one.However due to the presence of the
nonlinear dispersive shift andKerr terms in equation (18), it is clear that the relative rotation cannot be
completely removed. Further, ( )R T does not depend on the pulse shape ( )t of the drive term. Therefore even
with an optimized pulse shape (see below), the effects from the nonlinear dispersive shift and theKerr will cause
an undesired relative rotation between the qubit states. Regardless, wewill still choose the interaction timeT to
beπ /χ to ensure that we eliminate the relative rotation from the leading order terms in equation (18). In
appendix B.4, we provide further details using the analytic expressions to show that tomitigate the effects due to
the nonlinear dispersive shift andKerr termswould require the protocol to take place on time scales of order

f

1

which (for the parameter values in table 2) is four orders ofmagnitude larger than p
c
. For such long time scales,

noise terms such as photon loss, dephasing and dampingwould render the protocol impractical.
The terms in equation (17) that perform the desired controlled displacement gate are given byA±in

equation (19). The goal is to choose a pulse shape that implements the desired gate while at the same time
minimizes the contributions from the nonlinear dispersive shift and theKerr term (terms proportional tof±in
equation (19)). In order to be experimentally relevant, it is important to choose a pulse shape that is accessible to
near term experiments using 2D and 3D cavities.We chose aGaussian pulsewith the following parameters


p

» - - m
s
-⎛

⎝⎜
⎞
⎠⎟( ) ( )

( )
t

T
2.09562

2
e , 21

t 2

2 2

where m = p
c2
and s = p

c10
.With thisGaussian pulsewe obtain

ò
p

f» - w
 

  ( ) ( ) ( )†A a a t t t
2

2
2 1 e d . 22

T
t

0

i

The amplitude of theGaussian, given by- p( )2.09562
T

2 , is chosen numerically to ensure that the appropriate

gate is being performed.

Table 2.Parameter values for the two simulations of the non-
adaptive noisy phase estimation protocol. The values forκ are
chosen based on state of the art 3D cavities. The parameters in the

second column results in aT1 time given by = =p
k

T 10 ms1
2

. For a
resonator frequency fr=7 GHz, the quality factor is given by

= = ´
k p( )

Q 7 10
f

2
7r . For all simulations, the squeezing level of

the input squeezed vacuum state is chosen to be 0.2.

Parameter values Simulation 1 Simulation 2

p 5×10−3 10−3

k
p2

1.59×10−5 MHz 1.59×10−6 MHz
g
p2
1 1.06×10−3 MHz 1.06×10−4 MHz

g

p
f

2
´ -7.96 10 4 MHz 7.96×10−5 MHz

g 8.92 MHz 5.09 MHz

Δ 0.32 GHz 0.32 GHz

K (Kerr) 10−4 MHz 10−5 MHz
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Since both theA+ and -A terms are symmetric with opposite signs, the gate - p( )D
2

infigure 3 is not

required. Furthermore, thefirst term in equation (22) is independent ofχ. However the contribution from the
second term in equation (22)will depend on the coupling strength and relative frequencies between the qubit
and the cavity. Thus reducing the value ofχwillminimize the undesired effects arising from the nonlinear
dispersive shift and theKerr termwhile still producing the desired gate.

TheB± terms of equation (20) result in a phase difference between the ñ∣0 and ñ∣1 qubit states. However,
computing the first integrals in equation (20) (i.e. terms beforef±), wefind that for our chosen pulse, the phase
difference remains fixed during every round of the phase estimation protocol. Therefore after applying the
controlled displacement gate, we apply an additional phase gate which removes the phases introduced by the left
most integrals ofB±. Note however that thef±terms inB±will not be canceled andwill thus introduce
additional shift errors.

5.2. Full noise analysis andmaster equation results
In this sectionwe perform a numerical analysis for the noisy implementation of the phase estimation protocol
described in section 4.2. The simulation is performed in several steps thatwe nowdescribe. First, the controlled
displacement gate ismodeled using the followingmaster equation

  r r k r g s r g s r= - + + + f-˙ [ ( ) ] [ ] [ ] [ ] ( )H t ai , , 23z1

whereH(t) is given by equation (16) after going into the rotating frame and
 r r r r= - -[ ] ( )† † †L L L L L L L2 2. The densitymatrix corresponds to the joint state of the cavity, ancilla
qubit and flag qubit. The parametersκ, γ1 and γf correspond to the photon loss rate, the qubit decay rate and
qubit dephasing. The pulse shape of the drive is given by equation (21). The total evolution time of the controlled

displacement is given by p
c
with c f= -

D
g 2

.

Both before and after the controlled displacement gate, the state of the cavity is subject to photon loss and its
evolution is computed by solving amaster equation. Based on current gate, state preparation andmeasurement
times, we chose the evolution time from the preparation of the ancilla to the first CNOTgate (after which the
controlled-displacement gate is performed) to be 0.14 μs. Similarly, the evolution time after the controlled-
displacement gate to the time the ancilla ismeasured is also chosen to be 0.14 μs. Thus during one round, the
cavity freely evolves with photon loss for a total of 0.28 μs. In addition, before and after the controlled
displacement gate, we allow all qubit locations to fail with the following depolarizing noisemodel

1.With probability p, each two-qubit gate is followed by a two-qubit Pauli error drawn uniformly and
independently from ÄÄ{ } ⧹{ }I X Y Z I I, , , 2 .

2.With probability
p2

3
, the preparation of the ñ∣0 state is replaced by ñ = ñ∣ ∣X1 0 .

3.With probability
p2

3
, any single qubitmeasurement has its outcome flipped.

4.With probability p/10, eachHadamard gate is followed by a Pauli error drawnuniformly and independently
from {X,Y,Z }.

We chose p/10 forHadamard gate failures since for current superconducting architectures, single qubit gate
fidelities are about an order ofmagnitude higher than two-qubit gatefidelities. In practice, the gate errors applied
to the qubitHilbert spacewill depend strongly on the circuitQED architecture and should also bemodeled using
amaster equation as in equation (23). However, we chose a depolarizingmodel in order to reduce the
computation time and simplify the analysis.We alsomention that in our analysis we assumed that g is tunable.
Thus both before and after the controlled-displacement gate, the cavity and qubit system is decoupled and can be
treated separately.

Themaster equationwas numerically solved usingQutip [34], our code can be accessed at https://github.
com/godott/GKP_phase_estimation.git. Due to the long computation time during the controlled displacement
gate, performing a fullMonte Carlo simulation to take into account gate errors with the depolarizingmodel was
unfeasible (i.e. gate locations both before and after the controlled displacement gate). Instead, we analytically
computed the error probabilities for each Pauli operator (using the depolarizing noisemodel described above)
immediately after thefirst CNOTgate, before bothmeasurement locations and before the phase gate10. At each
location, all possible Pauli operators based on their associated probabilities were added. For a given Pauli error,
the probabilities (which are expressed as functions of p)were then used (in addition to the state evolution

10
The error probabilities were computed by considering all possible single-fault locations resulting in a given error at the considered

location. For instance, aZ ⊗ I error after thefirst CNOT gate can arise from aZ ⊗ I error from the faulty CNOT gate, but also from aZ error
after the application of theHadamard gate prior to the CNOTgate.
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obtained from themaster equation) to compute thefinal probability of obtaining a given output state. Instances
with two ormore faults occurring on the qubitHilbert space before and after the controlled-displacement gate
were neglected. However our analysis is stillmore complete than previous implementations which considered
onlymeasurement errors and errors during the controlled-displacement gate.More details of the Pauli
simulation can be found in appendixD.

We performed two different simulationswhere for each simulation, the chosen parameter values are given in
table 2. The parameters chosen for thefirst simulation (middle column in table 2) are based on current
experimental values for 2D and 3D cavities [24, 35–39]. The parameters chosen for the second simulation are
based on values thatmight be obtainedwith improved future technologies. Plots showing the probability of
correcting shift errors d-p

2
after performing a shift correction of the output states of the noisy phase

estimation protocol using equation (9) are given infigure 5. Inwhat followswewill refer to these plots as  d-
plots. Note that noise during the phase estimation protocol introducesmore shift errors in p space. Therefore in
figure 5, only ò−δ plots in p space are shown.

For the four round phase estimation protocol, wefind that the state 1010 has a similar ò−δ plot to the one
for the state 0101whereas the state 0010 has a similar ò−δ plot to the one for the state 1000. The probability of
obtaining each state for the two noisy simulations (parameters in table 2) are given in table 3. It can be seen that
the probability of the state 0101 to correct shift errors is significantlymore affected by the noise than the state
1000 or 1111. To understandwhy this is the case, it is useful to look at thewave function densities for these three
states in the q basis when no noise is present (see figure 6). Comparing thewave function densities, it can be
observed that the state 1000 has three peakswith similar amplitudes, whereas the states 0101 and 1111 have two
smaller peaks compared to the peak at the center. Performing a numerical analysis, it is found that when only
damping is present (with all other noise terms including Kerr and nonlinear dispersive shift set to zero),
damping has a negligible effect on the height of the peaks for all considered states. However performing a
numerical simulationwith only theKerr and nonlinear dispersive shift terms present, these terms significantly
reduce the height of the peaks for the state 0101 and 1010. Therefore, these states are left with one large peak in q

Figure 5.Probability of correcting a shift errors of size d-p
2

for parameters chosen from the second (labeled ‘Simulation 1’) and
third (labeled ‘Simulation 2’) columnof table 2 in addition to the casewhere no noise is present. The plots are for the states 1000, 0101
and 1111 obtained from the four round fault-tolerant phase estimation protocol described in section 4.
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with all other peaks close to zerowhich results in awave function density with very low resolution in p space
(which thus affects the ability for these states to correct shift errors in p). Interestingly, the state 1111 ismore
robust to theKerr and nonlinear dispersive shift contributions since there is amuch smaller reduction in the
amplitudes of the smaller peaks compared to those for the states 0101 and 1010 (see figure 7). Furthermore, the
states 1000 and 0010 have three large peaks in q and thus evenwith a reduced amplitude, these states have a
higherwave function density resolution in p space.

6. Conclusion

In this workwe presented a fault-tolerant state preparation protocol for preparingGKP states using phase
estimation. In section 2we providedmetrics for comparing how good approximateGKP states are at correcting
shift errors in both q and p space. In section 3, we provided a definition for the d( ˜ )m, -fault-tolerant state

Figure 6.Wave function density y∣ ( )∣q 2 of the states 1000, 0101 and 1111 obtained from the noise free non-adaptive phase estimation
protocol.

Table 3.The second row corresponds to the probabilities of obtaining the output states ofA4 for the parameters chosen from the second
columnof table 2 conditioned on allflagmeasurements being 0. The third row is identical but for the parameters chosen from the third
columnof table 2. The probabilities are smaller for noisier circuits since theflag qubit has a higher chance of beingmeasured as 1 causing the
protocol to be aborted.

Four round phase estimation protocol acceptance setA4 1111 1010 0101 1000 0010

Probability of obtaining output state noisy simulation 1 0.1297 0.0727 0.0737 0.0474 0.0429

Probability of obtaining output state noisy simulation 2 0.1468 0.0982 0.0978 0.0514 0.0448
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preparation of an approximateGKP statewherem is themaximumnumber of allowable faults which can occur
on the qubitHilbert space and d̃ is themaximumallowed shift error that can affect the oscillator. Using a non-
adaptive phase estimation protocol with one ancilla qubit and one flag qubit, in section 4we showed how the
protocol can bemade into a (1, 0.06)-fault-tolerant state preparation of an approximateGKP state. Theflag
qubit is used to detect damping errors. In addition, it was shown how the adaptive phase estimation protocol of
section 4.1 can not bemade fault-tolerant in the presence ofmeasurement readout errors. For the four round
non-adaptive phase estimation protocol, 5 of the 16 output states can be used in the presence ofmeasurement
readout errors. The total probability of obtaining the accepted states is approximately 0.48. In section 5, we
considered how the protocol can be implemented in circuit QED.Wefirst provided (to leading order) analytic
expressions of the nonlinear dispersive shift andKerr terms during the evolution of the qubit and cavity in the
fault-tolerant phase estimation protocol.We used these expressions tofind aGaussian pulse shape that allows
one to implement the desired gates.However tomitigate effects due to the nonlinear dispersive shift andKerr
termswould require the protocol to be implemented on time scales four orders ofmagnitude larger than those
thatwere considered in this work. Due to the noise processes afflicting the system, such long time scales would
render the protocol impractical. Performing two different simulations for both current and futuristic parameter
values found in 2D and 3D cavities, we numerically solved amaster equation to study the affects of qubit
damping, dephasing and photon loss on the cavity in addition to gate andmeasurement errors during the
protocol. It is shownnumerically that 3 of the 5 accepted states (for the four round non-adaptive phase
estimation protocol) aremuchmore robust to noise arising from the nonlinear dispersive shift andKerr terms
andmaintain good error correction capabilities even in the presence of noise.

The pulse shape used in this work to implement the controlled-displacement gate of the protocol was
obtained from the analytical expressions describing the time evolution of the qubit-cavity system. An important
direction for futurework is tofind a pulse shape usingmethods such as optimal control [33, 40] in order to
obtain a pulse which can furthermitigate the effects from the nonlinear dispersive shift andKerr terms Since the
nonlinear dispersive shift andKerr terms are the dominant source of noise that reduce the error correcting
capabilities of approximateGKP states, using optimal control could potentially allow the protocol to be
implemented using a larger number of rounds in order to obtain better approximateGKP states.

The fault-tolerant state preparation of approximateGKP states presented in this work is tailored to protocols
that use phase estimation. An interesting direction for future workwould be tofind fault-tolerant
implementations for preparing approximateGKP states that apply to broader schemes such as those found in
[10, 13]. In addition, fault-tolerant state preparation protocols for hexagonal GKP codes could be analyzed since
these offer better error correction capabilities thanGKP codes on a square lattice. It would also be interesting to
extend the ideas presented in this work beyond state preparation. For instance, fault-tolerant protocols for the
implementation of logical gates would be of great interest.

Figure 7.Wave function density of the states 1111 and 0101where all noise terms are excluded apart from theKerr andnonlinear
dispersive shift termsComparing to figure 6, theKerr and nonlinear dispersive shift terms reduce the amplitudes of the two small
peaks of the 0101 state significantlymore than those for the 1111 state.
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AppendixA. Shift error arising fromamplitude damping before the controlled-
displacement gate

Consider amplitude damping on the +ñ∣ ancilla state before the controlled displacement gate as shown infigure
A1. Let jñ∣ be the input state part of the cavityHilbert space. Defining p as the damping rate, after the controlled-
displacement gate, the state of the system can bewritten as

y j p j jñ = ñ ñ + - ñ ñ + ñ ñ∣ {∣ ∣ ∣ ( )∣ ∣ ∣ } ( )( ) p D p
1

2
00 1 11 2 01 . A11

Herewe have omittedwriting the state of the environment interactingwith thefirst ancilla qubit. However, this
does not affect the result of the calculations that follow.

After the secondCNOTgate, the state becomes

y j p j jñ = ñ ñ + - ñ ñ + ñ ñ∣ {∣ ∣ ∣ ( )∣ ∣ ∣ } ( )( ) p D p
1

2
00 1 10 2 01 . A22

If the flag qubit ismeasured as 1, the protocol is aborted. So assume that theflag ismeasured as 0. In this case
the state becomes (tracing out theflag qubit)

y j p jñ =
-

ñ ñ + - ñ ñ∣ {∣ ∣ ∣ ( )∣ } ( )( )
p

p D
1

2
0 1 1 2 . A33

Applying the remaining gates in figure A1, the final state prior to themeasurement of the ancilla qubit is

y p j p jñ =
-

ñ + - ñ + ñ - - ñg g∣
( )

{∣ ( ( ))∣ ∣ ( ( ))∣ } ( )( )

p
pD pD

1

2 2
0 1 e 1 2 1 1 e 1 2 . A44 i i

If themeasurement of the ancilla is 0, the output statewill be

y p jñ =
-

+ - ñg∣ {( ( ))∣ } ( )
p

pD
1

2
1 e 1 2 . A5out,0 i

If themeasurement of the ancilla is 1, the output state will be

y p jñ =
-

- - ñg∣ {( ( ))∣ } ( )
p

pD
1

2
1 e 1 2 . A6out,1 i

Both outcomes occurwith probability 1/2.

Figure A1.Controlled-displacement circuit with the flag qubit. The protocol is aborted if the flag qubitmeasurement is non-trivial.
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Appendix B. Analytic derivation of the unitary operator describing the evolution of the
qubit-cavity systemduring the implementation of the controlled- p( )D 2 gate

B.1. Implementation of the controlled- p( )D 2 gate in the lab frame
In this section, wewill derive the unitary operator describing the evolution of the qubit-cavity state during the
application of the control-displacement gate. In the dispersive regime, the qubit-cavity interaction can be
described as:

= +( ) ( ) ( )H t H H t , B1s d

where

w w c f= + + -˜ ˜ ( ) ( )† † †H a a Z a aZ a a Z . B2s r a
2

and

= +( ) ( )( ) ( )†H t t a a . B3d

In equation (B2), f =
D
g 4

3 , w w f= +˜ r r , c f= -
D
g 2

and w = w c+˜a 2
a . The term f ( )†a a Z2 corresponds to

the nonlinear dispersive shift. Note that we have not included theKerr term- ( )†a aK

2
2. At the end of this section

wewillmodify our results to take into account its effect.We also note that inwriting the driveHamiltonian in
equation (B3), we neglected a termof the formλX (whereλ=(g/Δ)) and all higher powers inλ. For parameter
values considered in this paper, we found the effect of this term to be negligible. Additionally, we chose a pulse
shapewhich is real valued.

In equation (B3), we represent the drive pulse ( )t as

 w w= W + W( ) ( ) ( ) ( ) ( ) ( )t t t t tcos sin , B4x d y d

where w w c= -˜d r is the drive frequency.
Since theHamiltonian does not commute at different times, the unitary operator describing the time

evolution under theHamiltonian of equation (B1) is given by

 ò= - ¢ ¢( ) ( )( )V T0, e . B5H t ti d
T

0

The right-hand side of equation (B5) can be computed using the Suzuki–Trotter decomposition, so that













=

= ñá

+ ñá

w c f w

w f w

w f w

¥ =

+ - + -

¥ =

- - - + -

¥ =

- + - +

- -

+

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

∣ ∣

∣ ∣ ( )

( ˜ ( ) ) ( )( ) ˜

˜( ) ˜ ( )( ) ˜

˜( ) ˜ ( )( ) ˜

† † †

† † †

† † †

V T0, lim e e e

lim e e e 0 0

lim e e e 1 1 , B6

n j

n
a a Z a a t a a T Z

n j

n
t a a a a t t a a T

n j

n
t a a a a t t a a T

1

i

1

i i i

1

i i i

T
n r

T
n j a

j a

j a

i i

where ºt̃ T n, w w cº  ˜ r .
Now, the two terms on the right-hand side of equation (B6) can be decomposed as

 =w f

¥ =

- - - +

¥

- - -+ ( ) ( )( ) ( )˜( ) ˜ ( )( )† † †
R R D R R D R R D Rlim e e lim , B7

n j

n
t a a a a t t a a

n
n
n

n
n

t n
n

n t n n t n
1

i i 2 2 1 1j
n 2 1

where

= w f- -+ ( )˜( )† †
R e , B8n

t a a a ai

and

= - + ( )˜ ( )( )†
D e . B9t

t t a ai
j

j

Hence from the above, we see that we need to compute terms of the form

= w f w f- - - + - -+ + ( )˜ ( ) ˜ ( )( ) ˜ ( )† † † † †
R D R e e e . B10n

k
t n

k tk a a a a t t a a tk a a a ai i i
k

k

In order to compute the products appearing in equation (B10), wewill use the identity =- -
Ae A eB ABA1 1

.
Defining

w f¢ = -+( ) ( )† †H k a a a a, B11
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and
= - + ( )˜

˜ ( )( )†
A e , B12t

t t a ai k

with

= ¢ - ¢(˜) ( )˜
˜

˜A t Ae e B13H t
t

H ti i

wehave that

= - +¢ - ¢(˜) ( ˜ ( ) ( ) ) ( )˜ † ˜A t t t a aexp i e e , B14k
H t H ti i

The term +¢ - ¢( )˜ † ˜a ae eH t H ti i in equation (B14) can be computed usingHeisenberg’s equation ofmotion.We
obtain

= ¢
(˜)
˜

[ (˜)] ( )a t

t
H a t

d

d
i , , B15

with

f f¢ = ¢ +[ ] ( ) ( )†H a k a a a, 2 , B16

wherewe defined

f f w¢ º - + ( ). B17

We thus have the following set of coupled differential equations:

f f= ¢ +
(˜)
˜

( (˜) (˜)) (˜) ( )†a t

t
k a t a t a t

d

d
i 2 , B18

and

f f= - ¢ +
(˜)
˜

(˜)( (˜) (˜)) ( )
†

† †a t

t
ka t a t a t

d

d
i 2 , B19

The solutions to equations (B18) and (B19) are given by

= f f¢+ -(˜) ( )˜( ( ))†
a t ae , B20kt a ai 2 1

and

= f f- ¢+ -(˜) ( )† ˜( ( )) ††
a t ae . B21kt a ai 2 1

To see this, we take a derivative of equation (B20) to obtain

f f= ¢ + -
(˜)
˜

(˜) (˜)( ) ( )†a t

t
k a t k a t a a

d

d
i 2i 1 . B22

Comparing equations (B18) and (B22), wemust have that

- =(˜)( ) (˜) (˜) ( )† †a t a a a t a t1 . B232

Using equations (B20) and (B21) and defining f fº - ¢ + -( ( ))†H kt a a2 1te , we have that

=
=
=
=

f f

- - -

- -

-

(˜) (˜)

(˜) ( )

† ˜ † ˜ ˜ ˜ ˜

† ˜ ˜ ˜

† ˜

†

a t a t a a a

a a a

a aa
a aa t

e e e e e

e e e

e
, B24

H t H t H t H t H t

kt kt H t

H t

2 i i i i i

2i 2i i

i

te te te te te

te

te

as desired. A similar calculation can be done for (˜)†a t . Hencewe have that

= - +F - F(˜) ( ˜ ( )( )) ( )˜ ˜ †A t t t a aexp i e e , B25k
t ti ik k

for

f fF = ¢ + -( ( )) ( )†k a a2 1 . B26k

WritingV(0,T) (equation (B6)) as

= ñá + ñá+ -( ) ( )∣ ∣ ( )∣ ∣ ( )V T V T V T0, 0, 0 0 0, 1 1 , B27

using equation (B25) and the fact that = ºw f- -
++ ( )( )† †

R R Ten
n T a a a ai , we canwrite

= -+ +
¥ =

( ) ( ) { } ( )† †V T R T A a aA0, lim exp , B28
n k

n

k k
1

wherewe defined

º - F-( ) ( )A
T

n
t

i
e . B29k k

T
n k
i
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Notice that we canwriteV+(0,T) as products of displacementsD(Ak). However, nowAk is an operator
instead of a complex number. In order to compute the products in (B28), wewill need to obtain a relation for
terms of the formD(Ak)D(Aj) (whereAk is given in equation (B29)). SinceAk is proportional toT/n and
remembering that wewill take the limit where  ¥n , using Baker–Campbell–Hausdorff, we have the exact
relation

- + - = - - -{ }{ } ( ) ( ) [ ] ( )† † † † † †A a aA A a aA D A D A A a aA A a aAexp exp
1

2
, . B30k k j j k j k k j j

The commutator on the right-hand side of equation (B30) has four terms

- - = - - +[ ] [ ] [ ] [ ] [ ] ( )† † † † † † † † † † †A a aA A a aA A a A a A a aA aA A a aA aA, , , , , . B31k k j j k j k j k j k j

Aswewill show, two of these terms vanishwhen taking the limit  ¥n .
First, we compute

 =
- - F - F⎜ ⎟⎛

⎝
⎞
⎠[ ] ( ) ( )[ ] ( )† † † †A a A a

T

n
t t a a,

i
e , e , B32k j k j

2
T
n k

T
n j

i i

with

= -

= -

- F - F - F - F - F - F

- F F - F F - F - F F - F F - F+ + + + + +

[ ]
( )

† † † † † †

† † † †( ) ( ) ( ) ( ) ( )

a a a a a a

a a a a

e , e e e e e

e e e e e e e e e e . B33

T
n k

T
n j

T
n k

T
n j

T
n j

T
n k

T
n k

T
n k

T
n k j

T
n k j

T
n k j

T
n j

T
n j

T
n k j

T
n k j

T
n k j

i i i i i i

i i i i i i i i i i

Now, terms such as - F F†ae e
T
n j

T
n j

i i
can be computed by defining

f dº - ¢ + -( ˜( )) ( )†H j a a1 1 , B34temp

and invokingHeisenberg’s equation ofmotion. Using f d= - ¢[ ] ˜† †H a j a,temp and solving the differential
equation, we obtain

= f d- F F - ¢ ( )† ˜ †a ae e e . B35jT
n j

T
n j

T
n

i i i

Using the result of equation (B35) into equation (B33), we have

= -

= -

f d f d f d f d

f d f d f d

- F - F ¢ + ¢ F ¢ + ¢ F

+ ¢ ¢ ¢ F

- - -
+

- - -
+

- - - -
+

[ ]
( )( ) ( )

† † ˜ † ( ) ˜ † ˜ † ( ) ˜

( ) ˜ ˜ ˜ †

( ) ( )

( )

a a a a a

a

e , e e e e e e e

e e e e . B36

k k j j j k

j k k j 2

T
n k

T
n j

T
n

T
n

T
n k j

T
n

T
n

T
n k j

T
n

T
n

T
n

T
n k j

i i i i i i i i

i i i i

Using f d f¢ =˜ 2 and expanding equation (B36) to leading order inf, we obtain

f f

f

» - +
-

»
-

-

- F - F F

F

-
+

-
+

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠[ ] ( ) ( )

( ) ( ) ( )

† † †

†

( )

( )

a a
T

n
j k

T

n
a

T

n
k j a

e , e 1
2i 2i

e

2i
e . B37

2

2

T
n k

T
n j

T
n k j

T
n k j

i i i

i

Inserting equation (B37) into equation (B32), we obtain

  f f=
-

- +F-
+⎜ ⎟⎛

⎝
⎞
⎠[ ] ( ) ( ) ( )( ) ( ) ( )† † † ( )A a A a

T

n
k j t t a, 2

i
e . B38k j k j

3
2 2T

n k j
i

A similar calculation shows that

  f f= - +F +⎜ ⎟⎛
⎝

⎞
⎠[ ] ( ) ( ) ( ) ( ) ( )† † ( )aA aA

T

n
k j t t a, 2

i
e . B39k j k j

3
2 2T

n k j
i

Nextwe compute the cross terms.Wefirst have

 = F F-⎜ ⎟⎛
⎝

⎞
⎠[ ] ( ) ( )[ ] ( )† † †A a aA

T

n
t t a a,

i
e , e , B40k j k j

2
T
n k

T
n j

i i

with

= -

= -
= -
= -

= - -

f

f f

F F F F F F

F F F F F F F

F F F F

- F

- - F

- - -

- - - -
-

-
-

-
- -

-
-

- -
-

- - -
-

[ ]

( )
( ( ) ) ( )

† † †

† †

† †

† † ( )

† ( ) ( )

( )

( ) ( ) ( ) ( )

( )

( )

a a a a a a

a a a a

a a a a

a a aa

a a

e , e e e e e

e e e e e e e

e e e e

e e

1 e e e . B41

k j

k j k j

T
n k

T
n j

T
n k

T
n j

T
n j

T
n k

T
n k

T
n k

T
n k

T
n k

T
n k

T
n j

T
n k j

T
n k j

T
n k j

T
n k j

T
n k j

T
n

T
n k j

T
n

T
n

T
n k j

i i i i i i

i i i i i i i

i i i i

2i i

2i 2i i
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Expanding the termproportional to †a a to leading order inf, equation (B41) becomes

f» - - fF F - F- - -
-⎜ ⎟⎛

⎝
⎞
⎠[ ] ( ) ( )† † ( ) ( )a a

T

n
a a k je , e

2i
e e . B42k jT

n k
T
n j

T
n

T
n k j

i i 2i i

Inserting equation (B42) into equation (B40), we obtain

   f» - - fF - F-
-

- -
-⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠[ ] ( ) ( ) ( ) ( ) ( ) ( )† † † ( )( ) ( )A a aA

T

n
k j t t a a

T

n
t t, 2

i
e

i
e e . B43k j k j k j

k j
3 2

T
n k j

T
n

T
n k j

i 2i i

The last commutator to compute is

 =
- F F-⎜ ⎟⎛

⎝
⎞
⎠[ ] ( ) ( )[ ] ( )† † †

aA A a
T

n
t t a,

i
e , e , B44k j k j

a
2

T
n k

T
n j

i i

with

f

= -

= -
= - +

» - +

f f

f

F F F F F

F F F F F F F F

F - -

F -

-
-

-

-
-

- - -
- -

-

- ⎜ ⎟⎛
⎝

⎞
⎠

[ ]

( ( ) )

( ) ( )

† † †

† †

† ( ) ( )

† ( )

( )

( ) ( ) ( ) ( )

( )

( )

a a a a a a

a a a a

a a

T

n
k j a a

e , e e e e

e e e e e e e e

e e 1 e

e
2i

e B45

k j k j

k j

T
n k

T
n j

T
n k j

T
n j

T
n k

T
n k j

T
n k j

T
n k j

T
n k j

T
n k

T
n k

T
n k

T
n k

T
n k j

T
n

T
n

T
n k j

T
n

i i i i i

i i i i i i i i

i 2i 2i

i 2i

so that

   f» - +
- fF F -- -⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠[ ] ( ) ( ) ( ) ( ) ( ) ( )† † † ( )( ) ( )aA A a

T

n
k j t t a a

T

n
t t, 2

i
e

i
e e B46k j k j k j

k j
3 2

T
n k j

T
n k j

T
n

i i 2i

Inserting equations (B38), (B39), (B43) and (B46) into equation (B30), we have

 

   

   

 

f

f f

f

+ = -
-

-

+ - - -

+ - -

-
-

f

f

F

F F

- F F

F -

-
+

+
-

-

- -
- -

-

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭
⎤
⎦⎥

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

†

†

( ) †

( )

( )

( ) ( )

( ) ( )

( )

D A A D A D A
T

n
k j t t a

T

n
k j t t a

T

n
k j t t a a

T

n
t t

T

n
k j t t a a

T

n
t t

exp
1

2
2

i
e

2
i

e 2
i

e

i
e e 2

i
e

i
e e . B47

k j k j k j

k j k j

k j
k j

k j

k j
k j

3
2

3
2

3

2 3

2

T
n k j

T
n k j

T
n k j

T
n

T
n k j

T
n k j

T
n k j

T
n

i

i i

2i i i

i 2i

Since the productD(An)D(An−1)LD(A2)D(A1)will produce sums in the exponents proportional ton2, all

terms in equation (B47) proportional to ( )T

n

3
will vanish in the limit where  ¥n . Hence equation (B47)

simplifies to

 

 

+ =
-

= - F

f f- F - F

-

- -
- -

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎧⎨⎩
⎫⎬⎭

⎤
⎦
⎥⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

D A A D A D A t t
T

n

D A D A t t
T

n

T

n

exp i
e e e e

2i

exp i sin , B48

k j k j k j

k j k j

k j k j k j

2

2

T
n

T
n k j

T
n

T
n k j

2i i 2i i

where F -( )k j is defined as

f w fF º - - +- +( )( ) ( )( )
†k j a a2 . B49k j

We thus have that the product of themodified displacement operators is given by

 = + F -⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( )( )D A D A D A A t t

T

n

T

n
exp i sin . B50k j k j k j k j

2

Wenowwish to compute

º - - ( ) ( ) ( ) ( ) ( ) ( )P D A D A D A D A D A . B51n n n n1 2 2 1

First notice that for any operatorsA andB, to leading order eAe B=e BeAe[A, B]. Now for terms of the form

  F å-
⎡
⎣⎢

⎤
⎦⎥( ) ( )( ) ( ) ( )( )t t D Aexp i sink j

T

n

T

n k j m m
2

, the commutator of the two exponents will be proportional

to ( )T

n

3
whichwill vanish in the limit where  ¥n . Hence, we can commute all terms

  F -
⎡
⎣⎢

⎤
⎦⎥( ) ( )( ) ( ) ( )t texp i sink j

T

n

T

n k j
2

to the right-hand side ofPn. Hencewe have
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 å å= F
= <

-⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥( ) ( ) ( )( )P D A

T

n
t t

T

n
exp i sin . B52n

k

n

k
k j

n

k j k j
1

2

2

Now, taking the limit where  ¥n of Pn, we obtain

  
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Weconclude that

=+ + + +( ) ( ) ( ) ( )V T R T D A0, e , B54Bi
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Hence to conclude, the unitary evolution of theHamiltonian described in equation (B1) is given by

= ñá + ñáw w
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-
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Recall that in deriving the expression forV+(0,T), in several steps of the calculationwe expanded to leading
order inf. Hence the expressions obtained in equations (B55)–(B57) are only valid to leading order inf. Hence
to leading order inf, we have
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B.2. Including theKerr nonlinearity
When including theKerr nonlinearity, theHamiltonian during the control-displacement gate is now given by
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Hence, we see that the analysis of section B.1 is exactly the same, with f f  K

2
inR±(T),A±andB±.

B.3. Controlled-displacement gate in the rotating frame
In this section, we consider the sameHamiltonian as in equation (B1) butwith a drive termof the form

* = +w w-( ) ( ) ( ) ( )†H t t a t ae e . B64d
t ti id d

Wewill go into the rotating frame of both the qubit and the cavity.We define

w w¢ = +˜ ˜ ( )†H a a Z . B65s r a
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With = ¢( )U t e H ti s and applying the transformation - º- ¶
¶
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Hamiltonian in equation (B1)withHd(t) given in equation (B64), we obtain
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The frequency dependence in the drive termof equation (B66) can be eliminated by choosing w w= ˜d r . Again,
wewish to compute the unitary evolution
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where nowwe have thatω±=±χ.
Comparing equation (B68) to equation (B6), we see thatwe can follow the same steps as in appendix B.1 by

using the new values forω±and replacing  by * in the conjugate expressions. Doing so, we obtain
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B.4. Effects of the nonlinear dispersive shift andKerr termon the unitary evolution of the qubit-cavity
system
In this sectionwewill show that regardless of the chosen pulse shape (evenwith numerical tools such as optimal
control), to leading order inf±, the changes to the unitary evolution of the qubit-cavity systemdue to the
nonlinear dispersive shift andKerr terms cannot be completely removed for time scales

f
T 1 . Using

equations (B55), (B60) and (B61), we canwrite (for instance choosing the terms affecting the ñá∣ ∣0 0 )
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Let w f= + +( )†A T a ai 2 and * *f f= - - - + -+ +( ) ( )† † † †B I a I a I a a a I a a a2 1 2 11 1 2 2 . Using the Baker–
Campbell–Hausdorff lemma and keeping only leading order terms inf+, we have
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Computing the commutators, wefind
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Notice that the last term in equation (B77) is proportional to ( )†a a 2 and independent of the pulse shape
(performing the same calculation as above including theB+ termwill not change the conclusion). The terms
dependent on the pulse shape are expressed as lower powers of a and †a . One cannot eliminate all terms
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proportional tof+ unless one chooses a time scale comparable to
f+

1 . For time scales on the order of
f+

1 , higher

order terms inf+will be relevant and therefore itmight possible to choose pulse (with numerical techniques
such as optimal control)which can eliminate effects from the nonlinear dispersive shift andKerr termsHowever
using the parameters of table 2,

f+

1 is roughly four orders ofmagnitude longer than the chosen time scale

( = p
c

T ) of our protocol. For such long time scales, effects due to photon loss, damping and dephasingwould

render the protocol impractical.

AppendixC. Probability ofmeasuring acceptedmeasurement strings

In this section, we derive the analytic expression for output states obtained fromphase estimation protocols and
their corresponding probabilities.

C.1. Phase estimationmeasurement operator of 1 round
Fromfigure 2, the operator describing the evolution of a single round of phase estimation in terms of the
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wherePrx is the probability ofmeasuring xä {0, 1}.

C.2. Phase estimationmeasurement operator after M rounds
AfterM arounds of the phase estimation circuit, the following state will be generated:
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where = N Pri xi is the normalization factor. From the product ofM sums, if we choose j of them to be positive
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C.3. Probability
Assumewe already performedM−1 rounds of phase estimation and themeasurement results -x x,..., M1 1 and
angle parameters we chose (denoted as g g¼ -, M1 1) are known. Then from (C4), the input state to theMth round
is (including the qubit):
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The probability ofmeasuring xM is thus given by
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Notice that the transfer probability fromone peak to another is almost 0 (< 10−35) assuming an initial
squeezing level of 0.2. Therefore, we canmake the following approximation
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AppendixD.Details of numerical simulation

From the depolarizing noisemodel described in section 5.2, we computed error probabilities for all Pauli errors
arising froma single fault at the locations indicated by the blue boxes infigureD1. For instance, the probability
of an I⊗Z error at location L1 is given by
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With a Pauli error added at either locations L1, L2, L3 or L4, we update the state of the qubit before performing
themaster equation simulation described in section 5.2.With the analytic error probability for the Pauli error,
in addition to the evolution of the state during themaster equation, we can compute the total probability of
obtaining the output state. Asmentioned in section 5.2, such an analysis ignored second order Pauli error events
(before and after the controlled displacement gate).
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