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We examine the performance of the single-mode Gottesman-Kitaev-Preskill (GKP) code and its concatenation

with the toric code for a noise model of Gaussian shifts, or displacement errors. We show how one can optimize

the tracking of errors in repeated noisy error correction for the GKP code. We do this by examining the

maximum-likelihood problem for this setting and its mapping onto a 1D Euclidean path-integral modeling a

particle in a random cosine potential. We demonstrate the efficiency of a minimum-energy decoding strategy as

a proxy for the path integral evaluation. In the second part of this paper, we analyze and numerically assess the

concatenation of the GKP code with the toric code. When toric code measurements and GKP error correction

measurements are perfect, we find that by using GKP error information the toric code threshold improves from

10% to 14%. When only the GKP error correction measurements are perfect we observe a threshold at 6%. In

the more realistic setting when all error information is noisy, we show how to represent the maximum likelihood

decoding problem for the toric-GKP code as a 3D compact QED model in the presence of a quenched random

gauge field, an extension of the random-plaquette gauge model for the toric code. We present a decoder for this

problem which shows the existence of a noise threshold at shift-error standard deviation σ0 ≈ 0.243 for toric

code measurements, data errors and GKP ancilla errors. If the errors only come from having imperfect GKP

states, then this corresponds to states with just four photons or more. Our last result is a no-go result for linear

oscillator codes, encoding oscillators into oscillators. For the Gaussian displacement error model, we prove

that encoding corresponds to squeezing the shift errors. This shows that linear oscillator codes are useless for

quantum information protection against Gaussian shift errors.
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I. INTRODUCTION

Within the framework of oscillator or continuous-variable

(CV) error correcting codes, one can distinguish two classes

of codes. One class generalizes qudit stabilizer codes to en-

code continuous degrees of freedom into a (larger) CV system

[1,2]. We refer to these codes as linear oscillator codes. The

other class, first introduced by Gottesman, Preskill, and Kitaev

(GKP) in Ref. [3], and recently expanded to include many

more codes [4,5], encodes a discrete (finite-dimensional)

system into a CV system. Encoding and decoding for the

first class of codes falls within the framework of Gaussian

quantum information [6], while the second class of codes

requires using non-Gaussian states.

In this paper we propose and analyze a scalable use of the

GKP code [3] which encodes a single qubit into an oscillator.

An example of such an oscillator is a mode in a high-Q
microwave superconducting cavity coupled to superconduct-

ing qubits in a circuit-QED setup. Proposals for preparing a

GKP code state in such systems exist [7]. The controlled-NOT

(CNOT) gate between two GKP qubits requires about 4 dB

of squeezing in both modes and a beam-splitter (see, e.g.,

Ref. [7]). Such a beam-splitter has been recently implemented

between high-Q microwave cavity modes in Ref. [8]. Other

*c.vuillot@tudelft.nl

possible physical implementations for the GKP code are the

motional mode of a trapped-ion qubit [9] or atomic ensembles

[10] for measurement-based CV cluster computation [11].

A bosonic code such as the GKP code or the recently

implemented cat code [12] might be used to get a high-quality

qubit, but the code does not provide a means to drive error

rates down arbitrarily. A scalable fault-tolerant architecture

can possibly be obtained by concatenating the GKP code

with a qubit stabilizer code such as the toric or surface code.

A theoretic goal is then to understand how to decode such

a toric-GKP code and what is the error threshold of the

architecture. Some results on using “analog” error information

in concatenating the GKP code with a stabilizer code were

obtained in Refs. [13–16]. A concatenation of the GKP code

with the 2D surface code in the channel setting by message-

passing (perfect) GKP error information to the surface code

decoder was analyzed in Refs. [14,16]. In Ref. [16] the authors

also consider the construction of the 3D cluster state using

post-selection, with imperfect ancillas. However, these studies

did not define, analyze nor decode the full fault-tolerant

scenario for the 2D toric-GKP code.

Previous work has also studied the performance of the GKP

code in comparison with other bosonic codes in a photon loss

channel setting, not taking into account the imperfections or

processing of repeated rounds of error correction [5]. Other

work focused on the effect of photon loss and other sources of

error on the preparation of code states [17]. Besides its good
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performance compared to other bosonic codes, the GKP code

is appealing since Clifford gates on the code states use only

linear optical elements (including squeezing) [3].

In this work we first analyze repeated fault-tolerant quan-

tum error correction for a single GKP qubit; see Sec. III.

Our noise model in this analysis includes errors both on the

GKP qubit as well as on the GKP ancilla qubit used in the

error correction. We show how decoding this continuous error

information in discrete time steps maps onto the evaluation of

a stochastic discrete-time Euclidean path integral. We present

an efficient minimum-energy decoder which chooses the path

which approximately corresponds to a classical trajectory in a

disordered potential.

Second, we consider the toric-GKP code in Sec. IV. As-

suming that both GKP error correction and toric code correc-

tion are noiseless, we show how the use of continuous GKP

error information improves the error correction for the toric

code (Sec. IV B). These results are in correspondence with the

previous results in Ref. [16] although our likelihood function

is not identical to the one in Ref. [16].

In Sec. V we formulate the decoding problem of repeated

quantum error correction with the toric-GKP code where

both the GKP syndrome and the toric code syndrome con-

tain errors. Since errors on the GKP qubits are intrinsic

(getting perfect code states with infinite numbers of pho-

tons is unphysical), this is the physically relevant setting.

The maximum-likelihood formulation is in terms of a 3D

gauge field model with quenched randomness determined by

the errors (Sec. V B). We discuss this model and its possible

phase transitions in Sec. V C. Then in Sec. V D, we show how

to re-express this model as a random plaquette gauge model

(RPGM) with a Z2-field coupled to an auxiliary U (1)-gauge

field. We then use this model to design a computationally

efficient decoder and present numerical results.

Finally, in Sec. VI, we present our general no-go result for

the first class of codes, namely the linear oscillator codes. This

no-go result is presented as the calculation of the probability

distribution of logical errors on the encoded information

after perfect maximum-likelihood decoding. The result is in

accordance with, but does not directly follow from, previous

no-go results on Gaussian quantum information in Ref. [18].

The theorem explicitly shows that there are no linear oscillator

code families of interest: there is no threshold in σ0 below

which protection of the encoded oscillators against shift errors

gets better with increasing code size and the logical noise

model is still Gaussian with the same σ0, and possibly some

squeezing of the logical quadratures.

The no-go result also shows that the existence of a thresh-

old for the toric-GKP code is non-trivial. A sufficiently large

departure from Gaussian quantum information is necessary to

stabilize quantum information. In circuit-QED this departure

comes exclusively from the use of the nonlinear Josephson

junction element.

II. GENERAL CONSIDERATIONS

A. Definitions and notations

We consider n-mode oscillator codes, which are subspaces

in the n-mode Hilbert space L2(Rn). Such a Hilbert space

can be constructed as a tensor product of n single-particle

Hilbert spaces L2(R) of complex square-integrable functions.

It supports n pairs of canonically conjugated coordinate and

momentum operators, p̂k and q̂k , such that [q̂k, p̂l ] = iδkl .

These operators are used to define the multimode exponential

shift operators,

Û (e) ≡
n
∏

k=1

eiuk p̂k+ivk q̂k , e ≡ (u, vvv), (1)

where u,vvv ∈ Rn are n-component real vectors. It is easy to

check that the product of two such operators satisfies

Û (e)Û (e′) = Û (e + e′)eiω(e,e′ ), (2)

with the phase given by the symplectic product ω(e, e′) =
u · vvv

′ − vvv · u′. The set Hn of all such operators with arbitrary

phases is closed under multiplication, it forms an irreducible

representation of the Heisenberg group Hn acting in L2(Rn).

Just as for the n-qubit Hilbert space and the Pauli group Pn,

any operator acting in L2(Rn) can be represented as a linear

combination of elements of Hn. Furthermore, the product

Eq. (2) of two exponential operators, up to a phase, can be

represented in terms of the sum of the corresponding vectors,

e′′ = e + e′. This map to R2n is an analog of the symplectic

representation of Pn used in the theory of quantum codes.

An n-mode GKP code, Q, is a CV stabilizer code defined

in terms of an Abelian stabilizer group S ⊂ Hn with elements

in the form Eq. (1), such that Û (0) ≡ 1 is the only element in

S proportional to the identity. Namely, the code Q ⊆ L2(Rn)

is the common +1-eigenspace of all elements of S ,

Q = {|ψ〉 ∈ L2(Rn) | Ŝ |ψ〉 = |ψ〉 , ∀Ŝ ∈ S}. (3)

The structure of such Abelian subgroups and the implications

for Q are described in Appendix A. In the following, we

will assume the representation of such a group in terms of

some number r of its members chosen as generators, S =
〈Ŝ1, . . . , Ŝr〉, Ŝ j ∈ Hn.

The formalism of qubit stabilizer codes [19,20] carries

over entirely to such CV stabilizer codes, and errors from

Hn play the special role played by Pauli errors in the qubit

case. Given an error Ê ∈ Hn, one can compute its syndrome,

q ≡ q(Ê ), whose components are given by the extra phases

in the commutation relations with the stabilizer generators,

Ê Ŝ j = Ŝ jÊeiq j . The set of errors which commute with all

elements of the stabilizer group is called the centralizer C(S );

these errors have a trivial syndrome, q = 0. Of these, any

error that is a member of the stabilizer group acts trivially

on code states, while the remaining errors L̂ ∈ C(S ) \ S act

nontrivially within the code, they are called logical operators.

An error Ê ∈ Hn that does not commute with all stabilizer

generators has a nontrivial syndrome and it takes Q into an

orthogonal subspace ÊQ ≡ {Ê |ψ〉 | |ψ〉 ∈ Q}. Two errors

that differ by an element of the stabilizer group, Ê ′ = Ê Ŝ, Ŝ ∈
S , have the same syndrome, and as such, are called mutually

degenerate. They act identically on the code and are also

called equivalent. Two errors that differ by a logical operator,

Ê ′ = Ê L̂, L̂ ∈ C(S ) \ S , also have the same syndrome but

they act differently on the code. The set of inequivalent logical

operators L(S ) is formed by the cosets of S in the centralizer
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C(S ). If we ignore the phases, then the set of cosets L(S )

actually forms a group, the group of logical operators.

By a slight abuse of notation, and when the global phase

is irrelevant, we will often refer to an operator Û (e) ∈ Hn

directly by its symplectic vector component, e ∈ R2n. For

example, we can refer to a logical operator c ∈ L(S ) when

we ought to write Û (c) ∈ L(S ). In accordance with classical

codes terminology, we also refer to c ∈ L(S ) as a codeword.

Furthermore, for two equivalent errors, e and e′ = e + s,

where s ∈ S , we use e′ ≃ e to denote their equivalence and

[e] to denote the entire equivalence class,

[e] = {e + s : ∀s ∈ S}. (4)

Throughout this work we consider the independent Gaus-

sian displacement channel N (ρ) with standard deviation σ0:

N (ρ) =
∫ ∞

−∞
du

∫ ∞

−∞
dv Pσ0

(u)Pσ0
(v)eiup̂+ivq̂ρ e−iup̂−ivq̂,

(5)

where ρ is a single-mode density matrix and Pσ0
(x) is the

Gaussian probability density function with mean zero and

variance σ 2
0 ; i.e., Pσ0

(x) = (2πσ 2
0 )−1/2e−x2/2σ 2

0 . We will refer

to σ0 as the bare standard deviation, because we will often

consider scaled observable, e.g., P̂ = 2α p̂, for which the

corresponding effective rescaled standard deviation is σ =
2ασ0. Even though this channel may not necessarily be the

one which is physically most relevant, what is important is that

it covers dominant sources of imperfections stochastically.

Any physically realistic GKP code state has finite photon

number n and one reasonable model of such finite-photon

GKP state is a coherent superposition of Gaussian

displacement errors on a perfect code state; see Eqs. (40) and

(41) in Ref. [3]. The quality of such an approximate GKP

state can be given by an effective squeezing parameter 	 with

n ∼ 1
2	2 − 1

2
. Assuming a coherent superposition of Gaussian

displacements can be replaced by a Gaussian mixture of

displacements on a perfect state we can identify 	2 = 2σ 2
0 . If

errors are dominated by such a finite squeezing/finite photon

number, then we could use σ0 ∼
√

1
2(2n+1)

to interpret our

numerical data. For example, n = 4 gives σ0 ≈ 0.236.

Besides this, it has been shown that photon loss with rate

γ followed by an amplification or pumping step produces

the Gaussian displacement channel with σ 2
0 = γ

1−γ
[5]. For

example, the rate γ = 0.02 corresponds to σ0 = 0.14. Such

an amplification step on the GKP data qubit could be added in

each step of error correction.

As a convention we use bold italic symbols, such as u, to

denote row vectors. We use hatted symbols, such as P̂, Q̂, for

quantum operators and unhatted symbols for the correspond-

ing eigenvalues, such as P and Q. We will consider modulo

values for real numbers quite often where, for convention,

we chose the remainder to be in a symmetrical interval

around 0. For example, given φ ∈ R, writing q = φ cmod 2π

means that q ∈ [−π, π ) and φ = q + 2πk for some k ∈ N. In

conventional notation q := (φ + π ) mod 2π − π and k :=
⌊(φ + π )/2π⌋. We also denote a range of integers as [n] ≡
{1, . . . , n}. We will refer to single-mode q-type errors as

displacements of the form exp(iηq̂) for some η. Such errors

induce shifts in p and are alternatively called shift-in-p errors.

Similarly, for p-type errors which induce shifts in q.

B. Maximum-likelihood versus minimum-energy decoding

A (classical) binary linear code [21] of length n encoding k
bits is a linear space of dimension k formed by binary strings

of length n, C ⊆ Fn
2. For such a code, maximum likelihood

(ML) syndrome-based decoding amounts to finding the most

likely error which results in the given syndrome. Generally,

there are 2n−k distinct syndromes and |C| = 2k codewords.

It is not hard to find a vector e which produces the correct

syndrome; ML decoding can then be done by comparing the

probabilities of errors P(e + c), where c ∈ C goes over all the

codewords. In the simplest case of the binary symmetric chan-

nel, the probabilities scale exponentially with error weight

which can be thought of as the “energy” associated with the

error. Thus, for linear binary codes under the binary symmet-

ric channel, ML decoding is the same as the minimum-weight,

or minimum-energy (ME) decoding.

Syndrome-based ML decoding for a qubit stabilizer code

can be done similarly. The main difference here is the degen-

eracy: errors that differ by an element of the stabilizer group

are equivalent, they can not and need not be distinguished. As

a result, the probability P(E ) of an n-qubit Pauli error E ∈ Pn

needs to be replaced by the total probability to have any error

equivalent to E . In the case of Pauli errors which are indepen-

dent on different qubits, quite generally, this probability can

be interpreted as a partition function of certain random-bond

Ising model [22,23]. Exactly which statistical model one gets

depends on the code. For a qubit square-lattice toric code with

perfect stabilizer measurements the partition functions are

those of 2D random-bond Ising model (RBIM). Similarly, for

the toric code with repeated noisy measurements, the partition

function is that of a random-plaquette gauge model (RPGM)

in three dimensions [22], where the “time” dimension enu-

merates syndrome measurement cycles. More general models

are discussed, e.g., in Refs. [23,24].

Instead of computing the partition functions proportional

to the total probabilities of errors in different sectors, one

could try finding a single most-likely error compatible with

the syndrome. It is the latter method that is usually called

the ME decoding for a quantum code. Indeed, in terms of the

statistical-mechanical analogy, for ML decoding one needs to

minimize the free energy, minus the logarithm of the partition

function. In comparison, for ME decoding, one only looks

at a minimum-energy configuration (not necessarily unique);

this ignores any entropy associated with degenerate configu-

rations. While the ME technique is strictly less accurate than

ML decoding, in practice the difference may be small.

The two approaches are readily extended to GKP codes,

both in the channel model where perfect stabilizer mea-

surement is assumed, and in the more general fault-tolerant
(FT) case where repeated measurements are used to offset

the stabilizer measurement errors. The latter case can be

interpreted in terms of a larger space-time code dealing with

both the usual quantum errors and the measurement errors

[22,24,25]. One important aspect is that the quantum errors

accumulate over time, while measurement errors in different

measurement rounds are independent from each other. This
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leads to an extended equivalence between combined data-

syndrome errors which is similar to degeneracy. The corre-

sponding generators can be constructed, e.g., by starting with

a single-oscillator error, followed by measurement errors on

all adjacent stabilizer checks that result in zero syndrome,

followed by the error which exactly cancels the original error.

Because of this cancellation, such an invisible error has no

effect and should be counted as a part of the degeneracy group

of the larger space-time code.

The following discussion applies to a GKP code in either

the channel model or the fault-tolerant model. In both cases

we denote as S ⊆ Hn the degeneracy group of the code. In the

channel model, S is exactly the stabilizer group, acting on the

data oscillators. In the fault-tolerant case, S is the degeneracy

group of the space-time code, acting on both data oscillators

as well as ancillary oscillators used to measure the syndrome.

Consider a multi-oscillator error, e ∈ R2n, see Eq. (1), and

the corresponding probability density P(e). The probability is

assumed to have a sharp [exponential or Gaussian, cf. Eq. (5)]

dependence on the components of e; for this reason we can

also write

P(e) = exp[−H (e)], (6)

where H (e) is the dimensionless energy associated with the

error operator Û (e). Syndrome-based ML decoding can be

formulated as follows. The error e yields the syndrome q(e).

Given a logical operator c ∈ L(S ), denote P([e + c]|q) as the

probability for any error in the class [e + c], see Eq. (4), con-

ditioned on the syndrome q. This probability can be written

as

P([e + c]|q) =
∫

s∈S
ds P(e + c + s|q)

=
1

P(q)

∫

s∈S
ds P(e + s + c)

=
1

P(q)

∫

s∈S
ds e−H (e+s+c) ≡

1

P(q)
Zc(e), (7)

where an appropriate integration measure should be used, and

P(q) is the net probability density to obtain the syndrome q =
q(e). Among all inequivalent codewords c ∈ L(S ), we select

the most likely, i.e., with the largest Zc(e). The probability

of leaving a logical error c after ML decoding is the net

probability of all the errors e for which the sector [e − c] is

the most likely, so

P(ML)(c) =
∫

e: ∀b�≃(−c), Z−c(e)>Zb(e)

de P(e), (8)

[here we disregarded the contribution from sectors b �≃ (−c)

equiprobable with (−c), Z−c(e) = Zb(e)]. The probability of

success of ML decoding can then be expressed as P(ML)
succ =

P(ML)(0). It is easy to see that any other decoding algorithm

gives success probability that is not higher than that of ML

decoding. Indeed, a different algorithm would swap some

errors e for e + c, which may reduce the measure in the

corresponding analog of Eq. (8).

Furthermore, given an error e, the probability P(q) to

obtain the syndrome q = q(e) can be written as P(q) =
∫

b∈L(S )
db Zb(e), using the appropriate integration measure for

the logical operators b. For this error e we denote cmax(e) as

its corresponding most likely sector,

cmax(e) = arg max
c∈L(S )

Zc(e). (9)

The probability of a logical error c after ML decoding Eq. (8)

can then be rewritten as an expectation by multiplying and di-

viding by P(q), changing variables, and resumming, resulting

in

P(ML)(c) = 〈P([e + cmax + c]|q(e))〉

=
∫

de P(e)
Zcmax+c(e)

P(q)

=
∫

de P(e)
Zcmax+c(e)
∫

db Zb(e)
. (10)

ML decoding is successful if the most likely error is actually

the one that happened, which corresponds to the trivial sector

c ≃ 0 being dominant over all other sectors 0 �≃ c ∈ L(S ).

Given the error probability distribution P(e), we say that a

sequence of discrete GKP codes of increasing length n is in

the decodable phase if P(ML)
succ ≡ P(ML)(0) → 1 with n → ∞.

With the definitions Eqs. (6) and (7), Zcmax
(e) can be

interpreted as a partition function of a classical model in the

presence of quenched randomness determined by the actual

error e. The partition function Zcmax+c(e) differs by an addition

of a defect, e.g., a homologically nontrivial domain wall at the

locations specified by nonzero components of the codeword

c. Having already cmax(e) �≃ 0 means that the disorder, e,

energetically favors the domain wall cmax. In the following,

we will also consider the free energy, Fc(e),

Fc(e) ≡ −lnZcmax+c(e), (11)

as well as the corresponding average 〈Fc〉 ≡
∫

de P(e) Fc(e).

It follows from the Gibbs inequality that below the error-

correction threshold for the noise parameters in P(e), the

free-energy increment 	Fc ≡ Fc(e) − F0(e) associated with

a logically distinct “incorrect” class (c �≃ 0) necessarily di-

verges with n for any error, e, likely to happen [23]. More

precisely, if ML decoding is asymptotically successful with

probability one, P(ML)
succ → 1, then the average free-energy in-

crement, 〈	Fc〉 associated with any nontrivial codeword c �≃ 0

must diverge for n → ∞. Such a divergence can be seen as a

signature of a phase transition in the corresponding model.

As is the case of the surface codes [22], the partition

functions Zc(e) are evaluated at a temperature that is not

a free parameter but depends on the distribution P(e). For

the sake of understanding the physics of the corresponding

models, we could relax this, e.g., by additionally rescaling the

energy H (e) → βH (e), cf. Eq. (6), in the definition Eq. (7) of

the partition function Zc(e), while keeping the original error

probability distribution in the average Eq. (10). This amounts

to using ML decoder with incorrect input information, thus the

corresponding success probability is not expected to increase,

P(ML)
succ (β ) � P(ML)

succ (β = 1) ≡ P(ML)
succ , (12)

similar to decoding away from the Nishimori line in the case

of qubit stabilizer code [22,23]. In particular, the limit β →
∞ corresponds to ME decoding, where we are choosing the
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codeword c to minimize the function

Hc(e) ≡ min
s∈S

H (e + c + s). (13)

III. PROTECTING A SINGLE GKP QUBIT

A. Setup

The single-mode GKP code [3] is a prescription to encode

a qubit—a two-dimensional Hilbert space—into the Hilbert

space of an oscillator using a discrete subgroup of displace-

ment operators H1 as the stabilizer group. One chooses the

two commuting displacement operators, Sp = e2iα p̂ and Sq =
ei2π q̂/α , where α �= 0 is any real number. For this encoded

qubit the (logical) Pauli operators are Z = eiπ q̂/α (with Z2 =
Sq) and X = eiα p̂ (with X 2 = Sp). One can verify that XZ =
−ZX . The oscillator observables, P̂ = 2α p̂ and Q̂ = 2π q̂/α,

can both take any value 2πk for k ∈ Z on ideal codewords.

The codeword |0〉 (respectively, |1〉) is distinguished by k
being even (respectively, odd). The action of phase space

translations Sp (respectively, Sq) on the eigenvalues of Q̂ (re-

spectively, P̂) is Q → Q + 4π (respectively, P → P + 4π ).

The action of X (respectively, Z) is Q → Q + 2π (respec-

tively, P → P + 2π ).

A visual representation can be obtained by imagining the

variables Q and P as a torus in phase space with both handles

of circumference 2π . In this representation Sp lets Q wind

around the handle exactly twice, while X lets Q go around

the handle exactly once. A correctable error constitutes a shift

in Q by less than half the circumference. In this convenient

representation, a logical error thus occurs when the winding

number is odd, and no error occurs when the winding number

is even. The shifts in P corresponds to windings around the

other handle of the torus.

We will assume that the oscillator undergoes noise mod-

eled as a Gaussian displacement channel with bare standard

deviation σ0, see Eq. (5). The effect on the scaled observables

P̂ and Q̂ is to map P → P + ǫp and Q → Q + ǫq where ǫp

and ǫq are drawn from Gaussian distributions with rescaled
variances,

σ 2
P = 4α2σ 2

0 and σ 2
Q =

4π2σ 2
0

α2
. (14)

For symmetry reasons, α is chosen to be
√

π and we write

σ = σP = σQ. Given perfect measurements of Sp, the error ǫq

can be corrected if |ǫq cmod 4π | < π .

To measure stabilizer generators Sp and Sq we consider the

fault-tolerant Steane measurement circuits [3] in Fig. 1, where

encoded |+〉 or |0〉 ancillas, CNOTs and q̂ or p̂ measurements

are used.

For simplicity, we consider the ancilla preparations, the

CNOT and the q̂ and p̂ measurements to be perfect and only

add Gaussian displacement channels on the data qubit and

on the ancilla qubit right before its measurement. Doing

this ignores the back propagation of q-type errors to the

data due to an imperfect ancilla [26], but if we treat p-

type and q-type error correction independently, then this

back-propagation does not fundamentally alter the noise

model. We will keep the freedom of choosing different

standard deviations for the data and the ancilla errors and

N ECGKP (NM) ≡
N •

|+〉 NM q̂ |0〉 • NM p̂

FIG. 1. A single round of fault-tolerant GKP syndrome measure-

ment for both q and p shifts. Here |+〉 is the +1 eigenstate of Sq and

X , and |0〉 is the +1 eigenstate of Sp and Z . The CNOT gate is the

logical CNOT for the GKP code which induces the transformation

qtarget → qcontrol + qtarget (while pcontrol → pcontrol − ptarget, qcontrol →
qcontrol, ptarget → ptarget). Each measurement is a perfect homodyne

measurement of q̂ or p̂. N are NM are Gaussian displacement

channels in Eq. (5) which model shift errors on the encoded state

in each round of error correction, respectively, shift errors in the

homodyne measurement.

denote as σM the scaled standard deviation for the ancilla

errors.

Since the measurement outcomes in Fig. 1 are inaccurate,

they cannot be used to infer a correction which maps the state

back to the code space. To perform error correction one has to

measure frequently and try to use the record of measurements

to stay as close as possible to the code space without incurring

logical errors to preserve the codeword. Figure 2 shows this

repeated measurement protocol for p-type errors (or shift-in-q
errors).

We will analyze only p-type data errors with scaled stan-

dard deviation σ and measurement errors with scaled stan-

dard deviation σM, cf. Eq. (14). The analysis for q-type

errors would be similar. When considering the realization of

a particular shift error we will use the following notation:

ǫt ∈ R is the shift error occurring on the data before the t th

measurement, δt ∈ R is the measurement error occuring at the

t th step. Furthermore, qt ∈ [−π, π ) is the t th measurement

outcome for the rescaled variable Q̂ and φt = ǫ1 + · · · + ǫt is

the cumulative shift on the data. The relations between these

quantities are

qt = φt + δt cmod 2π, φt − φt−1 = ǫt , φ0 ≡ 0. (15)

We consider a total of M rounds of GKP measurements in-

dexed by t ∈ [M]. Of these, the last measurement is assumed

perfect, incorporating any measurement error into the corre-

sponding shift error. Specifically, we write φM = φM−1 + ǫM ,

qM = φM cmod 2π , so that δM = 0. This last measurement

can be thought of as a destructive measurement performed

directly on the data without the use of an ancilla, as one

would do to retrieve the encoded information. As such, the

last data error ǫM can equivalently be thought of as the last

measurement error on the destructive measurement of the

data. Having this last perfect measurement permits us to map

back to the code space and easily define successful or failed

|Ψ〉 N • N • · · · N • N q̂

|+〉 NM q̂ |+〉 NM q̂ · · · |+〉 NM q̂

FIG. 2. Repeated rounds of error correction for the GKP code

to detect and keep track of error shifts in q̂ followed by a final

destructive measurement of the data (modeled as N followed by

a perfect measurement of q̂). No explicit corrections based on the

measured values are shown.
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error correction. Specifically, we are trying to determine the

parity of kM in the relation qM = φM + 2πkM ; error correction

is successful as long as we determined the parity correctly. We

denote the set of M measurements as q and M cumulative shift

errors as φ.

To get some intuition, imagine that we apply a single round

of error correction of Fig. 2 and NM is the identity channel.

The ancilla qubit |+〉 is a uniform sum of delta functions with

Q = q = 0 cmod 2π , hence we represent the measurement

outcome compactly as q ∈ [−π, π ). An incoming logical X

on the data qubit is pushed (through the CNOT) onto the ancilla

qubit where it translates q by a full 2π -period, hence logical

information is not observed. One corrects a shift of up to π (at

most half-a-logical) by shifting Q back by the least amount to

make it again equal to 0 cmod 2π .

B. Decoding strategies

We start by describing the maximum-likelihood strategy.

Given the measurement record, one would like to compute

the conditional probabilities for different classes of errors

which are distinguished by their logical action. In this case

of correcting a single qubit against shift errors in q, one has

to decide whether there was an X error or there was none.

Knowing the details of the error model, namely σ and σM, one

can write down the probability of these two classes. Formally,

they are given by

P(0|q) =
∫

I0

P(φ|q)dφ, P(1|q) =
∫

I1

P(φ|q)dφ, (16)

where the integration covers all possible realizations of the

shift errors described by φ, and I0 (respectively, I1) limits

the integral to realizations leaving no X error (respectively,

leaving an X error). Since the last measurement is assumed

perfect, I0 and I1 are characterized by δ(φM − qM + 2πkM ),

with any even kM in I0 and any odd kM for I1.

In practice, to do decoding for the given measurement

history, q, one needs to compare the probabilities Eq. (16).

ML decoding algorithm suggests that a logical X correction is

needed if P(1|q) > P(0|q). Of course, this does not guarantee

success in each particular trial. If we take just one measure-

ment round, M = 1, which corresponds to measuring the data

directly, then we get

PM=1(0|q1) =
∑

k1even

∫ ∞

−∞
dǫ1 P(ǫ1|q1)δ(ǫ1 − q1 + 2k1π )

∝
∑

k1 even

Pσ (q1 − 2πk1), (17)

and PM=1(1|q1) is given by the complementary sum over

odd k1, which makes the normalization the full sum with k1

running over all integer values.

To compute these probabilities in general, we apply Bayes’

rule:

P(φ|q) =
P(q|φ)P(φ)

P(q)
. (18)

Then the probability for some outcome q given data errors φ

can be computed from the measurement error model and the

probability for some data error φ from the data error model.

The normalization, P(q), can be computed by integrating

the numerator over every φ. Using Eq. (15), we have from

Eq. (18)

P(φ|q)P(q) ∝
∑

k∈ZM

[

M−1
∏

t=1

exp

(

−
(qt − φt + 2πkt )

2

2σ 2
M

) M
∏

t=1

exp

(

−
(φt − φt−1)2

2σ 2

)

δ(φM − qM − 2πkM )

]

. (19)

Recalling Eq. (7), we write the corresponding complementary probabilities Eq. (16) in terms of partition functions,

P(0|q) =
Z0(q)

P(q)
, P(1|q) =

Z1(q)

P(q)
, (20)

Zc(q) = N−1

∫

dφ
∑

k∈ZM−1

exp

[

−
M−1
∑

t=1

(qt − φt + 2πkt )
2

2σ 2
M

]

exp

[

−
M
∑

t=1

(φt − φt−1)2

2σ 2

]

×
∑

kM∈Z

δ(φM − qM − 2πc − 4πkM ), c = 0, 1, (21)

with N a normalization constant [27]. In this special case

picking e = q, for a candidate error is always a valid choice,

that is why we can write directly Zc(q).

The evaluation of the Gaussian integrals in Eq. (21) (see

Appendix B 1) gives

Zc(q) =
(2π )(M−1)/2

N (det B)1/2

∑

k=(k̃,c+2m):k̃∈ZM−1, m∈Z

× exp

[

−
1

2
(q + 2πk)A(q + 2πk)T

]

, (22)

where B and A are symmetric positive-definite matrices given

explicitly by Eqs. (B1) and (B2) in the Appendix. The sums

with c ∈ {0, 1} can be numerically computed by setting a

cutoff K , restricting every kt to the interval −K � kt � K .

The number of terms then still exponentially increases with

the number of rounds. We used Eq. (22) with a cutoff K = 2

for up to M = 7 rounds for the results shown in Figs. 4 and 5.

Intuitively, this cutoff corresponds to only considering events

where the measurement shift errors let one wind around the

torus at most twice in each round. This is pretty reasonable
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since these errors follow a Gaussian distribution with small

variance.

Generally, a more clever way to calculate the sum in

Eq. (22) is to express it in terms of a genus-M Riemann

theta function [28], and then transform the matrix so that

the summation terms can be rearranged in decreasing order,

stopping at a desired precision. However, this requires solving

a shortest vector problem with the eigenvectors of A and is

therefore also computationally difficult [29,30].

In addition to the formally exact but hard to calculate

Eqs. (21) and (22) for the conditional probabilities, we would

like to consider a class of approximate minimum-energy

solutions of the corresponding optimization problem. To this

end, we define a 2π -periodic potential, Vσ (x) = Vσ (x + 2π ),

exp[−Vσ (x)] ≡
∑

k∈Z

e−(x+2πk)2/2σ 2

. (23)

The periodicity of the sum of the Gaussians implies that

one should be able to approximate Vσ (x) by its principal

Fourier harmonic,

Vσ (x) ≈ A0 − βV (σ ) cos x, (24)

where βV is Villain’s effective inverse temperature parameter,

and the overall shift A0 is irrelevant. Such a simplified form

is exactly the approximation used by Villain [31], but “in

reverse.” Indeed, for large β, one has [32]

eβ cos x ≈ eβ
∑

k∈Z

exp

(

−
β(x + 2πk)2

2

)

, (25)

which gives βV (σ ) = 1/σ 2, σ ≪ 1.

With the defined periodic potential, the logarithm of the

nonsingular part of Eq. (19) acquires a form of a discrete-time

Euclidean action, cf. Eq. (6)

H (φ; q) ≡ − ln[P(q|φ)P(φ)]

=
M
∑

t=1

(φt − φt−1)2

2σ 2
+

M−1
∑

t=1

VσM
(qt − φt ) + const.

(26)

With the given values φ0 = 0 and φM , the corresponding

extremum can be found by solving the equations

φt+1 − 2φt + φt−1 + σ 2V ′
σM

(qt − φt ) = 0, t ∈ [M − 1],

(27)

where V ′
σM

(x) denotes the derivative of the potential in

Eq. (23). These equations can be readily solved one-by-one,

starting with φ0 = 0 and some φ1 ≡ φ; the boundary con-

dition φM = qM + 2πkM can be satisfied by scanning over

different values of φ1 in a relatively small range around zero,

with the global minimum subsequently found by comparing

the resulting values of the sum in Eq. (26). Then, any even

value of kM corresponds to no logical error, while an odd kM

indicates an X error to be corrected. While such a minimiza-

tion technique gives the exact ME solution, in practice it is

rather slow. Namely, with increasing nonlinearity σ 2/σ 2
M and

increasing length M of the chain, a small change in φ1 may

strongly affect the configuration of the entire chain. Respec-

tively, it is easy to miss an extremum corresponding to the

FIG. 3. Sketch of GKP decoding problem and its solution strat-

egy. For each round of error correction t ∈ [M] one has a Villain

potential VσM
(qt − φt ), depicted in blue, with the minimum centered

at the measured value qt . Green and red intervals along the horizontal

axis denote the sets I0 and I1 in Eq. (16), they correspond to realiza-

tions leaving no error or an X error, respectively. In a memoryless

decoding strategy one decides how to shift the code state after each

measurement based on the value of qt . In a maximum-likelihood

decoding procedure one evaluates the path integral in Eq. (22). In

a minimum-energy decoder one determines an optimal path for the

sequence φt , t ∈ [M], given the random potential and the quadratic

“kinetic energy” term proportional to (φt − φt−1)2, see Eq. (26).

Red and black lines show two decoding trajectories which start at

the same point but have different winding numbers. Upon a final

decoding step, choosing the black trajectory leads to deciding that

no logical X error has taken place, since the final value φM lies in

the green region. Choosing the red trajectory leads to deciding that

a logical X has taken place since the final value φM lies in the red

region. Examples of actual trajectories are shown in Fig. 13 in the

Appendix.

global minimum. This numerical complexity of minimizing

Eq. (26) is a manifestation of chaotic behavior inherent in

Eqs. (27).

Indeed, the problem of minimizing the energy Eq. (26)

can be interpreted as a disordered version of a generalized

Frenkel-Kontorova (FK) model [33], where a chain of masses

coupled by springs lies in a periodic potential. In our setup,

random shifts qt can be traded for randomness in the initial

(unstretched) lengths of the springs, qt − qt−1. The original

FK model, with Vσ (x) replaced by a harmonic function, is

obtained if one uses the Villain approximation “in reverse,”

see Eq. (24). Even in the absence of disorder, the FK model

is an example of a minimization problem with multiple com-

peting minima which can be extremely close in energy. The

corresponding Eqs. (27), viewed as a two-dimensional map

(φt−1, φt ) → (φt , φt+1), are a version of the Chirikov-Taylor

area-preserving map from a square of size 2π to itself [34],

one of the canonical examples of emergent chaos.

For this reason, and also in an attempt to come up

with a numerically efficient decoding algorithm, we have
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10−2

10−1

100

number of rounds (M)
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−

2P
e
rr

Forward-minimization decoder

1 2 3 4 5 6 7
10−2

10−1

100

number of rounds (M)

1
−

2
P

e
rr

Maximum likelihood decoder (K = 2)

σ0 ∈ [0.1, 0.9]

data

fit

FIG. 4. Some of the numerical results for the forward-minimization and maximum-likelihood decoders (with cutoff K = 2). To observe

the exponential decay towards 1/2 we plot 1 − 2Perr on a log scale for different number of rounds and different bare standard deviation σ0. Low

hundred thousands of trials are performed for each data point and the confidence intervals at 95% are shown. For each σ0 we fit an exponential

decay, the slope gives us an effective logical error rate per round. On both plots the value for σ0 varies between 0.1 and 0.9, on the left by 0.05

increments, on the right by 0.1 increments. All effective logical error rates are plotted in Fig. 5.

designed the following approximate forward-minimization
technique. For each t < M, starting from t = 1, given the

present value φt−1, one determines the next value φt such that
∂H
∂φt

|φt+1=φt
= 0. Given the syndrome qt , this implies

φt = arg min
φ

[

(φ − φt−1)2

2
− σ 2VσM

(qt − φ)

]

⇒ φt = σ 2V ′
σM

(qt − φt ) + φt−1. (28)

At the end, after one obtains φM−1, one chooses a kM such

that qM + 2πkM is the closest to φM−1. The parity of thus

chosen kM then tells if a logical error happened. This strategy

is illustrated in Fig. 3.

These equations are certainly different from the exact ex-

tremum Eqs. (27), and the configuration found by this forward

minimization technique necessarily has the energy higher than

the exact minimum. However, empirically, the corresponding

energy difference is typically small, much smaller what one

gets, if the correct minimum is missed by the formally exact

technique based on Eqs. (27). Even though this technique

is only an approximation, it is fast and is accurate enough

in practice. To ensure that the approximation does not hurt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

σ0

L
og

ic
al

er
ro

r
ra

te
p
er

ro
u
n
d

σM = σ

0.1 0.2 0.3

10
−5

10
−4

10
−3

10
−2

10
−1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
σ0

σM = σ/2

memoryless

forward-minimization

MLD (K = 2)

passive

perfect measurements

FIG. 5. Plots of the observed effective logical error rate per round for different decoding techniques. In the left plot we have taken the same

standard deviation for measurement and data errors. On the right we have taken the measurement standard deviation equal to half that of the

data errors. The horizontal axis shows the bare standard deviation σ0.
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the performance of our decoder, we have compared it to a

rigorous dynamic programming approach; see Appendix B 2.

This comparison shows that the dynamic programming ap-

proach has very little advantage while it is substantially slower

in its execution.

A very simple decoding strategy that one might also try is

to trust every measurement outcome and immediately correct

each round. This does not require any memory so we refer to

it as the memoryless decoder. Intuitively, this method is risky

as every round transfers the measurement errors to the data,

increasing the variance of the effective error model acting on

the data.

C. Numerical results

We have numerically simulated these different decoders:

maximum likelihood with a cutoff, forward-minimization, and

memoryless decoding. We have also compared them to the

scenario where the measurements are perfect, as well as the

completely passive decoder where one lets shift errors happen

without performing error correction measurements. For each

scenario we considered up to 11 rounds of measurements

(M = 7 for the maximum likelihood decoder), sampled errors,

applied the decoder and gathered statistics of success or

failure of the procedure for different bare standard deviation

for the errors σ0 ∈ [0.1, 1].

In every scenario we observe an exponential decay toward

1/2 of the probability of logical error as seen in Fig. 4. Thus,

as expected, there is an eventual loss of logical information

for any values of σ and σM. The decay can be fitted to extract

an effective logical error rate per round which we then plotted

in Fig. 5.

One striking observation is that above a certain bare stan-

dard deviation, the measurement outcomes are simply not

reliable enough, so that one cannot do substantially better than

throwing away the measurements and passively letting errors

accumulate. Roughly speaking, this occurs for σ0 � 0.5 when

σM = σ and for σ0 � 0.7 when σM = σ/2. Another observa-

tion for σM = σ is that the memoryless technique actually

quickly does more harm than the passive approach which

forgoes error correction altogether. Finally, we observe that

in the range of parameters studied, the forward-minimization

technique performs almost as well as the maximum-likelihood

decoding, while having the advantage of being much simpler

computationally.

IV. CONCATENATION: TORIC-GKP CODE

A. Setup

We consider the following setup shown in Fig. 6. We have

a 2D lattice of oscillators such that each oscillator encodes a

single GKP qubit. To error correct these GKP qubits by the

repeated application of the circuits in Fig. 1, a GKP ancilla

qubit oscillator is placed next to each data oscillator, allowing

for the execution of these circuits. After each step of GKP

error correction, we measure the checks of a surface or toric

code: a single error correction cycle for one of the toric-code

checks is shown in Fig. 7. Note first that we omit GKP error

correction after each gate in the circuit in Fig. 7: the reason

is that we assume that these components are noiseless in this

FIG. 6. The two-dimensional layout of oscillators, e.g., high-Q

cavities, for the toric-GKP code. Shown is a fragment of a surface

or toric code lattice. The different ± signs are defined by the

orientations as explained in the main text.

setup so nothing would be gained by adding this. Second, the

check operators of the toric code are those of the continuous-

variable toric code [35] which are commuting operators on the

whole oscillator space; see Appendix F. The reason for using

these checks is that for the displacements X and Z of a GKP

qubit, it only holds that X = X −1 and Z = Z−1 on the code

space. Expressed as displacement operators on two oscillators

1 and 2, it holds that [X1X2, Z1Z−1
2 ] = 0. The upshot is that

one has to use some inverse CNOTs in the circuit in Fig. 7.

In the following, we will denote vertices of the square

lattice with letters i, j, k, l , and the directed edges with the

corresponding vertex pairs, e.g., e = (i j). Quantities defined

on the edges will be considered as vector quantities, e.g.,

p̂i j = −p̂ ji for the momentum operator. The preferred orien-
tation is given by the direction of the coordinate axis. For such

a lattice vector field, say some field f , defined on edges, with

components fi j = − f ji, we will denote the sum of the vectors

from a vertex j as

(∇ · f ) j ≡
∑

k∼ j

f jk, (29)

where the summation is over all vertices k that are neighboring

with j. Note that this choice, recovers the ± signs for a X -

check (red) in Fig. 6, when the quantities f jk are written in

their preferred orientation. The circulation of a vector around

1 N ECGKP (NM) •

2 N ECGKP (NM) •

3 N ECGKP (NM) •

4 N ECGKP (NM) •

|0〉 NT q̂

FIG. 7. A single round of error correction for a Z-check for the

toric-GKP code in Fig. 6, on oscillators numbered 1 to 4. The GKP

error correction unit is given in Fig. 1, |0〉 is a +1 eigenstate of Z
and Sp. The inverse CNOT which induces the transformation qtarget →
qtarget − qcontrol (while pcontrol → pcontrol + ptarget) is denoted using a ⊖
at the target qubit instead of a ⊕. A parallel execution of the CNOTs

for the X -checks is possible in the toric code.
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a (square) plaquette p ≡ (i jkl ) is denoted as

(∇ × f )p ≡ fi j + f jk + fkl + fli. (30)

The preferred orientation for a plaquette, p = (i jkl ), is the

one for which the closed path i → j → k → l → i turns

counter-clockwise. With this choice Eq. (30) recovers ± signs

for a Z-check (green) in Fig. 6, when the quantities f jk are

written in their preferred orientation. With these notations, the

vertex Â j (X -type) and the plaquette B̂p (Z-type) operators of

the toric code in Fig. 6 can be denoted as,

Â j ≡ ei
√

π (∇·p̂) j and B̂p ≡ ei
√

π (∇×q̂)p . (31)

B. Noiseless measurements and numerical results

We first examine the operation of the toric-GKP code in the

channel setting. This simplified error model is based on the

assumption that there are no measurement errors, i.e., NM =
1 and NT = 1 in Fig. 7, or equivalently, σM = 0 and σT = 0.

In other words, the assumption is that both the GKP syndrome

and the toric code syndrome are measured perfectly at every

round.

Generally, when two codes are concatenated, it is possible

to pass error information of the lower-level code (in this

case, the GKP code) to the decoder for the top-level code

(here the toric code). The information that can be passed

on is an estimation of the error rate on the underlying GKP

qubits based on the outcome of the GKP error correction

measurement. Intuitively, if the GKP measurement gives a

q ∈ [−π, π ] which lies at the boundaries of the interval, say,

beyond −π/2 or π/2, we are less sure that we have corrected

this shift correctly [36]. In other words, the logical error

rate depends on the measured value of the GKP syndrome,

and this conditional error rate can be used in the standard

minimum-weight matching decoder for the toric code. If the

conditional single-qubit error rate fluctuates throughout the

lattice, then one can expect that using this information will

substantially benefit the toric code decoder.

We numerically demonstrate that this is the case for the

toric-GKP code, reproducing some of the results in Ref. [16].

The threshold of the toric code without measurement error is

about 11% [22]. If we are not using any GKP error infor-

mation in the toric code decoding, then the threshold for σ0

is set by the value for which P(X ) = 11% with P(X ) shown

as the green line in Fig. 5. We can run a standard minimum-

weight matching toric code decoder where qubit X -errors are

generated by sampling Gaussian noise with standard deviation

σ followed by perfect GKP error correction on every GKP

qubit. The left plot in Fig. 8 presents our numerical data in

this scenario, showing a crossing point at σ c
0 ≈ 0.54.

To use the GKP error information, we use Eq. (17) for

the probability of an X error conditioned on the outcome

q ∈ [−π, π ). Including normalization, this probability reads

[37]

P(1|q) =
∑

k∈Z
Pσ (−2π + q + 4πk)

∑

k∈Z
Pσ (q + 2πk)

. (32)

To use these expressions we replace k ∈ Z by the correspond-

ing sum with a cutoff K , restricting the summation to the

interval −K � k � K . This is warranted since the Gaussian

weight for large k is small. In the numerics we used the cutoff

K = 3.

We numerically simulate the following process. For each

toric code qubit, (i j), we first generate a shift error ǫi j accord-

ing to the Gaussian distribution which leads to a GKP syn-

drome value qi j ∈ [−π, π ). Given qi j , we infer a correction

which may give rise to an X error on qubit (i j). We evaluate

the Z-checks of the toric code given this collection of errors

and perform a minimum-weight matching algorithm to pair

up the toric code defects. Logical failure is determined when

the toric decoder makes a logical X error on any of the two

logical qubits of the toric code. To use the information about

the logical error rates P(1|qi j ), for each qubit (i j), we define

a weight:

wi j = log

[

1 − P(1|qi j )

P(1|qi j )

]

. (33)

Then, we define a new weighted graph G = (V, E ), whose

vertices, p ∈ V , are plaquette defects from the toric code

graph and whose edges constitute the complete graph. Given

an edge, (p, p′) ∈ E , its weight ωp,p′ is the minimum weight

of a path on the dual of the toric code graph connecting the

defect plaquettes p and p′. Here, the path weight, ωp,p′ , is

the sum of the weights, wi j , of all edges crossed by the path.

Minimum-weight-matching (Blossom) algorithm is then run

on this ω-weighted graph G, leading to a matching of defects

and thus an inferred X error.

Specifically, we used Dijkstra’s algorithm for finding a

minimum-weight path in a weighted graph as provided by the

Python library Graph-tools [38], and the minimum-weight

matching algorithm from the C++ library BlossomV [39].

The process of sampling from shift errors is repeated many

times; the logical error rate plotted in Fig. 8 is given by the

fraction of runs which result in logical failure over the total

number of runs.

V. NOISY MEASUREMENTS: 3D SPACE-TIME DECODING

A. Error model

In this section we consider how to use both GKP and toric

code error information when both error correction steps are

noisy, using repeated syndrome measurements. This is the full

error model in Fig. 7, which represents one complete QEC

cycle. We only consider p-type shift errors (inducing shifts

in q), the initial state at t = 0 is assumed to be perfect, and

the last of M rounds of measurements noise-free, both for the

GKP and the toric code ancillas. We will address the question

of whether or not there is a decodable phase in the space of

parameters, such that by increasing the size of the code and

the number of measurement cycles, the probability of a logical

error can be made arbitrarily small.

To visualize errors of different origin, for the M-times

repeated measurement of the toric code on an L × L square

lattice, it is convenient to consider a three-dimensional cubic

lattice, with periodic boundary conditions along x and y direc-

tions, separated into horizontal layers. Each layer corresponds

to a measurement round t ∈ [M]; see Fig. 9. In each time layer

t , we use the same notations and conventions of directed edges

and vector quantities as in Sec. IV A. Hence we associate a
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FIG. 8. Threshold comparison between decoding with or without GKP error information. On the left, the simulation only takes the average

error rate into account and one obtains a threshold between σ0 ≈ 0.54 and σ0 ≈ 0.55 corresponding to P(X ) ≈ 10% and P(X ) ≈ 10.7%,

respectively. On the right, the simulation takes the GKP error information into account. In this case, the crossing point is around σ c
0 ≈ 0.6

corresponding to P(X ) ≈ 14%. The data are labeled by the distance of the toric code. “Bare GKP” is the logical error rate for a single GKP

qubit whose errors are processed perfectly without measurement errors (green line in Fig. 5).

GKP data qubit oscillator with each edge (i j) of the square

lattice.

We thus denote the shift occurring on a data oscillator just

before the measurement at time t as the shift ǫi j (t ) (induced

by channel N ). Since the shifts accumulate, the net shift on

the oscillator at bond i j just before the measurement at time t
is [cf. Eq. (15)]

φi j (t ) ≡
t
∑

t ′=1

ǫi j (t
′). (34)

Furthermore, we denote the GKP measurement error of this

oscillator at time t as δi j (t ). This is the shift error on the

ancilla inside the corresponding ECGKP unit (induced by

channel NM). With these notations, we can write for the GKP

syndrome qGKP
i j (t ) at time t ,

qGKP
i j (t ) = δi j (t ) + φi j (t ) cmod 2π. (35)

j i

δij(t)

cycle t − 1

cycle t

l

k

ǫkl(t)

x
y

ξh(t)

FIG. 9. Notations for repeated toric-GKP errors. Data oscillators

are located on the bonds of the square lattice. A GKP measurement

error for the bond b ≡ (i j, t ) in the measurement cycle t is denoted

as δi j (t ) ≡ δb, while the corresponding measurement error for the

toric code generator on horizontal plaquette p ≡ (h, t ) is denoted

as ξh(t ) ≡ ξp. A data qubit error ǫkl (t ) ≡ ǫp is associated with the

vertical plaquette p directly below the bond kl in the layer t .

In addition, we have the toric code syndrome. Specifically,

we consider the toric code plaquette operators; see Fig. 6 and

Eq. (31). The result of the toric code syndrome measurement

on the plaquette h ≡ (i jkl ) at time t is

qtor
h (t ) = ξh(t ) + (∇ × φ)h(t ) cmod 4π, (36)

where the bond vectors φi j (t ) are the accumulated errors

in Eq. (34), and ξh(t ) is the plaquette measurement error

(induced by channel NT). Note that, unlike for the GKP

measurements, the syndrome qtor is measured modulo 4π ,

since the ancilla starts in the state |0〉.
Since we assume that the measurement errors in the last

layer, t = M, are absent, we have ξh(M ) = δi j (M ) = 0. Writ-

ing the product of the corresponding probability densities, we

obtain an analog of Eq. (26) for the effective energy

H (φ; q) =
M
∑

t=1

∑

〈i j〉

[φi j (t ) − φi j (t − 1)]2

2σ 2

+
M−1
∑

t=1

∑

〈i j〉
VσM

[

qGKP
i j (t ) − φi j (t )

]

+
M−1
∑

t=1

∑

h

VσT/2

[

qtor
h (t ) − (∇ × φ)h(t )

2

]

, (37)

which depends on the accumulated field φ with components

φi j (t ) and on the total measured syndrome q ≡ {qGKP, qtor}.
Here,

∑

〈i j〉 indicates a summation over all bonds of the square

lattice, the summation over h runs over all square-lattice faces

(horizontal), and the structure of the last term accounts for the

4π -periodicity of toric syndrome measurements; see Eq. (36).

The energy in Eq. (37) defines the conditional probability

P(φ|q) ∝ exp[−H (φ; q)], up to a normalization factor. The

measurements in the last time-layer, t = M, constrain the

values φi j (M ) as follows. From the GKP syndrome we have,
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as in Sec. III,

φi j (M ) = qGKP
i j (M ) − 2πki j, (38)

while the toric syndrome for each square-lattice face h =
(i jkl ) gives

(∇ × φ)h(M ) ≡ φi j (M ) + φ jk (M ) + φkl (M ) + φli(M )

= qtor
h (M ) − 4πkh. (39)

These equations can be solved to find a last-layer binary

candidate error vector b ∈ F2L2

2 , whose components bi j ≡
ki j mod 2 give the parity of the integer shifts ki j in Eq. (38).

Just as for the usual toric code, Eqs. (38) and (39) determine

b up to arbitrary cycles on the dual lattice, i.e., X -stabilizers

(homologically trivial) and X logical errors (homologically

nontrivial) of the toric code. Adding trivial cycles to b

gives another equivalent last-layer candidate which should be

summed as part of the same sector. A trivial cycle can be

written as the gradient of a binary field, btriv
i j = n j − ni, with

ni ∈ F2. To turn b into an inequivalent last-layer candidate

error, one should add a homologically nontrivial cycle, c ∈
F2L2

2 .

We can now write explicitly the partition function Zc(b|q),

equivalent to Eq. (7), which determines the conditional prob-

ability, given the measurement outcomes q of the equivalence

class of last-layer candidate error [b + c],

Zc(b|q) = N ′−1

∫

dφ e−H (φ;q)
∏

〈i j〉

∑

{ni∈F2}

∑

mi j∈Z

× δ
[

φi j (M ) − qGKP
i j (M ) + 2π (bi j + ci j − n j

+ ni + 2mi j )
]

. (40)

For ML decoding, given a b which satisfies Eqs. (38) and (39),

one needs to compare Zc(b|q) for different c ∈ F2L2

2 which are

inequivalent binary codewords of the toric code, i.e., the three

homologically nontrivial domain walls on the square lattice

or the trivial vector. ML decoding then prescribes that we

choose the error b + c as the correction where c has the largest

partition function Zc(b|q).

B. Equivalent formulation with U (1) symmetry

The partition function in Eq. (40) with the Hamiltonian in

Eq. (37), as a statistical-mechanical model, is not so conve-

nient to analyze, since the components of the syndrome are not

independent of each other. So, we will consider an equivalent

form of the partition function, that explicitly depends on the

data errors ǫi j (t ) ≡ ǫp, the measurement errors δi j (t ) ≡ δb,

and the toric code measurement errors ξh(t ) ≡ ξp. We group

all these errors into one error record e = {ǫ, δ, ξ}. Any error

e′ that is equivalent to e can be obtained by adding, so to say,

stabilizer generators of the space-time code. This can be ex-

pressed using a 2π -periodic vector field A whose components

are real-valued on horizontal bonds in layers t ∈ [M − 1], and

{0, π}-valued on the vertical bonds connecting layers t − 1

and t for all t ∈ [M]. For horizontal bonds b in layers t = 0

and t = M, Ab = 0. With these notations, we can express the

partition function in Eq. (7) as

H (A; e) =
∑

b‖xy

VσM
(δb − 2Ab) +

∑

p‖xy

VσT/2

[

ξp

2
− (∇ × A)p

]

+
∑

p⊥xy

Vσ/2

[ǫp

2
+ (∇ × A)p

]

, (41)

Z0(e) = N ′′−1
∑

Ab∈{0,π}:b⊥xy

∏

b‖xy

∫ π

−π

dAb e−H (A;e), (42)

with some normalization N ′′. To derive these equations, we

determine the shift errors that leave the syndrome record

{qGKP, qtor} unchanged without inducing a logical error. These

are called the gauge degrees of freedom and form the stabilizer

group for the space-time code. In our case there are five

types of gauge degrees of freedom, four discrete and one

continuous. The discrete ones are genuine symmetries of the

quantum states involved in the code or measurement circuits.

Namely, the input state of an ancilla in the GKP measure-

ment circuit in Fig. 2 is stabilized by an X operator, whose

action is equivalent to a 2π -shift of the corresponding GKP

measurement error δi j (t ). Similarly, application of an X 2 = Sp

GKP stabilizer generator to a data qubit or a toric-code ancilla

in Fig. 7 is equivalent to a 4π -shift of the corresponding

error, ǫi j (t ) or ξh(t ), respectively. We also have toric code

vertex operators Â j [Eq. (31)] whose action corresponds to

simultaneous 2π -shifts on the four adjacent qubits, ǫi j (t ) →
ǫi j (t ) + 2π . This discrete gauge freedom will be captured by

the two-valued field Ab on the vertical bonds.

The only continuous degree of freedom is a space-time

one: it corresponds to adding a continuous shift a on a data

oscillator at some time step and then canceling it at the next

time step, while hiding the shift from the adjacent GKP and

toric syndrome measurements by adding the shifts ±a as

necessary on the corresponding ancillas.

When applied to the Gaussian distribution, the discrete

local shifts are responsible for forming the Villain potentials

Eq. (23) in the effective Hamiltonian Eq. (41), where addi-

tional rescaling in the last two terms was necessary to account

for the 4π -periodicity. The remaining two degrees of free-

dom are represented by the vertical (discrete) and horizontal

(continuous) components of the doubled vector potential 2A.

The scale of the vector potential A was chosen to make easier

contact with previous literature on related models. With this

choice, adding a π -shift to a component of A correspond to a

GKP X -logical, which was a 2π -shift in the previous sections.

Equations (41) and (42) have to be supplemented with

the appropriate boundary conditions to be used in decoding.

Given the toric-code codeword c, to calculate Zc(e), corre-

sponding to the sector [e + c], one can add 2πc to the data

error in the top layer, t = M. This can be achieved by intro-

ducing a fixed nonzero vector potential in this layer, namely,

Ab = πci j for all top-layer horizontal bonds b = (i j, t = M ),

instead of zero for the trivial sector.

Equations (41) and (42) look very different from the equiv-

alent form that we first derived, i.e., Eqs. (37) and (40). A map

between these two formulations is given in Appendix C.

032344-12



QUANTUM ERROR CORRECTION WITH THE TORIC … PHYSICAL REVIEW A 99, 032344 (2019)

C. Anisotropic charge-two U (1) gauge model with flux disorder

We would like to get some intuition about the constructed

U (1)-symmetric model and its features that are relevant for

decoding. To this end, we are going to relax the constraint

Ab ∈ {0, π} for vertical bonds and consider the following

anisotropic charge-two Villain U (1) model in three dimen-

sions, with quenched uncorrelated gauge and flux disorder,

H =
∑

b‖xy

VσM
(2Ab − δb) +

∑

b⊥xy

Vη(2Ab − δb)

+
∑

p‖xy

VσT/2[(∇ × A)p − ξp/2]

+
∑

p⊥xy

Vσ/2[(∇ × A)p + ǫp/2]. (43)

The model Eqs. (41) and (42) are recovered with the help

of the symmetry of the Villain potential, Vσ (x) = Vσ (−x), by

setting δb = 0 for vertical bonds, b ⊥ xy, and taking the limit

η → +0, in which case the field Ab along the vertical bonds

be only allowed to take the values 0 or π .

In addition to making all components of the vector field A

continuous, we will also relax the constraint on the parameters

of the quenched disorder. Specifically, instead of using the

components of the fields {ǫ, δ, ξ} as normally distributed with

specific root-mean-square deviations σ , σM, and σT, respec-

tively, we are going to treat the parameters of the disorder as

independent from the parameters in the Hamiltonian Eq. (43).

This is similar to the trick used originally for qubit-based

surface codes [22], where only the Nishimori line on the

phase diagram of the disordered random-bond Ising model

corresponds to ML decoding, while points away from that line

correspond to a decoder given an incorrect input information;

see Eq. (12).

We first examine the parent model Eq. (43) in the absence

of background fields, by setting all δb = ǫp = ξp = 0. The

case without anisotropy is relatively well studied, that is

η = σM and σ = σT. The Wilson Hamiltonian of the compact

charge-q U (1) lattice gauge model reads

H = −κ
∑

〈uv〉
cos(θu − θv + qAuv ) − λ

∑

p

cos(∇ × A)p,

κ =
1

σ 2
M

, λ =
4

σ 2
, (44)

where we restored local gauge symmetry θv → θv − qχv ,

Auv → Auv + χu − χv by adding a scalar matter field, U (1)

phases θv on the vertices of the lattice. Notice that the phases

θv can be always suppressed by a gauge transformation with

χv = q−1θv . For U (1) symmetry, the charge q in Eq. (44)

must be an integer; our original model with the Hamiltonian

Eq. (43) corresponds to q = 2. In application to this model,

the boundary conditions for the sectors with nontrivial code-

words c �≃ 0 [see discussion below Eq. (42)] are equivalent

to an externally applied uniform magnetic field B = (∇ ×
A)p (flux per plaquette), with the total flux of π piercing

the system along x, y, or both directions. Quite generally,

when the couplings κ and λ are sufficiently small, the net

magnetic field remains uniform on average, with the total free-

energy cost, see Eq. (D5) in the Appendix, proportional to the

σ2 = 4/λ

σ
2 M

=
1/

κ

Meissner

∞0 4/λc

X-Y

Z2

η → 0

η = σM

Meissner

∞

1/κc

FIG. 10. Schematic phase diagram of the 3D anisotropic q = 2

Villain gauge model Eq. (43) with σT = σ . Solid line bounds the

Meissner phase (light orange shading) in the clean isotropic limit,

η = σM, which corresponds to the Villain version of the model

Eq. (44). With η → 0, decodability condition for the toric-GKP

code with σ = σT can not be satisfied in the region to the right

from the dashed line, σ 2 > 4/λc(Z2), and along the upper boundary,

σM → ∞, and it is satisfied along the left boundary, σ → 0. We

therefore expect the boundary of the Meissner phase in the clean

η → 0 limit as shown with dash-dotted line; this region includes

the entire Meissner phase of the isotropic model. The green-hatched

region represents the expected location of the ML decodable phase

for the toric-GKP code; the sign of the curvature matches the bound

in Ref. [24].

volume times B2. For a system with the volume V = L2M and

B = π/(LM ), this gives the free-energy cost 	BF ∝ 1/M,

vanishing in the large-system limit. The situation is different

in the Meissner phase, analogous in properties to that in

type-II superconductors, where the magnetic field is expelled

from the bulk, and is forced into vortices (vortex lines) which

can carry a flux quantized in the units of 2π/q. Such a vortex

is a topological excitation, meaning that it cannot disappear

without moving to the system boundary or annihilating with

another vortex that carries the opposite flux, and it has a

nonzero line tension (finite or logarithmically divergent with

the system size), which gives a free-energy cost proportional

to the system size, 	BF ∝ L.

The 3D lattice model Eq. (44) (along with related non-

Abelian models) has been first discussed by Fradkin and

Shenker [40] as a toy model for quark confinement. Sub-

sequently, both the model Eq. (44) and its Villain version

have been studied analytically and numerically in a number

of papers, e.g., Refs. [41–47]. The conclusion is that the

model in 3D has only two phases; see Fig. 10. The weak-

coupling phase is characterized by the area law in the Wilson

loop correlator and the absence of the Meissner effect. In

comparison, the strong-coupling phase, which requires both

λ and κ sufficiently large, λ > λc(q) > 0, κ > κc > 0, is

characterized by the presence of both the perimeter law in the

Wilson loop and the Meissner effect. Here, λc(q) corresponds

to the limit of κ → ∞, which forces the gauge field Auv to take

values in 2π/q times an element of Zq. In the case q = 2, the

corresponding critical point [48] λc(2) ≈ 0.7613 is that of the
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three-dimensional Z2 lattice gauge theory [49]. Similarly, in

the limit λ → ∞ the fluxes are all frozen to zero, the charge q
is irrelevant and the remaining degrees of freedom are the on-

site phases θv . This model is known as the X -Y model, and its

critical point in 3D is at κc ≈ 0.453 (or κ (Villain)
c ≈ 0.4542 for

the corresponding Villain model [50]). Such a phase diagram

shape with no reentrance as a function of either variable is

consistent with the monotonicity of the correlation functions

and free-energy increments which follow from generalized

GKS inequalities; see Appendix D.

We should notice that the perimeter law in the Wilson loop

and the Meissner effect do not necessarily come together;

examples are given by compact gauge models similar to

Eq. (44) in D � 4 which also have small-κ large-λ phases

characterized by the perimeter law but no Meissner effect

[40,51]. Of course, it is the Meissner phase that is associated

with the formation of magnetic vortices with a nonzero line

tension.

What do these results tell us about the anisotropic model

Eq. (43) of interest, in particular, about the singular limit η →
+0? To answer these questions, we notice that, in the absence

of disorder, both the correlation functions and the response to

external magnetic field (existence of the Meissner effect) are

monotonically nondecreasing with respect to any coupling.

This follows from general correlation inequalities which are

briefly discussed in Appendix D. Moreover, these inequalities

also predict an upper bound, see Eq. (D6) in the Appendix,

on the ML decoding probability in terms of a similar quantity

defined in the absence of disorder. It follows that finite vortex

line tension in the clean (Meissner effect) limit is a necessary

condition for perfect decoding.

Since decreasing η corresponds to increasing some of the

couplings, the entire strong-coupling (Meissner) phase of

the 3D lattice gauge model with q = 2 should be inside of

the corresponding phase of the model Eq. (42) with σT � σ

and the values of σM, σ given by the map in Eq. (44). Second,

this phase cannot exist for σ 2 > 4/λc(2), the limit κ → ∞
which corresponds to taking both η and σM to zero.

Furthermore, if we started with the model Eq. (37) in

the limit of unusable GKP syndrome, σM → ∞, the first

term in Eq. (43) would be absent. In this case the contin-

uous gauge symmetry Auv → Auv + χu − χv is not broken,

which is sufficient to recover a continuous field Ab along

the vertical bonds b ⊥ xy; with σ = σT, the resulting model

is the Villain version of Eq. (44) with κ = 0. According to

Polyakov’s argument [51], only one phase is expected in

this limit; we expect no Meissner effect, and no decoding

threshold.

However, the large-λ (small-σ ) limit of the model Eq. (44)

corresponds to all fluxes (∇ × A)p frozen in the minimum-

energy configuration. The remaining degrees of freedom are

the phases in the first term, which gives an X -Y model.

However, if we look at the model Eq. (43) with σ = σT → 0,

in the singular anisotropic limit η → 0, the phases θv ≡ θi,t

at the same square lattice position i are forced to fluctuate

together, which gives arbitrarily large effective X -Y coupling

κeff = M/σ 2
M as M → ∞. Assuming this argument also holds

for σ = σT small but finite, we expect the phase line as shown

in Fig. 10 with a dot-dashed line, with the region below it in

the Meissner phase.

A different version of this argument can be obtained by

examining the Hamiltonian in the form of Eq. (37), with

q = 0. With σ small, the fields φi j (t ) in the neighboring

t-layers are forced to move together, which is equivalent

to increasing the couplings for the remaining terms. The

resulting model is a two-dimensional version of the gauge

model Eq. (44), with in-plane vector potential A. Just like its

3D counterpart, this model is in a disordered phase except

when the fluxes are suppressed in the limit σT → 0, which

gives a 2D X -Y model. With σ sufficiently small, the effective

in-plane coupling κ
(2D)
eff can be made arbitrarily large, driving

the model below the BKT transition.

We have discussed the expected phase boundary of the

model Eqs. (41) and (42) in the absence of disorder, e = 0.

We expect a Meissner phase to survive with e �= 0. The basic

effect of a weak disorder on a topological excitation like a

vortex line is to force its random displacements. The displace-

ments can be accounted in a simple linear approximation up

to certain distance scale called the Larkin length [52]. Even

though the displacements become nonlinear beyond this scale,

signifying the onset of glassiness, with weak enough disorder,

topological excitations are not expected to be generated; this

is called Bragg glass phase of an elastic solid [53]. The

absence of topological excitations would indicate a divergent

free-energy cost for a π vortex excitation in the Meissner

phase of the model Eqs. (41) and (42), with sufficiently weak

disorder.

We thus expect a decodable phase for a toric-GKP code to

exist in a finite region at sufficiently small σ , σM, and σT. In

the limit σM → 0, this phase should go continuously into a

decodable phase of the regular (qubit) toric code [22]. These

expectations are confirmed by our numerical results with two

(suboptimal) decoders presented in the next section.

D. Decoder and numerical results

Maximum likelihood decoding can be done by comparing

conditional probabilities in different sectors; see Eq. (7). Just

as in the case of a single GKP qubit, Gaussian integrations

in the relevant partition functions, Zc(b|q), in Eq. (40), or its

equivalent form Zc(e), in Eq. (42), can be carried through

exactly. This would leave expressions similar to Eq. (22),

with an additional summation over 2L2 binary spins. In prin-

ciple, such expressions can be evaluated using Monte Carlo

sampling techniques. In practice, the complexity of such a

calculation is expected to be high, because the corresponding

coupling matrix is not sparse, just as the matrix A in Eq. (22)

is not sparse; see Appendix B. For this reason, we have not

attempted ML decoding for toric-GKP codes.

We have constructed several decoders which approximate

ME decoding. The idea is to find a configuration of the

field A minimizing the Wilson version of the Hamiltonian

Eq. (41), i.e., with Villain potentials replaced by cosines,

by decomposing it into a continuous part (to be guessed or

found using a local minimization algorithm), and a binary

field which represents frustration, to be found using minimum

weight matching. This decomposition relies on the analysis

of the Hamiltonian Eq. (41) in the limit of perfect GKP

measurements, σM → 0.
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1. ME decoding in the limit of perfect GKP measurements

Let us consider what happens with our model Eqs. (41)

and (42) in the limit σM → 0. First, in this limit all GKP

measurement errors δb vanish with probability one. Second,

the first term in Eq. (41) forces Ab ∈ {0, π} for all horizontal

bonds, the same as we already had for vertical bonds. This

forces all plaquette fluxes to take integer values times π .

We show here that in this limit we recover a version of

the random-plaquette gauge model (RPGM) associated with

decoding the usual qubit toric code in the presence of (toric)

syndrome measurement errors [54].

Since the limit σM → 0 makes the vector potential Ab ∈
{0, π}, and in turn the plaquette flux Bp ≡ (∇ × A)p, discrete,

then one can interpret it as a spin degree of freedom, using the

fact that the Villain potential is 2π -periodic as well as even.

Indeed, considering for example a vertical plaquette, p ⊥ xy,

in Eq. (41), one can write

Vσ/2

(

ǫp

2
+ Bp

)

= −τp(e)eiBp + const,

p ⊥ xy, τp(e) ≡
1

2

[

Vσ/2

(

ǫp

2
− π

)

− Vσ/2

(

ǫp

2

)]

≈
4

σ 2
cos

(

ǫp

2

)

. (45)

The additive constant has no effect and can be ignored.

Similarly for horizontal plaquettes, p ‖ xy, where one obtains

the weights

p ‖ xy, τp(e) ≡
1

2

[

VσT/2

(

ξp

2
− π

)

− VσT/2

(

ξp

2

)]

≈
4

σ 2
T

cos

(

ξp

2

)

. (46)

Then, if one defines from A some Ising spins, s, using for each

bond, sb ≡ eiAb ∈ {−1, 1}, one obtains, in place of Eq. (41), a

RPGM very similar to that in Ref. [54],

H (s; e) = −
∑

p

τp(e)up, up ≡
∏

b∈p

sb. (47)

Unlike in the usual RBGM obtained for the qubit toric

code [54] where plaquette weights can take only two values,

τp = ±J , here quenched randomness leads to a continuous

distribution of the weights. This model is similar to the

2D random-bond Ising model constructed in Sec. IV B for

decoding a toric-GKP code in the channel setting, also in the

limit σM = 0. In fact, the weights concerning data errors in

Eq. (45) (without the cosine approximation), are equivalent to

those given by Eqs. (32) and (33). Similar to its counterpart

with sign disorder, the phase-diagram of the RPGM with the

Hamiltonian Eq. (47) will show a transition from an ordered

to disordered phase as the temperature β−1 or the strength of

the quenched disorder is increased. If we increase the disorder

σ along a line with any fixed ratio r = σT/σ , then a version

of the standard argument [55] shows that no ordered phase

can exist beyond the critical value of σ reached along the

“Nishimori line,” β = 1 [cf. Eq. (12)]. We expect that it is this

critical value of σ that is associated with the memory phase

transition.

An important quantity that governs the structure of the

minimum of the RPGM Hamiltonian Eq. (47) is frustration.

We call a cube frustrated when it has an odd number of its

boundary plaquettes p with τp(e) < 0. Since every spin, sb, af-

fects the sign of two plaquettes in a cube, for a frustrated cube,

no spin configuration on the edges can simultaneously satisfy

all the plaquette terms. For the usual toric codes, frustrated

cubes can be readily identified by stabilizer defects without

referring to a candidate error. For toric-GKP codes one has to

be more careful. In the limit σM → 0, the frustration cannot be

read directly from the value of the toric code syndromes but all

candidate errors exhibit the same frustration. So picking any

candidate error, e, finds it. When σM �= 0, this is no longer the

case, the frustration can change between different candidate

errors.

We examine the problem of finding the optimum spin

configuration, s, which minimizes the RPGM Hamiltonian

Eq. (47), given the weights τp(e). For a given s, we call

a plaquette term, τp(e)up, satisfied when τp(e)up > 0 and

unsatisfied when τp(e)up < 0. Necessarily, a frustrated cube

is incident to an odd number of unsatisfied plaquettes, in this

sense frustrated cubes are the source of unsatisfied plaquettes.

Let S be any set of plaquettes such that the frustrated cubes

are incident to an odd number of plaquettes in S and the un-

frustrated cubes are incident to an even number of plaquettes

in S. One has

min
s

H (s; e) = −
∑

p

|τp(e)| + 2 min
S

∑

p∈S

|τp(e)|.

Hence, minimum-weight matching on a 3D lattice with ver-

tices representing the frustrated cubes determines the optimal

set of unsatisfied plaquettes Smin. Given a candidate error e let

Scand be the set of plaquettes with τp(e) < 0. The candidate

error e is now modified using the minimum-weight matching

by adding 2π for all plaquettes in Smin as well as adding 2π on

all plaquettes in Scand (remember that 4π -shifts are elements

of the stabilizer group). This corresponds to an addition of a

stabilizer or logical operator to the candidate error e, leaving

the syndrome unchanged. This modified candidate error is the

proposed correction for this decoder.

We implemented the described decoder to minimize the

energy Eq. (47), with Villain potentials replaced with cosines;

see Eqs. (45) and (46). A very simple estimate of the expected

performance of the toric-GKP code in this setting is the

following. It is known that the threshold for the toric code is

about 2.9% under phenomenological noise with independent

X and Z errors [54]. If we assume that all errors are due to

the logical error on the underlying GKP qubits, see Fig. 5,

then one can ask what σ0 leads to a probability for an X error

(or equivalently Z) equal to 2.9%. This of course depends on

the measurement error σM as well as the decoding method

for the GKP qubit. In case of no measurement error (σM = 0),

the error probability can be found by averaging PM=1(1|q1),

see Eq. (17), over the Gaussian error distribution, it is plotted

as the green line in Fig. 5. An error probability of 2.9%

corresponds to σ0 ≈ 0.41. Our numerical results are shown

in Fig. 11. One can see a crossing point around σ0 = 0.47

which can be converted to around 6% error rate per round for

a GKP qubit with σM = 0; see Fig. 5. We can conclude that,

similarly to the results in Sec. IV B, the continuous-valued
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FIG. 11. Numerical results for perfect GKP measurements, with

σ = σT and σM = 0. The logical error rate as a function of the bare

standard deviation σ0, see Eq. (14), is shown for toric code distances

d = L as indicated in the caption. The vertical dotted line indicates

the position of the crossing point in the data, a threshold at σ0 ≈ 0.47,

which corresponds to a logical error probability p = 6% for single-

qubit GKP code with σM = 0. The latter value is recovered as the

vertical position on the dash-dotted line which reproduces the green

line σM = 0 from Fig. 5 (left). The observed threshold is well above

σ0 = 0.41 which can be superficially expected from the p = 2.9%

threshold for the 2D toric code under phenomenological error model.

weights τp(e), constitute valuable information to the decoder

about the likelihood of errors and permit to surpass decoders

which do not have access to such information.

2. Dealing with multiple competing minima

A difficulty in minimizing the Hamiltonian Eq. (41) is the

existence of a large number of competing local minima. This

was already the case for a single GKP qubit, which we con-

sidered in Sec. III. We saw in the previous section that in the

case of perfect GKP measurements, the solution can be found

efficiently because the problem is equivalent to a minimum

weight matching on a graph. Our approach to minimizing

Eq. (41) in the general case will be to decompose the vector

potential Ab ∈ [−π, π ) for horizontal bonds b = (i j, t ) into a

discrete field A(0)
b ∈ {0, π}, and an auxiliary continuous field

ab ∈ [−π
2
, π

2
),

Ab = A(0)
b + ab + δb/2. (48)

For vertical bonds there is no need of such a substitution since

the corresponding field is already discrete, see Eq. (42), so

we set ab = 0 for all b ⊥ xy. The discrete part of the field,

A(0), can be used to define Ising spins, s, similarily as before,

sb ≡ eiA(0)
b . The definition of the weigths, τp(e), has to be

extended since now they depend also on δb �= 0 and ab �= 0,

or more precisely the residual fluxes bp ≡ (∇ × a)p. Adding

these dependencies, the new weights, τp(a; e), given only in

their cosine approximation, read

τp(a; e) =
4

σ 2
T

cos

(

ξp

2
−

1

2
(∇ × δ)p − bp

)

, p‖xy,

(49)

τp(a; e) =
4

σ 2
cos

(

ǫp

2
−

1

2
(δi j (t ) − δi j (t − 1)) + bp

)

,

p ≡ (i j, t ) ⊥ xy. (50)

Rewriting the Hamiltonian Eq. (41), using the substitution

Eq. (48) and using the cosine approximation of the Villain

potentials gives

H (a, s; e) = −
1

σ 2
M

∑

b‖xy

cos(2ab) −
∑

p

τp(a; e)up. (51)

Then, the minimization over the gauge field A, or equiv-

alently over {a, s}, factors out into minimizing the RPGM

similar to Eq. (47), and a minimization over the continuous

field a.

In addition to the candidate error e, the RPGM weights

now also depend on a via the the flux field b. Moreover,

even with the restriction on the auxiliary vector potentials,

|ab| � π/2, the corresponding fluxes are not so restricted; in

particular, both for horizontal and vertical plaquettes one may

have |bp| = π , sufficient to flip the sign of the RPGM weight,

τp(a; e), and flip the frustration of the two adjacent cubes.

Nevertheless, even though frustration depends on configu-

ration of both the spins and the residual fluxes bp, increasing

the number of variables by the substitution Eq. (48) does sim-

plify the minimization problem. First, unlike in the isotropic

model Eq. (44), the fields ab are uniquely defined by the

fluxes bp. Indeed, since the gauge fields ab are only nonzero

on the horizontal bonds, and are zero at the bottom layer,

t = 0, the gauge is fixed. Furthermore, the GKP terms tend

to suppress order-reducing fluctuations by favoring small |ab|.
Thus, with σM small compared to σ and σT, we can hope to

find a reasonably good solution just by setting ab = 0.

3. Actual decoder algorithms and their performance

To design a syndrome-based decoder with the starting point

ab = 0, we first need to come up with a candidate error

e ≡ e(q). Since we are not doing the full minimization of the

corresponding energy, the method to find e will necessarily

affect the performance of the resulting decoder.

ALGORITHM 1:

(1) For each plaquette h, starting from t = M − 1 down to

t = 1, set the toric code measurement error ξh(t ) = qtor
h (t ) −

qtor
h (t + 1), to suppress the increments of the toric syndrome.

This leaves nonzero toric code syndromes only in the first

layer, qtor
h (t = 1).

(2) Set data errors in the first layer, ǫi j (t = 1), to move

nonzero toric code syndromes to the left (with i j‖y), then

down along the leftmost column. Due to the boundary con-

ditions, the sum of all toric code syndromes is 0, meaning

that after this procedure, all toric code syndromes are removed

including the one in the left-bottom plaquette.
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FIG. 12. For both plots the dash-dotted line shows the logical error rate per round for a single GKP qubit corrected with the forward-

minimization decoder, with σ = σT = σM, as a function of the bare standard deviation σ0 = σ/2
√

π . (Left) Numerical results for ALGORITHM 1

without preprocessing of the GKP syndrome information (see text). We observe a crossing point at σ0 ≈ 0.243 which can be translated to

p = 1.3%. (Right) Numerical results for the ALGORITHM 2 with preprocessing of GKP syndrome information (see text). We observe that

this decoder improves the logical error rates. However, the improvement being greater for smaller distances, the crossing point moves left to

σ0 ≈ 0.235 which corresponds to an error rate p = 1%.

(3) For each square lattice bond (i j), starting with t =
1 up to t = M − 1, use Eq. (35) to set GKP errors δi j (t )

to suppress the GKP syndromes qGKP
i j (t ) [without changing

φi j (t )]. This leaves nonzero GKP syndromes only in the top

layer, t = M, with toric syndromes all zero.

(4) Make a gauge transformation on the top layer data

errors, ǫi j (t = M ) → ǫi j (t = M ) + χ j − χi to move nonzero

GKP syndromes to the left (to x = 0) and then down (to

y = 0). The last step works because Eqs. (38) and (39) are

satisfied for the updated syndrome; with qtor
h (t = M ) = 0

these guarantee that the GKP syndrome is a gradient.

Having determined the candidate error e, we calculate

the RPGM weights Eqs. (49) and (50) with bp = 0, and

continue with minimum-weight matching decoding described

in Sec. V D 1.

The numerical results obtained with the described decoder

at σ = σM = σT are shown in Fig. 12 (left). Despite the fact

that this decoder does not make a particularly good use of

the GKP syndrome information, qGKP, and does not even try

to find a good candidate error, the logical error rate rapidly

goes down with increasing code distance and decreasing σ0

below the crossing point at σ0 ≈ 0.243. With the forward-

minimization decoder on a single GKP qubit with σ = σM,

this would correspond to a logical error rate of p ≈ 1.3%. If

the errors only come from having imperfect GKP states, then

this also can be translated to having states with at least four

photons.

It seems possible that, by making a better use of the

GKP syndrome, one should be able to improve this decoder

while preserving its computational efficiency. To this end, we

tried a preprocessing algorithm. The basic idea is, given the

syndrome qGKP, to find an initial approximation, e0, for the

data errors which would bring back the GKP qubits closer to

their code space. Given e0, Algorithm 1 can be used to find

an error e1 matching the updated syndrome, after which the

RPGM weights can be computed using the full candidate error

e0 + e1. The hope is then that the candidate error found is one

for which the first term of the Hamiltonian in Eq. (51) does

not need to be minimized anymore. In particular, we tried us-

ing our single-oscillator forward-minimization decoder from

Sec. III as the preprocessing step. Using it directly produced

a degradation of performance, seemingly resulting from the

fact that the minimization of the RPGM Hamiltonian also

tries to optimize the GKP measurement errors δb. Our solution

was to drop the measurement errors from the decomposition

of the field in Eq. (48), which results in RPGM weights

identical to those in Sec. V D 1. Our second decoder can then

be summarized as follows.

ALGORITHM 2:

(1) For each bond (i j), use the forward-minimization de-

coder from t = 1 up to M − 1 to calculate the accumulated

data error φi j (t ), calculate the corresponding φi j (t = M ), and

then go back from t = M to t = 1 with a version of the

same algorithm, but using previously found values for a more

accurate minimization. This gives the data errors ǫi j (t ) =
φi j (t ) − φi j (t − 1), which we use to define the error vector

e0 = {0, ǫ, 0}.
(2) Calculate the residual syndrome, and run the entire

ALGORITHM 1, to calculate the corresponding error e1.

(3) Calculate RPGM weights τp(e) using Eqs. (49) and

(50) with the combined error e = e0 + e1 and δ set to zero.

(4) Use random-weight matching to minimize the RPGM

Hamiltonian, and update the error e, with the result being the

output of the decoder.

The results are shown in Fig. 12 (right). One can observe

that for each distance, there is an improvement in the encoded

logical error rate, compared to the results from Algorithm 1

on the left of Fig. 12. One can see, for each curve, a higher

pseudothreshold, i.e., the point below which the logical error

rate becomes smaller than the physical one, determined using
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the logical error rate for a single GKP qubit given by the

forward-minimization decoder. However, this improvement is

greater for smaller distances, so the overall crossing point is

shifted to the left, indicating a smaller threshold. Specifically,

the crossing point is at σ0 ≈ 0.235 which corresponds to p =
1% for the single GKP qubit with the forward-minimization

decoder.

We should note that even though both simple decoders

we tried result in finite thresholds, with substantial reduction

of the logical error rates with increasing distance below the

crossing points, one could expect better performance. Indeed,

the toric code with a phenomenological error model shows

a threshold at p = 2.9%. The forward-minimization decoder

with σ = σM in Sec. III reaches this error rate at σ0 ≈ 0.28.

Of course, a direct comparison is technically incorrect:

forward-minimization or any other single-oscillator GKP de-

coder would return highly correlated errors and one cannot

expect that the toric code would achieve the same perfor-

mance. Nevertheless, we expect that adding a minimization

step for the continuous part of the potential a in Eq. (48) would

significantly improve the performance.

VI. NO-GO RESULT FOR LINEAR OSCILLATOR CODES

We turn to the class of codes defined by continuous sub-

groups of displacement operators. One can think of linear

combinations of position and momentum operators as nulli-

fiers for the code space, i.e., any code state is annihilated by

these nullifiers; see Appendix A.

It is known that one cannot distill entanglement from

Gaussian states by means of purely Gaussian local operations

and classical communication [56,57]. In addition, the authors

of Ref. [18] defined a quantity, “entanglement degradation,”

for any single-mode Gaussian channel, such as the Gaussian

displacement channel, and showed that it cannot decrease

under Gaussian encoding and decoding. In the setting here

we consider any input state which is perfectly encoded into a

linear oscillator code. This encoding map, E , is a Gaussian

operation as it is a linear transformation of the p̂ and q̂
variables. After this encoding, the modes go through the

Gaussian displacement channel N , see Eq. (5). After this,

linear combinations of p̂ and q̂ are measured to give rise to

a syndrome q. Again, this operation is Gaussian. Our results

thus follow the model considered in Ref. [18]. However,

our results do not require the definition of a new quantity

but rather give a description of the logical noise model of

Eq. (10). Namely, we show in the following Theorem, that

it can only lead to an effective squeezing of the original

Gaussian displacement channel. Hence, whatever protection is

gained in one quadrature, is lost in the other quadrature. This

is a property of all linear oscillator codes, CSS or non-CSS,

i.e., mixing p̂ and q̂ quadratures or not, with respect to the

Gaussian displacement channel. Since the result is a detailed

expression of the logical Gaussian displacement channel, it

does not immediately follow from earlier no-go results.

Theorem (No-Go). Let C be a linear oscillator code on n
physical oscillators defined by a set of n − k independent

nullifiers, thus encoding k logical oscillators. Let this code

undergo independent Gaussian shifts in p̂ and q̂ of variance

σ 2
0 on each of its physical oscillators, followed by a perfect

(maximum-likelihood) decoding step. Then the remaining

logical displacement noise model, Eq. (10), for logical shift

errors ǫ ∈ R2k is

P(ML)(ǫ) =
(

2πσ 2
0

)−2k
exp

(

−
1

2σ 2
0

ǫ �−1ǫT

)

,

and the eigenvalues of the covariance matrix, �−1, are paired

by conjugated logical operators, (λ
p
j , λ

q
j ) j∈[k], such that

∀ j ∈ [k], λ
p
j λ

q
j = 1.

In particular one has det �−1 = 1.

The proof of this Theorem, which is rather lengthy, can

be found in Appendix E. The remaining logical displacement

noise is obtained by working out Eq. (10), using general

properties of linear oscillator codes. The theorem says that for

each logical mode, in the basis given by the eigenvectors of �,

the only effect of the encoding is to squeeze the displacement

noise model between the conjugated operators of the mode.

The amount of squeezing can depend on code size but it is

impossible to reduce the noise in both quadratures.

As a concrete example, we consider the linear oscillator

code version of the 2D toric code in Appendix F and show

that the squeezing depends simply on the ratio Lx/Ly for a

Lx × Ly toric lattice.

VII. DISCUSSION

In this paper we have made the first strides in tackling the

problem of error correction and decoding for the toric-GKP

code. Interestingly, the decoding problem maps onto a class of

physical continuous-variable models with quenched-disorder

that goes beyond the random plaquette gauge model corre-

sponding to toric code decoding [54]. We have presented an

efficient minimum-energy decoding method for a single GKP

oscillator and an efficient decoder for the toric-GKP code.

We have also presented a combination of these two decoders

for the toric-GKP code which improves the achieved logical

error rates but in greater proportion for the small distances,

hence achieving better pseudothresholds but a slightly worse

threshold. It would be interesting to design a better decoder to

improve this threshold.

An interesting open problem is to study the phase diagram

of the toric-GKP code numerically. A particularly interesting

question, even in the absence of disorder, is whether the

Meissner phase is extended all the way to σM → ∞ as we

conjectured, see Fig. 10, or terminates at a point along the

vertical axis. This would indicate the singularity of the limit

σ → 0. An example of such a numerical study for 3D color

codes is Ref. [58].

Future studies could look at the question of decoding

coherent errors and/or correcting both p and q-shifts simul-

taneously. Another question is whether it is possible to handle

more realistic noise models, e.g., consider a model of repeated

photon loss [5] for a single GKP oscillator. All such different

error models will have a particular path integral representation

and the idea of choosing an energy-minimizing path can be

examined.

A variant of the toric-GKP code is the toric-rotor code.

This is the concatenation of a rotor space with integer n̂ and
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2π -periodic ϕ̂ with a rotor toric code whose nullifiers are

linear combinations of n̂s and ϕ̂s of four rotors [59]. When

one uses a two-dimensional rotor subspace such as a cat code

[12] or just a transmon qubit, one could still express the proper

toric code checks in the entire rotor space and examine when

a memory phase is present. Note that the difference in such

analysis versus the usual toric code analysis is that in this

model the effect of leakage errors is automatically included.

A possible realization of a surface code variant of the

toric-GKP code is an array of superconducting 2D or 3D

resonators. For a code such as Surface-17, this would require

2 × 17 = 34 (coplanar) microwave resonators. One can

compare this to the transmon + resonators layout for the

regular surface code [60,61], in which each CNOT gate is

mediated via a coupling bus, hence one uses 8 × 4 = 32 such

bus resonators for Surface-17.
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APPENDIX A: GENERAL MULTIMODE GKP CODES

Here we provide a mathematical summary of the formal-

ism of continuous-variable stabilizer codes, as introduced by

Gottesman, Kitaev, and Preskill (GKP) [3]. We show that

these codes contain two main classes, proper GKP codes, en-

coding discrete information and linear oscillator codes, encod-

ing continuous-variable information. Hybrids between the two

classes are also possible but do not seem particularly useful.

Recall that we write a displacement operator on a n-

oscillator Hilbert space as follows:

Û (e) ≡
n
∏

k=1

eiuk p̂k+ivk q̂k , e ≡ (u, vvv) ∈ R2n. (A1)

We also denote by Ô(e) the operator in the exponent of Û (e),

Ô(e) ≡ u · p̂ + vvv · q̂ =
n
∑

k=1

uk p̂k +
n
∑

k=1

vk q̂k,

Û (e) = exp[iÔ(e)]. (A2)

These operators, Û (e), follow the product rule

Û (e)Û (e′) = Û (e + e′)eiω(e,e′ ), (A3)

with the standard symplectic form ω(e, e′) = u · vvv
′ − vvv · u′.

Take S ⊂ Hn an Abelian subgroup of the displacement

operators with no element proportional to the identity with

a nontrivial phase, stabilizing some code space, Q. One can

simply characterise the structure of such a subgroup. Each

element Ŝ ∈ S can be uniquely written as

Ŝ = eiθÛ (e), (A4)

for some real vector e ∈ R2n, and some phase θ ∈ [0, 2π ).

Each vector e can only appear with a unique phase θ in

S; otherwise, an element proportional to the identity with

a nontrivial phase would also be in S . Hence, we have an

isomorphism between S and the additive subgroup G ⊂ R2n,

given by all the vectors, e, obtained from the decomposition

in Eq. (A4). We can then use the following theorem to

characterize the structure of S .

Theorem ([62]). Let G be a closed additive subgroup of

R2n, G can be decomposed in the direct sum of a linear

subspace, G0 ⊂ R2n, and a discrete lattice, L, generated by

some vectors orthogonal to G0, u1, . . . , um ∈ G⊥
0 :

G = G0 ⊕ L, L =

⎧

⎪

⎨

⎪

⎩

m
∑

j=1

k ju j

∣

∣

∣

∣

∣

∣

∣

k1, . . . , km ∈ Z

⎫

⎪

⎬

⎪

⎭

.

The linear subspace G0 is the largest linear subspace contained

in G.

The condition for G to be closed is without consequences

in our case as an open set and its closure would stabilize

the same space. If G is open, then we can replace it by its

closure and appropriately complete S . The limiting case when

G = G0 corresponds to the continuous case whereas G = L
corresponds to the discrete case. Denote ℓ as the dimension

of G0, one can choose some basis vectors, G0 = 〈g1, . . . , gℓ〉.
Consider one of the generators of G0, w.l.o.g. g1, for this

generator, given a scalar factor λ ∈ R, there is some angle

function θ1(λ) such that

eiθ1(λ)Û (λg1) ∈ S.

It is easy to check that θ1 obeys Cauchy’s functional equation

and as such θ1 is automatically Q-linear:

∀(λ,μ) ∈ R2, θ1(λ + μ) = θ1(λ) + θ1(μ) ⇒ ∀r ∈ Q,

θ1(r) = rθ1(1) ≡ rθ1.

Hence, for any code state, |�〉 ∈ Q, and rational r ∈ Q, we

can write down

eirθ1Û (rg1) |�〉 = exp[ir(θ1 + Ô(g1))] |�〉 = |�〉 . (A5)

The previous equation means that code states are eigenstates

of the operator Ô(g1) with eigenvalue O(g1), which satisfies

∀r ∈ Q, O(g1) + θ1 = 0 mod 2π/r,

⇔ O(g1) = −θ1.

Usually, S will be chosen such that θ1 = 0, and Ô(g1) will

be called a nullifier as it only takes eigenvalue 0 on the

code space. Choosing some nontrivial θ1 just corresponds to

shifting the whole code space by Û (θ1d1), with d1 describing

the conjugated pair to g1, i.e., such that [Ô(g1), Ô(d1)] = i.
Similarly, each generator g j is a nullifier on the code space

[up to some possible shift Û (θ jd j )].

At this point, if G = G0 (L = ∅), then we have described a

linear oscillator code. It is defined by the ℓ nullifiers, Ô(g j ),

which each remove a single continuous degree of freedom

from the system, leaving k ≡ n − ℓ logical oscillator modes.

The logical operators can be found by completing the g j into

a full symplectic basis. For the stabilized code space to be

nontrivial we therefore require that ℓ < n.

Consider now that L is nontrivial, then it will constrain the

code space as described in Ref. [3, Sec.VI] on the remaining

k = n − ℓ modes available. Take one of the generators of L,

w.l.o.g. u1. The difference with elements of G0 is that it occurs
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in S only with integer multiples. Similarly as previously, given

a code state, |�〉 ∈ Q, and an integer k ∈ Z there will be some

angle, ϑ1, such that

eikϑ1Û (ku1) |�〉 = exp[ik(ϑ1 + Ô(u1))] |�〉 = |�〉 . (A6)

This means that on the code states, the operator Ô(u1) can

take now several values, given by

∀k ∈ Z, O(u1) + ϑ1 = 0 mod 2π/k

⇔ O(u1) = −ϑ1 mod 2π.

The effect is to discretize this mode. As explained in Ref. [3],

one then needs m = 2k lattice generators to fully discretize

the remaining k modes.

Summing up, the case where G = G0 and ℓ < n (m = 0)

corresponds to linear oscillator codes defined by ℓ nullifiers,

encoding k = n − ℓ oscillators. However, the case G = L and

m = 2n (ℓ = 0) correspond to proper GKP codes described

in Ref. [3]. Finally, the hybrid case where G = G0 ⊕ L, with

n = ℓ + m/2 + k′ correspond to a case where ℓ nullifiers

leave n − ℓ modes in the code space, among which n − ℓ − k′

are discretized into a qudit (depending on the characteristics

of L) and k′ remain as logical oscillators. As we show in

Sec. VI, under Gaussian noise, the logical oscillators defined

by the nullifiers have essentially the same noise model as the

physical oscillator modes, so there is little interest in going

beyond proper GKP codes. Note that linear oscillator codes

can nevertheless correct erasure errors [1,2].

APPENDIX B: DETAILS ABOUT THE DECODERS

FOR THE GKP QUBIT

1. Maximum likelihood decoder

Maximum likelihood decoding for a single GKP qubit

requires the calculation of the partition functions Zc(q), c ∈
{0, 1} given by Eq. (21). Here we do the Gaussian integration.

Denote as B the symmetric matrix with the components

Bi j ≡
1

2

∂2

∂φi∂φ j
R(φ, 0), i, j ∈ [M − 1], (B1)

associated with the first M − 1 variables φt in the quadratic

form

R(φ, q) =
1

σ 2
M

M−1
∑

t=1

(qt − φt )
2 +

1

σ 2

M
∑

t=1

(φt − φt−1)2

∣

∣

∣

∣

φM=qM

in the exponent in the integrand of Eq. (21). Collecting the

remaining terms and completing the square we obtain an M-

variable quadratic form qAqT with the block matrix

A =
(

Ã cT

c b

)

, (B2)

expressed in terms of the (M − 1) × (M − 1) matrix Ã, row

vector c, and a scalar b:

Ã =
1

σ 2
M

1−
1

σ 4
M

B−1,

ci = −
1

σ 2σ 2
M

[B−1]M−1,i, (B3)

b =
1

σ 2
−

1

σ 4
M

[B−1]M−1,M−1.

2. Dynamic programming for the minimum-energy decoder

In this section we express the minimum-energy decoder

for one GKP qubit as a dynamic programming problem.

This allows us to check how well the forward-minimization

technique performs. The goal is to minimize the energy from

Eq. (26), which we write using the Villain approximation in

reverse,

H[φ1, . . . , φM] =
M
∑

t=1

(φt − φt−1)2

2σ 2
−

M−1
∑

t=1

cos(qt − φt )

σ 2
M

,

φ0 ≡ 0.

We define the partial energy, Hk[φ1, . . . , φk] as the contribu-

tion from the first k terms from each sum,

Hk[φ1, . . . , φk] =
k
∑

t=1

(φt − φt−1)2

2σ 2
−

cos(qt − φt )

σ 2
M

,

and a single-variable function of φk as

Mk (φk ) = min
φ1,...,φk−1

{Hk[φ1, . . . , φk]}.

Then Mk , k < M, can be defined recursively by

M1(φ1) =
φ2

1

2σ 2
−

cos(q1 − φ1)

σ 2
M

,

Mk (φk ) = min
φ

[

Mk−1(φ) +
(φk − φ)2

2σ 2

]

−
cos(qk − φk )

σ 2
M

.

If one discretizes the values of φk to a desired precision and

restricts them to lie in a reasonable interval, then the mini-

mization with M time steps amounts to computing M lists of

values of discrete functions Mk (φk ). Unlike the minimization

technique based on solving Eq. (27), there is no accuracy

loss at larger M, and much less danger of missing the desired

minimum with the present dynamic programming method.

We have compared our forward minimization technique

with dynamic programming with a discretization of 200 points

per period in a four-periods window around the last mea-

surement result. The statistics of success or failure of both

decoders agree pretty closely while the forward minimization

is much faster. In Fig. 13 we show two of the obtained

realizations for illustration purposes.

APPENDIX C: ALTERNATIVE DERIVATION

OF THE U (1)-SYMMETRIC MODEL

Here we derive Eqs. (41) and (42) directly from Eqs. (37)

and (40). First, note that the integration over components of

the field φ in Eq. (40) is done in an infinite interval, while

the two last terms in the bulk Hamiltonian (37) are 2π -

and 4π -periodic, respectively. In addition, the background

fluxes (∇ × φ)h(t ) in the last term of Eq. (37) are explicitly

symmetric with respect to the gauge transformation

φi j (t ) → φi j (t ) + α j (t ) − αi(t ), (C1)

where α j (t ) = αv is a real-valued scalar field associated with

the vertices v = (i, t ) of the cubic lattice. While these are

not the symmetries of the full Hamiltonian Eq. (37), we can
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FIG. 13. Two examples of 11 rounds of error correction with data and measurement errors sampled from Gaussian distributions with

σ0 = 0.4. In the example on the left, forward-minimization and dynamic programming reach the same conclusion, whereas on the right

forward-minimization reaches a wrong conclusion. One can compare this data with the sketched trajectories in Fig. 3.

now render it in a more familiar U (1)-symmetric form with a

simple change of variables.

For a fixed error e ≡ {ǫ, δ, ξ} which corresponds to the syn-

drome q, let us denote the corresponding accumulated error,

see Eq. (34), as φ(0). We can make a change of integration

variables in Eq. (42), for all bonds (i j) and layers 1 � t � M,

following

φi j (t ) = φ
(0)
i j (t ) + 2Ai j (t ) + 4πmi j (t )

±2π

t
∑

t ′=1

[s j (t
′) − si(t

′)], (C2)

−π < Ai j (t ) � π,

where the field Ai j (t ) is continuous, mi j (t ) ∈ Z is integer-

valued, and an additional 2π -shift is proportional to the lat-

tice gradient of the binary field si(t ) ∈ F2 accumulated over

time. Strictly speaking, the last term is unnecessary as it

causes some double counting in the measure. However, the

corresponding factor is a constant that is finite on a finite

lattice, so it does not cause any trouble. However, these

binary charges simplify the boundary conditions, since we can

simply write si(t ) + · · · + si(M ) = ni, see Eq. (40), and thus

trade the summation over the boundary field ni for the binary

field si(t ) in the bulk. To complete the derivation, also define

Ai j (t = 0) = 0, and take Ab = πsi(t ) for the vertical bond b
at the square-lattice vertex i, between layers t − 1 and t for

all t ∈ [M]. This gives for the vertical plaquette p at the bond

(i j), between the same two layers,

φi j (t ) − φi j (t − 1) → φ
(0)
i j (t ) − φ

(0)
i j (t − 1) + 2(∇ × A)p

≡ ǫp + 2(∇ × A)p,

where the appropriate sign in Eq. (C2) needs to be chosen

to recover the part of the flux that is missing in the first

term of Eq. (37), and we absorbed the summation over

the integer-valued mi j (t ) into the definition of the Villain

potential Vσ/2[ǫp/2 + (∇ × A)p], an even 2π -periodic func-

tion of the argument; see Eq. (23). In the remaining two terms

we use Eqs. (35) and (36), to recover Eq. (41) exactly [63].

Comparing with Eqs. (38) and (39), it is also easy to check

that for this particular error e, one can simply take the vector

potential Ab = 0 for the top-layer in-plane bonds, b = (i j, M ).

Similarly, for the three sectors where the error in the top layer

is shifted by a nontrivial toric codeword 0 �≃ c ∈ F2L2

2 , we can

take Ai j (M ) = πci j .

APPENDIX D: DETAILS ABOUT THE PHASE-DIAGRAM

DERIVATION

The model in Eq. (43) is in a general class of compact

U (1) models whose partition functions can be written (in a

conventional Wilson, or non-Villain form) as

Z (κ,ϕ; P) =
∫

dθ e−H ,

H ≡ −
∑

b

κb cos

(

ϕb +
∑

i

θiPib

)

, (D1)

where P is an r × n coupling matrix with integer components

Pib that determines the structure of the model, θi, i ∈ [r]

are the U (1) variables, θi ∈ [0, 2π ), κb � 0, b ∈ [r], are the

coupling constants, and the additional phases ϕb can represent

quenched disorder and/or a uniform background field. The

only requirement on the integration measure for any compo-

nent θ j in Eq. (D1) is 2π -periodicity. For example, one can

have the usual integration over the period, or a summation

over discrete phases θ j = 2πm j/q j , m j ∈ Zq, with some inte-

ger q j � 2 that may differ for different “spins” j. According

to the Fourier theorem, the most general correlation function

of the variables θ j can be written as the average

Cm ≡ Cm(κ,ϕ; P) = 〈eimθ 〉, (D2)
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where the vector m has integer components. The physics of

the model Eq. (D1) is characterized by the dependence of the

free energy F = − ln Z and the correlation functions Cm on

the parameters, the coupling constants κb and the phases ϕb.

This dependence is restricted by several constraints. Two

of them, the first and the second generalized Griffiths-Kelly-

Sherman (GKS) inequalities, concern the correlation func-

tions in the absence of background phases, ϕ = 0 (in this case

the averages Eq. (D2) are real-valued),

〈 f 〉 � 0, (D3)

〈 f g〉 − 〈 f 〉〈g〉 � 0, (D4)

where f and g can be any nonnegative combination of prod-

ucts of cos(m · θ), with various integer vectors m ∈ Zn. In

the case of the model Eq. (D1) in Wilson form these are

called Ginibre inequalities [64]. It is also easy to check

that the average Cm(κ,ϕ; P) can only be nonzero if m is

a linear combination of the rows of the matrix P. Further-

more, the left-hand side of the second inequality Eq. (D4),

with g = cos(m′ · θ), equals the derivative of 〈 f 〉 with re-

spect to the coupling constant corresponding to the term

cos(m′ · θ). This implies a monotonic nondecreasing depen-

dence of any correlation function 〈 f 〉, including Cm(κ, 0; P),

on any coupling constant κb � 0. The Villain version of

the same model has similar properties, since the potential

Vσ (ϕ) can be approximated to an arbitrary precision with

a chain of phases with pairwise Wilson couplings [65]. In

particular, generalized GKS inequalities apply for the aver-

ages Cm(κ, 0; P) in the Villain form of the model, which

are also monotonically nondecreasing as a function of any

coupling.

The second type of constraints concerns the free energy

F (κ,ϕ; P) ≡ − ln Z (κ,ϕ; P), or, more precisely, the free-

energy cost associated with the background phases ϕ,

	ϕF (κ; P) ≡ F (κ,ϕ; P) − F (κ, 0; P). (D5)

Again, the free-energy cost is nonnegative, 	ϕF (κ; P) � 0,

and it is a nondecreasing function of the coupling constants κb.

This can be obtained from the generalized GKS inequalities

for the dual form of the model, where the free-energy cost

	ϕF is mapped into the logarithm of a correlation function

parameterized by the phases ϕ, up to a sign, with the coupling

constants inverted.

An important (albeit nearly self-evident) consequence of

the monotonicity of the free-energy cost Eq. (D5) is a gener-

alization of the inequalities Eqs. (17) and (18) from Ref. [66]

to all GKP codes. These inequalities imply an upper bound

for the success probability of ML decoding, see Eq. (8), in

terms of the partition functions in the absence of quenched

disorder. Namely, in the case of CSS-like codes, the bound

reads

P(ML)
succ �

Z0(0)
∑

c Zc(0)
, (D6)

where the summation is over all 2k inequivalent binary code-

words that correspond to the entire group of X -type CSS

logical operators. When applied to the case of repeated syn-

drome measurement for the toric-GKP code, the numerator

in Eq. (D6) is the partition function (42) with zero argu-

ment, while the denominator is the sum of the same partition

function Z0(0) with those for the three remaining nontrivial

sectors, Zc(0). For the existence of an ML-decodable region it

is necessary that these contributions vanish in the large-system

limit, namely, when both the distance of the toric code L and

the number of layers M diverge.

Typically examined are the Wilson loops, they are correla-

tion functions in the form of Eq. (D2),

W� ≡ 〈ei
∑

p∈�(∇×A)p〉 ≡ 〈ei
∑

b∈∂� Ab〉, (D7)

where � is some oriented surface, a set of plaquettes, with the

boundary ∂�, and the gauge-invariant two-point correlation

function

C� ≡ 〈ei(θu−θv )−iq
∑

b∈� Ab〉, (D8)

where � ≡ �(u, v) is a directed path (sequence of bonds) on

the cubic lattice connecting vertices u and v. Quite generally,

in a high-temperature phase, when coupling constants κ and

λ in Eq. (44) are sufficiently small, the correlation function

Eqs. (D7) and (D8) are characterized by the area law: W�

has an upper bound that decays exponentially with the area

of �, the minimum number of plaquettes that are needed to

form the boundary ∂�, while C� has an upper bound that

decays exponentially with the distance between the points

u and v. A low-temperature, or strong-coupling asymptotic

form is qualitatively different and is characterized by the

perimeter law, where W� scales exponentially with the length

|∂�| of the perimeter, while C� becomes a constant or falls

as a power law of the distance; the latter is the case below

the Berezinskii-Kosterlitz-Thouless (BKT) transition in two

dimensions.

APPENDIX E: PROOF OF THE NO-GO THEOREM

IN SECTION VI

For convenience, we rename the p̂ j and q̂ j operators of the

oscillators as r̂k , i.e.,

∀k ∈ [2n], r̂k =
{

p̂k when j � n,

q̂k−n when j > n.

Let g j be the real vector corresponding to the jth nullifier

Ô(g j ) = g j · r̂ of the code; see Appendix A. One can extend

the set of nullifiers to a full canonical linear transformation

given by a real 2n × 2n matrix A defining new variables R̂k ,

as follows:

R̂ = Ar̂T, i.e., R̂k =
2n
∑

j=1

Ak j r̂ j .

To preserve the commutation relation the condition on the

matrix A is that it preserves the symplectic form S. This can

be expressed in two ways:

ASAT = S or ATSA = S with

S =
(

0 1n×n

−1n×n 0

)

. (E1)
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The matrix A can be decomposed in blocks

← 2n → ← n → ← n →

A =

n − k �
k �

n − k �
k �

⎛

⎜

⎝

G
P
D
Q

⎞

⎟

⎠
=

⎛

⎜

⎜

⎜

⎝

Gp Gq

Pp Pq

Dp Dq

Qp Qq

⎞

⎟

⎟

⎟

⎠

,

where the rows of G are the nullifiers. The rows of D represent

the corresponding conjugated variables which will be called

pure errors (they are sometimes referred to as destabilizers).

These pure errors give a convenient basis for expressing an

error which is compatible with a given syndrome which will

be used below. The rows of P (respectively, Q) represent

the logical p̂ (respectively, q̂) operators of the code as linear

combinations of the original p̂i and q̂ j . The subscript p
(respectively, q) indicates the p̂ part (respectively, q̂ part)

of the operators. Inside the code space the operators Ô(g j )

only take the value 0. Let us assume that a displacement

happens along a pure error direction d j , say Û (−λd j ). Then,

measuring Ô(g j ) [equivalently, Û (ηg j ) for all η ∈ R] would

give outcome λ ∈ R called the syndrome, since

Û (ηg j )[Û (−λd j ) |�〉] = eiληÛ (−λd j )Û (ηg j ) |�〉

= eiλη[Û (−λd j ) |�〉].

Note that the logical operators Ô(pk ) or Ô(qℓ), or nullifiers,

act on the code space without affecting the measurement of

Ô(g j ) since they commute with it.

We can express the constraints on the matrix A in Eq. (E1)

in terms of the matrices G, D, P, and Q. The blocks which

should be equal to zero are shown in blue and the blocks

proportional to the identity are shown in green. The first

condition gives

ASAT =

⎛

⎜

⎜

⎝

GSGT GSPT GSDT GSQT

PSGT PSPT PSDT PSQT

DSGT DSPT DSDT DSQT

QSGT QSPT QSDT QSQT

⎞

⎟

⎟

⎠

=

⎛

⎜

⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞

⎟

⎠
= S, (E2)

while the second implies

1 = ATSAST =
(

DT
q Gp + QT

q Pp − GT
q Dp − PT

q Qp DT
q Gq + QT

q Pq − GT
q Dq − PT

q Qq

−DT
pGp − QT

pPp + GT
pDp + PT

p Qp −DT
pGq − QT

pPq + GT
pDq + PT

p Qq.

)

(E3)

1. Logical error model under displacement errors

We consider the Gaussian displacement noise model on

every oscillator as in Eq. (5). Given a realization of the

displacement error as a vector of real amplitudes, e′ ∈ R2n,

one can compute the vector of syndromes q ∈ Rn−k , and given

q, a candidate error with the same syndrome, e ∈ R2n,

q = e′SGT, e = −qD.

In addition, when any two errors e and e′ have the same

syndrome q, then they can only differ by a stabilizer and a

logical operator and one has

∃uc, vvvc ∈ Rk, ∃a ∈ Rn−k,

e′ = e + ucP + vvvcQ + aG = e + cC + aG,

where we have used the notation

C :=
(

P
Q

)

, c =
(

uc vvvc
)

.

We can compute the associated partition function, Zc(e)

from Eq. (7), for the error e and the sector equivalent to c,

Zc(e) =

⎛

⎝

1
√

2πσ 2
0

⎞

⎠

n
∫ n−k−1
∏

j=0

da j

× exp

[

−
(cC + aG + e)(cC + aG + e)T

2σ 2
0

]

. (E4)

This integral can be evaluated since it is Gaussian, resulting,

after some manipulations, in

Zc(e) = C(e) exp

[

−
1

2σ 2
0

(c − μ(e))�−1(c − μ(e))T

]

, (E5)

where C(e) only depends on e. The covariance matrix � and

the off-set vector, μ(e), are defined as

�−1 = C′C′T, and μ(e) = −�C′eT, (E6)

where

C′ = C�G⊥ , and �G⊥ = 1− GT (GGT )−1G. (E7)

Remark that �G⊥ is the projector onto ker(G) along im(GT)

[67]. Indeed it is easy to check that �2
G⊥ = �G⊥ , ker(G) ⊂

im(�G⊥ ), im(GT) ⊂ ker(�G⊥ ), and the dimensions coincide.

One can see that Eq. (E5) describes a multivariate Gaussian

distribution over the logical variable c, hence its maximum

is readily given by the mean value, μ(e); see Eq. (E6). This

means that given the error e, one can directly express its most

likely error class: It is [e + μ(e)]. Using this, one can directly

compute the probability density of a remaining logical error

after ML decoding as given by Eq. (10):

P(ML)(c) =
∫

deP(e)
Zμ(e)+c(e)
∫

db Zb(e)
=

1

N
exp

(

−
1

2σ 2
0

c�−1cT

)

,

(E8)

where N is a normalization constant. All possible depen-

dence on the choice and size of the code is contained in the
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covariance matrix �, leading to some rescaled displacement

noise model. Recall that the logical variable vector c ∈ R2k

represents all k pairs of conjugated logical operators. We will

prove in Appendix E 2 that for any linear oscillator code,

the eigenvalues of �−1 can be paired between corresponding

conjugated logical operators, denoted (λ
p
j , λ

q
j ) j∈[n], and are

such that

∀ j ∈ [n], λ
p
j λ

q
j = 1. (E9)

This means that the noise remaining after ML decoding on

the logical variables is identical to the original physical noise

except for a possible squeezing between each logical operator

and its conjugated pair.

2. Eigenvalues of the covariance matrix

First we remark that C′, appearing in �−1 = C′C′T

in Eq. (E6), correspond to a valid basis for the logical

operators—we call this the spread-out logical basis. This

basis is obtained by adding linear combination of stabilizer

generators to C. Such addition can be summarized, using

Eq. (E7), by the matrix equation,

C′ = C − CGT(GGT)−1G = C + �G,

where � is a 2k × (n − k) matrix defining the linear combi-

nation of stabilizer generators added to the logical operators.

One can verify that one can replace C by C′ and still satisfy

the constraints of Eq. (E1), if one appropriately redefines the

pure errors to be

D′ = D + �TST
2kC,

where S2k is the symplectic form of size 2k × 2k. One can

also check that this choice of basis is the only choice which

enforces the following constraint:

C′GT = (C + �G)GT = 0. (E10)

Indeed, solving for �, using the fact that G is full rank and

therefore GGT is invertible, gives

C′ = C − CGT (GGT)−1G. (E11)

Now we use this spread-out logical basis to prove Eq. (E9).

We thus consider that we already have chosen the spread-out

logical basis, so C′ = C, and want to get information about

the eigenvalues of �−1 = CCT.

We use the diagonal block of Eq. (E3) as well as the block

only about logical operators in Eq. (E2):

−DT
pGq − QT

pPq + GT
pDq + PT

p Qq = 1, (E12)

DT
q Gp + QT

q Pp − GT
q Dp − PT

q Qp = 1, (E13)

PSQT = PpQT
q − PqQT

p = 1. (E14)

We multiply Eq. (E12) on the left by Pp and on the right by

QT
q . We also multiply Eq. (E13) on the left by Pq and on the

right by QT
p . Then we take the difference, i.e., we consider

Pp(E12)QT
q − Pq(E13)QT

p .

By Eq. (E14), the right-hand side is still the identity, so we

have

1 = PpGT
pDqQT

q + PqGT
q DpQT

p

− PqDT
q GpQT

p − PpDT
pGqQT

q

+ PpPT
p QqQT

q + PqPT
q QpQT

p

− PpQT
pPqQT

q − PqQT
q PpQT

p .

Since the logical operators are in their spread-out basis we

have the corresponding equations

PpGT
p + PqGT

q = 0, GpQT
p + GqQT

q = 0,

and can write

1 = Pq

(

DT
q Gq − GT

q Dq

)

QT
q

+ Pp

(

DT
pGp − GT

pDp

)

QT
p

+ Pp

(

PT
p Qq − QT

pPq

)

QT
q

+ Pq

(

PT
q Qp − QT

q Pp

)

QT
p .

One can now recognize that the off-diagonal terms in Eq. (E3)

can be used to make a equation only about logical variables,

using

DT
q Gq − GT

q Dq = PT
q Qq − QT

q Pq,

DT
pGp − GT

pDp = PT
p Qp − QT

pPp.

Hence, we have the following matrix identity:

1 = PPTQQT − PQTPQT. (E15)

In Appendix E 3, we show that there always exists a logical

basis which is both spread out as well as orthogonal. Hence,

for this new basis, Eq. (E10) is satisfied, as well as

P̃P̃T = Diag
(

λ
p
j

)

, Q̃Q̃T = Diag
(

λ
q
j

)

, and P̃Q̃T = 0.

(E16)

Therefore, deriving Eq. (E15) in this basis yields

1 = P̃P̃TQ̃Q̃T = Diag
(

λ
p
j λ

q
j

)

, (E17)

and therefore

∀ j ∈ [k], λ
p
j λ

q
j = 1. (E18)

Last, recall that starting with this choice of basis, one has

�−1 = C̃C̃T =
(

P̃P̃T P̃Q̃T

Q̃P̃T Q̃Q̃T

)

=
(

Diag
(

λ
p
j

)

0

0 Diag
(

λ
q
j

)

)

.

(E19)

�

3. Existence of a spread-out and orthogonal

logical operator basis

We start from a given stabilizer matrix G and denote the

rows by {g1, . . . , gn−k}. We showed above that one can always

find a logical basis, P and Q with rows {p1, . . . , pk} and

{q1, . . . , qk}, which is orthogonal to the stabilizer generators,

i.e.,

Lk = Span{p1, . . . , pk, q1, . . . , qk} ⊥ G

= Span{g1, . . . , gn−k}.
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We want to construct a new symplectic and orthogonal ba-

sis, { p̃1, . . . , p̃k, q̃1, . . . , q̃k}, for the 2k-dimensional space

Lk . One can first find an orthogonal basis for Lk by the

Gram-Schmidt process for the regular inner product, denote

it {ck
1, . . . , ck

2k}. We will now construct a new basis pair by

pair, decreasing at each step the dimension of the space Lk

by 2. We can choose

p̃1 = ck
1.

There has to exist a conjugated pair, q̃1, in the space spanned

by {ck
2, . . . , ck

2k}. Indeed, all stabilizer generators, pure errors

as well as ck
1 have a trivial symplectic product with p̃1,

hence any conjugated q̃1 ∈ Span{ck
2, . . . , ck

2k}. So the follow-

ing equation,

λOkS p̃T
1 = −1,

where Ok are the basis vectors {ck
2, . . . , ck

2k} stacked in rows,

has a solution for λ. Then we can choose

q̃1 = λOk .

Note that the created pair is indeed conjugated for the sym-

plectic inner product as well has orthogonal. Moreover, they

are composed only of linear combinations of the original

pis and q js, so they do have trivial symplectic product with

stabilizer generators and pure errors and they are orthogonal

to the stabilizer generators. Now we define the 2(k − 1)-

dimensional subspace Lk−1, as

Lk−1 = Span
{

ck
2

(

1− �q̃1

)

, . . . , ck
2k

(

1− �q̃1

)}

,

= Span
{

ck−1
1 , . . . , ck−1

2(k−1)

}

,

where �q̃1
is the orthogonal projector onto q̃1, and the ck−1

j
form a new orthogonal basis for this space. We can then

repeat the procedure until we reach L0 = {0}. To summarize

we have constructed a new symplectic and orthogonal basis

C̃ = (P̃
Q̃

) obeying Eq. (E16).

APPENDIX F: CONTINUOUS-VARIABLE TORIC-CODE

In this section we examine the continuous-variable toric

code [35,68] as an example of a continuous-variable topologi-

cal code. Since the toric code is a homological code, it is easy

to convert it from a Z2-code to a R-code using orientation to

add appropriate minus signs to the stabilizer checks.

The stabilizer checks are shown on the left in Fig. 14.

Since the toric code is a CSS code we will always have the

orthogonality condition PQT = 0. The vectors p1 and p2 are

the two rows of P while the vectors q1 and q2 are the two rows

of Q. On the left, one sees the usual string-like p1 and q1. The

spread-out basis for the code can be computed and is shown

on the right of Fig. 14. The name spread-out basis comes from

the fact that these logical operators have support over the full

lattice: The continuous-variable stabilizer checks have been

used to spread out or distribute their support over the lattice.

FIG. 14. In both figures periodic boundary conditions are as-

sumed. (Left) Example of stabilizer checks and logical operators for

the distance-5 continuous-variable toric-code. The stabilizer checks

are also shown in Fig. 7. The support of the logical p1 (blue/dark

gray) and q1 (purple/light gray) of one of the encoded oscillators

is depicted. Shifts of strength v on the support of p1 is a logical

p-shift of strength v of the first oscillator. (Right) The support of the

spread-out version of the logical operators p1 and q1. Both operators

have the same support (blue/dark gray and purple/light gray) and

one can verify that these logical operators are orthogonal to the

stabilizer checks as well as commuting with them. A logical p-shift

of strength v on the first oscillator is now realized by applying v/5

on the support of the spread-out p1. In general, if the torus had

dimension Lx × Ly, the spread-out p1 would have a shift rescaling

of 1

Lx
over the whole lattice while q1 would a shift rescaling of

1

Ly
. At the same time p2 (respectively, q2) would have rescaling 1

Ly

(respectively, 1

Lx
).

Computing CCT , Eq. (E19), with C being the spread-out

logical operators in the general case of different dimensions

Lx and Ly gives directly a diagonal matrix:

CCT = diag
(

λ
p
1, λ

p
2, λ

q
1, λ

q
2

)

= diag
(

p2
1, p2

2, q2
1, q2

2

)

, (F1)

with

λ
p
1 = p2

1 =
∑

ex

1

L2
y

=
LxLy

L2
y

=
Lx

Ly
,

λ
p
2 = p2

2 =
∑

ey

1

L2
x

=
LxLy

L2
x

=
Ly

Lx
,

λ
q
1 = q2

1 =
∑

ex

1

L2
x

=
LxLy

L2
x

=
Ly

Lx
,

λ
q
2 = q2

2 =
∑

ey

1

L2
y

=
LxLy

L2
y

=
Lx

Ly
.

One sees that it is possible to choose the squeezing amount by

choosing the ratio of the dimensions Lx/Ly. In particular, with

Eq. (E8), one sees that the first encoded oscillator experiences

a Gaussian displacement noise model with variance σ 2
p =

Ly

Lx
σ 2

0 for p̂ and variance σ 2
q = Lx

Ly
σ 2

0 for q̂. For the second

oscillator the quadrature squeezing goes in the other direction.
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