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We examine the performance of the single-mode Gottesman-Kitaev-Preskill (GKP) code and its concatenation
with the toric code for a noise model of Gaussian shifts, or displacement errors. We show how one can optimize
the tracking of errors in repeated noisy error correction for the GKP code. We do this by examining the
maximum-likelihood problem for this setting and its mapping onto a 1D Euclidean path-integral modeling a
particle in a random cosine potential. We demonstrate the efficiency of a minimum-energy decoding strategy as
a proxy for the path integral evaluation. In the second part of this paper, we analyze and numerically assess the
concatenation of the GKP code with the toric code. When toric code measurements and GKP error correction
measurements are perfect, we find that by using GKP error information the toric code threshold improves from
10% to 14%. When only the GKP error correction measurements are perfect we observe a threshold at 6%. In
the more realistic setting when all error information is noisy, we show how to represent the maximum likelihood
decoding problem for the toric-GKP code as a 3D compact QED model in the presence of a quenched random
gauge field, an extension of the random-plaquette gauge model for the toric code. We present a decoder for this
problem which shows the existence of a noise threshold at shift-error standard deviation oy & 0.243 for toric
code measurements, data errors and GKP ancilla errors. If the errors only come from having imperfect GKP
states, then this corresponds to states with just four photons or more. Our last result is a no-go result for linear
oscillator codes, encoding oscillators into oscillators. For the Gaussian displacement error model, we prove
that encoding corresponds to squeezing the shift errors. This shows that linear oscillator codes are useless for

quantum information protection against Gaussian shift errors.
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I. INTRODUCTION

Within the framework of oscillator or continuous-variable
(CV) error correcting codes, one can distinguish two classes
of codes. One class generalizes qudit stabilizer codes to en-
code continuous degrees of freedom into a (larger) CV system
[1,2]. We refer to these codes as linear oscillator codes. The
other class, first introduced by Gottesman, Preskill, and Kitaev
(GKP) in Ref. [3], and recently expanded to include many
more codes [4,5], encodes a discrete (finite-dimensional)
system into a CV system. Encoding and decoding for the
first class of codes falls within the framework of Gaussian
quantum information [6], while the second class of codes
requires using non-Gaussian states.

In this paper we propose and analyze a scalable use of the
GKP code [3] which encodes a single qubit into an oscillator.
An example of such an oscillator is a mode in a high-Q
microwave superconducting cavity coupled to superconduct-
ing qubits in a circuit-QED setup. Proposals for preparing a
GKP code state in such systems exist [7]. The controlled-NOT
(cNoT) gate between two GKP qubits requires about 4 dB
of squeezing in both modes and a beam-splitter (see, e.g.,
Ref. [7]). Such a beam-splitter has been recently implemented
between high-Q microwave cavity modes in Ref. [8]. Other
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possible physical implementations for the GKP code are the
motional mode of a trapped-ion qubit [9] or atomic ensembles
[10] for measurement-based CV cluster computation [11].

A bosonic code such as the GKP code or the recently
implemented cat code [12] might be used to get a high-quality
qubit, but the code does not provide a means to drive error
rates down arbitrarily. A scalable fault-tolerant architecture
can possibly be obtained by concatenating the GKP code
with a qubit stabilizer code such as the toric or surface code.
A theoretic goal is then to understand how to decode such
a toric-GKP code and what is the error threshold of the
architecture. Some results on using “analog” error information
in concatenating the GKP code with a stabilizer code were
obtained in Refs. [13-16]. A concatenation of the GKP code
with the 2D surface code in the channel setting by message-
passing (perfect) GKP error information to the surface code
decoder was analyzed in Refs. [14,16]. In Ref. [16] the authors
also consider the construction of the 3D cluster state using
post-selection, with imperfect ancillas. However, these studies
did not define, analyze nor decode the full fault-tolerant
scenario for the 2D toric-GKP code.

Previous work has also studied the performance of the GKP
code in comparison with other bosonic codes in a photon loss
channel setting, not taking into account the imperfections or
processing of repeated rounds of error correction [5]. Other
work focused on the effect of photon loss and other sources of
error on the preparation of code states [17]. Besides its good
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performance compared to other bosonic codes, the GKP code
is appealing since Clifford gates on the code states use only
linear optical elements (including squeezing) [3].

In this work we first analyze repeated fault-tolerant quan-
tum error correction for a single GKP qubit; see Sec. III.
Our noise model in this analysis includes errors both on the
GKP qubit as well as on the GKP ancilla qubit used in the
error correction. We show how decoding this continuous error
information in discrete time steps maps onto the evaluation of
a stochastic discrete-time Euclidean path integral. We present
an efficient minimum-energy decoder which chooses the path
which approximately corresponds to a classical trajectory in a
disordered potential.

Second, we consider the toric-GKP code in Sec. IV. As-
suming that both GKP error correction and toric code correc-
tion are noiseless, we show how the use of continuous GKP
error information improves the error correction for the toric
code (Sec. IV B). These results are in correspondence with the
previous results in Ref. [16] although our likelihood function
is not identical to the one in Ref. [16].

In Sec. V we formulate the decoding problem of repeated
quantum error correction with the toric-GKP code where
both the GKP syndrome and the toric code syndrome con-
tain errors. Since errors on the GKP qubits are intrinsic
(getting perfect code states with infinite numbers of pho-
tons is unphysical), this is the physically relevant setting.
The maximum-likelihood formulation is in terms of a 3D
gauge field model with quenched randomness determined by
the errors (Sec. V B). We discuss this model and its possible
phase transitions in Sec. V C. Then in Sec. V D, we show how
to re-express this model as a random plaquette gauge model
(RPGM) with a Z,-field coupled to an auxiliary U (1)-gauge
field. We then use this model to design a computationally
efficient decoder and present numerical results.

Finally, in Sec. VI, we present our general no-go result for
the first class of codes, namely the linear oscillator codes. This
no-go result is presented as the calculation of the probability
distribution of logical errors on the encoded information
after perfect maximum-likelihood decoding. The result is in
accordance with, but does not directly follow from, previous
no-go results on Gaussian quantum information in Ref. [18].
The theorem explicitly shows that there are no linear oscillator
code families of interest: there is no threshold in oy below
which protection of the encoded oscillators against shift errors
gets better with increasing code size and the logical noise
model is still Gaussian with the same oy, and possibly some
squeezing of the logical quadratures.

The no-go result also shows that the existence of a thresh-
old for the toric-GKP code is non-trivial. A sufficiently large
departure from Gaussian quantum information is necessary to
stabilize quantum information. In circuit-QED this departure
comes exclusively from the use of the nonlinear Josephson
junction element.

II. GENERAL CONSIDERATIONS
A. Definitions and notations

We consider n-mode oscillator codes, which are subspaces
in the n-mode Hilbert space L,(R"). Such a Hilbert space

can be constructed as a tensor product of n single-particle
Hilbert spaces L,(R) of complex square-integrable functions.
It supports n pairs of canonically conjugated coordinate and
momentum operators, py and g, such that [§k, p;] = idy;.
These operators are used to define the multimode exponential
shift operators,

Uy =[e"rt™e, e=@,v), (1)
k=1

where u,v € R" are n-component real vectors. It is easy to
check that the product of two such operators satisfies

U@V (e)=Ule+ e ), @)

with the phase given by the symplectic product w(e,e’) =
u-v —v-u'. The set H, of all such operators with arbitrary
phases is closed under multiplication, it forms an irreducible
representation of the Heisenberg group H”" acting in L,(R").
Just as for the n-qubit Hilbert space and the Pauli group P,,
any operator acting in L,(R") can be represented as a linear
combination of elements of #,. Furthermore, the product
Eq. (2) of two exponential operators, up to a phase, can be
represented in terms of the sum of the corresponding vectors,
¢’ = e+ e'. This map to R?" is an analog of the symplectic
representation of P, used in the theory of quantum codes.

An n-mode GKP code, 9, is a CV stabilizer code defined
in terms of an Abelian stabilizer group S C H,, with elements
in the form Eq. (1), such that U(0) = 1 is the only element in
S proportional to the identity. Namely, the code Q C L,(R")
is the common +1-eigenspace of all elements of S,

Q={ly) e LR |S|Y)=Iy), VS8  (3)

The structure of such Abelian subgroups and the implications
for Q are described in Appendix A. In the following, we
will assume the representation of such a group in terms of
some number r of its members chosen as generators, S =
(81, ...,Sr>,Sj € H,.

The formalism of qubit stabilizer codes [19,20] carries
over entirely to such CV stabilizer codes, and errors from
‘H, play the special role played by Pauli errors in the qubit
case. Given an error E ¢ ‘H,, one can compute its syndrome,
g = q(E), whose components are given by the extra phases
in the commutation relations with the stabilizer generators,
ES = S jE e'%. The set of errors which commute with all
elements of the stabilizer group is called the centralizer C(S);
these errors have a trivial syndrome, ¢ = 0. Of these, any
error that is a member of the stabilizer group acts trivially
on code states, while the remaining errors L eC(S)\ S act
nontrivially within the code, they are called logical operators.
An error E € H,, that does not commute with all stabilizer
generators has a nontrivial syndrome and it takes Q into an
orthogonal subspace EQ={E|¥) | |¥) € Q). Two errors
that differ by an element of the stabilizer group, £’ = ES, S €
S, have the same syndrome, and as such, are called mutually
degenerate. They act identically on the code and are also
called equivalent. Two errors that differ by a logical operator,
E'=EL, L € C(S)\ S, also have the same syndrome but
they act differently on the code. The set of inequivalent logical
operators L(S) is formed by the cosets of S in the centralizer
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C(S). If we ignore the phases, then the set of cosets L(S)
actually forms a group, the group of logical operators.

By a slight abuse of notation, and when the global phase
is irrelevant, we will often refer to an operator Ue) € H,
directly by its symplectic vector component, e € R?*. For
example, we can refer to a logical operator ¢ € L(S) when
we ought to write U (c) € L(S). In accordance with classical
codes terminology, we also refer to ¢ € L(S) as a codeword.
Furthermore, for two equivalent errors, e and ¢ =e +s,
where s € S, we use €' >~ e to denote their equivalence and
[e] to denote the entire equivalence class,

[e] ={e+s:Vs S} (@)

Throughout this work we consider the independent Gaus-
sian displacement channel A/ (p) with standard deviation oy:

OO o c A A e A e A
N(p) = / du f dv Py, ()P, (v)e™PHvd p o= uP=ivd
—0oQ —0oQ

®)

where p is a single-mode density matrix and Py, (x) is the
Gaussian probability density function with mean zero and
variance 002; ie., Pg(x) = (271002)’1/26’)‘2/2"02. We will refer
to oy as the bare standard deviation, because we will often
consider scaled observable, e.g., P = 2ap, for which the
corresponding effective rescaled standard deviation is o =
2waoy. Even though this channel may not necessarily be the
one which is physically most relevant, what is important is that
it covers dominant sources of imperfections stochastically.
Any physically realistic GKP code state has finite photon
number 7 and one reasonable model of such finite-photon
GKP state is a coherent superposition of Gaussian
displacement errors on a perfect code state; see Egs. (40) and
(41) in Ref. [3]. The quality of such an approximate GKP
state can be given by an effective squeezing parameter A with
n-~ # - % Assuming a coherent superposition of Gaussian
displacements can be replaced by a Gaussian mixture of
displacements on a perfect state we can identify A% = 207 If
errors are dominated by such a finite squeezing/finite photon

number, then we could use oy ~ to interpret our

D
numerical data. For example, n = 4 gives op ~ 0.236.

Besides this, it has been shown that photon loss with rate
y followed by an amplification or pumping step produces
the Gaussian displacement channel with 002 = % [5]. For
example, the rate y = 0.02 corresponds to op = 0.14. Such
an amplification step on the GKP data qubit could be added in
each step of error correction.

As a convention we use bold italic symbols, such as u, to
denote row vectors. We use hatted symbols, such as P, Q, for
quantum operators and unhatted symbols for the correspond-
ing eigenvalues, such as P and Q. We will consider modulo
values for real numbers quite often where, for convention,
we chose the remainder to be in a symmetrical interval
around 0. For example, given ¢ € R, writing ¢ = ¢ cmod 27
means that g € [—m, ) and ¢ = g + 27k for some k € N. In
conventional notation g := (¢ + ) mod 27 — 7 and k :=
(¢ + m)/2m]. We also denote a range of integers as [n] =
{1,...,n}. We will refer to single-mode g-type errors as
displacements of the form exp(ing) for some n. Such errors

induce shifts in p and are alternatively called shift-in-p errors.
Similarly, for p-type errors which induce shifts in g.

B. Maximum-likelihood versus minimum-energy decoding

A (classical) binary linear code [21] of length n encoding k
bits is a linear space of dimension k formed by binary strings
of length n, C C ;. For such a code, maximum likelihood
(ML) syndrome-based decoding amounts to finding the most
likely error which results in the given syndrome. Generally,
there are 2"* distinct syndromes and |C| = 2¥ codewords.
It is not hard to find a vector e which produces the correct
syndrome; ML decoding can then be done by comparing the
probabilities of errors P(e + ¢), where ¢ € C goes over all the
codewords. In the simplest case of the binary symmetric chan-
nel, the probabilities scale exponentially with error weight
which can be thought of as the “energy” associated with the
error. Thus, for linear binary codes under the binary symmet-
ric channel, ML decoding is the same as the minimum-weight,
or minimum-energy (ME) decoding.

Syndrome-based ML decoding for a qubit stabilizer code
can be done similarly. The main difference here is the degen-
eracy: errors that differ by an element of the stabilizer group
are equivalent, they can not and need not be distinguished. As
a result, the probability P(E’) of an n-qubit Pauli error E € P,
needs to be replaced by the total probability to have any error
equivalent to E. In the case of Pauli errors which are indepen-
dent on different qubits, quite generally, this probability can
be interpreted as a partition function of certain random-bond
Ising model [22,23]. Exactly which statistical model one gets
depends on the code. For a qubit square-lattice toric code with
perfect stabilizer measurements the partition functions are
those of 2D random-bond Ising model (RBIM). Similarly, for
the toric code with repeated noisy measurements, the partition
function is that of a random-plaquette gauge model (RPGM)
in three dimensions [22], where the “time” dimension enu-
merates syndrome measurement cycles. More general models
are discussed, e.g., in Refs. [23,24].

Instead of computing the partition functions proportional
to the total probabilities of errors in different sectors, one
could try finding a single most-likely error compatible with
the syndrome. It is the latter method that is usually called
the ME decoding for a quantum code. Indeed, in terms of the
statistical-mechanical analogy, for ML decoding one needs to
minimize the free energy, minus the logarithm of the partition
function. In comparison, for ME decoding, one only looks
at a minimum-energy configuration (not necessarily unique);
this ignores any entropy associated with degenerate configu-
rations. While the ME technique is strictly less accurate than
ML decoding, in practice the difference may be small.

The two approaches are readily extended to GKP codes,
both in the channel model where perfect stabilizer mea-
surement is assumed, and in the more general fault-tolerant
(FT) case where repeated measurements are used to offset
the stabilizer measurement errors. The latter case can be
interpreted in terms of a larger space-time code dealing with
both the usual quantum errors and the measurement errors
[22,24,25]. One important aspect is that the quantum errors
accumulate over time, while measurement errors in different
measurement rounds are independent from each other. This
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leads to an extended equivalence between combined data-
syndrome errors which is similar to degeneracy. The corre-
sponding generators can be constructed, e.g., by starting with
a single-oscillator error, followed by measurement errors on
all adjacent stabilizer checks that result in zero syndrome,
followed by the error which exactly cancels the original error.
Because of this cancellation, such an invisible error has no
effect and should be counted as a part of the degeneracy group
of the larger space-time code.

The following discussion applies to a GKP code in either
the channel model or the fault-tolerant model. In both cases
we denote as S € H, the degeneracy group of the code. In the
channel model, S is exactly the stabilizer group, acting on the
data oscillators. In the fault-tolerant case, S is the degeneracy
group of the space-time code, acting on both data oscillators
as well as ancillary oscillators used to measure the syndrome.
Consider a multi-oscillator error, e € R?, see Eq. (1), and
the corresponding probability density P(e). The probability is
assumed to have a sharp [exponential or Gaussian, cf. Eq. (5)]
dependence on the components of e; for this reason we can
also write

P(e) = exp[—H (e)], (6)

where H(e) is the dimensionless energy associated with the
error operator U (e). Syndrome-based ML decoding can be
formulated as follows. The error e yields the syndrome g(e).
Given a logical operator ¢ € L(S), denote P([e + ¢]|q) as the
probability for any error in the class [e + c], see Eq. (4), con-
ditioned on the syndrome q. This probability can be written
as

P(le +cllg) = /

seS

= %Q)/s‘esds Ple +5+¢)

1 1
- d —H (e+s+c) = _Zc . (7
P@) /ses s g

where an appropriate integration measure should be used, and
P(q) is the net probability density to obtain the syndrome g =
q(e). Among all inequivalent codewords ¢ € L(S), we select
the most likely, i.e., with the largest Z.(e). The probability
of leaving a logical error ¢ after ML decoding is the net
probability of all the errors e for which the sector [e — c] is
the most likely, so

PML (o) — / dePe), ®)
e: Vb£(—c), Z_.(e)>Zp(e)

[here we disregarded the contribution from sectors b 2 (—c)
equiprobable with (—c¢), Z_.(e) = Zy(e)]. The probability of
success of ML decoding can then be expressed as PML) —
PMD) (). It is easy to see that any other decoding algorithm
gives success probability that is not higher than that of ML
decoding. Indeed, a different algorithm would swap some
errors e for e + ¢, which may reduce the measure in the
corresponding analog of Eq. (8).

Furthermore, given an error e, the probability P(q) to
obtain the syndrome ¢ = g(e) can be written as P(q) =
fb cL(S) db Zy(e), using the appropriate integration measure for

the logical operators b. For this error e we denote ¢, (€) as

ds P(e + ¢ +slq)

its corresponding most likely sector,

Cmax(e) = argmax Z(e). 9
cel(S)

The probability of a logical error ¢ after ML decoding Eq. (8)
can then be rewritten as an expectation by multiplying and di-
viding by P(¢q), changing variables, and resumming, resulting
in

PMY(e) = (P(le + cmax + cllg(e)))

= [ e Fae

_ Ze+c(€)
= /de]P’(e) —fdeb(e)' (10)

ML decoding is successful if the most likely error is actually
the one that happened, which corresponds to the trivial sector
¢ >~ 0 being dominant over all other sectors 0 % ¢ € L(S).
Given the error probability distribution P(e), we say that a
sequence of discrete GKP codes of increasing length n is in
the decodable phase if PML = PMD(0) — 1 withn — oo.

With the definitions Eqs. (6) and (7), Z, (e) can be
interpreted as a partition function of a classical model in the
presence of quenched randomness determined by the actual
error e. The partition function Z; _ . (e) differs by an addition
of a defect, e.g., a homologically nontrivial domain wall at the
locations specified by nonzero components of the codeword
¢. Having already cpax(e) 22 0 means that the disorder, e,
energetically favors the domain wall ¢yx. In the following,
we will also consider the free energy, F;(e),

F.(e) = —InZ  ic(e), (1)

as well as the corresponding average (F.) = f de P(e) F.(e).
It follows from the Gibbs inequality that below the error-
correction threshold for the noise parameters in P(e), the
free-energy increment AF, = F.(e) — Fy(e) associated with
a logically distinct “incorrect” class (¢ 2 0) necessarily di-
verges with n for any error, e, likely to happen [23]. More
precisely, if ML decoding is asymptotically successful with
probability one, PML) — 1, then the average free-energy in-
crement, (AF,) associated with any nontrivial codeword ¢ 2 0
must diverge for n — oo. Such a divergence can be seen as a
signature of a phase transition in the corresponding model.
As is the case of the surface codes [22], the partition
functions Z.(e) are evaluated at a temperature that is not
a free parameter but depends on the distribution P(e). For
the sake of understanding the physics of the corresponding
models, we could relax this, e.g., by additionally rescaling the
energy H(e) — BH(e), cf. Eq. (6), in the definition Eq. (7) of
the partition function Z.(e), while keeping the original error
probability distribution in the average Eq. (10). This amounts
to using ML decoder with incorrect input information, thus the
corresponding success probability is not expected to increase,
Phe (B) S PQed’ (B = 1) = PQe, (12)
similar to decoding away from the Nishimori line in the case
of qubit stabilizer code [22,23]. In particular, the limit 8 —
oo corresponds to ME decoding, where we are choosing the
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codeword ¢ to minimize the function

He(e) =minH(e +c+s). (13)

III. PROTECTING A SINGLE GKP QUBIT
A. Setup

The single-mode GKP code [3] is a prescription to encode
a qubit—a two-dimensional Hilbert space—into the Hilbert
space of an oscillator using a discrete subgroup of displace-
ment operators H; as the stabilizer group. One chooses the
two commuting displacement operators, S, = ¢**? and S, =
e?74/% where o # 0 is any real number. For this encoded
qubit the (logical) Pauli operators are Z = ¢™9/% (with Z> =
S,) and X = € (with X*> = §,). One can verify that XZ =
—ZX. The oscillator observables, P = 2ap and O = 274/a,
can both take any value 2wk for k € Z on ideal codewords.
The codeword |0) (respectively, |1)) is distinguished by k
being even (respectively, odd). The action of phase space
translations S, (respectively, S,) on the eigenvalues of 0 (re-
spectively, P) is Q — Q + 4x (respectively, P — P + 41r).
The action of X (respectively, Z) is Q — Q + 2w (respec-
tively, P — P + 2m).

A visual representation can be obtained by imagining the
variables Q and P as a torus in phase space with both handles
of circumference 2. In this representation S, lets Q wind
around the handle exactly twice, while X lets Q go around
the handle exactly once. A correctable error constitutes a shift
in Q by less than half the circumference. In this convenient
representation, a logical error thus occurs when the winding
number is odd, and no error occurs when the winding number
is even. The shifts in P corresponds to windings around the
other handle of the torus.

We will assume that the oscillator undergoes noise mod-
eled as a Gaussian displacement channel with bare standard
deviation oy, see Eq. (5). The effect on the scaled observables
P and O is to map P — P+¢, and Q — Q + ¢, where ¢,
and €, are drawn from Gaussian distributions with rescaled
variances,

22
op = 4a’ol and oé = Aoy .

= (14)
For symmetry reasons, « is chosen to be /7 and we write
o = op = 0. Given perfect measurements of S, the error ¢,
can be corrected if |¢, cmod 47| < 7.

To measure stabilizer generators S, and S, we consider the
fault-tolerant Steane measurement circuits [3] in Fig. 1, where
encoded |¥+) or |0) ancillas, CNOTs and § or j measurements
are used.

For simplicity, we consider the ancilla preparations, the
CNOT and the § and p measurements to be perfect and only
add Gaussian displacement channels on the data qubit and
on the ancilla qubit right before its measurement. Doing
this ignores the back propagation of g-type errors to the
data due to an imperfect ancilla [26], but if we treat p-
type and g-type error correction independently, then this
back-propagation does not fundamentally alter the noise
model. We will keep the freedom of choosing different
standard deviations for the data and the ancilla errors and

ECcxp (Mu) =

FIG. 1. A single round of fault-tolerant GKP syndrome measure-
ment for both ¢ and p shifts. Here |[+) is the +1 eigenstate of S, and
X, and |0) is the +1 eigenstate of S, and Z. The CNOT gate is the
logical cNOT for the GKP code which induces the transformation
Gtarget — {control + Grarget (Whlle Pcontrol = Pcontrol — Prargets> gcontrol —>
Geontrol» Prarget = Puarger)- Each measurement is a perfect homodyne
measurement of § or p. N are Ny are Gaussian displacement
channels in Eq. (5) which model shift errors on the encoded state
in each round of error correction, respectively, shift errors in the
homodyne measurement.

denote as oy the scaled standard deviation for the ancilla
errors.

Since the measurement outcomes in Fig. 1 are inaccurate,
they cannot be used to infer a correction which maps the state
back to the code space. To perform error correction one has to
measure frequently and try to use the record of measurements
to stay as close as possible to the code space without incurring
logical errors to preserve the codeword. Figure 2 shows this
repeated measurement protocol for p-type errors (or shift-in-g
errors).

We will analyze only p-type data errors with scaled stan-
dard deviation o and measurement errors with scaled stan-
dard deviation oy, cf. Eq. (14). The analysis for g-type
errors would be similar. When considering the realization of
a particular shift error we will use the following notation:
€ € R is the shift error occurring on the data before the rth
measurement, §; € R is the measurement error occuring at the
tth step. Furthermore, ¢, € [—m, ) is the fth measurement
outcome for the rescaled variable O and ¢, =€+ +¢is
the cumulative shift on the data. The relations between these
quantities are

g = ¢+ cmod 2w, ¢ —¢_1=¢, ¢Po=0. (15

We consider a total of M rounds of GKP measurements in-
dexed by ¢ € [M]. Of these, the last measurement is assumed
perfect, incorporating any measurement error into the corre-
sponding shift error. Specifically, we write ¢y = dy—1 + €um,
qu = ¢u cmod 27, so that §y; = 0. This last measurement
can be thought of as a destructive measurement performed
directly on the data without the use of an ancilla, as one
would do to retrieve the encoded information. As such, the
last data error €); can equivalently be thought of as the last
measurement error on the destructive measurement of the
data. Having this last perfect measurement permits us to map
back to the code space and easily define successful or failed

[@) ] V]
II> m F

FIG. 2. Repeated rounds of error correction for the GKP code
to detect and keep track of error shifts in § followed by a final
destructive measurement of the data (modeled as N followed by
a perfect measurement of §). No explicit corrections based on the
measured values are shown.
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error correction. Specifically, we are trying to determine the
parity of ky; in the relation gy = ¢y + 2w kyy; error correction
is successful as long as we determined the parity correctly. We
denote the set of M measurements as ¢ and M cumulative shift
errors as ¢.

To get some intuition, imagine that we apply a single round
of error correction of Fig. 2 and Ny is the identity channel.
The ancilla qubit |+) is a uniform sum of delta functions with
Q0 =g =0 cmod 27, hence we represent the measurement
outcome compactly as g € [—m, ). An incoming logical X
on the data qubit is pushed (through the CNOT) onto the ancilla
qubit where it translates g by a full 2z -period, hence logical
information is not observed. One corrects a shift of up to & (at
most half-a-logical) by shifting Q back by the least amount to
make it again equal to O cmod 2.

B. Decoding strategies

We start by describing the maximum-likelihood strategy.
Given the measurement record, one would like to compute
the conditional probabilities for different classes of errors
which are distinguished by their logical action. In this case
of correcting a single qubit against shift errors in g, one has
to decide whether there was an X error or there was none.
Knowing the details of the error model, namely ¢ and oy, one
can write down the probability of these two classes. Formally,
they are given by

P(Olg) = /1 P($lg)dd. P(llq) = /1 P($lg)dp. (16)

where the integration covers all possible realizations of the
shift errors described by ¢, and Iy (respectively, I;) limits

J

= f = ¢+ 2mk)’
P@IOP@) o Y [Hexp (—(q bt 2k

202
keZM L t=1 M

the integral to realizations leaving no X error (respectively,
leaving an X error). Since the last measurement is assumed
perfect, Iy and I, are characterized by §(¢y — qu + 27kyy),
with any even ky; in Iy and any odd k&, for ;.

In practice, to do decoding for the given measurement
history, ¢, one needs to compare the probabilities Eq. (16).
ML decoding algorithm suggests that a logical X correction is
needed if P(1|g) > P(0|q). Of course, this does not guarantee
success in each particular trial. If we take just one measure-
ment round, M = 1, which corresponds to measuring the data
directly, then we get

Pu—1Olg) = Y [ dei Pleilg)é(er — g1 + 2kim)

kieven Y~
o Y Polgr —2mky), (17)
ki even

and Py_(l]q;) is given by the complementary sum over
odd k;, which makes the normalization the full sum with k;
running over all integer values.

To compute these probabilities in general, we apply Bayes’
rule:

P(ql9)P(¢)
P(¢lg) Pq) (18)

Then the probability for some outcome g given data errors ¢
can be computed from the measurement error model and the
probability for some data error ¢ from the data error model.
The normalization, P(g), can be computed by integrating
the numerator over every ¢. Using Eq. (15), we have from
Eq. (18)

M _ 2
) [exp (—%)8(@4 — gy — anm}. (19)
=1

Recalling Eq. (7), we write the corresponding complementary probabilities Eq. (16) in terms of partition functions,

Zy(q) Zi(q)
PO = s P(1 = —, 20
(Olg) () (1lg) @) (20)

M-1 ) M )

r — ¢ 2 kl t — Qr—
2@ =x" fap 3 g UG IR o[ 5 00l
kezM- =1 M p—r

X Z 8(py — qu — 2mwc —4mky), ¢=0,1, @1

kMEZ

with N a normalization constant [27]. In this special case
picking e = ¢, for a candidate error is always a valid choice,
that is why we can write directly Z.(q).

The evaluation of the Gaussian integrals in Eq. (21) (see
Appendix B 1) gives

(2ﬂ)(M—1)/2
2@ = NGBz Z
k=(k,c+2m):keZM-', meZ

X exp [—%(q + 2k)A(q + an)Ti|, (22)

(

where B and A are symmetric positive-definite matrices given
explicitly by Eqgs. (B1) and (B2) in the Appendix. The sums
with ¢ € {0, 1} can be numerically computed by setting a
cutoff K, restricting every k, to the interval —K < k, < K.
The number of terms then still exponentially increases with
the number of rounds. We used Eq. (22) with a cutoff K = 2
for up to M = 7 rounds for the results shown in Figs. 4 and 5.
Intuitively, this cutoff corresponds to only considering events
where the measurement shift errors let one wind around the
torus at most twice in each round. This is pretty reasonable
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since these errors follow a Gaussian distribution with small
variance.

Generally, a more clever way to calculate the sum in
Eq. (22) is to express it in terms of a genus-M Riemann
theta function [28], and then transform the matrix so that
the summation terms can be rearranged in decreasing order,
stopping at a desired precision. However, this requires solving
a shortest vector problem with the eigenvectors of A and is
therefore also computationally difficult [29,30].

In addition to the formally exact but hard to calculate
Egs. (21) and (22) for the conditional probabilities, we would
like to consider a class of approximate minimum-energy
solutions of the corresponding optimization problem. To this
end, we define a 277 -periodic potential, V,, (x) = V, (x + 27),

exp[—V, (x)] = Y e~k 2, (23)
keZ

The periodicity of the sum of the Gaussians implies that
one should be able to approximate V,(x) by its principal
Fourier harmonic,

Vo (x) = Ay — By (o) cosx, 24)

where By is Villain’s effective inverse temperature parameter,
and the overall shift Ay is irrelevant. Such a simplified form
is exactly the approximation used by Villain [31], but “in
reverse.” Indeed, for large 8, one has [32]

2
eﬂcosx ~ eﬂ Zexp (_,B(X + 27Tk) >’ (25)

2
keZ

which gives By (o) = 1/02, 0 < 1.

With the defined periodic potential, the logarithm of the
nonsingular part of Eq. (19) acquires a form of a discrete-time
Euclidean action, cf. Eq. (6)

H(¢:q) = —In[P(q|¢)P(¢)]
M

B 2 M—1
= O S Vg~ 90+ comst
=1 t=1

(26)

With the given values ¢p = 0 and ¢, the corresponding
extremum can be found by solving the equations

Gt — 20+ 1+ 07V, (g —d) =0, te€[M—1],
27)

where V(;M (x) denotes the derivative of the potential in
Eq. (23). These equations can be readily solved one-by-one,
starting with ¢9 = 0 and some ¢, = ¢; the boundary con-
dition ¢y = qu + 2mky can be satisfied by scanning over
different values of ¢; in a relatively small range around zero,
with the global minimum subsequently found by comparing
the resulting values of the sum in Eq. (26). Then, any even
value of k), corresponds to no logical error, while an odd ky,
indicates an X error to be corrected. While such a minimiza-
tion technique gives the exact ME solution, in practice it is
rather slow. Namely, with increasing nonlinearity o2 /oy; and
increasing length M of the chain, a small change in ¢; may
strongly affect the configuration of the entire chain. Respec-
tively, it is easy to miss an extremum corresponding to the

time

/N

M

— ———— | ———

-4n 3T -2; -T 0 s 21 3n 4m (I)

FIG. 3. Sketch of GKP decoding problem and its solution strat-
egy. For each round of error correction ¢ € [M] one has a Villain
potential V;, (g — ¢;), depicted in blue, with the minimum centered
at the measured value g,. Green and red intervals along the horizontal
axis denote the sets Iy and /; in Eq. (16), they correspond to realiza-
tions leaving no error or an X error, respectively. In a memoryless
decoding strategy one decides how to shift the code state after each
measurement based on the value of ¢,. In a maximum-likelihood
decoding procedure one evaluates the path integral in Eq. (22). In
a minimum-energy decoder one determines an optimal path for the
sequence ¢, t € [M], given the random potential and the quadratic
“kinetic energy” term proportional to (¢, — ¢,_;)?, see Eq. (26).
Red and black lines show two decoding trajectories which start at
the same point but have different winding numbers. Upon a final
decoding step, choosing the black trajectory leads to deciding that
no logical X error has taken place, since the final value ¢y, lies in
the green region. Choosing the red trajectory leads to deciding that
a logical X has taken place since the final value ¢, lies in the red
region. Examples of actual trajectories are shown in Fig. 13 in the
Appendix.

global minimum. This numerical complexity of minimizing
Eq. (26) is a manifestation of chaotic behavior inherent in
Egs. (27).

Indeed, the problem of minimizing the energy Eq. (26)
can be interpreted as a disordered version of a generalized
Frenkel-Kontorova (FK) model [33], where a chain of masses
coupled by springs lies in a periodic potential. In our setup,
random shifts g, can be traded for randomness in the initial
(unstretched) lengths of the springs, ¢, — g;—;. The original
FK model, with V; (x) replaced by a harmonic function, is
obtained if one uses the Villain approximation “in reverse,’
see Eq. (24). Even in the absence of disorder, the FK model
is an example of a minimization problem with multiple com-
peting minima which can be extremely close in energy. The
corresponding Egs. (27), viewed as a two-dimensional map
(i1, ¢:) = (@1, Pr+1), are a version of the Chirikov-Taylor
area-preserving map from a square of size 2w to itself [34],
one of the canonical examples of emergent chaos.

For this reason, and also in an attempt to come up
with a numerically efficient decoding algorithm, we have
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Forward-minimization decoder

10° r%-f"gf—ﬁr—*ﬁ—*fzﬁfﬁbf—*f—ﬁr—*%nﬁrrﬂ-ﬂp:

% 1071 | i L. * I x
| B t NN x x ]
[ X N

— i L " % 2
| % T S & p o

- % j|{ f % E % -

% T % 77 %

10-2 | | RN % % T |
1 2 3 4 5 6 7 8 9 10 11

number of rounds (M)

Maximum likelihood decoder (K = 2)

:—5*””315*””f””’I*””ﬂ"*”’*””h 100
[ x x = x 1
X X p:4 Q_“?
- X 41071 o
§ % - |
i X ¥ i —
| | o0 €[0.1,0.9] % % i
B X data 7
fit
| | | l —‘7 10—2

1 2 3 4 5 6 7
number of rounds (M)

FIG. 4. Some of the numerical results for the forward-minimization and maximum-likelihood decoders (with cutoff K = 2). To observe
the exponential decay towards 1/2 we plot 1 — 2P.,; on a log scale for different number of rounds and different bare standard deviation oy. Low
hundred thousands of trials are performed for each data point and the confidence intervals at 95% are shown. For each oy we fit an exponential
decay, the slope gives us an effective logical error rate per round. On both plots the value for o varies between 0.1 and 0.9, on the left by 0.05
increments, on the right by 0.1 increments. All effective logical error rates are plotted in Fig. 5.

designed the following approximate forward-minimization
technique. For each t+ < M, starting from ¢t = 1, given the
present value ¢,_, one determines the next value ¢, such that
90 lg,.1=¢, = 0. Given the syndrome g, this implies
¢, = argmin

[

= ¢ = UZV(;M(% — &)+ P

At the end, after one obtains ¢,,_, one chooses a kj; such
that gy + 2mky, is the closest to ¢y —1. The parity of thus

. 2
[w o, (g — ¢>]

(28)

o
"~

e
o

chosen ky, then tells if a logical error happened. This strategy
is illustrated in Fig. 3.

These equations are certainly different from the exact ex-
tremum Eqgs. (27), and the configuration found by this forward
minimization technique necessarily has the energy higher than
the exact minimum. However, empirically, the corresponding
energy difference is typically small, much smaller what one
gets, if the correct minimum is missed by the formally exact
technique based on Eqgs. (27). Even though this technique
is only an approximation, it is fast and is accurate enough
in practice. To ensure that the approximation does not hurt

oy =0/2

I I I I I I I
-+ memoryless +

% forward-minimization
{ MLD (K = 2)

passive

perfect measurements

Logical error rate per round
o =
= [N}

01

| | | | | | I |
0.1 0.2 03 04 05 0.6 07 08 09 1

00

| | | | | | | |
0.1 02 03 04 05 06 07 08 09 1

00

FIG. 5. Plots of the observed effective logical error rate per round for different decoding techniques. In the left plot we have taken the same
standard deviation for measurement and data errors. On the right we have taken the measurement standard deviation equal to half that of the

data errors. The horizontal axis shows the bare standard deviation oy.
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the performance of our decoder, we have compared it to a
rigorous dynamic programming approach; see Appendix B 2.
This comparison shows that the dynamic programming ap-
proach has very little advantage while it is substantially slower
in its execution.

A very simple decoding strategy that one might also try is
to trust every measurement outcome and immediately correct
each round. This does not require any memory so we refer to
it as the memoryless decoder. Intuitively, this method is risky
as every round transfers the measurement errors to the data,
increasing the variance of the effective error model acting on
the data.

C. Numerical results

We have numerically simulated these different decoders:
maximum likelihood with a cutoff, forward-minimization, and
memoryless decoding. We have also compared them to the
scenario where the measurements are perfect, as well as the
completely passive decoder where one lets shift errors happen
without performing error correction measurements. For each
scenario we considered up to 11 rounds of measurements
(M = 7 for the maximum likelihood decoder), sampled errors,
applied the decoder and gathered statistics of success or
failure of the procedure for different bare standard deviation
for the errors op € [0.1, 1].

In every scenario we observe an exponential decay toward
1/2 of the probability of logical error as seen in Fig. 4. Thus,
as expected, there is an eventual loss of logical information
for any values of o and oy. The decay can be fitted to extract
an effective logical error rate per round which we then plotted
in Fig. 5.

One striking observation is that above a certain bare stan-
dard deviation, the measurement outcomes are simply not
reliable enough, so that one cannot do substantially better than
throwing away the measurements and passively letting errors
accumulate. Roughly speaking, this occurs for oy 2 0.5 when
om = o and for oy 2 0.7 when oy = o /2. Another observa-
tion for oy = o is that the memoryless technique actually
quickly does more harm than the passive approach which
forgoes error correction altogether. Finally, we observe that
in the range of parameters studied, the forward-minimization
technique performs almost as well as the maximum-likelihood
decoding, while having the advantage of being much simpler
computationally.

IV. CONCATENATION: TORIC-GKP CODE
A. Setup

We consider the following setup shown in Fig. 6. We have
a 2D lattice of oscillators such that each oscillator encodes a
single GKP qubit. To error correct these GKP qubits by the
repeated application of the circuits in Fig. 1, a GKP ancilla
qubit oscillator is placed next to each data oscillator, allowing
for the execution of these circuits. After each step of GKP
error correction, we measure the checks of a surface or toric
code: a single error correction cycle for one of the toric-code
checks is shown in Fig. 7. Note first that we omit GKP error
correction after each gate in the circuit in Fig. 7: the reason
is that we assume that these components are noiseless in this

1
2 4 Toric code Z-check ancilla oscillator,
measuring - q;- G+ Q,+ q,

3

1
2 | __4 Toric code X-check ancilla oscillator,
\/5 measuring P-B- B+ R
3

B GKP data qubit oscillator

[[] GKP ancilla qubit oscillator

FIG. 6. The two-dimensional layout of oscillators, e.g., high-Q
cavities, for the toric-GKP code. Shown is a fragment of a surface
or toric code lattice. The different & signs are defined by the
orientations as explained in the main text.

setup so nothing would be gained by adding this. Second, the
check operators of the toric code are those of the continuous-
variable toric code [35] which are commuting operators on the
whole oscillator space; see Appendix F. The reason for using
these checks is that for the displacements X and Z of a GKP
qubit, it only holds that X = X! and Z = Z~! on the code
space. Expressed as displacement operators on two oscillators
1 and 2, it holds that [X;X>, Z1Z; '] = 0. The upshot is that
one has to use some inverse CNOTS in the circuit in Fig. 7.

In the following, we will denote vertices of the square
lattice with letters i, j, k, [, and the directed edges with the
corresponding vertex pairs, e.g., e = (ij). Quantities defined
on the edges will be considered as vector quantities, e.g.,
pij = —pji for the momentum operator. The preferred orien-
tation is given by the direction of the coordinate axis. For such
a lattice vector field, say some field f, defined on edges, with
components f;; = — fj;, we will denote the sum of the vectors
from a vertex j as

V=Y fi (29)

k~j

where the summation is over all vertices k that are neighboring
with j. Note that this choice, recovers the =+ signs for a X-
check (red) in Fig. 6, when the quantities fj; are written in
their preferred orientation. The circulation of a vector around

!
2 N HECaxr (W)
3 {7} {ECar (i)
4 ~{}-{ECar i)
|0) N

FIG. 7. A single round of error correction for a Z-check for the
toric-GKP code in Fig. 6, on oscillators numbered 1 to 4. The GKP
error correction unit is given in Fig. 1, |0) is a 41 eigenstate of Z
and S,,. The inverse CNOT which induces the transformation greer —
Qtargel — {control (Whlle Pcontrol = Pcontrol + ptargel) is denoted USing ao
at the target qubit instead of a @. A parallel execution of the CNOTS
for the X -checks is possible in the toric code.
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a (square) plaquette p = (ijkl) is denoted as

(Vx f)p,=fij+ fix + fu + fu (30)

The preferred orientation for a plaquette, p = (ijkl), is the
one for which the closed path i - j — k — [ — i turns
counter-clockwise. With this choice Eq. (30) recovers =+ signs
for a Z-check (green) in Fig. 6, when the quantities fj; are
written in their preferred orientation. With these notations, the
vertex A j (X-type) and the plaquette B » (Z-type) operators of
the toric code in Fig. 6 can be denoted as,

Aj=eVTOP and B, =NV (31

B. Noiseless measurements and numerical results

We first examine the operation of the toric-GKP code in the
channel setting. This simplified error model is based on the
assumption that there are no measurement errors, i.e., Ny =
1 and Nt = 1 in Fig. 7, or equivalently, o)y = 0 and o = 0.
In other words, the assumption is that both the GKP syndrome
and the toric code syndrome are measured perfectly at every
round.

Generally, when two codes are concatenated, it is possible
to pass error information of the lower-level code (in this
case, the GKP code) to the decoder for the top-level code
(here the toric code). The information that can be passed
on is an estimation of the error rate on the underlying GKP
qubits based on the outcome of the GKP error correction
measurement. Intuitively, if the GKP measurement gives a
q € [—m, w] which lies at the boundaries of the interval, say,
beyond —r /2 or 7 /2, we are less sure that we have corrected
this shift correctly [36]. In other words, the logical error
rate depends on the measured value of the GKP syndrome,
and this conditional error rate can be used in the standard
minimum-weight matching decoder for the toric code. If the
conditional single-qubit error rate fluctuates throughout the
lattice, then one can expect that using this information will
substantially benefit the toric code decoder.

We numerically demonstrate that this is the case for the
toric-GKP code, reproducing some of the results in Ref. [16].
The threshold of the toric code without measurement error is
about 11% [22]. If we are not using any GKP error infor-
mation in the toric code decoding, then the threshold for oy
is set by the value for which P(X) = 11% with P(X) shown
as the green line in Fig. 5. We can run a standard minimum-
weight matching toric code decoder where qubit X -errors are
generated by sampling Gaussian noise with standard deviation
o followed by perfect GKP error correction on every GKP
qubit. The left plot in Fig. 8 presents our numerical data in
this scenario, showing a crossing point at oy ~ 0.54.

To use the GKP error information, we use Eq. (17) for
the probability of an X error conditioned on the outcome
q € [—m, 7). Including normalization, this probability reads
[37]

Y vez Po (=21 + g + 4mk)
> ez Po(q +2mk)

To use these expressions we replace k € Z by the correspond-
ing sum with a cutoff K, restricting the summation to the
interval —K < k < K. This is warranted since the Gaussian

P(llg) = (32)

weight for large k is small. In the numerics we used the cutoff
K =3.

We numerically simulate the following process. For each
toric code qubit, (ij), we first generate a shift error ¢;; accord-
ing to the Gaussian distribution which leads to a GKP syn-
drome value g;; € [—m, 7). Given g;;, we infer a correction
which may give rise to an X error on qubit (ij). We evaluate
the Z-checks of the toric code given this collection of errors
and perform a minimum-weight matching algorithm to pair
up the toric code defects. Logical failure is determined when
the toric decoder makes a logical X error on any of the two
logical qubits of the toric code. To use the information about
the logical error rates IP(1]g;;), for each qubit (ij), we define
a weight:

L T1=P(lgy)
wu_log[ P(llg) ] (33)

Then, we define a new weighted graph G = (V, E), whose
vertices, p € V, are plaquette defects from the toric code
graph and whose edges constitute the complete graph. Given
an edge, (p, p') € E, its weight @, 7 is the minimum weight
of a path on the dual of the toric code graph connecting the
defect plaquettes p and p’. Here, the path weight, w, ,, is
the sum of the weights, w;;, of all edges crossed by the path.
Minimum-weight-matching (Blossom) algorithm is then run
on this w-weighted graph G, leading to a matching of defects
and thus an inferred X error.

Specifically, we used Dijkstra’s algorithm for finding a
minimum-weight path in a weighted graph as provided by the
Python library Graph-tools [38], and the minimum-weight
matching algorithm from the C++4- library BlossomV [39].
The process of sampling from shift errors is repeated many
times; the logical error rate plotted in Fig. 8 is given by the
fraction of runs which result in logical failure over the total
number of runs.

V. NOISY MEASUREMENTS: 3D SPACE-TIME DECODING
A. Error model

In this section we consider how to use both GKP and toric
code error information when both error correction steps are
noisy, using repeated syndrome measurements. This is the full
error model in Fig. 7, which represents one complete QEC
cycle. We only consider p-type shift errors (inducing shifts
in q), the initial state at r = 0 is assumed to be perfect, and
the last of M rounds of measurements noise-free, both for the
GKP and the toric code ancillas. We will address the question
of whether or not there is a decodable phase in the space of
parameters, such that by increasing the size of the code and
the number of measurement cycles, the probability of a logical
error can be made arbitrarily small.

To visualize errors of different origin, for the M-times
repeated measurement of the toric code on an L x L square
lattice, it is convenient to consider a three-dimensional cubic
lattice, with periodic boundary conditions along x and y direc-
tions, separated into horizontal layers. Each layer corresponds
to a measurement round ¢t € [M]; see Fig. 9. In each time layer
t, we use the same notations and conventions of directed edges
and vector quantities as in Sec. IV A. Hence we associate a
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FIG. 8. Threshold comparison between decoding with or without GKP error information. On the left, the simulation only takes the average
error rate into account and one obtains a threshold between oy =~ 0.54 and oy ~ 0.55 corresponding to P(X) ~ 10% and P(X) =~ 10.7%,
respectively. On the right, the simulation takes the GKP error information into account. In this case, the crossing point is around o5 ~ 0.6
corresponding to P(X) & 14%. The data are labeled by the distance of the toric code. “Bare GKP” is the logical error rate for a single GKP
qubit whose errors are processed perfectly without measurement errors (green line in Fig. 5).

GKP data qubit oscillator with each edge (ij) of the square
lattice.

We thus denote the shift occurring on a data oscillator just
before the measurement at time ¢ as the shift ¢;;(¢) (induced
by channel ). Since the shifts accumulate, the net shift on
the oscillator at bond i just before the measurement at time ¢
is [cf. Eq. (15)]

t
¢ii() = €t)). (34)
r'=1

Furthermore, we denote the GKP measurement error of this
oscillator at time ¢ as &;;(z). This is the shift error on the
ancilla inside the corresponding ECggp unit (induced by
channel NVy). With these notations, we can write for the GKP
syndrome ¢" () at time 7,

qinP(f) = 6;j(t) + ¢;;(t) cmod 2. (35)
« I
cycle t A/fh(tl/ ki
- 5ij(t) - Ekl(t)
[
J ‘/
cyclet — 1

i

FIG. 9. Notations for repeated toric-GKP errors. Data oscillators
are located on the bonds of the square lattice. A GKP measurement
error for the bond b = (ij, t) in the measurement cycle ¢ is denoted
as §;;(t) = &, while the corresponding measurement error for the
toric code generator on horizontal plaquette p = (h,t) is denoted
as &,(t) = &,. A data qubit error € (t) = €, is associated with the
vertical plaquette p directly below the bond &/ in the layer 7.

In addition, we have the toric code syndrome. Specifically,
we consider the toric code plaquette operators; see Fig. 6 and
Eq. (31). The result of the toric code syndrome measurement
on the plaquette & = (i jkl) at time # is

qi" (t) = &(t) + (V x ¢)u(2) cmod 47, (36)
where the bond vectors ¢;;(t) are the accumulated errors
in Eq. (34), and &,(¢) is the plaquette measurement error
(induced by channel N7). Note that, unlike for the GKP
measurements, the syndrome ¢'' is measured modulo 47w,
since the ancilla starts in the state |0).

Since we assume that the measurement errors in the last
layer, t = M, are absent, we have &,(M) = §;;(M) = 0. Writ-
ing the product of the corresponding probability densities, we
obtain an analog of Eq. (26) for the effective energy

H(¢ q) ZZ ¢l](t)

t=1 (ij)

¢l] r— 1)]2

202

E

+ Z Vou a5 (1) — ¢1,(1)]
t=1 (ij)
M—1

lor _
s Zsz[ (1) <2V x dmm} a7
h

t=1

which depends on the accumulated field ¢ with components
¢:;(t) and on the total measured syndrome g = {gC¥F, ¢"r}.
Here, Z indicates a summation over all bonds of the square
lattice, the summatlon over h runs over all square-lattice faces
(horizontal), and the structure of the last term accounts for the
4 -periodicity of toric syndrome measurements; see Eq. (36).

The energy in Eq. (37) defines the conditional probability
P(¢plq) x exp[—H (¢;¢)], up to a normalization factor. The
measurements in the last time-layer, + = M, constrain the
values ¢;;(M) as follows. From the GKP syndrome we have,
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as in Sec. III,

¢ij(M) = g5* (M) — 27k, (38)
while the toric syndrome for each square-lattice face h =
(ijkl) gives

(VX M) = ¢ij(M) + ¢ju(M) + b (M) + ¢1:(M)

= ¢ (M) — 47k, (39)

These equations can be solved to find a last-layer binary
candidate error vector b € ]F%Lz, whose components b;; =
kij mod 2 give the parity of the integer shifts k;; in Eq. (38).
Just as for the usual toric code, Egs. (38) and (39) determine
b up to arbitrary cycles on the dual lattice, i.e., X -stabilizers
(homologically trivial) and X logical errors (homologically
nontrivial) of the toric code. Adding trivial cycles to b
gives another equivalent last-layer candidate which should be
summed as part of the same sector. A trivial cycle can be
written as the gradient of a binary field, b;;“’ = n; — n;, with
n; € F,. To turn b into an inequivalent last-layer candidate
error, one should add a homologically nontrivial cycle, ¢ €
P2,

We can now write explicitly the partition function Z,(b|q),
equivalent to Eq. (7), which determines the conditional prob-
ability, given the measurement outcomes ¢ of the equivalence
class of last-layer candidate error [b + c],

20ig) =N [ape 0] ¥ 3

(ij) {ni€F2} mi;elZ
X 8[¢,](M) - qSKP(M) + 27‘[([7,']' + Cij — n;

For ML decoding, given a b which satisfies Egs. (38) and (39),
one needs to compare Z,(b|q) for different ¢ € IF%LZ which are
inequivalent binary codewords of the toric code, i.e., the three
homologically nontrivial domain walls on the square lattice
or the trivial vector. ML decoding then prescribes that we
choose the error b + ¢ as the correction where ¢ has the largest
partition function Z,(b|q).

B. Equivalent formulation with U (1) symmetry

The partition function in Eq. (40) with the Hamiltonian in
Eq. (37), as a statistical-mechanical model, is not so conve-
nient to analyze, since the components of the syndrome are not
independent of each other. So, we will consider an equivalent
form of the partition function, that explicitly depends on the
data errors €;;(t) = €,, the measurement errors §;;(t) = &,
and the toric code measurement errors &,(¢) = §,. We group
all these errors into one error record e = {e, 8, £}. Any error
¢’ that is equivalent to e can be obtained by adding, so to say,
stabilizer generators of the space-time code. This can be ex-
pressed using a 2 -periodic vector field A whose components
are real-valued on horizontal bonds in layers t € [M — 1], and
{0, m}-valued on the vertical bonds connecting layers ¢ — 1
and ¢ for all ¢+ € [M]. For horizontal bonds b in layers t = 0

and t = M, A, = 0. With these notations, we can express the
partition function in Eq. (7) as

H(Are) =) Vi (8 — 2A) + Zvﬁ/z[é—z” —(Vx A»]

bllxy pllxy
+ Y Vop[Z+ (Vx4 (4D
pLxy

Ze)=N" > ] / dA, e 1A (42)

Ape{0,}:bLlxy blxy ¥ —

with some normalization N”. To derive these equations, we
determine the shift errors that leave the syndrome record
{g°%P, ¢’} unchanged without inducing a logical error. These
are called the gauge degrees of freedom and form the stabilizer
group for the space-time code. In our case there are five
types of gauge degrees of freedom, four discrete and one
continuous. The discrete ones are genuine symmetries of the
quantum states involved in the code or measurement circuits.
Namely, the input state of an ancilla in the GKP measure-
ment circuit in Fig. 2 is stabilized by an X operator, whose
action is equivalent to a 2m-shift of the corresponding GKP
measurement error §;;(¢). Similarly, application of an X = S,
GKP stabilizer generator to a data qubit or a toric-code ancilla
in Fig. 7 is equivalent to a 4m-shift of the corresponding
error, €;;(t) or &,(), respectively. We also have toric code
vertex operators A ; [Eq. (31)] whose action corresponds to
simultaneous 2 -shifts on the four adjacent qubits, €;;(t) —
€;j(t) + 2. This discrete gauge freedom will be captured by
the two-valued field A, on the vertical bonds.

The only continuous degree of freedom is a space-time
one: it corresponds to adding a continuous shift a on a data
oscillator at some time step and then canceling it at the next
time step, while hiding the shift from the adjacent GKP and
toric syndrome measurements by adding the shifts +a as
necessary on the corresponding ancillas.

When applied to the Gaussian distribution, the discrete
local shifts are responsible for forming the Villain potentials
Eq. (23) in the effective Hamiltonian Eq. (41), where addi-
tional rescaling in the last two terms was necessary to account
for the 4m-periodicity. The remaining two degrees of free-
dom are represented by the vertical (discrete) and horizontal
(continuous) components of the doubled vector potential 2A4.
The scale of the vector potential A was chosen to make easier
contact with previous literature on related models. With this
choice, adding a rr-shift to a component of A correspond to a
GKP X-logical, which was a 2 -shift in the previous sections.

Equations (41) and (42) have to be supplemented with
the appropriate boundary conditions to be used in decoding.
Given the toric-code codeword ¢, to calculate Z.(e), corre-
sponding to the sector [e + ¢], one can add 2mwc¢ to the data
error in the top layer, t = M. This can be achieved by intro-
ducing a fixed nonzero vector potential in this layer, namely,
Ay = mc;; for all top-layer horizontal bonds b = (ij,t = M),
instead of zero for the trivial sector.

Equations (41) and (42) look very different from the equiv-
alent form that we first derived, i.e., Eqs. (37) and (40). A map
between these two formulations is given in Appendix C.
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C. Anisotropic charge-two U (1) gauge model with flux disorder

We would like to get some intuition about the constructed
U (1)-symmetric model and its features that are relevant for
decoding. To this end, we are going to relax the constraint
Ap € {0, w} for vertical bonds and consider the following
anisotropic charge-two Villain U (1) model in three dimen-
sions, with quenched uncorrelated gauge and flux disorder,

H = Vo (24, —8)+ Y V,(2A, — &)
bllxy blxy

+ ) Voul(V x A)p — £,/2]

plixy

+ Y Vopl(V x A), +€,/2]. (43)

plxy

The model Egs. (41) and (42) are recovered with the help
of the symmetry of the Villain potential, V, (x) = V,(—x), by
setting §, = O for vertical bonds, b L xy, and taking the limit
n — 40, in which case the field A, along the vertical bonds
be only allowed to take the values O or 7.

In addition to making all components of the vector field A
continuous, we will also relax the constraint on the parameters
of the quenched disorder. Specifically, instead of using the
components of the fields {¢, 8, &} as normally distributed with
specific root-mean-square deviations o, oy, and or, respec-
tively, we are going to treat the parameters of the disorder as
independent from the parameters in the Hamiltonian Eq. (43).
This is similar to the trick used originally for qubit-based
surface codes [22], where only the Nishimori line on the
phase diagram of the disordered random-bond Ising model
corresponds to ML decoding, while points away from that line
correspond to a decoder given an incorrect input information;
see Eq. (12).

We first examine the parent model Eq. (43) in the absence
of background fields, by setting all §, =€, =&, =0. The
case without anisotropy is relatively well studied, that is
n = oy and o = or. The Wilson Hamiltonian of the compact
charge-g U (1) lattice gauge model reads

H = —« Zcos(@u — 60y +qgAn) — A ZCOS(V x A)p,
(uv) r

1 4
K=— A=— (44)
o

where we restored local gauge symmetry 6, — 6, — g Xy,
Ay — Ay + Xu — Xv by adding a scalar matter field, U (1)
phases 6, on the vertices of the lattice. Notice that the phases
6, can be always suppressed by a gauge transformation with
Xo =g~ '6,. For U(1) symmetry, the charge ¢ in Eq. (44)
must be an integer; our original model with the Hamiltonian
Eq. (43) corresponds to g = 2. In application to this model,
the boundary conditions for the sectors with nontrivial code-
words ¢ 2 0 [see discussion below Eq. (42)] are equivalent
to an externally applied uniform magnetic field B = (V x
A), (flux per plaquette), with the total flux of 7 piercing
the system along x, y, or both directions. Quite generally,
when the couplings « and A are sufficiently small, the net
magnetic field remains uniform on average, with the total free-
energy cost, see Eq. (D5) in the Appendix, proportional to the

'\‘\.77 =0

\.
N

1/"‘70 -X_Y .\‘\.

[ S ——

I Meissner
=
S
Zs
O s2=4/x 4/),

FIG. 10. Schematic phase diagram of the 3D anisotropic g = 2
Villain gauge model Eq. (43) with or = o. Solid line bounds the
Meissner phase (light orange shading) in the clean isotropic limit,
n = om, Which corresponds to the Villain version of the model
Eq. (44). With n — 0, decodability condition for the toric-GKP
code with 0 = o can not be satisfied in the region to the right
from the dashed line, 0> > 4/A.(Z>), and along the upper boundary,
om — 00, and it is satisfied along the left boundary, ¢ — 0. We
therefore expect the boundary of the Meissner phase in the clean
n — 0 limit as shown with dash-dotted line; this region includes
the entire Meissner phase of the isotropic model. The green-hatched
region represents the expected location of the ML decodable phase
for the toric-GKP code; the sign of the curvature matches the bound
in Ref. [24].

volume times B?. For a system with the volume V = L>M and
B = m/(LM), this gives the free-energy cost AgF o 1/M,
vanishing in the large-system limit. The situation is different
in the Meissner phase, analogous in properties to that in
type-1II superconductors, where the magnetic field is expelled
from the bulk, and is forced into vortices (vortex lines) which
can carry a flux quantized in the units of 2 /q. Such a vortex
is a topological excitation, meaning that it cannot disappear
without moving to the system boundary or annihilating with
another vortex that carries the opposite flux, and it has a
nonzero line tension (finite or logarithmically divergent with
the system size), which gives a free-energy cost proportional
to the system size, AgF o< L.

The 3D lattice model Eq. (44) (along with related non-
Abelian models) has been first discussed by Fradkin and
Shenker [40] as a toy model for quark confinement. Sub-
sequently, both the model Eq. (44) and its Villain version
have been studied analytically and numerically in a number
of papers, e.g., Refs. [41—47]. The conclusion is that the
model in 3D has only two phases; see Fig. 10. The weak-
coupling phase is characterized by the area law in the Wilson
loop correlator and the absence of the Meissner effect. In
comparison, the strong-coupling phase, which requires both
A and « sufficiently large, A > A.(q) > 0, ¥ > k. > 0, is
characterized by the presence of both the perimeter law in the
Wilson loop and the Meissner effect. Here, 1.(g) corresponds
to the limit of k — oo, which forces the gauge field A, to take
values in 277 /g times an element of Z,. In the case g = 2, the
corresponding critical point [48] A.(2) =~ 0.7613 is that of the
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three-dimensional Z, lattice gauge theory [49]. Similarly, in
the limit A — oo the fluxes are all frozen to zero, the charge g
is irrelevant and the remaining degrees of freedom are the on-
site phases 6,. This model is known as the X-Y model, and its
critical point in 3D is at k, & 0.453 (or V4N ~ 0.4542 for
the corresponding Villain model [50]). Such a phase diagram
shape with no reentrance as a function of either variable is
consistent with the monotonicity of the correlation functions
and free-energy increments which follow from generalized
GKS inequalities; see Appendix D.

We should notice that the perimeter law in the Wilson loop
and the Meissner effect do not necessarily come together;
examples are given by compact gauge models similar to
Eq. (44) in D > 4 which also have small-x large-A phases
characterized by the perimeter law but no Meissner effect
[40,51]. Of course, it is the Meissner phase that is associated
with the formation of magnetic vortices with a nonzero line
tension.

What do these results tell us about the anisotropic model
Eq. (43) of interest, in particular, about the singular limit n —
+0? To answer these questions, we notice that, in the absence
of disorder, both the correlation functions and the response to
external magnetic field (existence of the Meissner effect) are
monotonically nondecreasing with respect to any coupling.
This follows from general correlation inequalities which are
briefly discussed in Appendix D. Moreover, these inequalities
also predict an upper bound, see Eq. (D6) in the Appendix,
on the ML decoding probability in terms of a similar quantity
defined in the absence of disorder. It follows that finite vortex
line tension in the clean (Meissner effect) limit is a necessary
condition for perfect decoding.

Since decreasing n corresponds to increasing some of the
couplings, the entire strong-coupling (Meissner) phase of
the 3D lattice gauge model with ¢ = 2 should be inside of
the corresponding phase of the model Eq. (42) with or < o
and the values of oy, o given by the map in Eq. (44). Second,
this phase cannot exist for o> > 4/1.(2), the limit k — oo
which corresponds to taking both n and oy to zero.

Furthermore, if we started with the model Eq. (37) in
the limit of unusable GKP syndrome, oy — oo, the first
term in Eq. (43) would be absent. In this case the contin-
uous gauge symmetry A,, — A, + X, — Xv 1S not broken,
which is sufficient to recover a continuous field A, along
the vertical bonds b L xy; with o = o, the resulting model
is the Villain version of Eq. (44) with « = 0. According to
Polyakov’s argument [51], only one phase is expected in
this limit; we expect no Meissner effect, and no decoding
threshold.

However, the large-A (small-o) limit of the model Eq. (44)
corresponds to all fluxes (V x A), frozen in the minimum-
energy configuration. The remaining degrees of freedom are
the phases in the first term, which gives an X-Y model.
However, if we look at the model Eq. (43) with 0 = or — 0,
in the singular anisotropic limit  — 0, the phases 6, = 6;,
at the same square lattice position i are forced to fluctuate
together, which gives arbitrarily large effective X-Y coupling
Kett =M /01\24 as M — oo. Assuming this argument also holds
for o = o7 small but finite, we expect the phase line as shown
in Fig. 10 with a dot-dashed line, with the region below it in
the Meissner phase.

A different version of this argument can be obtained by
examining the Hamiltonian in the form of Eq. (37), with
q =0. With ¢ small, the fields ¢;;(z) in the neighboring
t-layers are forced to move together, which is equivalent
to increasing the couplings for the remaining terms. The
resulting model is a two-dimensional version of the gauge
model Eq. (44), with in-plane vector potential A. Just like its
3D counterpart, this model is in a disordered phase except
when the fluxes are suppressed in the limit or — 0, which
gives a 2D X-Y model. With o sufficiently small, the effective
N . (2D) . . ..
in-plane coupling k.~ can be made arbitrarily large, driving
the model below the BKT transition.

We have discussed the expected phase boundary of the
model Eqgs. (41) and (42) in the absence of disorder, e = 0.
We expect a Meissner phase to survive with e # 0. The basic
effect of a weak disorder on a topological excitation like a
vortex line is to force its random displacements. The displace-
ments can be accounted in a simple linear approximation up
to certain distance scale called the Larkin length [52]. Even
though the displacements become nonlinear beyond this scale,
signifying the onset of glassiness, with weak enough disorder,
topological excitations are not expected to be generated; this
is called Bragg glass phase of an elastic solid [53]. The
absence of topological excitations would indicate a divergent
free-energy cost for a m vortex excitation in the Meissner
phase of the model Egs. (41) and (42), with sufficiently weak
disorder.

We thus expect a decodable phase for a toric-GKP code to
exist in a finite region at sufficiently small o, oy, and ot. In
the limit oy — 0, this phase should go continuously into a
decodable phase of the regular (qubit) toric code [22]. These
expectations are confirmed by our numerical results with two
(suboptimal) decoders presented in the next section.

D. Decoder and numerical results

Maximum likelihood decoding can be done by comparing
conditional probabilities in different sectors; see Eq. (7). Just
as in the case of a single GKP qubit, Gaussian integrations
in the relevant partition functions, Z.(blq), in Eq. (40), or its
equivalent form Z.(e), in Eq. (42), can be carried through
exactly. This would leave expressions similar to Eq. (22),
with an additional summation over 2L? binary spins. In prin-
ciple, such expressions can be evaluated using Monte Carlo
sampling techniques. In practice, the complexity of such a
calculation is expected to be high, because the corresponding
coupling matrix is not sparse, just as the matrix A in Eq. (22)
is not sparse; see Appendix B. For this reason, we have not
attempted ML decoding for toric-GKP codes.

We have constructed several decoders which approximate
ME decoding. The idea is to find a configuration of the
field A minimizing the Wilson version of the Hamiltonian
Eq. (41), i.e., with Villain potentials replaced by cosines,
by decomposing it into a continuous part (to be guessed or
found using a local minimization algorithm), and a binary
field which represents frustration, to be found using minimum
weight matching. This decomposition relies on the analysis
of the Hamiltonian Eq. (41) in the limit of perfect GKP
measurements, oy — 0.
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1. ME decoding in the limit of perfect GKP measurements

Let us consider what happens with our model Egs. (41)
and (42) in the limit oy — 0. First, in this limit all GKP
measurement errors §, vanish with probability one. Second,
the first term in Eq. (41) forces A, € {0, 7} for all horizontal
bonds, the same as we already had for vertical bonds. This
forces all plaquette fluxes to take integer values times 7.
We show here that in this limit we recover a version of
the random-plaquette gauge model (RPGM) associated with
decoding the usual qubit toric code in the presence of (toric)
syndrome measurement errors [54].

Since the limit o,y — 0 makes the vector potential A, €
{0, 7}, and in turn the plaquette flux B, = (V x A),, discrete,
then one can interpret it as a spin degree of freedom, using the
fact that the Villain potential is 2w -periodic as well as even.
Indeed, considering for example a vertical plaquette, p L xy,
in Eq. (41), one can write

Va2 +B,) = —1,(e)e
52 + B, | = —1,(e)e"’ + const,

2
1 € €
e =5 ven(§ =) ven(3)]

4
x = cos (%”) 45)

The additive constant has no effect and can be ignored.
Similarly for horizontal plaquettes, p || xy, where one obtains

the weights
1 § 3
o= g (§ =) (3]

~ 2 cos (b
~ UT2 cos<2>. (46)

Then, if one defines from A some Ising spins, s, using for each
bond, 5, = e € {—1, 1}, one obtains, in place of Eq. (41), a
RPGM very similar to that in Ref. [54],

H(sie)=—> t(@up u,=][]s. (47)
p

bep

pLxy,

p Il xy,

Unlike in the usual RBGM obtained for the qubit toric
code [54] where plaquette weights can take only two values,
7, = £J, here quenched randomness leads to a continuous
distribution of the weights. This model is similar to the
2D random-bond Ising model constructed in Sec. IVB for
decoding a toric-GKP code in the channel setting, also in the
limit oy = 0. In fact, the weights concerning data errors in
Eq. (45) (without the cosine approximation), are equivalent to
those given by Egs. (32) and (33). Similar to its counterpart
with sign disorder, the phase-diagram of the RPGM with the
Hamiltonian Eq. (47) will show a transition from an ordered
to disordered phase as the temperature 8~! or the strength of
the quenched disorder is increased. If we increase the disorder
o along a line with any fixed ratio » = or/o, then a version
of the standard argument [55] shows that no ordered phase
can exist beyond the critical value of o reached along the
“Nishimori line,” 8 = 1 [cf. Eq. (12)]. We expect that it is this
critical value of o that is associated with the memory phase
transition.

An important quantity that governs the structure of the
minimum of the RPGM Hamiltonian Eq. (47) is frustration.
We call a cube frustrated when it has an odd number of its
boundary plaquettes p with t,(e) < 0. Since every spin, s, af-
fects the sign of two plaquettes in a cube, for a frustrated cube,
no spin configuration on the edges can simultaneously satisfy
all the plaquette terms. For the usual toric codes, frustrated
cubes can be readily identified by stabilizer defects without
referring to a candidate error. For toric-GKP codes one has to
be more careful. In the limit oy — 0, the frustration cannot be
read directly from the value of the toric code syndromes but all
candidate errors exhibit the same frustration. So picking any
candidate error, e, finds it. When oy # 0, this is no longer the
case, the frustration can change between different candidate
errors.

We examine the problem of finding the optimum spin
configuration, s, which minimizes the RPGM Hamiltonian
Eq. (47), given the weights 7,(e). For a given s, we call
a plaquette term, t,(e)u,, satisfied when t,(e)u, > 0 and
unsatisfied when t,(e)u, < 0. Necessarily, a frustrated cube
is incident to an odd number of unsatisfied plaquettes, in this
sense frustrated cubes are the source of unsatisfied plaquettes.
Let S be any set of plaquettes such that the frustrated cubes
are incident to an odd number of plaquettes in S and the un-
frustrated cubes are incident to an even number of plaquettes
in S. One has

min H(s;e) = — PACIES Zrnsinz z,(e)].

P peS

Hence, minimum-weight matching on a 3D lattice with ver-
tices representing the frustrated cubes determines the optimal
set of unsatisfied plaquettes Spi,. Given a candidate error e let
Scana be the set of plaquettes with t,(e) < 0. The candidate
error e is now modified using the minimum-weight matching
by adding 2x for all plaquettes in Sp, as well as adding 27 on
all plaquettes in S¢ang (remember that 4 -shifts are elements
of the stabilizer group). This corresponds to an addition of a
stabilizer or logical operator to the candidate error e, leaving
the syndrome unchanged. This modified candidate error is the
proposed correction for this decoder.

We implemented the described decoder to minimize the
energy Eq. (47), with Villain potentials replaced with cosines;
see Egs. (45) and (46). A very simple estimate of the expected
performance of the toric-GKP code in this setting is the
following. It is known that the threshold for the toric code is
about 2.9% under phenomenological noise with independent
X and Z errors [54]. If we assume that all errors are due to
the logical error on the underlying GKP qubits, see Fig. 5,
then one can ask what oy leads to a probability for an X error
(or equivalently Z) equal to 2.9%. This of course depends on
the measurement error oy as well as the decoding method
for the GKP qubit. In case of no measurement error (o = 0),
the error probability can be found by averaging Py, (1|q),
see Eq. (17), over the Gaussian error distribution, it is plotted
as the green line in Fig. 5. An error probability of 2.9%
corresponds to op &~ 0.41. Our numerical results are shown
in Fig. 11. One can see a crossing point around oy = 0.47
which can be converted to around 6% error rate per round for
a GKP qubit with oy = 0; see Fig. 5. We can conclude that,
similarly to the results in Sec. IV B, the continuous-valued
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FIG. 11. Numerical results for perfect GKP measurements, with
o = or and oy = 0. The logical error rate as a function of the bare
standard deviation oy, see Eq. (14), is shown for toric code distances
d = L as indicated in the caption. The vertical dotted line indicates
the position of the crossing point in the data, a threshold at oy ~ 0.47,
which corresponds to a logical error probability p = 6% for single-
qubit GKP code with oy = 0. The latter value is recovered as the
vertical position on the dash-dotted line which reproduces the green
line oy = 0 from Fig. 5 (left). The observed threshold is well above
oy = 0.41 which can be superficially expected from the p = 2.9%
threshold for the 2D toric code under phenomenological error model.

weights 7,(e), constitute valuable information to the decoder
about the likelihood of errors and permit to surpass decoders
which do not have access to such information.

2. Dealing with multiple competing minima

A difficulty in minimizing the Hamiltonian Eq. (41) is the
existence of a large number of competing local minima. This
was already the case for a single GKP qubit, which we con-
sidered in Sec. III. We saw in the previous section that in the
case of perfect GKP measurements, the solution can be found
efficiently because the problem is equivalent to a minimum
weight matching on a graph. Our approach to minimizing
Eq. (41) in the general case will be to decompose the vector
potential A, € [—m, m) for horizontal bonds b = (ij, t) into a
discrete field Az()) € {0, 7}, and an auxiliary continuous field
ap € [-5, %),

Ay =AY +a,+8,/2. (48)

For vertical bonds there is no need of such a substitution since
the corresponding field is already discrete, see Eq. (42), so
we set a, = 0 for all b L xy. The discrete part of the field,
A© can be used to define Ising spins, s, similarily as before,
Sp = e"ALO). The definition of the weigths, 7,(e), has to be
extended since now they depend also on §, # 0 and a;, # 0,
or more precisely the residual fluxes b, = (V x a),. Adding

these dependencies, the new weights, 7,(a;e), given only in
their cosine approximation, read

4 1
Tp(a;e) = o cos (% — E(V X 8)p — bp>, pllxy,
T
49)
4 1
(aie) = — cos <%” — 5060 = 8t = 1)) —l—b,,),
p=(ij,t) L xy (50)

Rewriting the Hamiltonian Eq. (41), using the substitution
Eq. (48) and using the cosine approximation of the Villain
potentials gives

H(a,s;e) = _aiz Zcos(Zab) — Z Tp(a;e)u,. (51)
p

M plixy

Then, the minimization over the gauge field A, or equiv-
alently over {a, s}, factors out into minimizing the RPGM
similar to Eq. (47), and a minimization over the continuous
field a.

In addition to the candidate error e, the RPGM weights
now also depend on a via the the flux field b. Moreover,
even with the restriction on the auxiliary vector potentials,
lap| < /2, the corresponding fluxes are not so restricted; in
particular, both for horizontal and vertical plaquettes one may
have |b,| = 7, sufficient to flip the sign of the RPGM weight,
7p(a; e), and flip the frustration of the two adjacent cubes.

Nevertheless, even though frustration depends on configu-
ration of both the spins and the residual fluxes b,,, increasing
the number of variables by the substitution Eq. (48) does sim-
plify the minimization problem. First, unlike in the isotropic
model Eq. (44), the fields a; are uniquely defined by the
fluxes b,. Indeed, since the gauge fields g, are only nonzero
on the horizontal bonds, and are zero at the bottom layer,
t = 0, the gauge is fixed. Furthermore, the GKP terms tend
to suppress order-reducing fluctuations by favoring small |a|.
Thus, with oy small compared to o and or, we can hope to
find a reasonably good solution just by setting a, = 0.

3. Actual decoder algorithms and their performance

To design a syndrome-based decoder with the starting point
a, =0, we first need to come up with a candidate error
e = e(q). Since we are not doing the full minimization of the
corresponding energy, the method to find e will necessarily
affect the performance of the resulting decoder.

ALGORITHM 1:

(1) For each plaquette A, starting from ¢t = M — 1 down to
t = 1, set the toric code measurement error &,(t) = ¢;*" (1) —
g)" (t + 1), to suppress the increments of the toric syndrome.
This leaves nonzero toric code syndromes only in the first
layer, ¢} (r = 1).

(2) Set data errors in the first layer, €;;(t = 1), to move
nonzero toric code syndromes to the left (with ij|y), then
down along the leftmost column. Due to the boundary con-
ditions, the sum of all toric code syndromes is 0, meaning
that after this procedure, all toric code syndromes are removed
including the one in the left-bottom plaquette.
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FIG. 12. For both plots the dash-dotted line shows the logical error rate per round for a single GKP qubit corrected with the forward-
minimization decoder, with 0 = o1 = oy, as a function of the bare standard deviation oy = o /2./7. (Left) Numerical results for ALGORITHM 1
without preprocessing of the GKP syndrome information (see text). We observe a crossing point at oy &~ 0.243 which can be translated to
p = 1.3%. (Right) Numerical results for the ALGORITHM 2 with preprocessing of GKP syndrome information (see text). We observe that
this decoder improves the logical error rates. However, the improvement being greater for smaller distances, the crossing point moves left to

oy ~ 0.235 which corresponds to an error rate p = 1%.

(3) For each square lattice bond (ij), starting with ¢ =
1 up tot =M —1, use Eq. (35) to set GKP errors §;;()
to suppress the GKP syndromes ¢*F (1) [without changing
¢i;(t)]. This leaves nonzero GKP syndromes only in the top
layer, t = M, with toric syndromes all zero.

(4) Make a gauge transformation on the top layer data
errors, €;;(t = M) — €;;(t = M) + x; — x; t0O move nonzero
GKP syndromes to the left (to x = 0) and then down (to
y = 0). The last step works because Egs. (38) and (39) are
satisfied for the updated syndrome; with ¢>(r = M) =0
these guarantee that the GKP syndrome is a gradient.

Having determined the candidate error e, we calculate
the RPGM weights Eqgs. (49) and (50) with b, =0, and
continue with minimum-weight matching decoding described
inSec. VD 1.

The numerical results obtained with the described decoder
at 0 = oy = ot are shown in Fig. 12 (left). Despite the fact
that this decoder does not make a particularly good use of
the GKP syndrome information, ¢°%?, and does not even try
to find a good candidate error, the logical error rate rapidly
goes down with increasing code distance and decreasing oy
below the crossing point at oy ~ 0.243. With the forward-
minimization decoder on a single GKP qubit with ¢ = gy,
this would correspond to a logical error rate of p ~ 1.3%. If
the errors only come from having imperfect GKP states, then
this also can be translated to having states with at least four
photons.

It seems possible that, by making a better use of the
GKP syndrome, one should be able to improve this decoder
while preserving its computational efficiency. To this end, we
tried a preprocessing algorithm. The basic idea is, given the
syndrome g®%P, to find an initial approximation, e, for the
data errors which would bring back the GKP qubits closer to
their code space. Given ey, Algorithm 1 can be used to find
an error e; matching the updated syndrome, after which the

RPGM weights can be computed using the full candidate error
eo + e;. The hope is then that the candidate error found is one
for which the first term of the Hamiltonian in Eq. (51) does
not need to be minimized anymore. In particular, we tried us-
ing our single-oscillator forward-minimization decoder from
Sec. III as the preprocessing step. Using it directly produced
a degradation of performance, seemingly resulting from the
fact that the minimization of the RPGM Hamiltonian also
tries to optimize the GKP measurement errors §,. Our solution
was to drop the measurement errors from the decomposition
of the field in Eq. (48), which results in RPGM weights
identical to those in Sec. V D 1. Our second decoder can then
be summarized as follows.

ALGORITHM 2:

(1) For each bond (ij), use the forward-minimization de-
coder from ¢t = 1 up to M — 1 to calculate the accumulated
data error ¢;;(¢), calculate the corresponding ¢;;(t = M), and
then go back from r =M to r =1 with a version of the
same algorithm, but using previously found values for a more
accurate minimization. This gives the data errors €;;(t) =
¢ij(t) — ¢;j(t — 1), which we use to define the error vector
ep = {0, ¢, 0}.

(2) Calculate the residual syndrome, and run the entire
ALGORITHM 1, to calculate the corresponding error e;.

(3) Calculate RPGM weights 7,(e) using Egs. (49) and
(50) with the combined error e = ey + e, and 4§ set to zero.

(4) Use random-weight matching to minimize the RPGM
Hamiltonian, and update the error e, with the result being the
output of the decoder.

The results are shown in Fig. 12 (right). One can observe
that for each distance, there is an improvement in the encoded
logical error rate, compared to the results from Algorithm 1
on the left of Fig. 12. One can see, for each curve, a higher
pseudothreshold, i.e., the point below which the logical error
rate becomes smaller than the physical one, determined using
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the logical error rate for a single GKP qubit given by the
forward-minimization decoder. However, this improvement is
greater for smaller distances, so the overall crossing point is
shifted to the left, indicating a smaller threshold. Specifically,
the crossing point is at oy & 0.235 which corresponds to p =
1% for the single GKP qubit with the forward-minimization
decoder.

We should note that even though both simple decoders
we tried result in finite thresholds, with substantial reduction
of the logical error rates with increasing distance below the
crossing points, one could expect better performance. Indeed,
the toric code with a phenomenological error model shows
a threshold at p = 2.9%. The forward-minimization decoder
with o = oy in Sec. III reaches this error rate at oy ~ 0.28.

Of course, a direct comparison is technically incorrect:
forward-minimization or any other single-oscillator GKP de-
coder would return highly correlated errors and one cannot
expect that the toric code would achieve the same perfor-
mance. Nevertheless, we expect that adding a minimization
step for the continuous part of the potential a in Eq. (48) would
significantly improve the performance.

VI. NO-GO RESULT FOR LINEAR OSCILLATOR CODES

We turn to the class of codes defined by continuous sub-
groups of displacement operators. One can think of linear
combinations of position and momentum operators as nulli-
fiers for the code space, i.e., any code state is annihilated by
these nullifiers; see Appendix A.

It is known that one cannot distill entanglement from
Gaussian states by means of purely Gaussian local operations
and classical communication [56,57]. In addition, the authors
of Ref. [18] defined a quantity, “entanglement degradation,”
for any single-mode Gaussian channel, such as the Gaussian
displacement channel, and showed that it cannot decrease
under Gaussian encoding and decoding. In the setting here
we consider any input state which is perfectly encoded into a
linear oscillator code. This encoding map, &, is a Gaussian
operation as it is a linear transformation of the p and ¢
variables. After this encoding, the modes go through the
Gaussian displacement channel A/, see Eq. (5). After this,
linear combinations of p and § are measured to give rise to
a syndrome ¢. Again, this operation is Gaussian. Our results
thus follow the model considered in Ref. [18]. However,
our results do not require the definition of a new quantity
but rather give a description of the logical noise model of
Eq. (10). Namely, we show in the following Theorem, that
it can only lead to an effective squeezing of the original
Gaussian displacement channel. Hence, whatever protection is
gained in one quadrature, is lost in the other quadrature. This
is a property of all linear oscillator codes, CSS or non-CSS,
i.e., mixing p and § quadratures or not, with respect to the
Gaussian displacement channel. Since the result is a detailed
expression of the logical Gaussian displacement channel, it
does not immediately follow from earlier no-go results.

Theorem (No-Go). Let C be a linear oscillator code on n
physical oscillators defined by a set of n — k independent
nullifiers, thus encoding k logical oscillators. Let this code
undergo independent Gaussian shifts in p and § of variance

002 on each of its physical oscillators, followed by a perfect

(maximum-likelihood) decoding step. Then the remaining
logical displacement noise model, Eq. (10), for logical shift
errors € € R% is

_ 1
PML) = (27052 2k . 1T ’
(€) = (2mog) ~ exp —2%26 €

and the eigenvalues of the covariance matrix, > are paired
by conjugated logical operators, (7, 1) jejx, such that

Vj e [k], )»5')»;’. =1.
In particular one has det ¥~! = 1.

The proof of this Theorem, which is rather lengthy, can
be found in Appendix E. The remaining logical displacement
noise is obtained by working out Eq. (10), using general
properties of linear oscillator codes. The theorem says that for
each logical mode, in the basis given by the eigenvectors of X,
the only effect of the encoding is to squeeze the displacement
noise model between the conjugated operators of the mode.
The amount of squeezing can depend on code size but it is
impossible to reduce the noise in both quadratures.

As a concrete example, we consider the linear oscillator
code version of the 2D toric code in Appendix F and show
that the squeezing depends simply on the ratio L,/L, for a
L, x L, toric lattice.

VII. DISCUSSION

In this paper we have made the first strides in tackling the
problem of error correction and decoding for the toric-GKP
code. Interestingly, the decoding problem maps onto a class of
physical continuous-variable models with quenched-disorder
that goes beyond the random plaquette gauge model corre-
sponding to toric code decoding [54]. We have presented an
efficient minimum-energy decoding method for a single GKP
oscillator and an efficient decoder for the toric-GKP code.
We have also presented a combination of these two decoders
for the toric-GKP code which improves the achieved logical
error rates but in greater proportion for the small distances,
hence achieving better pseudothresholds but a slightly worse
threshold. It would be interesting to design a better decoder to
improve this threshold.

An interesting open problem is to study the phase diagram
of the toric-GKP code numerically. A particularly interesting
question, even in the absence of disorder, is whether the
Meissner phase is extended all the way to oy — 0o as we
conjectured, see Fig. 10, or terminates at a point along the
vertical axis. This would indicate the singularity of the limit
o — 0. An example of such a numerical study for 3D color
codes is Ref. [58].

Future studies could look at the question of decoding
coherent errors and/or correcting both p and g-shifts simul-
taneously. Another question is whether it is possible to handle
more realistic noise models, e.g., consider a model of repeated
photon loss [5] for a single GKP oscillator. All such different
error models will have a particular path integral representation
and the idea of choosing an energy-minimizing path can be
examined.

A variant of the toric-GKP code is the toric-rotor code.
This is the concatenation of a rotor space with integer 7 and
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2 -periodic ¢ with a rotor toric code whose nullifiers are
linear combinations of 7is and @s of four rotors [59]. When
one uses a two-dimensional rotor subspace such as a cat code
[12] or just a transmon qubit, one could still express the proper
toric code checks in the entire rotor space and examine when
a memory phase is present. Note that the difference in such
analysis versus the usual toric code analysis is that in this
model the effect of leakage errors is automatically included.

A possible realization of a surface code variant of the
toric-GKP code is an array of superconducting 2D or 3D
resonators. For a code such as Surface-17, this would require
2 x 17 =34 (coplanar) microwave resonators. One can
compare this to the transmon + resonators layout for the
regular surface code [60,61], in which each CNOT gate is
mediated via a coupling bus, hence one uses 8 x 4 = 32 such
bus resonators for Surface-17.
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APPENDIX A: GENERAL MULTIMODE GKP CODES

Here we provide a mathematical summary of the formal-
ism of continuous-variable stabilizer codes, as introduced by
Gottesman, Kitaev, and Preskill (GKP) [3]. We show that
these codes contain two main classes, proper GKP codes, en-
coding discrete information and linear oscillator codes, encod-
ing continuous-variable information. Hybrids between the two
classes are also possible but do not seem particularly useful.

Recall that we write a displacement operator on a n-
oscillator Hilbert space as follows:

Oe) = [[e/H™%,  e=(u,v) e R™ (A1)
k=1

We also denote by O(e) the operator in the exponent of Ue),
n n
Oe=u-p+v-g= Zukﬁk+zvk4k,
k=1 k=1

U(e) = expliO(e)]. (A2)
These operators, U (e), follow the product rule
Ue)U ) =0+ e)ee), (A3)

with the standard symplectic form w(e,e’) =u-v' — v -u'.

Take S C H, an Abelian subgroup of the displacement
operators with no element proportional to the identity with
a nontrivial phase, stabilizing some code space, Q. One can
simply characterise the structure of such a subgroup. Each
element § € S can be uniquely written as

S =¢e"0), (A4)

for some real vector e € R?", and some phase 6 € [0, 27).
Each vector e can only appear with a unique phase 6 in
S; otherwise, an element proportional to the identity with
a nontrivial phase would also be in S. Hence, we have an

isomorphism between S and the additive subgroup G C R,
given by all the vectors, e, obtained from the decomposition
in Eq. (A4). We can then use the following theorem to
characterize the structure of S.

Theorem ([62]). Let G be a closed additive subgroup of
R?*, G can be decomposed in the direct sum of a linear
subspace, Gy C R?", and a discrete lattice, L, generated by
some vectors orthogonal to Gy, u;, ..., u, € G(J)-:

G=Go®L, L= kuj|k.....kne€Z
j=1

The linear subspace Gy is the largest linear subspace contained
in G.

The condition for G to be closed is without consequences
in our case as an open set and its closure would stabilize
the same space. If G is open, then we can replace it by its
closure and appropriately complete S. The limiting case when
G = Gy corresponds to the continuous case whereas G = L
corresponds to the discrete case. Denote ¢ as the dimension
of Gy, one can choose some basis vectors, Go = (g, ..., &)
Consider one of the generators of Gy, w.l.o.g. g, for this
generator, given a scalar factor A € R, there is some angle
function 0; (1) such that

"M (rg)) € S.

It is easy to check that 6; obeys Cauchy’s functional equation
and as such 6, is automatically Q-linear:

Y, 1) € R 0100 +p) =60i(0) +61(n) = VreQ,
91(}”) = }"91(1)5}’91.

Hence, for any code state, |¥) € Q, and rational r € Q, we
can write down

" U(rg)) W) = explir(6; + O(g )1 |¥) = |¥). (A5)

The previous equation means that code states are eigenstates
of the operator O(g,) with eigenvalue O(g,), which satisfies

VreQ, O(g)+6 =0 mod2n/r,
& 0(g)) = —01.

Usually, S will be chosen such that 8; = 0, and O(g]) will
be called a nullifier as it only takes eigenvalue O on the
code space. Choosing some nontrivial ; just corresponds to
shifting the whole code space by U (6,d,), with d; describing
the conjugated pair to g,, i.e., such that [O(g,), O(d/)] = i.
Similarly, each generator g j is a nullifier on the code space
[up to some possible shift U (6 id ;)]

At this point, if G = Gy (L = ), then we have described a
linear oscillator code. It is defined by the £ nullifiers, O(gj),
which each remove a single continuous degree of freedom
from the system, leaving k = n — £ logical oscillator modes.
The logical operators can be found by completing the g; into
a full symplectic basis. For the stabilized code space to be
nontrivial we therefore require that £ < n.

Consider now that L is nontrivial, then it will constrain the
code space as described in Ref. [3, Sec.VI] on the remaining
k = n — ¢ modes available. Take one of the generators of L,
w.l.o.g. u;. The difference with elements of Gy is that it occurs
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in § only with integer multiples. Similarly as previously, given
acode state, |W) € Q, and an integer k € Z there will be some
angle, v, such that

e U (kuy) W) = explik(? + O1))] [¥) = [¥). (A6)

This means that on the code states, the operator O(u,) can
take now several values, given by

VkeZ, O@)+9 =0 mod2x/k

< O(uy) = —19; mod 2m.

The effect is to discretize this mode. As explained in Ref. [3],
one then needs m = 2k lattice generators to fully discretize
the remaining k modes.

Summing up, the case where G = Gy and £ < n (m = 0)
corresponds to linear oscillator codes defined by ¢ nullifiers,
encoding k = n — £ oscillators. However, the case G = L and
m = 2n (£ = 0) correspond to proper GKP codes described
in Ref. [3]. Finally, the hybrid case where G = G @ L, with
n=4~¢+m/2+ k" correspond to a case where ¢ nullifiers
leave n — £ modes in the code space, among whichn — ¢ — k'
are discretized into a qudit (depending on the characteristics
of L) and k' remain as logical oscillators. As we show in
Sec. VI, under Gaussian noise, the logical oscillators defined
by the nullifiers have essentially the same noise model as the
physical oscillator modes, so there is little interest in going
beyond proper GKP codes. Note that linear oscillator codes
can nevertheless correct erasure errors [1,2].

APPENDIX B: DETAILS ABOUT THE DECODERS
FOR THE GKP QUBIT

1. Maximum likelihood decoder

Maximum likelihood decoding for a single GKP qubit
requires the calculation of the partition functions Z.(g), ¢ €
{0, 1} given by Eq. (21). Here we do the Gaussian integration.
Denote as B the symmetric matrix with the components

1 92
Bij= =———R(¢,0),
2 0¢;0¢;
associated with the first M — 1 variables ¢, in the quadratic
form

i,jeM—1, (Bl

1 M—1 1 M
RO =—5) @—07+—=) @&—¢)
M = =1

dv=qum

in the exponent in the integrand of Eq. (21). Collecting the
remaining terms and completing the square we obtain an M-
variable quadratic form gAg" with the block matrix

A T
A= < c b)’ (B2)
expressed in terms of the (M — 1) x (M — 1) matrix A, row
vector ¢, and a scalar b:

ieta_ g
Com owm
¢i=——5B v (B3)
o O'M
1 1
b=———7[B lu-1m-1-
o UM

2. Dynamic programming for the minimum-energy decoder

In this section we express the minimum-energy decoder
for one GKP qubit as a dynamic programming problem.
This allows us to check how well the forward-minimization
technique performs. The goal is to minimize the energy from
Eq. (26), which we write using the Villain approximation in
reverse,

M 2 M-
_ (¢ — Pi—1) _ cos(q: — 1)
H[¢1,...,¢M1—§—262 ;—Uﬁ :
$o = 0.

We define the partial energy, Hi[¢1, ..., ¢x] as the contribu-
tion from the first k£ terms from each sum,

k

Hilor, ... ¢l =)

t=1

(@ = d-1)*  cosqi — ¢r)

2 2 )
20 oM

and a single-variable function of ¢ as

- Brll

Then My, k < M, can be defined recursively by

2 _
Mgy = 8D,
M

(fx — ¢)2] _cos(gx — ¢x)

2 2
20 o

M () = Hgn |:Mk—1(¢) +
If one discretizes the values of ¢ to a desired precision and
restricts them to lie in a reasonable interval, then the mini-
mization with M time steps amounts to computing M lists of
values of discrete functions My (¢ ). Unlike the minimization
technique based on solving Eq. (27), there is no accuracy
loss at larger M, and much less danger of missing the desired
minimum with the present dynamic programming method.

We have compared our forward minimization technique
with dynamic programming with a discretization of 200 points
per period in a four-periods window around the last mea-
surement result. The statistics of success or failure of both
decoders agree pretty closely while the forward minimization
is much faster. In Fig. 13 we show two of the obtained
realizations for illustration purposes.

APPENDIX C: ALTERNATIVE DERIVATION
OF THE U (1)-SYMMETRIC MODEL

Here we derive Eqs. (41) and (42) directly from Egs. (37)
and (40). First, note that the integration over components of
the field ¢ in Eq. (40) is done in an infinite interval, while
the two last terms in the bulk Hamiltonian (37) are 27-
and 4m-periodic, respectively. In addition, the background
fluxes (V x ¢);,(¢) in the last term of Eq. (37) are explicitly
symmetric with respect to the gauge transformation

Gij(t) — ¢ij () + o (1) — oy(2), (CDhH

where o;(t) = «, is a real-valued scalar field associated with
the vertices v = (i, t) of the cubic lattice. While these are
not the symmetries of the full Hamiltonian Eq. (37), we can
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Example 2
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FIG. 13. Two examples of 11 rounds of error correction with data and measurement errors sampled from Gaussian distributions with
oo = 0.4. In the example on the left, forward-minimization and dynamic programming reach the same conclusion, whereas on the right
forward-minimization reaches a wrong conclusion. One can compare this data with the sketched trajectories in Fig. 3.

now render it in a more familiar U (1)-symmetric form with a
simple change of variables.

For a fixed error e = {e, 8, £} which corresponds to the syn-
drome ¢, let us denote the corresponding accumulated error,
see Eq. (34), as ¢®. We can make a change of integration
variables in Eq. (42), for all bonds (ij) and layers 1 <t < M,
following

040) = 8 0)+ 24,00+ 47,0

+27 Y [5;() — i),
t'=1

- <A;(t) <,

(C2)

where the field A;;(r) is continuous, m;;(t) € Z is integer-
valued, and an additional 2 -shift is proportional to the lat-
tice gradient of the binary field s;(¢) € I, accumulated over
time. Strictly speaking, the last term is unnecessary as it
causes some double counting in the measure. However, the
corresponding factor is a constant that is finite on a finite
lattice, so it does not cause any trouble. However, these
binary charges simplify the boundary conditions, since we can
simply write s;(¢t) + - - - + s;(M) = n;, see Eq. (40), and thus
trade the summation over the boundary field n; for the binary
field s;(¢) in the bulk. To complete the derivation, also define
A;j(t =0) =0, and take A, = 7s;(¢) for the vertical bond b
at the square-lattice vertex i, between layers + — 1 and ¢ for
all # € [M]. This gives for the vertical plaquette p at the bond
(ij), between the same two layers,

$ij(t) — ij(t — 1) > ¢ (1) — ¢t = 1) +2(V x A),
=€, +2(V xA),
where the appropriate sign in Eq. (C2) needs to be chosen
to recover the part of the flux that is missing in the first

term of Eq. (37), and we absorbed the summation over
the integer-valued m;;(¢) into the definition of the Villain

potential Vs z[€,/2 + (V x A),], an even 2r-periodic func-
tion of the argument; see Eq. (23). In the remaining two terms
we use Egs. (35) and (36), to recover Eq. (41) exactly [63].
Comparing with Egs. (38) and (39), it is also easy to check
that for this particular error e, one can simply take the vector
potential A, = O for the top-layer in-plane bonds, b = (ij, M).
Similarly, for the three sectors where the error in the top layer
is shifted by a nontrivial toric codeword 0 2 ¢ € F2-, we can
take A;;(M) = mc;;.

APPENDIX D: DETAILS ABOUT THE PHASE-DIAGRAM
DERIVATION

The model in Eq. (43) is in a general class of compact
U (1) models whose partition functions can be written (in a
conventional Wilson, or non-Villain form) as

Z(k, 9, P) = /dOe’H,

=— th cos (gob + Z@R‘b)»
b i

where P is an r x n coupling matrix with integer components
Py, that determines the structure of the model, 6;, i € [r]
are the U (1) variables, 6; € [0, 27), k, > 0, b € [r], are the
coupling constants, and the additional phases ¢; can represent
quenched disorder and/or a uniform background field. The
only requirement on the integration measure for any compo-
nent 6; in Eq. (D1) is 27 -periodicity. For example, one can
have the usual integration over the period, or a summation
over discrete phases §; = 2mwm;/q;, m; € Z,, with some inte-
ger g; > 2 that may differ for different “spins” j. According
to the Fourier theorem, the most general correlation function
of the variables 6; can be written as the average

(D1)

Cn = Culkc, 93 P) = (™), (D2)
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where the vector m has integer components. The physics of
the model Eq. (D1) is characterized by the dependence of the
free energy F = —InZ and the correlation functions C,, on
the parameters, the coupling constants «; and the phases ¢p.

This dependence is restricted by several constraints. Two
of them, the first and the second generalized Griffiths-Kelly-
Sherman (GKS) inequalities, concern the correlation func-
tions in the absence of background phases, ¢ = 0 (in this case
the averages Eq. (D2) are real-valued),

(f) =20,

(fge)—(filg =20,

where f and g can be any nonnegative combination of prod-
ucts of cos(m - @), with various integer vectors m € Z". In
the case of the model Eq. (D1) in Wilson form these are
called Ginibre inequalities [64]. It is also easy to check
that the average C,(k, @¢;P) can only be nonzero if m is
a linear combination of the rows of the matrix P. Further-
more, the left-hand side of the second inequality Eq. (D4),
with g = cos(m’ - 0), equals the derivative of (f) with re-
spect to the coupling constant corresponding to the term
cos(m’ - 0). This implies a monotonic nondecreasing depen-
dence of any correlation function (f), including G, (x, 0; P),
on any coupling constant x; > 0. The Villain version of
the same model has similar properties, since the potential
Vs (@) can be approximated to an arbitrary precision with
a chain of phases with pairwise Wilson couplings [65]. In
particular, generalized GKS inequalities apply for the aver-
ages C,,(k, 0;P) in the Villain form of the model, which
are also monotonically nondecreasing as a function of any
coupling.

The second type of constraints concerns the free energy
F(k,9;P) = —InZ(k, ¢;P), or, more precisely, the free-
energy cost associated with the background phases ¢,

AyF (k3 P) = F(k, 9; P) — F(k, 0; P).

(D3)

(D4)

(D5)

Again, the free-energy cost is nonnegative, A, F (k; P) 2> 0,
and it is a nondecreasing function of the coupling constants ;.
This can be obtained from the generalized GKS inequalities
for the dual form of the model, where the free-energy cost
A,F is mapped into the logarithm of a correlation function
parameterized by the phases ¢, up to a sign, with the coupling
constants inverted.

An important (albeit nearly self-evident) consequence of
the monotonicity of the free-energy cost Eq. (D5) is a gener-
alization of the inequalities Eqs. (17) and (18) from Ref. [66]
to all GKP codes. These inequalities imply an upper bound
for the success probability of ML decoding, see Eq. (8), in
terms of the partition functions in the absence of quenched
disorder. Namely, in the case of CSS-like codes, the bound
reads

Zo(0)
PO < S
> e Z:(0)

where the summation is over all 2* inequivalent binary code-
words that correspond to the entire group of X-type CSS
logical operators. When applied to the case of repeated syn-
drome measurement for the toric-GKP code, the numerator

(D6)

in Eq. (D6) is the partition function (42) with zero argu-
ment, while the denominator is the sum of the same partition
function Zy(0) with those for the three remaining nontrivial
sectors, Z.(0). For the existence of an ML-decodable region it
is necessary that these contributions vanish in the large-system
limit, namely, when both the distance of the toric code L and
the number of layers M diverge.
Typically examined are the Wilson loops, they are correla-
tion functions in the form of Eq. (D2),
We = (et ZreaVXA0) = (ol Locan by,

(D7)

where €2 is some oriented surface, a set of plaquettes, with the
boundary 0€2, and the gauge-invariant two-point correlation
function

Crp = (/@071 Xyen Any (D8)
where I1 = I1(u, v) is a directed path (sequence of bonds) on
the cubic lattice connecting vertices u and v. Quite generally,
in a high-temperature phase, when coupling constants « and
A in Eq. (44) are sufficiently small, the correlation function
Egs. (D7) and (D8) are characterized by the area law: Wq
has an upper bound that decays exponentially with the area
of 2, the minimum number of plaquettes that are needed to
form the boundary 9€2, while Cr; has an upper bound that
decays exponentially with the distance between the points
u and v. A low-temperature, or strong-coupling asymptotic
form is qualitatively different and is characterized by the
perimeter law, where Wq, scales exponentially with the length
|0€2| of the perimeter, while C; becomes a constant or falls
as a power law of the distance; the latter is the case below
the Berezinskii-Kosterlitz-Thouless (BKT) transition in two
dimensions.

APPENDIX E: PROOF OF THE NO-GO THEOREM
IN SECTION VI

For convenience, we rename the p; and §; operators of the
oscillators as 7, i.e.,

when j < n,

Vk € [2n], # = {Pk when | > 1.

é\kfn
Let g; be the real vector corresponding to the jth nullifier
O(gj) =g, - I of the code; see Appendix A. One can extend
the set of nullifiers to a full canonical linear transformation

given by a real 21 x 2n matrix A defining new variables Ry,
as follows:

A

2n

AT . A N

R =A%, 1ie,R,= E A
Jj=1

To preserve the commutation relation the condition on the
matrix A is that it preserves the symplectic form S. This can
be expressed in two ways:

ASAT =8 or ATSA=S with

0 ]lnxn
S - <_1nxn O )

(EL)
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The matrix A can be decomposed in blocks

<~ 2n — «~n— «~n—
n—k¢ G

ke P G G
A= = P, P,

= _ = P q ,
n—kg¢ D D D
k¢ Q P q
Op Oy

where the rows of G are the nullifiers. The rows of D represent
the corresponding conjugated variables which will be called
pure errors (they are sometimes referred to as destabilizers).
These pure errors give a convenient basis for expressing an
error which is compatible with a given syndrome which will
be used below. The rows of P (respectively, Q) represent
the logical p (respectively, §) operators of the code as linear
combinations of the original p; and §;. The subscript p
(respectively, g) indicates the p part (respectively, § part)
of the operators. Inside the code space the operators O(gj)
only take the value 0. Let us assume that a displacement
happens along a pure error direction d j, say U(—rd ;)- Then,
measuring O(g ;) [equivalently, U(ng ;) for all n € R] would

J

1 =ATSsAST = <

1. Logical error model under displacement errors

We consider the Gaussian displacement noise model on
every oscillator as in Eq. (5). Given a realization of the
displacement error as a vector of real amplitudes, e’ € R?,
one can compute the vector of syndromes g € R"*, and given
¢, a candidate error with the same syndrome, e € R2",

q=¢€S8GT, e=—¢qD.

In addition, when any two errors e and ¢’ have the same
syndrome ¢, then they can only differ by a stabilizer and a
logical operator and one has

Ju., v, € R, 3Ja e R"*,
¢ =e+uP+v.0+aG=e+cC+aG,

where we have used the notation

c::<§), c=(u v.).

We can compute the associated partition function, Z.(e)
from Eq. (7), for the error e and the sector equivalent to ¢,

! " k=l
/ 1_[ d(lj
\/2mog j=0

(cC +aG+e)cC +aG +e)T
X exp | — )
0

Zc(e) =

i| . (E4)

—D}G,, — Q;P,, + G;D,, + P,TQ,,

give outcome A € R called the syndrome, since
U(ng)I0 (—=2d) |®)] = ™0 (~3d )0 (ng;) |¥)
= e™U(—2d ;) |¥)].

Note that the logical operators O(pk) or OA(qe), or nullifiers,
act on the code space without affecting the measurement of
O(g ;) since they commute with it.

We can express the constraints on the matrix A in Eq. (E1)
in terms of the matrices G, D, P, and Q. The blocks which
should be equal to zero are shown in blue and the blocks
proportional to the identity are shown in green. The first
condition gives

GSG' GSPT GSQ"
ASAT — PSGY  PSPT  pSDT

- DSPT DSDT DSQT
0SG® 0SD™  QSQT
0 0 1 0
0 0 0 1

=l-1 o o of=% (E2)
0 -1 0 0

while the second implies

T T T T
DIG, + QIP, — GID, - PTQ, ) E3)

(

This integral can be evaluated since it is Gaussian, resulting,
after some manipulations, in

1
Z.(e) = C(e) exp [‘F(C —pENZ e — /L(e))T}, (E5)
0

where C(e) only depends on e. The covariance matrix ¥ and
the off-set vector, u(e), are defined as

> '=cc”, and ple)=-xCle", (E6)
where

C'=CHg, and Mg =1-G6G"(GGH'G. (E7)

Remark that I is the projector onto ker(G) along im(G")
[67]. Indeed it is easy to check that l'[2Gl = I, ker(G) C
im(ITgL), im(GT) C ker(ITse ), and the dimensions coincide.

One can see that Eq. (ES) describes a multivariate Gaussian
distribution over the logical variable ¢, hence its maximum
is readily given by the mean value, u(e); see Eq. (E6). This
means that given the error e, one can directly express its most
likely error class: It is [e 4+ w(e)]. Using this, one can directly
compute the probability density of a remaining logical error
after ML decoding as given by Eq. (10):

Zy(er+c(e) 1 1 3
PMD) (¢) :/deIP’(e) % = NCXP (‘ﬁ”z ICT>’
0
(E8)

where N is a normalization constant. All possible depen-
dence on the choice and size of the code is contained in the
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covariance matrix X, leading to some rescaled displacement
noise model. Recall that the logical variable vector ¢ € R%*
represents all k pairs of conjugated logical operators. We will
prove in Appendix E2 that for any linear oscillator code,
the eigenvalues of £ ~! can be paired between corresponding
conjugated logical operators, denoted ()Lf , k?) jeln)> and are
such that

Vjeln., Mal=1 (E9)

This means that the noise remaining after ML decoding on
the logical variables is identical to the original physical noise
except for a possible squeezing between each logical operator
and its conjugated pair.

2. Eigenvalues of the covariance matrix

First we remark that C’, appearing in £~ =C'C"
in Eq. (E6), correspond to a valid basis for the logical
operators—we call this the spread-out logical basis. This
basis is obtained by adding linear combination of stabilizer
generators to C. Such addition can be summarized, using
Eq. (E7), by the matrix equation,

C'=C—-CG"(GG"'G=C+ AG,

where A is a 2k x (n — k) matrix defining the linear combi-
nation of stabilizer generators added to the logical operators.
One can verify that one can replace C by C’ and still satisfy
the constraints of Eq. (El), if one appropriately redefines the
pure errors to be

D' =D+ A"S;,C,

where Sy is the symplectic form of size 2k x 2k. One can
also check that this choice of basis is the only choice which
enforces the following constraint:

C'G" = (C+ AG)GT = 0. (E10)

Indeed, solving for A, using the fact that G is full rank and
therefore GG" is invertible, gives
C'=C-CG"(GG")'G. (E11)

Now we use this spread-out logical basis to prove Eq. (E9).
We thus consider that we already have chosen the spread-out
logical basis, so C’ = C, and want to get information about
the eigenvalues of ¥~! = CCT.

We use the diagonal block of Eq. (E3) as well as the block
only about logical operators in Eq. (E2):

—D)G,— Q)P+ G Dy + P, 0, =1, (E12)
D;G,+ Q,P,—G,D, —P;Q, =1, (E13)
PSQ" = P,Q, — P,0; = 1. (E14)

We multiply Eq. (E12) on the left by P, and on the right by
Q;. We also multiply Eq. (E13) on the left by P, and on the

right by Qg. Then we take the difference, i.e., we consider

P,(E12)Q; — P,(E13)Q).

By Eq. (E14), the right-hand side is still the identity, so we
have

1 = P,G,D,0, + P,G,D,0,
- P,D,G,0, — P,D,G,0;
+P,P} 0,0, + PP, 0,0,
- P,Q,P,0; — P,0,P,0;.

Since the logical operators are in their spread-out basis we
have the corresponding equations

PGy +P,G, =0, G,0; +G,0; =0,
and can write
1 =P,(D;G, —G,D,)0;
+ P,(D;G, — G,D,)0;
+Py(P, 0y — O, Py) Qg
+P,(P0, ~ GIP)L.
One can now recognize that the off-diagonal terms in Eq. (E3)

can be used to make a equation only about logical variables,
using

DqTGq - GZDq = P;Qq - QqTPq,

D,G,—G,D, =P Q,— Q)P,.

Hence, we have the following matrix identity:

1 =PPTQQ" — POTPQ". (E15)

In Appendix E 3, we show that there always exists a logical
basis which is both spread out as well as orthogonal. Hence,
for this new basis, Eq. (E10) is satisfied, as well as

PP" =Diag(3"), Q0" = Diag(29), and PQ" =0.
(E16)
Therefore, deriving Eq. (E15) in this basis yields
1 =PP"QQ" = Diag(A29), (E17)
and therefore
Vj € k], x;’x;’. =1. (E18)

Last, recall that starting with this choice of basis, one has

Sl T - (ﬁPT ﬁQT> _ (Diag(xf) 0 )
OPT Q0" 0 Diag(19)

(E19)

|

3. Existence of a spread-out and orthogonal
logical operator basis

We start from a given stabilizer matrix G and denote the
rows by {g;, ..., 8,_.}. We showed above that one can always
find a logical basis, P and Q with rows {p,,...,p,} and
{q,,...,q,}, which is orthogonal to the stabilizer generators,
ie.,

Ly =Span{py,.... P q1>----qi} L G

= Span{g, ..., &)
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We want to construct a new symplectic and orthogonal ba-
sis, {Pys---,Pr- 4y ---,qy), for the 2k-dimensional space
Li. One can first find an orthogonal basis for £; by the
Gram-Schmidt process for the regular inner product, denote
it {c}, .. .,c’ﬁk}. We will now construct a new basis pair by
pair, decreasing at each step the dimension of the space L
by 2. We can choose

= k

p=c¢y.
There has to exist a conjugated pair, §,, in the space spanned
by {c’ﬁ, R cgk}. Indeed, all stabilizer generators, pure errors
as well as ¢} have a trivial symplectic product with p,,

hence any conjugated §, € Span{ct, ..., 5, }. So the follow-
ing equation,

AOSPpT = —1,

where Oy are the basis vectors {c%, ..., } stacked in rows,
has a solution for A. Then we can choose

ql - A.Ok.

Note that the created pair is indeed conjugated for the sym-
plectic inner product as well has orthogonal. Moreover, they
are composed only of linear combinations of the original
p;s and ¢;s, so they do have trivial symplectic product with
stabilizer generators and pure errors and they are orthogonal
to the stabilizer generators. Now we define the 2(k — 1)-
dimensional subspace L£;_1, as

Ly—1 = Span{c5(1 —Tg,), ..., ¢ (1 — g,)},
= Span{c’f’l, N Cé(;{l,l) )

where Iz, is the orthogonal projector onto ¢, and the c’;’l

form a new orthogonal basis for this space. We can then
repeat the procedure until we reach £y, = {0}. To summarize
we have constructed a new symplectic and orthogonal basis
C = (g) obeying Eq. (E16).

APPENDIX F: CONTINUOUS-VARIABLE TORIC-CODE

In this section we examine the continuous-variable toric
code [35,68] as an example of a continuous-variable topologi-
cal code. Since the toric code is a homological code, it is easy
to convert it from a Z,-code to a R-code using orientation to
add appropriate minus signs to the stabilizer checks.

The stabilizer checks are shown on the left in Fig. 14.
Since the toric code is a CSS code we will always have the
orthogonality condition PQT = 0. The vectors p, and p, are
the two rows of P while the vectors ¢, and g, are the two rows
of Q. On the left, one sees the usual string-like p, and ¢,. The
spread-out basis for the code can be computed and is shown
on the right of Fig. 14. The name spread-out basis comes from
the fact that these logical operators have support over the full
lattice: The continuous-variable stabilizer checks have been
used to spread out or distribute their support over the lattice.

Y u/5
a v/5

v I

FIG. 14. In both figures periodic boundary conditions are as-
sumed. (Left) Example of stabilizer checks and logical operators for
the distance-5 continuous-variable toric-code. The stabilizer checks
are also shown in Fig. 7. The support of the logical p; (blue/dark
gray) and g, (purple/light gray) of one of the encoded oscillators
is depicted. Shifts of strength v on the support of p, is a logical
p-shift of strength v of the first oscillator. (Right) The support of the
spread-out version of the logical operators p, and ¢,. Both operators
have the same support (blue/dark gray and purple/light gray) and
one can verify that these logical operators are orthogonal to the
stabilizer checks as well as commuting with them. A logical p-shift
of strength v on the first oscillator is now realized by applying v/5
on the support of the spread-out p,. In general, if the torus had
dimension L, x L,, the spread-out p, would have a shift rescaling
of L% over the whole lattice while g, would a shift rescaling of

Li‘_. At the same time p, (respectively, g,) would have rescaling i

(fespectively, Li).

Computing CCT, Eq. (E19), with C being the spread-out
logical operators in the general case of different dimensions
L, and L, gives directly a diagonal matrix:

cCT = diag(r?, A%, 29, 29) = diag(p?, p3. 43, 43),  (F1)

with
A§=P§=;Li%=Lz§y=IL‘—i,
K%=4§=ZL—1§=LZ_?=%_

ey

One sees that it is possible to choose the squeezing amount by
choosing the ratio of the dimensions L, /L,. In particular, with
Eq. (E8), one sees that the first encoded oscillator experiences

a Gaussian displacement noise model with variance Ulf =

L 2 A . 2 _ L2 A
790 for p and variance o, = 9% for 4. For the second
oscillator the quadrature squeezing goes in the other direction.
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