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ABSTRACT

Classic supervised learning makes the closed-world assumption that
the classes seen in testing must have appeared in training. How-
ever, this assumption is often violated in real-world applications.
For example, in a social media site, new topics emerge constantly
and in e-commerce, new categories of products appear daily. A
model that cannot detect new/unseen topics or products is hard
to function well in such open environments. A desirable model
working in such environments must be able to (1) reject examples
from unseen classes (not appeared in training) and (2) incrementally
learn the new/unseen classes to expand the existing model. This is
called open-world learning (OWL). This paper proposes a new OWL
method based on meta-learning. The key novelty is that the model
maintains only a dynamic set of seen classes that allows new classes
to be added or deleted with no need for model re-training. Each
class is represented by a small set of training examples. In testing,
the meta-classifier only uses the examples of the maintained seen
classes (including the newly added classes) on-the-fly for classifica-
tion and rejection. Experimental results with e-commerce product
classification show that the proposed method is highly effective!.
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1 INTRODUCTION

An AT agent working in the real world must be able to recognize
the classes of things that it has seen/learned before and detect new
things that it has not seen and learn to accommodate the new things.
This learning paradigm is called open-world learning (OWL) [2, 7, 9].
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This is in contrast with the classic supervised learning paradigm
which makes the closed-world assumption that the classes seen in
testing must have appeared in training. With the ever-changing
Web, the popularity of Al agents such as intelligent assistants and
self-driving cars that need to face the real-world open environment
with unknowns, OWL capability is crucial.

For example, with the growing number of products sold on Ama-
zon from various sellers, it is necessary to have an open-world
model that can automatically classify a product based on a set S
of product categories. An emerging product not belonging to any
existing category in S should be classified as “unseen” rather than
one from S. Further, this unseen set may keep growing. When the
number of products belonging to a new category is large enough,
it should be added to S. An open-world model should easily ac-
commodate this addition with a low cost of training since it is
impractical to retrain the model from scratch every time a new
class is added. As another example, the very first interface for many
intelligent personal assistants (IPA) (such as Amazon Alexa, Google
Assistant, and Microsoft Cortana) is to classify user utterances into
existing known domain/intent classes (e.g., Alexa’s skills) and also
reject/detect utterances from unknown domain/intent classes (that
are currently not supported). But, with the support to allow the
3rd-party to develop new skills (Apps), such IPAs must recognize
new/unseen domain or intent classes and include them in the classi-
fication model. These real-life examples present a major challenge
to the maintenance of the deployed model.

Most existing solutions to OWL are built on top of closed-world
models [2, 3, 9, 30], e.g., by setting thresholds on the logits (before
the softmax/sigmoid functions) to reject unseen classes which tend
to mix with existing seen classes. One major weakness of these mod-
els is that they cannot easily add new/unseen classes to the existing
model without re-training or incremental training (e.g., OSDN [3]
and DOC [30]). There are incremental learning techniques (e.g.,
iCaRL [24] and DEN [21]) that can incrementally learn to classify
new classes. However, they miss the capability of rejecting exam-
ples from unseen classes. This paper proposes to solve OWL with
both capabilities in a very different way via meta-learning.

Problem Statement: At any point in time, the learning system
is aware of a set of seen classes S = {c1, ..., ¢m } and has an OWL
model/classifier for S but is unaware of a set of unseen classes
U = {cm+1, - . - } (any class not in S can be in U) that the model may
encounter. The goal of an OWL model is two-fold: (1) classifying
examples from classes in S and reject examples from classes in
U, and (2) when a new class ¢;,+1 (without loss of generality) is
removed from U (now U = {cm+2,...}) and added to S (now
S ={c1,...,cm,cm+1}, still being able to perform (1) without re-
training the model.

Two main challenges for solving this problem are: (1) how to
enable the model to classify examples of seen classes into their
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respective classes and also detect/reject examples of unseen classes,
and (2) how to incrementally include the new/unseen classes when
they have enough data without re-training the model.

As discussed above, existing methods either focus on the chal-
lenge (1) or (2), but not both. To tackle both challenges in an unified
approach, this paper proposes an entirely new OWL method based
on meta-learning [1, 10-12, 32]. The method is called Learning to
Accept Classes (L2AC). The key novelty of L2AC is that the model
maintains a dynamic set S of seen classes that allow new classes
to be added or deleted with no model re-training needed. Each
class is represented by a small set of training examples. In testing,
the meta-classifier only uses the examples of the maintained seen
classes (including the newly added classes) on-the-fly for classifi-
cation and rejection. That is, the learned meta-classifier classifies
or rejects a test example by comparing it with its nearest exam-
ples from each seen class in S. Based on the comparison results,
it determines whether the test example belongs to a seen class or
not. If the test example is not classified as any seen class in S, it is
rejected as unseen. Unlike existing OWL models, the parameters of
the meta-classifier are not trained on the set of seen classes but on
a large number of other classes which can share a large number of
features with seen and unseen classes, and thus can work with any
seen classification and unseen class rejection without re-training.

We can see that the proposed method works like a nearest neigh-
bor classifier (e.g., kKNN). However, the key difference is that we
train a meta-classifier to perform both classification and rejection
based on a learned metric and a learned voting mechanism. Also,
kNN cannot do rejection on unseen classes.

The main contributions of this paper are as follows.

(1) It proposes a novel approach (called L2AC) to OWL based on
meta-learning, which is very different from existing approaches.

(2) The key advantage of L2AC is that with the meta-classifier,
OWL becomes simply maintaining the seen class set S because
both seen class example classification and unseen class example
rejection/detection are based on comparing the test example with
the examples of each class in S. To be able to accept/classify any
new class, we only need to put the class and its examples in S.

The proposed approach has been evaluated on product classifi-
cation and the results show its competitive performance.

2 L2AC FRAMEWORK

As an overview, Fig. 1 depicts how L2AC classifies a test example
into an existing seen class or rejects it as from an unseen class.
The training process for the meta-classifier is not shown, which is
detailed in Sec. 2.2. The L2AC framework has two major compo-
nents: a ranker and a meta-classifier. The ranker is used to retrieve
some examples from a seen class that are similar/near to the test
example. The meta-classifier performs classification after it reads
the retrieved examples from the seen classes. The two components
work together as follows.

Assume we have a set of seen classes S. Given a test example
x; that may come from either a seen class or an unseen class, the
ranker finds a list of top-k nearest examples to x; from each seen
class ¢ € S, denoted as x,,, |- The meta-classifier produces the
probability p(c = 1|x¢, xg,, |x,,c) that the test x; belongs to the seen
class ¢ based on ¢’s top-k examples (most similar to x;). If none of

these probabilities from the seen classes in S exceeds a threshold
(e.g., 0.5 for the sigmoid function), L2AC decides that x; is from an
unseen class (rejection); otherwise, it predicts x; as from the seen
class with the highest probability (for classification). We denote
ple = 1lx¢, Xq,, |x,,c) @ plelxs, xq,,.) for brevity when necessary.
Note that although we use a threshold, this is a general threshold
that is not for any specific classes as in other OWL approaches
but only for the meta-classifier. More practically, this threshold is
pre-determined (not empirically tuned via experiments on hyper-
parameter search) and the meta-classifier is trained based on this
fixed threshold.

As we can see, the proposed framework works like a supervised
lazy learning model, such as the k-nearest neighbor (kNN) classifier.
Such a lazy learning mechanism allows the dynamic maintenance
of a set of seen classes, where an unseen class can be easily added
to the seen class set S. However, the key differences are that all the
metric space, voting and rejection are learned by the meta-classifier.

Retrieving the top-k nearest examples x,, , for a given test exam-
ple x; needs a ranking model (the ranker). We will detail a sample
implementation of the ranker in Sec. 3 and discuss the details of
the meta-classifier in the next section.

2.1 Meta-Classifier

Meta-classifier serves as the core component of the L2AC frame-
work. It is essentially a binary classifier on a given seen class. It
takes the top-k nearest examples (to the test example x;) of the
seen class as the input and determines whether x; belongs to that
seen class or not. In this section, we first describe how to represent
examples of a seen class. Then we describe how the meta-classifier
processes these examples together with the test example into an
overall probability score (via a voting mechanism) for deciding
whether the test example should belong to any seen class (classi-
fication) or not (rejection). Along with that we also describe how
a joint decision is made for open-world classification over a set of
seen classes. Finally, we describe how to train the meta-classifier
via another set of meta-training classes and their examples.

2.1.1  Example Representation and Memory. Representation learn-
ing lives at the heart of neural networks. Following the success of
using pre-trained weights from large-scale image datasets (such as
ImageNet [25]) as feature encoders, we assume there is an encoder
that captures almost all features for text classification.

Given an example x representing a text document (a sequence
of tokens), we obtain its continuous representation (a vector) via
an encoder h = g(x), where the encoder g(-) is typically a neural
network (e.g., CNN or LSTM). We will detail a simple encoder
implementation in Sec. 3.

Further, we save the continuous representations of the examples
into the memory of the meta-classifier. So later, the top-k examples
can be efficiently retrieved via the index (address) in the memory.
The memory is essentially a matrix E € R™ %l where n is the
number of all examples from seen classes and |h| is the size of
the hidden dimensions. Note that we will still use x instead of h
to refer to an example for brevity. Given the test example x;, the
meta-classifier first looks up the actual continuous representations
Xa,,; of the top-k examples for a seen class. Then the meta-classifier
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Figure 1: Overview of the L2AC framework (best viewed in colors). Assume the seen class set S has 5 classes and their examples
are indicated by 5 different colors. L2ZAC has two components: a ranker and a meta-classifier. Given a (green) testing example
from a seen class, the ranker first retrieves the top-k nearest examples (memory indexes) from each seen class. Then the
meta-classifier takes both the test example and the top-k nearest examples for a seen class to produce a probability score for
that class. The meta-classifier is applied 5 times (indicated by 5 rounded rectangles) over these 5 seen classes and yields 5
probability scores, where the 3rd (green) class attends the maximum score as the final class (green) prediction. However, if the
test example (grey) is from an unseen class (as indicated by the dashed box), none of those probability scores from the seen

classes will predict positive, which leads rejection.

computes the similarity score between x; and each x4, (1 < i < k)
individually via a 1-vs-many matching layer as described next.

2.1.2  1-vs-many Matching Layer. To compute the overall proba-
bility between a test example and a seen class, a 1-vs-many match-
ing layer in the meta-classifier first computes the individual similar-
ity score between the test example and each of the top-k retrieved
examples of the seen class. The 1-vs-many matching layer essen-
tially consists of k shared matching networks as indicated by big
yellow triangles in Fig. 1. We denote each matching network as
f(-,-) and compute similarity scores ry.; for all top-k examples
Ik = f(xt9xal:k)~

The matching network first transforms the test example x; and
Xgq,; from the continuous representation space to a single example
in a similarity space. We leverage two similarity functions to obtain
the similarity space. The first function is the absolute values of
the element-wise subtraction: fypssub(*s,%q;) = |xr — xg,|- The
second one is the element-wise summation: fsum(x¢, xq;) = X +xq;.
Then the final similarity space is the concatenation of these two
functions’ results: fsim(xs,Xa;) = fabssub(X2: Xa;) ® foum(xe, xa,),
where @ denotes the concatenation operation. We then pass the
result to two fully-connected layers (one with Relu activation) and
a sigmoid function:

ri = f(xt,xai) = O'(W2 . Relu(W1 . fsim(xt,xai) + bl) + bz). (1)

Since there are k nearest examples, we have k similarity scores
denoted as ry.. The hyper-parameters are detailed in Sec. 3.

2.1.3 Open-world Learning via Aggregation Layer. After getting
the individual similarity scores, an aggregation layer in the meta-
classifier merges the k similarity scores into a single probability

indicating whether the test example x; belongs to the seen class.
By having the aggregation layer, the meta-classifier essentially has
a parametric voting mechanism so that it can learn how to vote on
multiple nearest examples (rather than a single example) from a
seen class to decide the probability. As a result, the meta-classifier
can have more reliable predictions, which is studied in Sec. 3.

We adopt a (many-to-one) BiLSTM [15, 27] as the aggregation
layer. We set the output size of BiLSTM to 2 (1 per direction of
LSTM). Then the output of BILSTM is connected to a fully-connected
layer followed by a sigmoid function that outputs the probability.
The computation of the meta-classifier for a given test example x;
and x4, for a seen class ¢ can be summarized as:

plelxt, xa,, ) = (W - BILSTM(ry.) + b). (2)
Inspired by DOC [30], for each class ¢ € S, we evaluate Eq. 2 as:

reject, if maxces p(clxs, Xa,, ) < 0.5;
= ®)
arg max_ g p(clxs, xq,, ), otherwise.

If none of existing seen classes S gives a probability above 0.5, we
reject x; as an example from some unseen class. Note that given
a large number of classes, eq. 3 can be efficiently implemented in
parallel. We leave this to future work. To make L2AC an easily
accessible approach, we use 0.5 as the threshold naturally and do
not introduce an extra hyper-parameter that needs to be artificially
tuned. Note also that as discussed earlier, the seen class set S and
its examples can be dynamically maintained (e.g., one can add to or
remove from S any class). So the meta-classifier simply performs
open-world classification over the current seen class set S.



2.2 Training of Meta-Classifier

Since the meta-classifier is a general classifier that is supposed to
work for any class, training the meta-classifier pg(c|xt, xq,, |x,,c)
requires examples from another set M of classes called meta-training
classes. A large |M| is desirable so that meta-training classes have
good coverage of features for seen and unseen classes in testing,
which is in similar spirit to few-shot learning [19]. We also enforce
(SUU)N M = & in Sec. 3, so that all seen and unseen classes are
totally unknown to the meta-classifier.

Next, we formulate the meta-training examples from M, which
consist of a set of pairs (with positive and negative labels). The first
component of a pair is a training document x4 from a class in M,
and the second component is a sequence of top-k nearest examples
also from a class in M.

We assume every example (document) of a class in M can be a
training document x4. Assuming x4 is from class ¢ € M, a positive
training pair is (xq, xg,,, |xq’c), where x4, | |xg.c ATe top-k examples
from class c that are most similar or nearest to x4; a negative train-
ing pair is (xg, X4, |x,,c’)» Where ¢’ €M,c#c and Xy |xg,c’ ATE
top-k examples from class ¢’ that are nearest to x4. We call ¢’ one
negative class for x4. Since there are many negative classes ¢’ € M\c
for x4, we keep top-n negative classes for each training example
xq. That is, each x4 has one positive training pair and n negative
training pairs. To balance the classes in the training loss, we give a
weight ratio n : 1 for a positive and a negative pair, respectively.

Training the meta-classifier also requires validation classes for
model selection (during optimization) and hyper-parameters (k and
n) tuning (as detailed in Experiments). Since the classes tested by
the meta-classifier are unexpected, we further use a set of validation
classes M'NM = @ (also M’ N(SUU) = @), to ensure generalization
on the seen/unseen classes.

3 EXPERIMENTS

We want to address the following Research Questions (RQs): RQ1 -
what is the performance of the meta-classifier with different set-
tings of top-k examples and n negative classes? RQ2 - How is the
performance of L2AC compared with state-of-the-art text classi-
fiers for open-world classification (which all need some forms of
re-training).

3.1 Dataset

We leverage the huge amount of product descriptions from the
Amazon Datasets [14] and form the OWL task as the following.
Amazon.com maintains a tree-structured category system. We con-
sider each path to a leaf node as a class. We removed products
belonging to multiple classes to ensure the classes have no over-
lapping. This gives us 2598 classes, where 1018 classes have more
than 400 products per class. We randomly choose 1000 classes from
the 1018 classes with 400 randomly selected products per class as
the encoder training set; 100 classes with 150 products per class are
used as the (classification) test set, including both seen classes S
and unseen classes U; another 1000 classes with 100 products per
class are used as the meta-training set (including both M and M’).
For the 100 classes of the test set, we further hold out 50 examples
(products) from each class as test examples. The rest 100 examples
are training data for baselines, or seen classes examples to be read

by the meta-classifier (which only reads those examples but is not
trained on those examples). To train the meta-classifier, we further
split the meta-training set as 900 meta-training classes (M) and 100
validation classes (M”).

For all datasets, we use NLTK? as the tokenizer, and regard all
words that appear more than once as the vocabulary. This gives
us 17,526 unique words. We take the maximum length of each
document as 120 since the majority of product descriptions are
under 100 words.

3.2 Ranker

We use cosine similarity to rank the examples in each seen (or
meta-training) class for a given test (or meta-training) example x;

(or xq)3. We apply cosine directly on the hidden representations of

hi-hg; .
the encoder as cosine(hx, hg;) = m where * can be either
% ﬂi

torgq, |- |2 denotes the [-2 norm and - denotes the dot product of
two examples.

Training the meta-classifier also requires a ranking of negative
classes for a meta-training example x4, as discussed in Sec. 2.2. We
first compute a class vector for each meta-training class. This class
vector is averaged over all encoded representations of examples
of that class. Then we rank classes by computing cosine similar-
ity between the class vectors and the meta-training example xg4.
The top-n (defined in the previous section) classes are selected as
negative classes for x4. We explore different settings of n later.

3.3 Evaluation

Similar to [30], we choose 25, 50, and 75 classes from the (clas-
sification) test set of 100 classes as the seen classes for three (3)
experiments. Note that each class in the test set has 150 examples,
where 100 examples are for the training of baseline methods or used
as seen class examples for LZAC and 50 examples are for testing
both the baselines and L2AC. We evaluate the results on all 100
classes for those three (3) experiments. For example, when there
are 25 seen classes, testing examples from the rest 75 unseen classes
are taken as from one rejection class cyej, as in [30].

Besides using macro F1 as used in [30], we also use weighted F1
score overall classes (including seen and the rejection class) as the
evaluation metric. Weighted F1 is computed as

Ne

= Fl, (4)
) ZceSU{crej}Nc ¢

ce€SU{crej

where N is the number of examples for class ¢ and F1. is the F1
score of that class. We use this metric because macro F1 has a bias
on the importance of rejection when the seen class set is small
(macro F1 treats the rejection class as equally important as one
seen class). For example, when the number of seen classes is small,
the rejection class should have a higher weight as a classifier on a
small seen set is more likely challenged by examples from unseen
classes. Further, to stabilize the results, we train all models with 10
different initializations and average the results.

https://www.nltk.org/

3Given many examples to process, the ranker can be implemented in a fully parallel
fashion to speed up the processing, which we leave to future work as it is beyond the
scope of this work.
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Figure 2: Weighted F1 scores for different k’s (n = 9) and dif-
ferent n’s (k = 5).

3.4 Hyper-parameters

For simplicity, we leverage a BiLSTM [15, 27] on top of a GloVe
[23] embedding (840b.300d) layer as the encoder (other choices
are also possible). Similar to feature encoders trained from Ima-
geNet [25], we train classification over the encoder training set with
1000 classes and use 5% of the encoding training data as encoder
validation data. We apply dropout rates of 0.5 to all layers of the en-
coder. The classification accuracy of the encoder on validation data
is 81.76%. The matching network (the shared network within the
1-vs-many matching layer) has two fully-connected layers, where
the size of the hidden dimension is 512 with a dropout rate of 0.5.
We set the batch size of meta-training as 256.

To answer RQ1 on two hyper-parameters k (number of near-
est examples from each class) and n (number of negative classes),
we use the 100 validation classes to determine these two hyper-
parameters. We formulate the validation data similar to the testing
experiment on 50 seen classes. For each validation class, we select
50 examples for validation. The rest 50 examples from each val-
idation seen class are used to find top-k nearest examples. We
perform grid search of averaged weighted F1 over 10 runs for
k € {1,3,5,10,15,20} and n € {1,3,5,9}, where k =5and n = 9
reach a reasonably well weighted F1 (87.60%). Further increasing
n gives limited improvements (e.g., 87.69% for n = 14 and 87.68%
for n = 19, when k = 5). But a large n significantly increases the
number of training examples (e.g., n = 14 ended with more than
1 million meta-training examples) and thus training time. So we
decide to select k = 5 and n = 9 for all ablation studies below. Note
the validation classes are also used to compute (formulated in a way
similar to the meta-training classes) the validation loss for selecting
the best model during Adam [16] optimization.

3.5 Compared Methods

To the best of our knowledge, DOC [30] is the only state-of-the-art
baseline for open-world learning (with rejection) for text classifica-
tion. It has been shown in [30] that DOC significantly outperforms
the methods CL-cbsSVM and cbsSVM in [9] and OpenMax in [3].
OpenMax is a state-of-the-art method for image classification with
rejection capability.

To answer RQ2, we use DOC and its variants to show that the
proposed method has comparable performance with the best open-
world learning method with re-training. Note that DOC cannot
incrementally add new classes. So we re-train DOC over different

sets of seen classes from scratch every time new classes are added
to that set. It is thus actually unfair to compare our method with
DOC because DOC is trained on the actual training examples of all
classes. However, our method still performs better in general. We
used the original code of DOC and created six (6) variants of it.

DOC-CNN: CNN implementation as in the original DOC paper
without Gaussian fitting (using 0.5 as the threshold for rejection).
It operates directly on a sequence of tokens.

DOC-LSTM: a variant of DOC-CNN, where we replace CNN with
BiLSTM to encode the input sequence for fair comparison. BiLSTM
is trainable and the input is still a sequence of tokens.

DOC-Enc: this is adapted from DOC-CNN, where we remove the
feature learning part of DOC-CNN and feed the hidden represen-
tation from our encoder directly to the fully-connected layers of
DOC for a fair comparison with L2AC.

DOC-*-Gaus: applying Gaussian fitting proposed in [30] on the
above three baselines, we have 3 more DOC baselines. Note that
these 3 baselines have exactly the same models as above respec-
tively. They only differ in the thresholds used for rejection. Gaussian
fitting in [30] is used to set a good threshold for rejection. We use
these baselines to show that the Gaussian fitted threshold improves
the rejection performance of DOC significantly but may lower
the performance of seen class classification. The original DOC is
DOC-CNN-Gaus here.

The following baselines are variants of L2AC.

L2AC-n9-NoVote: this is a variant of the proposed L2AC that only
takes one most similar example (from each class), i.e., k = 1, with
one positive class paired with n = 9 negative classes in meta-
training (n = 9 has the best performance as indicated in answering
RQ1 above). We use this baseline to show that the performance
of taking only one sample may not be good enough. This baseline
clearly does not have/need the aggregation layer and only has a
single matching network in the 1-vs-many layer.
L2AC-n9-Vote3: this baseline uses exactly the same model as L2ZAC-
n9-NoVote. But during evaluation, we allow a non-parametric vot-
ing process (like kNN) for prediction. We report the results of voting
over top-3 examples per seen class as it has the best result (ranging
from 3 to 10). If the average of the top-3 similar examples in a seen
class has example scores with more than 0.5, L2ZAC believes the
testing example belongs to that class. We use this baseline to show
that the aggregation layer is effective in learning to vote and L2AC
can use more similar examples and get better performance.
L2AC-k5-n9-AbsSub/Sum: To show that using two similarity func-
tions (fapssub(+» ) and fsum(:, ) ) gives better results, we further per-
form ablation study by using only one of those similarity functions
at a time, which gives us two baselines.
L2AC-k5-n9/14/19: this baseline has the best k = 5and n = 9
on the validation classes, as indicated in the previous subsection.
Interestingly, further increasing k may reduce the performance as
L2AC may focus on not-so-similar examples. We also report results
on n = 14 or 19 to show that the results do not get much better.

3.6 Results Analysis

From Table 1, we can see that L2ZAC outperforms DOC, especially
when the number of seen classes is small. First, from Fig. 2 we can
see that k = 5 and n = 9 gets reasonably good results. Increasing k



Methods IS = 25 (WF1) | [S| = 25 (MF1) | |S| = 50 (WF1) | |S] = 50 (MF1) | |S[ = 75 (WF1) | [S| = 75 (MF1)
DOC-CNN 53.25(1.0) 55.04(0.39) 70.57(0.46) 76.91(0.27) 81.16(0.47) 86.96(0.2)
DOC-LSTM 57.87(1.26) 57.6(1.18) 69.49(1.58) 75.68(0.78) 77.74(0.48) 84.48(0.33)
DOC-Enc 82.92(0.37) 75.09(0.33) 82.53(0.25) 84.34(0.23) 83.84(0.36) 88.33(0.19)
DOC-CNN-Gaus 85.72(0.43) 76.79(0.41) 83.33(0.31) 83.75(0.26) 84.21(0.12) 87.86(0.21)
DOC-LSTM-Gaus 80.31(1.73) 70.49(1.55) 77.49(0.74) 79.45(0.59) 80.65(0.51) 85.46(0.25)
DOC-Enc-Gaus 88.54(0.22) 80.77(0.22) 84.75(0.21) 85.26(0.2) 83.85(0.37) 87.92(0.22)
L2AC-n9-NoVote 91.1(0.17) 82.51(0.39) 84.91(0.16) 83.71(0.29) 81.41(0.54) 85.03(0.62)
L2AC-n9-Vote3 91.54(0.55) 82.42(1.29) 84.57(0.61) 82.7(0.95) 80.18(1.03) 83.52(1.14)
L2AC-k5-n9-AbsSub || 92.37(0.28) 84.8(0.54) 85.61(0.36) 84.54(0.42) 83.18(0.38) 86.38(0.36)
L2AC-k5-n9-Sum 83.95(0.52) 70.85(0.91) 76.09(0.36) 75.25(0.42) 74.12(0.51) 78.75(0.57)
L2AC-k5-n9 93.07(0.33) 86.48(0.54) 86.5(0.46) 85.99(0.33) 84.68(0.27) 88.05(0.18)
L2AC-k5-n14 93.19(0.19) 86.91(0.33) 86.63(0.28) 86.42(0.2) 85.32(0.35) 88.72(0.23)
L2AC-k5-n19 93.15(0.24) 86.9(0.45) 86.62(0.49) 86.48(0.43) 85.36(0.66) 88.79(0.52)

Table 1: Weighted F1 (WF1) and macro F1 (MF1) scores on a test set with 100 classes with 3 settings: 25, 50, and 75 seen classes.
The set of seen classes are incrementally expanded from 25 to 75 classes (or gradually shrunk from 75 to 25 classes). The results
are the averages over 10 runs with standard deviations in parenthesis.

may harm the performance as taking in more examples from a class
may let L2AC focus on not-so-similar examples, which is bad for
classification. More negative classes give L2AC better performance
in general but further increasing n beyond 9 has little impact.

Next, we can see that as we incrementally add more classes, L2ZAC
gradually drops its performance (which is reasonable due to more
classes) but it still yields better performance than DOC. Considering
that L2AC needs no training with additional classes, while DOC
needs full training from scratch, L2AC represents a major advance.
Note that testing on 25 seen classes is more about testing a model’s
rejection capability while testing on 75 seen classes is more about
the classification performance of seen class examples. From Table
1, we notice that L2AC can effectively leverage multiple nearest
examples and negative classes. In contrast, the non-parametric
voting of L2AC-n9-Vote3 over top-3 examples may not improve
the performance but introduce higher variances. Our best k = 5
indicates that the meta-classifier can dynamically leverage multiple
nearest examples instead of solely relying on a single example. As an
ablation study on the choices of similarity functions, running L2AC
on a single similarity function gives poorer results as indicated by
either L2AC-k5-n9-AbsSub or L2AC-k5-n9-Sum.

DOC without encoder (DOC-CNN or DOC-LSTM) performs
poorly when the number of seen classes is small. Without Gaussian
fitting, DOC’s (DOC-CNN, DOC-LSTM or DOC-Enc) performance
increases as more classes are added as seen classes. This is rea-
sonable as DOC is more challenged by fewer seen training classes
and more unseen classes during testing. As such, Gaussian fitting
(DOC-*-Gaus) alleviates the weakness of DOC on a small number
of seen training classes.

4 RELATED WORK

Open-world learning has been studied in text mining and computer
vision (where it is called open-set recognition) [2, 7, 9]. Most ex-
isting approaches focus on building a classifier that can predict
examples from unseen classes into a (hidden) rejection class. These
solutions are built on top of closed-world classification models
[2, 3, 30]. Since a closed-world classifier cannot detect/reject ex-
amples from unseen classes (they will be classified into some seen

classes), some thresholds are used so that these closed-world mod-
els can also be used to do rejection. However, as discussed earlier,
when incrementally learning new classes, they also need some form
of re-training, either full re-training from scratch [3, 30] or partial
re-training in an incremental manner [2, 9].

Our work is also related to class incremental learning [21, 24, 26],
where new classes can be added dynamically to the classifier. For
example, iCaRL [24] maintains some exemplary data for each class
and incrementally tunes the classifier to support more new classes.
However, they also require training when each new class is added.

Our work is clearly related to meta-learning (or learning to learn)
[32], which turns the machine learning tasks themselves as training
data to train a meta-model and has been successfully applied to
many machine learning tasks lately, such as [1, 8, 10-12]. Our
proposed framework focuses on learning the similarity between
an example and an arbitrary class and we are not aware of any
open-world learning work based on meta-learning.

The proposed framework is also related to zero-shot learning
[20, 22, 31] (in that we do not require training but need to read
training examples), k-nearest neighbors (kNN) (with additional re-
jection capability, metric learning [34] and learning to vote), and
Siamese networks [4, 17, 33] (regarding processing a pair of exam-
ples). However, all those techniques work in closed-worlds with no
rejection capability.

Product classification has been studied in [5, 6, 13, 18, 28, 29],
mostly in a multi-level (or hierarchical) setting. However, given the
dynamic taxonomy in nature, product classification has not been
studied as an open-world learning problem.

5 CONCLUSIONS

In this paper, we proposed a meta-learning framework called L2AC
for open-world learning. L2AC has been applied to product classifi-
cation. Compared to traditional closed-world classifiers, our meta-
classifier can incrementally accept new classes by simply adding
new class examples without re-training. Compared to other open-
world learning methods, the rejection capability of L2AC is trained
rather than realized using some empirically set thresholds. Our
experiments showed superior performances to strong baselines.
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