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ABSTRACT

We consider pairs of few-body Ising models where each spin enters a bounded number of interaction terms (bonds) such that each model
can be obtained from the dual of the other after freezing k spins on large-degree sites. Such a pair of Ising models can be interpreted as a
two-chain complex with k being the rank of the first homology group. Our focus is on the case where k is extensive, that is, scales linearly with
the number of bonds n. Flipping any of these additional spins introduces a homologically nontrivial defect (generalized domain wall). In the
presence of bond disorder, we prove the existence of a low-temperature weak-disorder region where additional summation over the defects
has no effect on the free energy density f (T) in the thermodynamical limit and of a high-temperature region where an extensive homological
defect does not affect f (T). We also discuss the convergence of the high- and low-temperature series for the free energy density, prove the
analyticity of limiting f (T) at high and low temperatures, and construct inequalities for the critical point(s) where analyticity is lost. As an
application, we prove multiplicity of the conventionally defined critical points for Ising models on all { f, d} tilings of the infinite hyperbolic
plane, where df /(d + f ) > 2. Namely, for these infinite graphs, we show that critical temperatures with free and wired boundary conditions

differ, T(f)c < T
(w)
c .

Published under license by AIP Publishing. https://doi.org/10.1063/1.5039735., s

I. INTRODUCTION

Singular behavior associated with a phase transition may emerge only in the thermodynamical limit as the system size goes to infinity.
One example is spin models on any finite-dimensional lattice, where both the interaction strength and its range are finite. Then, the ther-
modynamical limit is well defined, thanks to the fact that boundary contribution scales sublinearly with the system size.1 Respectively, e.g.,
in the case of an Ising model, the same transition can be alternatively defined as the temperature where spontaneous magnetization appears,
spin susceptibility diverges, spin correlations start to decay exponentially, domain wall tension is lost, or as a singular point of the free energy
density.1–4

The situation is different if we have a model on a nonamenable graph characterized by a nonzero Cheeger constant, the lower bound on
the perimeter to size ratio for all its finite subgraphs.5,6 Examples include infinite transitive expander graphs, such as a degree-regular tree, and
regular { f, d} tilings of the hyperbolic plane, with ( f − 2) (d − 2) > 2. Physically, nonamenability of a graph implies that the boundary gives
a finite contribution to any bulk average so that both the location of a transition and its properties may depend on both the quantity being
probed and the boundary conditions used to define the infinite-graph limit.

A number of general results are known that relate properties of a statistical-mechanical model to amenability/nonamenability of the
underlying graph. In particular, for a random walk on a bounded-degree graph, the return probability decays exponentially with time iff the
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graph is nonamenable.7 In the case of Bernoulli percolation, an infinite cluster is necessarily unique on amenable graphs, but it is conjectured
that on any transitive nonamenable graph, there is necessarily an interval where multiple infinite clusters coexist.8–10 Among other cases, this
conjecture has been verified for planar transitive graphs with bounded-degree duals.11 In the case of the Ising model, there is never a phase
transition with a finite coupling and a nonzero magnetic field on an amenable transitive graph, while such a transition necessarily exists on
any bounded-degree nonamenable graph.12 Furthermore, phase transition points in Bernoulli percolation, Ising, and q-state Potts models
(these have the Fortuin-Kasteleyn random cluster representation with parameters 1, 2, and q, respectively13,14) are known to depend on the
boundary conditions when the Cheeger constant is sufficiently large15 and on planar nonamenable graphs with regular duals when q is large
enough.16

From a physics perspective, nonamenable graphs are nonlocal, in the sense that they cannot be embedded in a Euclidean space without
infinitely stretching some edges. Most natural geometry for such graphs is hyperbolic, with a constant negative curvature. Interest in quantum
field theory models on curved space-time is motivated by quantum gravity and, in particular, the AdS/CFT correspondence.17–23 There is an
independent interest in models on curved spaces in statistical mechanics and condensedmatter communities, e.g., since curvature can serve as
an additional parameter to drive the criticality, or as a way to introduce geometrical frustration in toymodels of amorphous solids, supercooled
liquids, and metallic glasses.24–31 Models such as percolation on more general expander graphs and various random graph ensembles are also
common in network theory, e.g., such models occurred in relation to internet stability and spread of infectious diseases.32–38 Finally, the
strongest motivation to study nonlocal Ising models comes from their relation39–41 to certain families of finite-rate quantum error-correcting
codes (QECCs).

In a companion paper41 devoted to error-correcting properties of QECCs, three of us studied pairs of weakly dual few-body Ising models
where each spin enters a bounded number of interaction terms (bonds). Each model can be obtained from the exact dual of the other after
freezing k spins which enter a large number of bonds. For the related QECC, k is the number of encoded qubits, and its ratio to the number
of bonds, R ≡ k/n, is the code rate. One can also map such a pair of Ising models to a 2-chain complex Σ, in which case k is the rank of the
first homology group H1(Σ). In particular, in Ref. 41, we introduced the homological difference ΔF ≥ 0, the difference of the free energies of
two models with and without the additional summation over the homological defects, and gave the sufficient conditions for the existence of a
low-temperature low-disorder region on the phase diagram where in the large-system limit, ΔF = 0.

In the present work, we study duality and phase transitions in general Ising models, focusing on the case where the homology rank k
scales linearly with the number of bonds n. Our main technical tool is the specific homological difference scaled by the number of bonds,
Δf = ΔF/n. Upon duality, Δf is mapped to R ln 2 − Δf ∗, where Δf ∗ is the homological difference for the other model in the pair, at the dual
temperature. Existence of a low-temperature homological region where asymptotically Δf = 0 implies that at high temperatures, Δf ∗ = R ln 2;
with R > 0, this implies the existence of at least two distinct points, where Δf is nonanalytic as a function of temperature. Combining with
the analysis of convergence of the high-temperature series (HTS) expansion for the free energy density, we obtain several bounds for critical
temperatures associated with the nonanalyticity of the limiting free energy densities of the two models. The main result is the inequality for
the change of thus defined critical point due to summation over the homological defects.

Second, we discuss applications of these general results to two-body Ising models on transitive graphs, with the infinite graph G obtained
as the weak limit of a sequence of finite transitive graphs. Finite rate R implies that the corresponding infinite graph has to be nonamenable.
In particular, we prove multiplicity of the conventionally defined critical points for Ising models on all { f, d} tilings of the hyperbolic plane

with df /(d + f ) > 2. That is, we show that transition temperatures with wired and free boundary conditions differ, T(w)c > T
(f)
c , which extends

the results of Refs. 15, 16, and 42.
The paper is organized as follows: We introduce the notations and review some known facts from the theory of general Ising models and

the theory of QECCs in Sec. II. Our results are given in Sec. III, where we first discuss properties of the specific homological difference Δf,
analyze the convergence and analyticity of free energy density for a sequence of weakly dual Ising model pairs, and finally apply the obtained
results to Ising models on { f, d} tilings of the hyperbolic plane, additionally illustrating the conclusions with numerical simulations. We
summarize the results and list some related open questions in Sec. IV. Most of the proofs are given in Appendices A–H.

II. NOTATIONS AND BACKGROUND

We consider general Ising models in Wegner’s form,43 which describes joint probability distribution of r ≡ ∣V∣ Ising spin variables,
Sv ∈ {−1, 1}, associated with elements of the vertex set, V,

Probe∥{S};Θ;K,h∥ ≙ 1
Z
∏
b∈B

eK(−1)
ebRb∏

v∈V

ehSv , (1)

where each bond Rb ≡ ∏v∈V S
Θ

vb
v , b ∈ B, ∣B∣ ≙ n, is a product of the spin variables corresponding to nonzero positions in the corresponding

column of the r × n binary coupling matrix Θ, the binary “error” vector e with components eb, b ∈ B, describes quenched disorder, and the
dimensionless coupling coefficients are K ≡ βJ and h ≡ βh′, where J is the Ising exchange constant, h′ is the magnetic field, and β ≡ 1/T is the
inverse temperature in energy units. The normalization constant in Eq. (1) is the partition function,

Z ≡ Ze(Θ;K,h) ≡ ∑
{S

v
≙±1}

∏
b∈B

eK(−1)
ebRb∏

v∈V

ehSv . (2)
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The partition function is commonly written in terms of the corresponding logarithm, the dimensionless free energy, F = −lnZ, or the free
energy density (per bond), f = F/n.

The binary coupling matrix Θ in Eq. (1) can be interpreted geometrically in terms of a bipartite Tanner graph,44 or, equivalently, as
the vertex-edge incidence matrix for a hypergraph H ≙ (V,B) with vertex set V and hyperedge (bond) set B, with each hyperedge b ∈ B
a nonempty subset of the vertex set, b ⊆ V. In comparison, in a (simple undirected) graph G ≙ (V,E), each edge b ∈ E is an unordered
pair of vertices, b ≙ {i, j} ⊆ V. The degree dv of a vertex v ∈ V in a (hyper)graph is the number of edges that contain v; it is equal to the
number of nonzero entries in the vth row of the vertex-edge incidence matrix Θ. Similarly, the size of an edge in a hypergraph is called
its degree, db = |b|, b ∈ B. In a graph, all edges are pairs of vertices, and all columns of the incidence matrix Θ have exactly two nonzero
entries.

The probability distribution (1) can be characterized via the corresponding marginals, the spin correlations

⟨SA⟩ ≡ ∑
{S

v
≙±1}

SA Probe({S};Θ;K,h), (3)

where A ⊆ V is a set of vertices, SA ≙ ∏v∈A Sv ; by convention, S0/ = 1. At h = 0, on a finite system and with e = 0, nonzero expectation is
obtained for the sets (and only the sets) that can be constructed as products of bonds,43

SA ≙ ∏
b:mb≠0

Rb ≙∏
v

∏
b

SΘvbmb
v , (4)

where bonds in the product correspond to nonzero positionsmb ≠ 0 in the binary vectorm ∈ Fn
2 ofmagnetic charges. A number of correlation

inequalities for spin averages have been constructed; see, Refs. 45 and 46. Particularly important for this work are Griffiths-Kelly-Sherman
(GKS) inequalities,47,48

⟨SA⟩ ≥ 0, (5)

⟨SASB⟩ ≥ ⟨SA⟩⟨SB⟩, (6)

valid in the ferromagnetic case, e = 0, for anyA,B ⊆ V.
The second GKS inequality (6) can also be written47,48 in terms of the derivative of ⟨SA⟩ with respect to KB, the coupling constant

corresponding to the product of spins SB,

d⟨SA⟩
dKB

≥ 0. (7)

This implies the monotonicity of any average with respect to all coupling constants and, as a consequence, the existence of two extremal Gibbs
states describing (generally different) thermodynamical limit(s) for the Ising model on an infinite hypergraphH ≙ (V,B), with free and wired
boundary conditions, respectively. Namely, one considers an increasing sequence Vt , t ∈ N, of sets of vertices, Vt ⊊ Vt+1 ⊂ V, which converges
weakly to V ≙ ∪t∈NVt , and the sequence of sub-hypergraphs Ht ≙ (Vt ,Bt) induced by the sets Vt . For each Ht , consider also the hypergraph
H
′
t ≙ (V′t ,B′t), obtained from H by contracting all vertices outside Vt into one. Denote the vertex-edge incidence matrices of Ht and H

′
t as

Θ
f
t and Θ

w
t , respectively. Here, “f” and “w” stand for “free” and “wired” boundary conditions in the Ising models (1) defined with the help of

these matrices. Clearly,Ht can be obtained fromHt+1 by reducing some couplings to zero, whileH′t can be obtained fromH
′
t+1 by increasing

some couplings to infinity. This implies that for any set of vertices A ⊂ V, and t large enough so that A ⊂ Vt , the averages ⟨SA⟩ft ≤ ⟨SA⟩wt
are, respectively, nondecreasing and nonincreasing with t. They are also bounded, which proves the existence of the corresponding pointwise
limits, ⟨SA⟩f ≤ ⟨SA⟩w, at any K and h.

The two limits are known to coincide1 for degree-limited graphs embeddable in D-dimensional space, e.g., the hypercubic lattice ZD.
Indeed, the increasing sequence of subgraphs Gt ≙ (Vt ,Et) can be chosen so that the boundary grows sublinearly with the total number
of spins ∣Vt ∣. Such a property is violated in the case of a nonamenable graph G, which has a nonzero edge expansion (Cheeger) constant,
ιE(G) > 0, defined as

ιE(G) ≡ sup
W⊂V:∣W∣<∞

∣∂EW∣∣W∣ , (8)

where ∂E(W) is the set of edges connecting W with its complement, V/W. The dependence of the critical temperatures (as seen by the
magnetization) on the boundary conditions, Tw

c > Tf
c, where the superscripts stand for “wired” and “free” boundary conditions, respectively,

is called the “multiplicity” of critical points.15,16,42 Examples are the infinite d-regular trees Td [in this case Tf
c ≙ 0, Tw

c ≙ (d − 1)−1, see, Ref. 5],
and the regular { f, d} tilings H( f, d) of the infinite hyperbolic plane, df /( f + d) > 2, where in each vertex d regular f -gons meet. In the latter
case, multiplicity of the critical points has been demonstrated for self-dual graphs, d = f, and for graphs with a large enough curvature.15,16,42

In Sec. III C, we prove the multiplicity of critical points for the Ising model on all hyperbolic tilingsH( f, d) with df /(d + f ) > 2.
Another important result for the Ising model (1) is the duality transformation.43,49 In particular, in the absence of bond disorder, e = 0,

and at h = 0, one has
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Z0(Θ;K) ≙ Z0(Θ∗;K∗) 2r−n∗g (sinhK coshK)n/2, (9)

where K∗ is the Kramers-Wannier dual of K, namely, tanhK∗ = e−2K , the degeneracy n∗g ≙ r∗ − rankΘ∗ (2n
∗

g is the number of distinct
ground-state spin configurations in the dual representation), and Θ

∗ is a binary r∗ × nmatrix exactly dual to Θ (binary rank is used),

Θ
∗
Θ

T ≙ 0, rankΘ + rankΘ∗ ≙ n. (10)

Notice that in Eq. (9), and elsewhere in this work, we simplify the notations by suppressing the argument corresponding to a zero
magnetic field, h = 0.

Exact duality also works in the presence of sign bond disorder, except the corresponding bonds (“electric charges”) are mapped by
duality to extra factors in front of the exponent, “magnetic charges.” The resulting expression is not positive-definite and thus cannot be
interpreted as a probability measure; instead, it is proportional to the average of a product of the corresponding bonds. The duality in this case
reads43

Ze(Θ;K)
Z0(Θ;K) ≙ ⟨∏b∈BR

eb
b ⟩

Θ∗ ;K∗

, (11)

where the average on the right is computed in the dual model with all bonds ferromagnetic, cf. Eq. (4).
There is a natural notion of equivalence between defects e that produce identical averages in Eq. (11). For the electric charges in the lhs,

equivalent are any two defects which differ by a linear combination of rows of Θ, e ≃ e′ = e + αΘ, where α is a length-r binary vector. Such
defects are related by Nishimori’s spin-glass gauge symmetry50 generated by local spin flips αv ∈ F2, v ∈ V, and simultaneous update of the
components of e on the adjacent bonds,

Sv → (−1)αvSv , eb → e′b ≡ eb +∑v
αvΘvb. (12)

For such a defect e, it is convenient to introduce an invariant distance de, the minimum number of flipped bonds among all defects in the
same equivalence class,

de ≡ de(Θ) ≙ min
α

wgt(e + αΘ), (13)

where wgt(e) is the Hamming weight. An identical equivalence relation for the magnetic charges which define the product of spins in the rhs
of Eq. (11) can be interpreted as a result of introducing a product of (dual) bonds that form a cycle, i.e., does not change the spins that actually
enter the average.

For a finite system and a finite K > 0, both sides of Eq. (11) are strictly positive. The logarithm of the lhs is proportional to the free energy
increment due to the addition of the defect,

δe ≡ δe(Θ;K) ≡ lnZ0(Θ;K) − lnZe(Θ;K); (14)

in turn, it is proportional to dimensionless defect tension,

τe ≡ τe(Θ;K) ≡ δe(Θ;K)/de. (15)

Respectively, the scaling of the spin average in the rhs of Eq. (11) with the minimum number of bonds in the product is called the area-law
exponent,

αe ≡ αe(Θ∗;K∗) ≙ −d−1e ln⟨∏
b∈B

Reb
b ⟩

Θ∗ ;K∗

. (16)

Second, GKS inequality (6) implies subadditivity,

de1+e2αe1+e2 ≤ de1αe1 + de2αe2 . (17)

Thus, electric-magnetic duality (11) also implies an exact relation between the defect tension and area-law exponent in a pair of dual models,

τe(Θ;K) ≙ αe(Θ∗;K∗). (18)

Combined with Eq. (17), this implies subadditivity for defect free energy cost,

δe1+e2 ≤ δe1 + δe2 . (19)

In the special case of a model with two-body couplings defined on a graph G ≙ (V,E), a correlation decay exponent can be defined in terms of
pair correlations,
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α ≡ α(G;K) ≙ inf
i,j∈V
[− ln⟨SiSj⟩

dij
], (20)

where dij is the graph distance between i and j. Subadditivity (17) implies that the value of α corresponds to that for pairs with large dij although
the decay rate is not necessarily uniform for all pairs of far-separated vertices. In addition, on an infinite graph, we will use

ᾱ ≡ ᾱ(G;K) ≙ lim sup
dij→∞

[− ln⟨SiSj⟩
dij

]. (21)

The limit here exists since the expression in the square brackets is bounded by ∣ln tanhK∣. In particular, finite magnetization on a transitive
graph, ⟨Si⟩ =m > 0, implies by the second GKS inequality (6), ⟨SiSj⟩ ≥m2; thus, ᾱ ≙ 0, which is a stronger statement than just α = 0.

We are interested in the Ising models (1) with few-body couplings. More specifically, we considerweight-limited Ising models with vertex
and bond degrees bounded by some fixed ℓ and m, respectively, so that dv ≤ m, v ∈ V, and db ≤ ℓ, b ∈ B. With fixed ℓ and m, we call such a
model (ℓ,m)-sparse. This refers to the sparsity of the corresponding coupling matrix Θ: ℓ andm, respectively, are the maximum weights of a
column and of a row of Θ.

Furthermore, we would like to consider models whose duals are in the same class of weight-limited Ising models, with some maxi-
mum vertex, ℓ∗, and bond, m∗, degrees. However, such a condition would be very restrictive if one insists on the exact duality (10). For
example, in the case of the square-lattice Ising model with periodic boundary conditions on an L × L square (ℓ = 2 and m = 4), the dual
model can be chosen to have the same vertex and bond degrees, ℓ∗ = 2 and m∗ = 4, except for k = 2 additional summations over peri-
odic/antiperiodic boundary conditions in each direction. These summations can be introduced as additional spins entering dv ≥ L bonds,
where the lower bound is the length of the shortest domain wall on the L × L square-lattice tiling of a torus. The two additional summa-
tions give no contribution to the asymptotic free energy density at L → ∞, both in the low- and high-temperature phases, and are often
ignored.

Such aweak duality with additional defects for models on locally planar graphs can be generalized by considering a pair of weight-limited
binary matrices with n columns each, G and H, such that their rows be mutually orthogonal, G HT = 0. Since we do not require exact duality
(10), there are exactly

k ≡ n − rankG − rankH (22)

distinct defect vectors ci ∈ F
n
2 , i ∈ {1, . . ., k}, which are orthogonal to rows of H and whose nontrivial linear combinations are linearly

independent from rows of G.
Just as for the spin glasses on locally planar graphs, matrix H can be used to define frustration, s ≡ e HT , a gauge-invariant characteristic

of bond disorder. As common in spin-glass theory,50 we will consider independent identically distributed (i.i.d.) components of the quenched
disorder vector e such that eb = 1 with probability p. The corresponding averages are denoted with square brackets, [⋅]p.

In theory of quantum error correcting codes,51–54 a pair of binary matrices with orthogonal rows, G HT = 0, can be used to define a
Calderbank-Shor-Steane55,56 (CSS) stabilizer codeQ(G,H) which encodes k qubits in n; see Eq. (22). Such a quantum code has a convenient
representation in terms of classical binary codes. Given a matrix G with n columns, one defines the classical code CG ⊆ F

n
2 , a linear space of

dimension rankG generated by the rows of G. One also defines the corresponding dual code C⊥G of all vectors in F
n
2 orthogonal to rows of G;

such a code is generated by the corresponding dual matrix (10), C⊥G ≡ CG∗ . By orthogonality, we necessarily have CH ⊆ C⊥G and CG ⊆ C⊥H , where
equality is achieved when the two matrices are exact dual of each other, in which case, k = 0. The defect vectors c are nonzero CSS codewords
of G type, c ∈ C⊥H/CG; there are exactly 2k − 1 inequivalent (mutually nondegenerate52) vectors of this type. Similarly, there are also 2k − 1
inequivalent H-type vectors b in C

⊥
G/CH , where equivalence is defined in terms of rows of H, b′ ≃ b iff b′ = b + αTH. For any quantum code,

important parameters are its rate, R ≡ k/n, and the distance, d ≡min(dG, dH),

dG ≡ min
c∈C⊥H/CG

wgt(c), dH ≡ min
b∈C⊥G/CH

wgt(b). (23)

As yet another interpretation of the algebraic structure in the pair of weakly dual Ising models with vertex-bond incidence matrices G
and H of dimensions r × n and r′ × n, respectively, consider a two-chain complex Σ ≡ Σ(G, H),

Σ : C2 ≡ Fr′

2
∂2→ C1 ≡ Fn

2
∂1→ C0 ≡ Fr

2, (24)

where the modules Cj, j ∈ {0, 1, 2} are the linear spaces of binary vectors with dimensions r, n, and r′, respectively, and the boundary operators
∂1 and ∂2 are two linear maps defined by the matrices G and HT . The required composition property, ∂1○∂2 = 0, is guaranteed by the
orthogonality between the rows of G and H. The number of independent defect vectors (22) is exactly the rank of the first homology group
H1(Σ).
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III. RESULTS

A. Properties of specific homological difference

We first quantify the effect of homological defects on the properties of general Ising models. To this end, given a pair of binary matrices
G and H with n columns each and mutually orthogonal rows, GHT = 0, consider the specific homological difference41 (per bond),

Δfe ≡ Δfe(G,H;K)
≙ 1
n
{lnZe(H∗;K) − lnZe(G;K)}, (25)

where, to fix the normalization, the dual matrixH∗ [see Eq. (10)] is constructed fromG by adding exactly k row vectors,57 linearly independent
inequivalent codewords c ∈ C⊥H/CG. This quantity satisfies the inequalities41

0 ≤ Δf0(G,H;K) ≤ Δfe(G,H;K),
Δf0(G,H;K) ≤ R ln 2,

(26)

where R ≡ k/n and k is the homology rank given by Eq. (22). The lower and the upper bounds are saturated, respectively, in the limits of zero
and infinite temperatures. In addition, in the absence of disorder, the specific homological difference is a nonincreasing function of K (and
nondecreasing function of T = J/K),

d

dK
Δf0(G,H;K) ≤ 0. (27)

Our starting point is the following theorem (related to Theorem 2 in Ref. 41), proved in Appendix A:

Theorem 1. Consider a sequence of pairs of weakly dual Ising models defined by pairs of finite binary matrices with mutually orthogonal

rows, GtH
T
t ≙ 0, t ∈ N, where row weights of each Ht do not exceed a fixed m. In addition, assume that the sequence of the CSS distances dGt is

increasing. Then, the sequence Δft ≡ ∥Δfe(Gt ,Ht ;K)∥p, t ∈ N, converges to zero in the region

(m − 1)∥e−2K(1 − p) + e2Kp∥ < 1. (28)

Remarks. 1-1. The bound in Theorem 1 guarantees the existence of a homological region where Δf t converges to zero. Generally,
such a region may be wider than what is granted by the sufficient condition (28). We will denote Kh(G, H; p) the smallest K > 0 such
that the series Δf t converges to zero at any K

′ >K. The corresponding temperature, Th(G,H; p) ≡ J/Kh(G,H; p), is the upper boundary
for the homological region at this p. Equation (28) implies, in particular, that Kh(G, H; 0) ≥ ln(m − 1)/2.

1-2. In the homological region, the sequence of the average free energy densities ∥fe(Gt ,K)∥p converges iff the sequence ∥fe(H
∗
t ,K)∥p

converges, and the corresponding limits coincide.
1-3. In analogy with Eq. (15), we introduce the defect tension in the presence of disorder,

τc,e ≡ τc,e(G;K) ≡ 1
dc
{Fe+c(G;K) − Fe(G;K)}, (29)

where dc ≥ dG is the minimum weight of the codeword equivalent to c ∈ C⊥H/CG. While the tension (29) is not necessarily positive, it
satisfies the inequalities

∣τc, e∣ ≤ τc, 0 ≤ 2K. (30)

We also define the weighted average defect tension,

τ̄p ≡ ∑c≄0 dc∥τc,e∥p∑c≄0 dc
, (31)

where the average is over disorder and the 2k − 1 nontrivial defect classes. This quantity satisfies the following bound in terms of the average
homological difference,

ζ τ̄p ≥ R ln 2 − ∥Δfe∥p, (32)

where the dimensionless constant ζ ≤ 1/2; see Eq. (B5) in Appendix B. In the homological phase, this gives τ̄p ≥ 2R ln 2. (A related bound was
previously obtained for the boundary of decodable phase in Ref. 40.)
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In the absence of disorder, e = 0, the specific homological difference is self-dual,41 up to an exchange of the matrices G and H, and an
additive constant,

Δf0(G,H;K) ≙ R ln 2 − Δf0(H,G;K∗). (33)

Comparing with the general inequalities (26), one sees that a point close to the lower bound is mapped to a point close to the corresponding
upper bound. This implies a version of Theorem 1 applicable for high temperatures:

Theorem 2. Consider a sequence of pairs of weakly dual Ising models defined by pairs of finite binary matrices with mutually orthogonal

rows, GtH
T
t ≙ 0, t ∈ N, where row weights of each Gt do not exceed a fixed m, CSS distances dHt are increasing with t, and the sequence of CSS

rates Rt ≡ kt/nt converges, limtRt = R. Then, for any K ≥ 0 such that (m − 1) tanhK < 1, the sequence Δft ≡ ∥Δfe(Gt ,Ht ;K)∥p, t ∈ N, converges
to R ln 2.

Remarks. 2-1. Since duality is used in the proof, we had to switch the conditions on the matrices Gt and Ht . Similarly, the bound for
tanhK is the Kramers-Wannier dual of that in Eq. (28) at p = 0.

2-2. We will call the temperature region where the sequence Δf t in Theorem 2 converges to R ln 2 the dual homological region. Given
that the homological region in the absence of disorder extends throughout the interval K ≥ Kh(G, H), the corresponding interval for
the dual homological region is K ≤ K∗h (H,G), where K∗ denotes the Kramers-Wannier dual; see Eq. (9). Respectively, T∗h (H,G)≡ J/K∗h (H,G) is the low temperature boundary of the dual homological region at p = 0.

2-3. In the dual homological region, the sequence of the free energy densities f0(H
∗
t ,K) converges iff the sequence f 0(Gt , K) converges,

and the corresponding limits fH∗(K) and f G(K) satisfy

fG(K) ≙ fH∗(K) + R ln 2. (34)

Notice that when both sets of matricesHt and Gt , t ∈ N, have bounded row weights, the same sequence Δf 0(Gt ,Ht ; K) converges to zero
in the homological region, K ≥ Kh(G, H), and to R ln 2 in the dual homological region, K ≤ K∗h (H,G). Since the magnitude of the derivative
of the free energy density with respect to K (proportional to the energy per bond) is bounded, for any R > 0, this implies the existence of a
minimum gap between the boundaries of the homological and the dual homological regions. We have the inequality

Kh(G,H) − K∗h (H,G) ≥ R ln 2. (35)

B. Free energy analyticity and convergence

The end points Th(G, H) and T∗h (H,G) of the two flat regions in the temperature dependence of the homological difference Δf 0 are
clearly the points of singularity. What is the relation between these points and the singular points of the limiting free energy density in
individual models, which are usually associated with phase transitions?

To establish such a relation, let us analyze the convergence of free energy density and the analyticity of the corresponding limit as a
function of parameters. To this end, consider the high-temperature series (HTS) expansion of the free energy density (2),

fe(Θ;K,h) ≡ ∞∑
s≙1

κ
(s)
e (Θ; J,h

′)
βs

s!
, (36)

where both parameters are scaled with the inverse temperature, K ≡ βJ and h ≡ βh′. The coefficient in front of βs is proportional to an order-s
cumulant of energy; it is a homogeneous polynomial of the variables h′ and J of degree s. A general bound on high-order cumulants from
Ref. 58 gives the following:

Statement 3. Consider any model in the form (1), with an (ℓ, m)-sparse r × n coupling matrix Θ. The coefficients of the HTS expansion of
the free energy density satisfy

∣κ
(s)
e (Θ; J,h

′)∣ ≤ 2s−1ss−2 C (Δ + 1)s−1As, (37)

where A ≡max(|J|, |h′|) and (a) with J and h′ both nonzero, Δ = ℓm and C = r/n + 1, while (b) with h′ = 0, Δ = (ℓ − 1)m and C = 1.

Such a bound implies the absolute convergence of the HTS in a finite circle in the complex plane of β and, thus, the analyticity of f e(Θ;
K, h) and all of its derivatives as a function of both variables in a finite region with |K| and |h| small enough, in any finite (ℓ, m)-sparse Ising
model, at any given configuration of flipped bonds e. The same is true for the average free energy ∥fe(Θ; J,h

′)∥p.
In this region, at p = 0, convergence and analyticity of the limiting free energy density for models defined by a sequence of binary

matrices Θt , t ∈ N, is equivalent to existence of the (pointwise) limit limt κ
(s)
0
(Gt ; J,h

′) for the individual coefficients (remember, each of
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them is a homogeneous two-variate polynomial of degree s). With the help of the cluster theorem for the HTS coefficients, the existence of
the limit can be guaranteed by the Benjamini-Schramm convergence59 of the corresponding Tanner graphs; see Refs. 60 and 61 for the corre-
sponding discussion for general models with up to two-body couplings. For our present purposes, the following subsequence construction at
h = 0 is sufficient:

Corollary 4. Any infinite sequence of (ℓ, m)-sparse Ising models, specified in terms of matrices Θj, j ∈ N, has an infinite subsequence Θj(t),

t ∈ N, where j : N → N is strictly increasing, such that (a) for each s, the sequence of the coefficients κ
(s)
0
(Θt ; J, 0) converges with t, and (b) the

sequence of free energy densities f (Θj(t); K) has a limit, φΘ(K), which is an analytic function of K in the interior of the circle |K| ≤ {2e [(ℓ − 1)m
+ 1]}−1. Here, e is the base of natural logarithm.

Remarks. 4-1. Similar analyticity bounds apply to a very general class of (ℓ, m)-sparse models with up to ℓ-body interactions, where
each variable is included in up to m interaction terms, and magnitudes of different interaction terms are uniformly bounded: the
dependency graph used in the proof can be used in application to all such models. Examples include a variety of discrete models, e.g.,
Potts and clock models with few-body couplings, as well as compact continuous models with various symmetry groups, Abelian and
non-Abelian, where interaction terms are constructed as traces of products of unitary matrices. This is a generalization of the “right”
convergence established for models with two-body couplings (ℓ = 2) in Refs. 60 and 61.

4-2. The subsequence construction is not necessary in the special case where the Tanner graphs defined by the bipartite matrices Θt are
transitive, with weak infinite-graph limit Θ and a center 0 ∈ V(Θ), such that a ball of radius ρt in Θt is isomorphic to the ball of the
same radius centered around 0 in Θ; here, the sequence of the radii is increasing, ρt+1 > ρt , t ∈ N. In this case, the cluster theorem62

guarantees that the coefficients κs(Θt) do not depend on t for ρt > s.
To make precise statements applicable outside of the convergence radius of the high-temperature series, we need to ensure that a

sequence of free energy densities converges. The question of convergence for a general sequence of Ising models being far outside the
scope of this work, we will assume the use of yet another subsequence construction to guarantee the existence of the thermodynamical
limit for the free energy density. This is based on the following lemma proved in Appendix F.

Lemma 5. Consider a sequence of rt × nt binary matrices Θt , where 0 < rt ≤ nt , and t ∈ N. For any M > 0, define a closed interval
IM ≡ [0,M]. (a) There exists a subsequence Θt(i), i ∈ N, where the function t : N → N is strictly increasing, t(i + 1) > t(i) for all i ∈ N, such that
the sequence of Ising free energy densities converges for any K ∈ IM , f i(K) ≡ f 0(Θt(i); K)→ f(K). (b) The limit f(K) is a continuous nonincreasing
concave function with left and right derivatives uniformly bounded,

− 1 ≤ f ′+(K) ≤ f ′−(K) ≤ 0, (38)

for all K ∈ IM .
Let us now assume that we have a sequence of pairs of weakly dual weight-limited Ising models which (a) satisfy the conditions of

Theorems 1 and 2 with the asymptotic rate R, (b) such that the coefficients of the corresponding HTSs converge, so that the sequences of free
energy densities f (Gt ; K) and f (Ht ; K) both converge to analytic functions, φG(K) and φH(K), respectively, at |K| sufficiently small (Corollary
4), and, in addition, (c) the sequences of free energy densities both converge on an interval of real axis IM , withM > ln(m − 1)/2.

The interval in (c) is such that Theorems 1 and 2 can be used to extend the convergence to the entire real axis; we denote the corre-
sponding limits f G(K) and f H(K). The continuity of the functions f G(K) and f H(K) (and the corresponding duals), along with the inequality
(27) which also survives the limit, guarantees that in the range of temperatures between the homological and the dual homological regions,
Th(G,H) < T < T∗h (H,G), the specific homological difference Δf (K) ≡ fG(K) − fH∗(K) satisfies the strict inequality

0 < Δf (K) < R ln 2. (39)

Notice that the existence of the limit on the real axis does not guarantee analyticity which is only guaranteed by condition (b) in a finite
vicinity of K = 0. Hereafter, we will assume that f G(K) is analytic on the interval 0 ≤ K < Kc(G). That is, for any ϵ > 0, there exists a simply
connected open complex region Ωϵ ∈ C which includes the union of the circle of convergence of HTS for φG(K) from Corollary 4 and the
interval IM ,M = Kc(G) − ϵ, such that the sum of HTS series φG(K) can be analytically continued to Ωϵ, and the result coincides with the limit
f G(K) on the real axis, K ∈ IM . Furthermore, we will assume that Kc(G) is the largest value at which this is possible. Such a threshold may arise
either (i) because Kc(G) is a singular point of φG(K), e.g., the intersection of the natural boundary of φG(K) with the real axis, or (ii) because
the limit on the real axis, f G(K), starts to deviate from the result of the analytic continuation. In either case, this guarantees that the limit on
the real axis, f G(K), has a singular point of some sort at Kc(G).

According to this definition, Tc(G) = J/Kc(G) is the highest-temperature point of nonanalyticity of the limiting free energy density
f G(K); f G(J/T) is analytic for T > Tc(G). By duality and Theorem 1, f G(K) is also analytic at low temperatures. We denote T′c(G) ≤ Tc(G) the
lowest-temperature singular point of f G(J/T).

We make similar assumptions about the properties of the limiting free energy density f H(K) and use similar definitions of the criti-
cal temperatures T′c(H) ≤ Tc(H) for f H(J/T). We will also use the dual functions, fG∗(K) and fH∗(K), which coincide with f G(K

∗) and
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f H(K
∗) up to an addition of analytic functions of K; see Eq. (9). The corresponding lowest- and highest-temperature singular points are

exchanged by duality, e.g., T′c(H∗) ≙ T∗c (H), T′c(H) ≙ T∗c (H∗). Convergence of Δf (Gt , Ht ; K) to zero implies that fG(K) ≙ fH∗(K) for
K > Kh(G, H); thus, f G(K) is an analytic function in a complex vicinity of any K > max (K∗c (H),Kh(G,H)). Equivalently,

T′c(G) ≥ min (T∗c (H) ≙ T′c(H∗),Th(G,H)). (40)

Once we are assured of convergence of the homological difference, the first observation is that the limit, Δf (K), is necessarily a strictly
convex function at Th(G, H), and a strictly concave function at T∗h (H,G), the singular points which are also the boundaries of the region
separating the dual homological region at small K and the homological region at large K. On the other hand, both f G(K) and fH∗(K) are
concave functions. Therefore, the convexity at Th(G, H) must originate from fH∗(G,H).

Unfortunately, this does not guarantee that Th(G, H) be a singular point of fH∗(K). A higher-order phase transition, with a continuous
specific heat but discontinuity or divergence in its first or higher derivative, cannot be eliminated on the basis of the general thermody-
namical considerations alone. Therefore, we formulate Theorem 6 below (proved in Appendix G) with a list of independently sufficient
conditions.

Theorem 6. Let us assume that any one of the following conditions is true:

1. The transition at T′c(G) is discontinuous or has a divergent specific heat;
2. The derivative of Δf (K) ≙ fG(K) − fH∗(K) is discontinuous at Kh ≡ Kh(G, H), or the derivative of Δf (K) is continuous at Kh, but its

second derivative diverges at Kh;
3. Summation over homological defects does not increase the critical temperature, Tc(G

∗) ≤ Tc(H).

Then, the Kramers-Wannier dual of the critical temperatures Tc(H) satisfies

T∗c (H) ≤ Th(G,H). (41)

Remarks. 6-1. We are making the same assumptions about the properties of f H(K), which gives T
∗
c (G) ≤ Th(H,G). Combining with

Eq. (35), we have

Kc(H∗) − Kc(G) ≥ R ln 2. (42)

This implies a strict inequality, Tc(G) > Tc(H
∗), when the homological rank scales extensively, R > 0, which is superficially similar to

the multiplicity of critical points on nonamenable infinite graphs;15,16,42 see Sec. II. The difference is that our critical temperatures corre-
spond to points of nonanalyticity of the limiting free energy density in zero magnetic field; we do not have a direct connection to magnetic
transitions.

6-2. It is known that stabilizer codes with generators local inZD and divergent distances have asymptotically zero rates.63,64 This is perfectly
consistent with the known fact that weight-limited models local in Z

D have well-defined thermodynamical limits, independent of the
boundary conditions.1 For example, inequality (42) with R = 0 is saturated in the case of planar self-dual Ising models, where the
transition is in the self-duality point, which is the only nonanalyticity point of the free energy density.

6-3. Most important application of Theorem 6 and Eq. (42) is few-body Ising models that correspond to finite-rate quantum LDPC codes
with distances scaling as a power of the code length n, d ≥ Anα with A, α > 0. Examples are quantum hypergraph-product (QHP) and
related codes,65–67 and higher-dimensional hyperbolic codes.68 Because of higher-order couplings, generic mean-field theory gives a
discontinuous transition, which is the case of condition 1 in Theorem 6. The discontinuous nature of the transition has been verified
numerically for one class of QHP codes.41

6-4. Isingmodels on expander graphs are known to havemean-field criticality.15,69 A combination of an analytic fH∗(K) and a finite specific
heat jump in f G(K) at Kh(G, H) is not eliminated by conditions 1 or 2. We discuss the important case of Ising models on hyperbolic
graphs in Sec. III C.

6-5. GKS inequalities imply that any spin average satisfies ⟨SA⟩G;K ≥ ⟨SA⟩H∗ ;K . Physically, this ought to be sufficient to guarantee condition
3, but we are not aware of a general proof.

C. Application to models on hyperbolic graphs

1. Bounds for infinite-graph transition temperatures

While the inequalities (35) are (42) are certainly important results, they address unconventionally defined critical points. Both the homo-
logical critical point, Th(G,H), and the end points of the interval of possible nonanalyticity, T′c(G) ≤ Tc(G), are defined for sequences of Ising
models without boundaries. They are not immediately related to the critical temperatures Tf

c ≤ Tw
c defined on related infinite systems in terms

of extremal Gibbs states with free/wired boundary conditions.
To bound these critical temperatures, consider a sequence of pairs of weakly dual Ising models which satisfy the conditions of Theorems

1 and 2 with the asymptotic rate R > 0, with an additional assumption that matrices Gt and Ht are incidence matrices of graphs, that is,
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they have uniform column weights ℓ = ℓ
∗ = 2. In addition, we assume that the graph sequences converge weakly to a pair of infinite transitive

graphs, which we denote G ≙ (V,E) and H ≙ (F,E), where F is the set of faces in G. Weak convergence is defined as follows: for some
chosen vertex 0 ∈ V, there is an increasing sequence ρt ∈ N such that the ball B(0, ρt) ⊂ G of radius ρt centered at 0, is isomorphic to a ball
in Gt .

These conditions necessarily imply that matrices Gt and Ht describe mutually dual locally planar graphs and also that the graphs G and
H are mutually dual.

Examples of such a sequence are given by sequences of finite hyperbolic graphs constructed27,70 as finite quotients of the regular { f, d}
tilings of the infinite hyperbolic plane,H( f, d), with df /(d + f ) > 2. A graph in such a sequence gives a tiling of certain surface, with d regular
f -gons meeting in each vertex. Hyperbolic graphs have been extensively discussed in relation to quantum error correcting codes.71–77 Given
such a finite locally planar transitive graph with n edges, the quantumCSS code is a surface code;39,78 it is constructed from the vertex-edge and
plaquette-edge incidence matrices, G and H, respectively. Here, H is also a vertex-edge incidence matrix of a dual graph, which corresponds
to the dual tiling {d, f } of the same surface. Such a code has the minimal distance scaling logarithmically with n, and it encodes k = 2g = 2 + nR
qubits into n, where g is the genus of the surface and R = 1 − 2/d − 2/f is the asymptotic rate.

An extremal Gibbs ensemble on any infinite locally planar transitive graph can be characterized by the average magnetization m, the
asymptotic correlation decay exponents α [Eq. (20)] and ᾱ ≥ α [Eq. (21)], and similarly defined asymptotic domain wall tensions,

τ ≡ τ(G;K) ≙ inf
{i,j}⊂F

τe(i,j), τ̄ ≡ τ̄(G;K) ≙ lim sup
dij→∞

τe(i,j), (43)

where e(i, j) is a defect that connects a pair of frustrated plaquettes i and j. Generally, ᾱ ≙ α ≙ 0, whenever spontaneous magnetization m is
nonzero. A nonzero magnetization on a locally planar transitive graph also implies τ > 0. (This is a generalization of the result from Ref. 4, see
Appendix H.) Respectively, electromagnetic duality (18) implies

Statement 7. Let G and H be a pair of infinite mutually dual locally planar transitive graphs. Denote Tf
c(G) and Tw

c (H) the critical
temperatures of the extremal Gibbs ensembles for Ising models on G and H with free and wired boundary conditions, respectively. Then, these
temperatures are Kramers-Wannier duals of each other,

Tf
c(G) ≙ ∥Tw

c (H)∥
∗. (44)

For each model, in the ordered phase, T < Tc, ᾱ ≙ 0, and τ > 0, while in the disordered phase, T > Tc, α > 0, and τ̄ ≙ 0.
We can now prove the following:

Theorem 8. For any regular {f, d} tiling of an infinite hyperbolic plane, fd/(f + d) > 2, the critical temperatures of the Ising model with free

and wired boundary conditions, Tf
c ≙ 1/Kf

c and Tw
c ≙ 1/Kw

c , satisfy

Kf
c − Kw

c ≥ R ln 2, R ≙ 1 − 2/f − 2/d. (45)

Proof. For any regular { f, d} tiling G ≡ H(f ,d) of the hyperbolic plane, consider a sequence of finite mutually dual locally planar
transitive graphs Gt and Ht , where the sequence Gt weakly converges to G. The corresponding sequence of incidence matrices satisfies the
conditions of Theorems 1 and 2 with the asymptotic rate R > 0. Transitivity implies that the free energy density converges in a finite circle
around K = 0; see Remark 4-2. While we are not sure of convergence for larger K, Lemma 5 guarantees the existence of a subsequence of
graphs, and corresponding pairs of incidence matrices Gt , Ht , t ∈ N, such that the sequences of free energy densities f (Gt ; K) and f (Ht ; K)
converge. For such a sequence, the specific homological difference Δf (Gt , Ht ; K) also converges, which guarantees Δf < R ln 2 outside of the
dual homological phase, K > K∗h (H,G). Such an inequality implies the existence of an ϵ > 0 such that Δf (Gt , Ht ; K) < R ln 2 − ϵ/2 at all
sufficiently large t. In turn, Eq. (32) implies that the average defect tension is bounded away from zero, τ̄0(Gt) ≥ ϵ.

While defects that contribute to the average τ̄0(Gt) have large weights, we notice that the free energy increment (14) associated with an
arbitrary defect is subadditive; see Eq. (19). Thus, a large-weight defect can be separated into smaller pieces; subadditivity (19) ensures that
max(τe1 , τe2) ≥ τe1+e2 as long as de1+e2 ≙ de1 + de2 . Thus, if we start with a homological defect with the tension τc ≥ ϵ > 0, at each division, we
can select a piece with the tension not smaller than ϵ. Moreover, since homological defects are cycles on the dual graph, we can first separate c
into simple cycles of weight not smaller than the corresponding CSS distance which increases with t and then cut such a cycle in half to obtain
a defect compatible with the definition (43).

Furthermore, GKS inequalities imply that tension τe is monotonously nondecreasing when individual bonds’ coupling is increased. Thus,
for the same defect e = e(i, j) connecting frustrated plaquettes i and j on Gt and on the corresponding planar subgraph with wired boundary
conditions, τe(i,j)(G

w
t ;K) ≥ τe(i,j)(Gt ;K) ≥ ϵ. Subadditivity construction in the previous paragraph guarantees the existence of such pairs for

any t and that for any L > 0 pairs separated by dual-graph distances dij > L can be chosen with t sufficiently large. Definition (43) then gives
τ̄ ≥ ϵ > 0 for the Ising model with wired boundary conditions on the infinite graph G, at temperatures below the dual homological point,
K > K∗h (H,G). Necessarily, Kw

c (G) ≤ K∗h (H,G).
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Duality (44) also ensures that Kf
c(H) ≥ Kh(G,H); inequality (35) gives Eq. (45). ◽

Remarks. 8-1. An interesting fact about systems with finite rates R > 0 is that electromagnetic duality (18) does not guarantee that
area-law exponent αm(G; K) be zero at low temperatures. While “area” is the defect distance dm, the smallest number of bonds in
an equivalent defect, the “perimeter” is the number of spins involved in the product, the syndrome weight wgts, where s = mGT .
Standard area/perimeter law argument assumes that perimeter can be parametrically smaller than the area; this is not necessarily true
for systems with nonamenable Tanner graphs.

8-2. Even in the case of a pair of locally planar graphs, a linear domain wall e connecting a pair of frustrated plaquettes may have a large
perimeter in the dual model because of the additional spins corresponding to the homological defects. Any such defect that crosses the
domain wall (changes the sign of the corresponding spin average) increases the perimeter in the dual model. Such additional defects
are absent with free boundary conditions as considered in Theorem 8.

2. Numerical results

In addition to analytical bounds presented above, we also analyzed numerically Ising models on several finite transitive hyperbolic graphs
constructed27,70 as finite quotients of the regular {5, 5} tilings of the infinite hyperbolic plane. We used canonical ensemble simulations with
both local Metropolis updates79 and Wolff cluster algorithm,80 to compute the average magnetization m = ⟨M⟩/N, susceptibility χ = (⟨M2⟩ −
⟨M⟩2)/NT, average energy per bond ε ≡ ⟨E⟩/n, specific heat C = (⟨E2⟩ − ⟨E⟩2)/nT2, and the fourth Binder cumulant81 U4 ≙ 1 − ⟨S4⟩/(3⟨S2⟩2).
Here, M = |∑iSi| is the (magnitude of the) total magnetization, E = −∑⟨ij⟩SiSj is the total energy, N and n, respectively, denote the number
of spins and bonds, and ⟨⋅⟩ denotes the ensemble average. For Metropolis simulations, each run consisted of 128 cooling-heating cycles, with

FIG. 1. Average magnetization (top) and Binder’s fourth cumulant (bottom) as a function of temperature, for transitive graphs listed in Table I with minimal distances as
indicated. Dashed lines show the data for the larger d = 10 graph. Lines show the data obtained using cluster updates; points show the data from simulations using local
Metropolis updates. Vertical line shows the critical temperature Tc(C) extrapolated from the positions of the specific heat maxima; see Fig. 5. While both sets of data do
cross near Tc(C), there is significant drift with increased graph size. In addition, the curves are near parallel which makes reliable extraction of the critical temperature
difficult.
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FIG. 2. Solid lines: energy per bond from Wolff cluster calculations as a function of temperature, as in Fig. 1. These data are converted with the help of the exact duality (9)
to give energies in the dual model (long dashes). With increasing graph sizes, the difference between the original and dual energies decreases above the empirically found
Tc(C) (Fig. 5) and below the corresponding Kramers-Wannier dual, T∗c (C). Inset: close up of the plots near Tc(C).

1024 full graph sweeps at each temperature, with additional averaging over 64 independent runs of the program. The number of sweeps at each
temperature was sufficient to make any hysteresis unnoticeable. For Wolff algorithm simulations, each run consisted of 16 cooling-heating
cycles, with 4096 cluster updates at each temperature, and additional averaging over 64 independent runs of the program. The resulting
averages are shown in Figs. 1–4, where lines (dots) show the data obtained with cluster (local Metropolis) updates, respectively. The results
obtained using the two methods are very close.

The parameters of the graphs used in the simulations are listed in Table I. The first three graphs we obtained from Breuckmann.77

We generated the remaining graphs with a custom gap82 program, which constructs coset tables of freely presented groups obtained from
the infinite van Dyck group D(5, 5, 2) = ⟨a, b|a5, b5, (ab)2⟩ [here a and b are group generators, while the remaining arguments are rela-
tors which correspond to imposed conditions, a5 = b5 = (ab)2 = 1] by adding one or more relator obtained as a pseudorandom string of
generators, until a finite group is obtained. Given such a finite group D, the vertices, edges, and faces are enumerated by the right cosets
with respect to the subgroups ⟨a⟩, ⟨ab⟩, and ⟨b⟩, respectively. The vertex-edge and face-edge incidence matrices G and H are obtained
from the coset tables. Namely, nonzero matrix elements are in positions where the corresponding pair of cosets share an element. Finally,
the distance d of the CSS code Q(G,H) was computed using the covering set algorithm, which has the advantage of being extremely
fast when distance is small.83,84 With the exception of the graph with n = 7440, the graphs used have the smallest size for the given
distance.

The obtained plots of magnetization and Binder’s fourth cumulant are shown in Fig. 1; the corresponding curves on largest graphs
are nearly indistinguishable, consistent with convergence at large n. We note that the crossing point in the Binder’s fourth cumulant shows
a significant drift with the system size; see the lower plot in Fig. 1. This is not surprising, given that the original scaling analysis81 only
applies to locally flat systems, whereas any hyperbolic graph has a uniform negative curvature. On both plots, the curves for larger system

FIG. 3. As in Fig. 1 but for the specific heat. Inset: fitting for maxima. Data points in the inset are from the Wolff cluster calculations, while the lines are obtained using nonlinear
fits with general quartic polynomials of the form y ≙ ym + a2(x − xm)2 +⋯ + a4(x − xm)4, which give the coordinates of the maximum (xm, ym) nearly independent from
the rest of the coefficients.
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FIG. 4. As in Fig. 1 but for the susceptibility χ(T), plotted in semilogarithmic scale. The vertical line shows the critical temperature extrapolated from the susceptibility maxima;
see Fig. 5.

sizes are near parallel to each other, which makes the identification of the phase transition point from the corresponding crossing points
difficult.

Figure 2 shows energy per bond as a function of temperature. To illustrate the properties of the specific homological difference, see
Theorems 1 and 2, we also plot the energy per bond of the exact dual models obtained from the same data using ε∗(K∗) = −sinh(2K) ε(K)− cosh(2K), derived from Eq. (9). The plot shows that as the size of the graph increases, the difference between the energies ε∗(T) and ε(T)
decreases with increasing graph size both above Tc(C) and below the corresponding Kramers-Wannier dual, T∗c (C), while a finite difference
remains for the intermediate temperatures. This is consistent with the identification T∗h ≙ Tc(C).

The plots for specific heat C(T) (Fig. 3) and magnetic susceptibility χ(T) (Fig. 4) show well developed maxima which become sharper
and higher with increasing system sizes. Notice that a unique point of divergence of the specific heat necessarily coincides with the dual
homological temperature T∗h .

We obtained the positions of the specific heat and magnetic susceptibility maxima by fitting the data in the vicinity of the corresponding
maxima with quartic polynomials, as explained in the caption of Fig. 3. The resulting positions of the maxima are plotted in Fig. 5 as a function
of x = 1/n1/2. The error bars of the positions of the maxima have errors in the third digit; the observed minor scattering of the data is a feature
of the corresponding graphs.

While the size dependence is not monotonic in the case of susceptibility maxima, the data points for larger graphs show approximately
linear dependence on x. Linear extrapolation to infinite size (x = 0) gives Tc ≈ 3.872 ± 0.003 for both sets of data. This value is consistent with
the lower bound (42) for the infinite graph with wired boundary conditions, which gives in the present case Tc ≥ 2.668. In comparison, the
transition for a square-lattice Ising model is in the self-dual point, Ts.d. ≙ 2/ ln(1 +√2) ≈ 2.269.

We note that even though we expect Ising model on hyperbolic graphs to have mean field criticality, conventional finite size scaling
theory does not apply here. In particular, this is seen from the absence of the well defined crossing point in the data for Binder’s fourth
cumulant; see the lower plot in Fig. 1. Therefore, we had to experiment on how to extrapolate the positions of the maxima to estimate the
critical temperature. The scaling with x = 1/n1/2 was chosen since it gives near identical estimates for the critical temperatures from themaxima
of C(T) and χ(T), cut off at different maximum sizes (we tried dmax = 8 and above).

We also note that the data show good convergence with increased system size, without the need for the subsequence construction
described in Sec. III B.

TABLE I. Parameters of the graphs used in the simulations.

Vertices r Edges n Homology rank k CSS distance d

32 80 18 5
60 150 32 6
360 900 182 8
1 920 4 800 962 10
2 976 7 440 1490 10
8 640 21 600 4322 11
12 180 30 450 6092 12
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FIG. 5. Extrapolation of the specific heat and susceptibility maxima to infinite system size. Red squares (blue circles) show the positions of the specific heat (susceptibility)
maxima extracted from the data in Figs. 3 and 4, respectively, for graphs of different size, plotted as a function of 1/n1/2, where n is the number of edges in the corresponding
graphs; see Table I. Solid (dashed) lines are obtained as linear (quadratic) fits to the data, where only the four leftmost points were used for the linear fits. This results in the
extrapolated critical temperature values as indicated.

IV. DISCUSSION

A. Summary of the results

We considered pairs of weakly dual Ising models with few-body couplings, defined via sequences of degree-limited bipartite coupling
graphs, with the focus on the case where the rank k of the first homology group of the corresponding two-chain complex scales extensively with
the system size. This construction is needed to avoid introducing the boundaries, which are known to affect the position of the critical point
in nonamenable graphs, and also to connect to applications, e.g., in quantum information theory, where results for large but finite systems
are of interest. Here, extensive scaling of k corresponds to quantum error correcting codes with finite rates R > 0. Important examples include
two-body Ising models on families of finite transitive hyperbolic graphs which weakly converge to regular { f, d}-tilings of the hyperbolic plane
with df /(d + f ) > 2; the corresponding limiting rates R = 1 − 2/d − 2/f are nonzero.

Our main technical result is Theorem 1, which guarantees the existence of a low-temperature, low-disorder region where homological
defects are frozen out—in the thermodynamical limit they have no effect on the free energy density. Duality guarantees the existence of a
high-temperature phase where extensive homological defects have near zero free energy cost; see Theorem 2. At all temperatures below this
phase, the average defect tension is nonzero; see Eq. (32).

With the help of duality and a known bound on high-order cumulants, we established the absolute convergence of both the high- and
low-temperature series expansions of the free energy density in finite regions which include vicinities of the real temperature axis around
the zero and infinite temperatures, respectively. We used a subsequence construction to ensure the convergence of free energy density at all
temperatures and defined the critical temperatures as the real-axis points of nonanalyticity of the limiting free energy density. For these critical
temperatures, we derived several inequalities, in particular, an analog of multiplicity of the critical points, which guarantees that with R > 0,
critical point of the free energy density is affected by the summation over the topological defects.

As an application of obtained bounds, we proved the multiplicity of phase transitions on all regular tilings H( f, d) of the infinite
hyperbolic plane, df /(d + f ) > 2.

We also simulated the phase transition on a sequence of self-dual {5, 5} transitive hyperbolic graphs without boundaries, with up to
nmax = 30 450 bonds numerically. Our data show good convergence with increasing system sizes, with a single specific heat maximum which
sharpens with the increasing system size. If the corresponding position Tc(C) ≈ 3.872 ± 0.003 is the only singularity of the free energy, then
necessarily it coincides with the dual homological point, T∗h ≙ Tc(C).
B. Open questions

1. The rightmost point of the homological region established in Theorem 1 on the p − T plane has the same value pmax as can also be
obtained using the energy-based arguments,85 which apply at T = 0. Either of these results also implies40,50 that the portion of the
Nishimori line at p < pmax is in the homological region. It should be possible to establish the existence of a homological region in the
intermediate temperature points, but we could not find the corresponding arguments.

2. The Proof of statement 3 is based on overly generic bounds58 for cumulants of a sum of random variables with a given dependency
graph. In the case of the Ising model, it should be possible to construct a stronger lower bound for absolute convergence of the HTS. We
expect that the same bound as in Theorem 2 should apply. Such a bound would be consistent with that from high-temperature series
expansions for spin correlations,86 and it would also be consistent with the analysis of the higher-order derivatives of free energy,87 as
well as the naive expectation that Tc(G) ≙ T∗h (H,G).

3. In addition to the case in Remark 4-2, the infinite subsequence construction of Corollary 4 is also not needed when the sequence of
Tanner graphs has a well defined distributional limit (Benjamini-Schramm or “left” convergence59–61). Important examples are given
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by the Tanner graphs of hypergraph-product and related codes65,66 based on specific families of sparse random matrices. For such
sequences, it would be nice to establish the conditions for convergence of the free energy density or spin averages for all K > 0, to
supersede the subsequence construction of Lemma 5.
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APPENDIX A: PROOF OF THEOREM 1

Theorem 1. Consider a sequence of pairs of weakly dual Ising models defined by pairs of finite binary matrices with mutually orthogonal

rows, GtH
T
t ≙ 0, t ∈ N, where row weights of each Ht do not exceed a fixed m. In addition, assume that the sequence of the CSS distances dGt is

increasing. Then, the sequence Δft ≡ ∥Δfe(Gt ,Ht ;K)∥p, t ∈ N, converges to zero in the region

(m − 1)∥e−2K(1 − p) + e2Kp∥ < 1. (A1)

The statement of the theorem immediately follows from the following technical lemma, see the proof in Ref. 41:

Lemma 9. Consider a pair of Ising models defined in terms of weight-limited matrices G and H with orthogonal rows such that matrix H
has a maximum row weight m. Let dG denote the CSS distance (23), the minimum weight of a frustration-free homologically nontrivial defect
c ∈ C⊥H/CG. Denote S ≡ e−2K(1 − p) + e2Kp, and assume that (m − 1) S < 1. Then, the average homological difference (25) satisfies

∥Δf (G,H;K)∥p ≤ (m − 1)dGSdG+1
1 − (m − 1) S . (A2)

APPENDIX B: PROOF OF INEQUALITIES IN SEC. III A

(i) The proof of the monotonicity of the homological difference (in the absence of flipped bonds),

d

dK
Δf0(G,H;K) ≤ 0, (B1)

is similar to the proof 88 of the monotonicity of the tension. We combine the logarithms in Eq. (25), decompose Ze(H
∗; K) as a sum of

Zc(G; K) over nonequivalent codewords c, and write

d

dK

Zc(G;K)

Z0(G;K)
≙ Zc(G;K)

Z0(G;K)
∑
b∈B

(⟨Rb⟩c − ⟨Rb⟩0) ≤ 0.
The desired inequality (27) follows from the monotonicity of the logarithm.

(ii) The first inequality in

∣τc,e∣ ≤ τc,0 ≤ 2K (B2)

follows from the second GKS inequality47,48 applied in the dual system [where, according to electric-magnetic duality, the defect
becomes an average of the corresponding product of spins, see Eq. (11)]. Depending on the sign of τc,e, duality gives ⟨Rc+e⟩ ≥ ⟨Re⟩⟨Rc⟩
or ⟨Re⟩ ≥ ⟨Rc⟩⟨Re+c⟩, where Re is the product of bonds corresponding to nonzero bits in the binary vector e. The second inequality in
Eq. (30), in a more general form, τe ≡ τe,0 ≤ 2K, follows from the Gibbs inequality,

Fe(G;K) − F0(G;K) ≤ 2K ∑
b:eb≠0

⟨Rb⟩G;K ≤ 2K wgt(e),

if we take a minimal-weight vector equivalent to e, in which case wgt(e) = de.
(iii) To prove the lower bound on the average tension,

ζτ̄p ≥ R ln 2 − ∥Δfe∥p, (B3)
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we first define the constant ζ as the average minimum weight of all 2k codewords divided by the code length n,

ζ ≙ (2kn)−1∑
c

dc. (B4)

An upper bound on ζ can be obtained if we take the codewords c as linear combinations of k inequivalent codewords ci, i ∈ {1, . . ., k}
(it is likely that smaller-weight equivalent codewords can be found). In this case, the codewords form a binary code, and the average
weight is exactly half of the length n′ of the code,89 where n′ ≙ ∣∪ki≙1I(ci)∣ is the weight of the union of the supports of the basis
codewords. Clearly, n′ ≤ n, which gives ζ ≤ 1/2. Combining with a lower bound on the weight of nontrivial codewords, dc ≥ dG, c ≄ 0,
we obtain

1 − 2−k
n

dG ≤ ζ ≤ 1
2
. (B5)

We now proceed with deriving the inequality (32). Start by expanding Ze(H
∗; K) =∑cZe+c(G; K), where the summation is over all 2k

mutually inequivalent codewords c. Each of the terms with c ≄ 0 can be written in terms of the corresponding tension (29),

Ze+c(G;K) ≙ e−τc, e(G;K)dcZe(G;K).
Convexity of the exponent gives

Ze(H∗;K)
Ze(G;K) ≙ 1 +∑c≄0 exp(−τc, edc)

≥ 2k exp( − 2−k∑
c

τc, edc),
where for the trivial codeword c ≃ 0, we set τ0,ed0 = 0. Taking the logarithm and rewriting the sum over codewords in terms of the
weighted average, with the help of Eq. (B4), we obtain

ΔFe(G,H;K) ≥ k ln 2 − ζn∑c≄0 τc, edc∑c≄0 dc
.

Equation (32) trivially follows after averaging over disorder and dividing by n.
(iv) The inequality

Kh(G,H) − K∗h (H,G) ≥ R ln 2 (B6)

is based on the standard inequality for the derivative of the free energy density, which is just the average energy per bond. For the case
of homological difference, we obtain, instead,

d

dK
Δf (G,H;K) ≙ 1

n
∑
b∈B

(⟨Rb⟩H∗ ;K − ⟨Rb⟩G;K). (B7)

The second term can be obtained from the first by freezing the spins corresponding to homologically nontrivial defects; with the help of GKS
inequalities, we obtain

1 ≥ ⟨Rb⟩G;K ≥ ⟨Rb⟩H∗ ;K ≥ 0,
which guarantees the derivative (B7) to be between −1 and 0. Integration gives the inequality

Δft(K2) − Δft(K1) ≤ K1 − K2,

where Δf t(K) = Δf (Gt , Ht ; K). We now take K1 = Kh(G, H) and K2 ≙ K∗h (H,G) so that in the limit of the sequence, limtΔf t(K1) = 0 and
limtΔf t(K2) = R ln 2. Equation (35) trivially follows.

APPENDIX C: PROOF OF THEOREM 2

Theorem 2. Consider a sequence of pairs of weakly dual Ising models defined by pairs of finite binary matrices with mutually orthogonal

rows, GtH
T
t ≙ 0, t ∈ N, where row weights of each Gt do not exceed a fixed m, CSS distances dHt are increasing with t, and the sequence of CSS

rates Rt ≡ kt/nt converges, limtRt = R. Then, for any K ≥ 0 such that (m − 1) tanhK < 1, the sequence Δft ≡ ∥Δfe(Gt ,Ht ;K)∥p, t ∈ N, converges
to R ln 2.
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Proof. The proof is based on the special case of Theorem 1 in the absence of disorder, p = 0, and the duality relation (33), applied for
each pair of matrices, Gt andHt , with Rt = kt/nt , and K replaced with its Kramers-Wannier dual, K∗. The condition on K in Theorem 1 (with
Gt and Ht interchanged) becomes simply (m − 1) tanhK < 1. Convergence of sequences Δf 0(Ht , Gt ; K

∗) to 0 and Rt to R implies that of the
sequence Δf 0(Gt , Ht ; K) to R ln 2. ◽

APPENDIX D: PROOF OF STATEMENT 3

The proof is based on Theorem 9.1.7 from Ref. 58, which bounds cumulants of a random variable X,

κr(X) ≡ dr

dtr
lnE(etX)∣

t≙0

, r ∈ {0, 1, . . .}, (D1)

where X ≙ ∑α∈S Yα is a sum of random variables with a given dependency graph:

Definition 1. A graph D with vertex set S is called a dependency graph for the set of random variables {Yα,α ∈ S} if for any two disjoint
subsets S1 and S2 of S, such that there are no edges in D connecting an element of S1 and an element of S2, the sets of random variables{Yα}α∈S1 and {Yα}α∈S2 are independent.

The corresponding bound reads as follows:

Lemma 10 (Theorem 9.1.7 from Ref. 58). Let {Yα}α∈S be a family of random variables with dependency graph D. Denote N ≙ ∣S∣ the
number of vertices of D and Δ the maximal degree of D. Assume that the variables Yα are uniformly bounded by a constant A. Then, for the
sum X ≙ ∑α∈S Yα, and for any s ∈ {0, 1, . . .}, one has

∣κs(X)∣ ≤ 2s−1ss−2N(Δ + 1)s−1As. (D2)

Statement 3. Consider any model in the form (1), with an (ℓ, m)-sparse r × n coupling matrix Θ. The coefficients of the HTS expansion of
the free energy density satisfy

∣κ(s)e (Θ; J,h′)∣ ≤ 2s−1ss−2 C (Δ + 1)s−1As, (D3)

where A ≡max(|J|, |h′|) and (a) with J and h′ both nonzero, Δ = ℓm and C = r/n + 1, while (b) with h′ = 0, Δ = (ℓ − 1)m and C = 1.

Proof of Statement 3. The sth coefficient of the HTS for the free energy F(Θ; K, h) is the scaled cumulant − κs(X)/s!, where X ≙ J∑b∈B Rb

+ h′∑v∈V Sv . Define the set of random variables Yα as the union of the set of (scaled) spins hSv and bonds KRb, then |Yα| ≤ A ≡max(|h′|, |J|).
The corresponding dependency graphD can be obtained from the bipartite graph defined by the matrixΘ by connecting any pair of nodes for
bonds which share the same spin. In the original bipartite graph, each spin node has up to ℓ neighboring bond nodes, and each bond node has
up to m neighboring spin nodes. In the modified graph, each bond node also connects with up to (ℓ − 1)m bond nodes with common spins,
which gives the total maximum degree of Δ = ℓm. We also have N ≙ ∣V∣ + ∣E∣ ≙ r + n, dividing by n as appropriate for the free energy density,
we obtain the bound in part (a). With h = 0, we can drop the spin nodes from the dependency graph. In this case, the maximum degree is
Δ
′ = (ℓ − 1)m, which gives the result in part (b). Notice that in this case, N = n, and the factor C = (r/n + 1) is replaced with C′ = 1. ◽

APPENDIX E: PROOF OF COROLLARY 4

Corollary 4. Any infinite sequence of (ℓ, m)-sparse Ising models, specified in terms of the matrices Θj, j ∈ N, has an infinite subsequence

Θj(t), t ∈ N, where j : N → N is strictly increasing such that (a) for each s, the sequence of the coefficients κ
(s)
0
(Θt ; J, 0) converges with t,

and (b) the sequence of free energy densities f (Θj(t); K) has a limit, φΘ(K), which is an analytic function of K in the interior of the circle

|K| ≤ {2e [(ℓ − 1)m + 1]}−1. Here, e is the base of natural logarithm.

Proof. The result in statement 3(b) is uniform in t bound on the coefficients of the HTS,

∣κs(Θj)∣
s!

≤ 2s−1ss−2(Δ + 1)s−1Js
(2πs)1/2(s/e)s

≙ 1√
8π(Δ + 1)

∥2eJ (Δ + 1)∥s

s5/2
, (E1)

where Δ ≡ (ℓ − 1)m, and we used the lower bound by Stirling, r! ≥ (2πr)1/2(r/e)r . The bound (E1) is uniform in the sequence index j ∈ N.
Thus, one can select an infinite subsequence of Θj, Θj′(t ), t ∈ N, where the function j′ : N → N is strictly increasing so that the coefficients
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κm(Θj′(t )) for m = 1 converge with t. Selecting an infinite subsequence of the one obtained previously to ensure the convergence of the
coefficients κm for m = 2, 3, . . ., at each step, we obtain an infinite subsequence such that all coefficients κs with s ≤ m converge with t. The
statement in part (a) is obtained in the limit of m→∞. The uniform bound (E1) also applies to the cumulants after we take the limit of the
obtained subsequence, which implies absolute convergence (and thus analyticity of the limit) of the HTS for free energy density in the circle
|K| ≡ |β|J ≤ {2e[(ℓ − 1)m + 1]}−1, which is exactly the statement in part (b). ◽

APPENDIX F: PROOF OF LEMMA 5

Lemma 5. Consider a sequence of rt × nt binary matrices Θt , where 0 < rt ≤ nt , and t ∈ N. For any M > 0, define a closed interval
IM ≡ [0, M]. (a) There exists a subsequence Θt(i), i ∈ N, where the function t : N → N is strictly increasing, t(i + 1) > t(i) for all i ∈ N, such that
the sequence of Ising free energy densities converges for any K ∈ IM , f i(K) ≡ f 0(Θt(i); K)→ f (K). (b) The limit f (K) is a continuous nonincreasing
concave function with left and right derivatives uniformly bounded,

− 1 ≤ f ′+(K) ≤ f ′−(K) ≤ 0, (F1)

for all K ∈ IM .
Proof. For any t, the free energy density ft(K) ≙ −n−1t lnZ0(Gt ,K) is bounded from both sides,

−M ≤ rt ln 2/nt − K ≤ ft(K) ≤ rt ln 2/nt + K ≤ ln 2 +M.

Therefore, we can use a subsequence construction to ensure convergence in any pointK ∈ IM . Since the set of rational numbersQ is countable,
we can repeat this construction sequentially on all rational points in IM . The resulting infinite sequence f i(K) converges in any rational point
K ∈ IM ∩ Q. Furthermore, the derivative of f i(K) is uniformly bounded, −1 ≤ f ′i (K) ≤ 0. Since the sequence converges on a dense subset
of IM , this guarantees the existence and the continuity of the limit in the entire interval. Finally, each of f i(K) is concave and nonincreasing;
these properties survive the limit although the resulting function may not necessarily be strictly concave. Concavity guarantees the existence
of one-sided derivatives. The lower and upper bounds on these derivatives are inherited from those for f ′i (K). ◽

APPENDIX G: PROOF OF THEOREM 6

Theorem 6. Let us assume that any one of the following conditions is true:

1. The transition at T′c(G) is discontinuous or has a divergent specific heat;
2. The derivative of Δf (K) ≙ fG(K) − fH∗(K) is discontinuous at Kh ≡ Kh(G, H), or the derivative of Δf (K) is continuous at Kh, but its

second derivative diverges at Kh;
3. Summation over homological defects does not increase the critical temperature, Tc(G

∗) ≤ Tc(H).

Then, the Kramers-Wannier dual of the critical temperatures Tc(H) satisfies

T∗c (H) ≤ Th(G,H). (G1)

Proof. There are three mutually exclusive possibilities: (a) T′c(G) < Th(G,H), (b) T′c(G) > Th(G,H), and (c) T′c(G) ≙ Th(G,H). In the
case (a), T∗c (H) ≙ T′c(G) since the functions f G(K) and fH∗(K) coincide in the homological region, i.e., for K > Kh(G,H); Eq. (41) is satisfied.
In the case (b), T∗c (H) ≙ Th(G,H), in order to recover the nonanalyticity point for the homological difference; Eq. (41) is saturated. The goal
of the conditions is to deal with the case (c) which implies T∗c (H) ≥ Th(G,H); a strict inequality would violate Eq. (41). In the following, we
assume (c).

Condition 1 implies that the (negative) curvature of f G(K) must diverge at Kh ≙ K′c(G), which must be compensated by a divergent
curvature of fH∗(K) in order to make Δf (K) strictly convex in this point. In this case, T∗c (H) ≙ T′c(G); Eq. (41) is saturated.

Condition 2 does the same since the divergent positive curvature of Δf (K) at Kh can only come from fH∗(K).
Condition 3 is equivalent by duality to T′c(G) ≥ T∗c (H), which again gives Eq. (41), since we assumed (c). ◽

APPENDIX H: PROOF OF THE LOWER BOUND FOR TENSION

On an infinite locally planar transitive graph G, we would like to prove the following bound for the asymptotic defect tension (43),

dτ(K)
dK

≥ 2∥m(K)∥2, (H1)

the same inequality as has been previously proved on Z
D in Ref. 4. This inequality is a trivial consequence of the following lemma, which gives

a version of Eq. (7) from Ref. 4 suitable to constructing a bound for the defect tension defined by Eq. (15).
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Lemma 11. Let G ≙ (V,E) be a finite transitive graph, and G be the corresponding vertex-edge incidence matrix with n ≙ ∣E∣ columns. Take
a binary vector e ∈ Fn

2 selecting a set of edges Ee ⊂ E of size ∣Ee∣ ≙ wgt(e), and a set of vertices A ⊂ V of twice the size, ∣A∣ ≙ 2wgt(e), such that
the graph contains edge-disjoint paths connecting each edge to exactly two vertices inA. Then, for the Ising model defined on the same graph, at
any K, h ≥ 0, the free energy increment δe(K) ≡ Fe(G; K, h) − F0(G; K, h) associated with the defect e satisfies

dδe(K)
dK

≥ ⟨Si⟩0 ∑
v∈A

⟨Sv⟩e, (H2)

where the average ⟨Sv⟩e is calculated in the presence of the defect e; by transitivity, ⟨Si⟩0 is independent of i ∈ V.
Proof. The proof is based on two inequalities,

⟨SASB⟩0 ± ⟨SASB⟩e ≥ ∣⟨SA⟩0⟨SB⟩e ± ⟨SA⟩e⟨SB⟩0∣, (H3)

where A ⊂ V and B ⊂ V are sets of vertices. The inequality with the lower (negative) signs is the Lebowitz comparison inequality,2 while the
inequality with the upper signs can be proved using the same technique. In the case of an Ising model on a graph G ≙ (V,E), we have

dδe(K)
dK

≙ ∑
ij≙b∈E

[⟨SiSj⟩0 − (−1)eb⟨SiSj⟩e].

Applying Eq. (H3) for each term separately, with the help of transitivity, ⟨Si⟩0 ≡ m0 ≥ 0, i ∈ V, one gets
dδe(K)
dK

≥ m0 ∑
b≙ij∈E

∣m′i − (−1)ebm′j ∣, (H4)

wherem′i ≡ ⟨Si⟩e. The statement of the lemma is obtained by noticing that for a path connecting 1 and f,

∣m′1 −m′2∣ + ∣m′2 −m′3∣ +⋯ + ∣m′f−1 −m′f ∣ ≥ m′f −m′1,
which allows us to trade wgt(e) terms with + signs in the rhs of Eq. (H4) for the sum of magnetizations m′v on the 2wgt(e) vertices
fromA. ◽
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