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Using social media during natural disasters has become commonplace globally. In the U.S., public social media plat-
forms are often a go-to because people believe: the 9-1-1 system becomes overloaded during emergencies and that
first responders will see their posts. While social media requests may help save lives, these posts are difficult to find
because there is more noise on public social media than clear signals of who needs help. This study compares
human-coded images posted during 2017's Hurricane Harvey to machine-learned ‘deep learning’ classification
methods. Our framework for feature extraction uses the VGG-16 convolutional neural network/multilayer perceptron
classifiers for classifying the urgency and time period for a given image. We find that our qualitative results showcase
that unique disaster experiences are not always captured through machine-learned methods. These methods work to-
gether to parse through the high levels of non-relevant content on social media to find relevant content and requests.
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1. Introduction

Hurricane Harvey, which struck the greater Houston, Texas, USA-region
between August and September 2017, was considered the first post-911
American natural disaster where social media posts requesting aid and help
superseded 9-1-1 phone systems [34]. This form of help-seeking behavior
on public social media platforms is over a decade old, but in this particular di-
saster, social media proved to be a particularly visible, often image-heavy
way for stakeholders to disseminate information quickly [41]. In fact, during
natural disasters in general, the images shared on social media serve as a type
of near-real-time social sensor [26]. Text generally has much higher levels of
‘noise’, i.e., non-relevant information, than do images posted during a disaster
as most images taken during a hurricane, for example, can be categorized
under a finite set of motifs [26], whereas text posted during the same time
tends to have far more diversity.

During Hurricane Harvey, requesting help on social media proved effec-
tive, as various platforms provided citizenswith up-to-the second information
[17]. For example, hashtags “#SOSHarvey” and “#HelpHouston” trended
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nationwide during the storm, and were often used as a means to flag those
who needed rescue [34]. It is of course no surprise that social media emerged
as a visible platform to request assistance, as the American public uses social
media in the course of their everyday lives [31]. Following changing percep-
tions towards the visibility of content on social media and the turn towards
online surveillance cultures, an American Red Cross study found that people
believe that emergency personnel monitor social media and that their calls
for help will be answered if they simply post a message [2]. It is also clear
that people, regardless whether they were directly affected by the hurricane,
engaged with various social media platforms, and shared content on their
own accord as a means of activism, support, or keeping up with other's
real-time status [17].

Further research explained that citizens use social media to request aid
and relief during a natural disaster [33]. However, Varga et al. [47] stresses
that often Twittermessages directed to provide assistance are not successful
in their attempts to reach victims and rescue organizations, due to noise/
spam unrelated to the disaster and the sheer volume of information shared
during a disaster. It is the goal of this study to understandwhethermachine-
based systems trained by humans can identify relevant images shared dur-
ing the Hurricane Harvey disaster through deep learningmethods. We used
Twitter's 1% random ‘Spritzer’ sample retrieved directly from Twitter's
streaming API to collect all tweets during our study period and then ex-
tracted a sample of Hurricane Harvey-related tweets with the following
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keywords: ‘hurricane’, ‘harvey’, ‘hurricaneharvey’, ‘harveyhouston’. Our
sample consists of 17,483 images that were posted within all extracted
tweets before (August 17, 2017 to August 25, 2017), during (August 26,
2017 to September 1, 2017) and after Hurricane Harvey (September 2,
2017 to September 17, 2017). 1128 (approximately 6.45%) of the images
were randomly selected and were hand-coded by two authors using a
theoretically-derived codebook [20] to content analyze the type of need re-
quested and reported. Ultimately, we argue that images produced on public
social media during a natural disaster have value to understand how aid
and relief can be facilitated, but finding genuine content from disaster vic-
tims is not straightforward and involves various complexities. Some of
these challenges might be able to be identified and categorized by deep
learning methods (particularly around whether an image may signify a
case of needing assistance), whereas other attributes might be better served
by human interpreters. Our study seeks to explorewhich challenges are bet-
ter suited to machines and humans.

2. Social media in disasters

Social media plays some role in most natural and man-made disasters –
whether that is around emergency services or soliciting aid – and this use is
well established in the literature [29]. However, as social media differ and
change in terms of access and features, users have come to use social media
for varied purposes during disasters, depending on the type of disaster and
social context [25]. Extant literature suggests that citizen use of social
media focuses on warnings, response activities, and the quick dissemina-
tion of information [48]. Research has demonstrated that the public uses
social media as a resource to obtain information during a disaster [51].
This follows larger trends that indicate social media is often an integral, if
not prime, source of many people's news mix in developed countries. One
reason is that social media often provide access to updated information at
a faster rate than traditional news sources. Specifically, Sutton, Palen &
Shklovski's [43] early research on the 2007 California wildfires demon-
strated that the public used social media because perceptions of official
sources and emergency management agencies were that these organiza-
tions were not providing important information.

Murthy [24] coins this desire as part of an “update culture,” where
citizens use social media to stay up-to-date during a disaster. Murthy
stresses that these disasters are not all natural ones, but that the prolif-
eration of social media has given rise to how these platforms can be
used in manmade disasters as well. Specifically, Potts [32] used the
London bombings in 2005 and the terrorist attacks in Mumbai in 2008
as case studies to explore initial social media use in these manmade, ter-
rorist disasters. Further work has looked at social media response after
the Sewol ferry disaster in South Korea [52] and campus safety emer-
gencies [40,53]. Together, these studies suggest that social media has
been broadly used in a myriad of disaster types, though Murthy [24]
stresses that studying the specific platform may shed more light into
how these tools can be leveraged.

2.1. Twitter and disasters

Ultimately, Twitter has become a key social medium during disasters.
Lachlan et al. [21] state that because Twitter can be used with mobile de-
vices and messages can be shared with large audiences (including those
outside one's social network), it can be specifically useful during a natural
disaster. In addition to a brief, 280 character limit, users can also link to
URLs and images, can retweet others, comment back, and ‘like’ a tweet. Sut-
ton et al. [44] found that retweets of messages during a 2012 wildfire in
Colorado were more likely to take place when the content was advisory,
demonstrated a sense of urgency, and had clear sentence structure. Hurri-
cane Sandy in 2012 was one of the first major natural disasters in which
scholars analyzed Twitter content. Murthy and Gross's [25] study found
that Twitter users often posted images and location-check-ins during Hurri-
cane Sandy, activities which became particularly accentuated as the storm
made landfall. Spence et al. [39] also noted that over time, the government-
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promoted hashtag, “#Sandy,”was found by users as unsuitable for discern-
ing useful information as the hashtagwas often overshadowed by irrelevant
content.

At the time of Hurricane Harvey in 2017, Twitter had 2.46 billon users.
Harvey was viewed as a unique natural disaster in which Twitter and other
social media provided citizens with a platform to communicate urgent in-
formation quickly that ultimately led to life-saving rescues for those who
were flooded [41]. In that same study, Stephens et al. [41] discovered
that social media posts during Hurricane Harvey served as public service
announcements (PSAs), informing both those affected and those outside
the storm with important updates. However, determining what social
media posts were actually relevant was quite difficult for those seeking in-
formation [38]. Similar to Lachlan et al.'s [21] findings, the vast number of
tweets related to the actual disaster of HurricaneHarvey varied.Mouzannar
et al. [22] stated that much of the information shared during the stormwas
not usable, and emergency responders who had to manually mine posts for
important information often had to sift through exhausting amounts of irrel-
evant content.
2.2. ‘Aid’ and ‘need’ on social media

The 2010 earthquake in Haiti brought to light how Twitter can be used
for disaster outreach and fundraising on a global level [23], and various hu-
manitarian agencies have used Twitter as a tool for aid mobilization. For
example, Frank [7] discusses various organizations using Twitter for
cross-promotingways tomake charitable donations after the Haitian earth-
quake. Further, David, Ong, and Legara [5] argue that besides fundraising,
Twitter allows users to build global awareness of a natural disaster. For ex-
ample, during the 2013 Haiyan typhoon, photos of hard-hit areas were
being tweeted by relief workers on the ground, and then shared globally.
Thus, the global public was able to be engaged, even if they were not di-
rectly affected [5].

In a tsunami evaluation commission report, Telford et al. [45] suggest
that the information shared immediately after a disaster is the most valu-
able for both recovery and future planning. If obtainable, high quality infor-
mation allows both emergency services and local responders to provide a
better emergency response. Yet, according to Goyet and Morinière [8],
when information is not provided in a timely manner, a lack of information
becomes pervasive amongst stakeholders involved in the natural disaster.
Paul [30] argues that themajor themes that emerge for tweets immediately
following a disaster include: requests, reports and reactions. This encapsu-
lates requests for relief work, including basic human needs such as food,
water, shelter and medical assistance [46]. This is followed by requests
for search and rescue, infrastructure protection, the recovery of lifeline ser-
vices, and basic information updates about citizens affected by the natural
disaster [36]. Reports often included damage to public and private prop-
erty, crime, and community mood and behavior. Reactions from the com-
munity regarding efforts from emergency response officials, or efforts
from the community (e.g., volunteers, food providers) were also common.
Paul [30] also notes that tweets during a natural disaster are often not re-
lated to the needs of emergency services or providing aid, but could be de-
noted as spam or marketing, spiritual messages asking for prayers, or
personal narratives. Murthy and Longwell [27] also noted that various
spam websites were shared at significant levels following the 2010
Pakistan floods.

From a volunteer and nonprofit perspective, Guo and Saxton [9] argue
that Twitter serves as a powerful communication tool for social change, es-
pecially in educating the public. However, Twitter was viewed as less of a
tool for mobilization but more so for providing information to stakeholders
and building an online community that could be later called to action. In
their analysis of outreach organizations after the 2010 Haitian earthquake,
Gurman and Ellenberger [11] found that these same organizations missed
opportunities to extend the reach of their message. However, this and
other aforementioned research did not specifically understand the role of
photos shared during a disaster on Twitter.
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2.3. Images on social media

The posting of images and video during natural disasters has become an
important part of how these crises are socially experienced and understood
[26], though studies of visual content during disasters remains heavily
overshadowed by text. The focus on text continues despite the tremendous
amounts of information contained in images. Although much research on
social media and disasters has focused less on the role of images, these ini-
tial studies show that images perform multiple functions and have value.
Gupta et al. [10] found that images shared on Twitter during Hurricane
Sandy were often spread through retweets. In their research on Instagram
images shared during that samehurricane,Murthy et al. [26] argue that im-
ages emphasized how people experienced the disaster firsthand, and these
images reflected the vantage point of disaster victims rather than official re-
sponders. These user-produced images were often shared much faster than
what journalists were able to report. Their study was novel given that Hur-
ricane Sandywas thefirst major natural disasterwhere Instagramwas used.
Given that Hurricane Harvey was a unique disaster from a social media
viewpoint, we follow Murthy et al.'s advice “to develop ways of tackling
these obstacles” for future crises that are socially experienced on Twitter
(p. 129).

3. Machine and deep learning methods in natural disasters

Muchwork has been done regarding classifying Twitter data as signal or
noise (i.e., relevant or non-relevant, respectively). For example, the Artifi-
cial Intelligence for Disaster Response (AIDR) system performs automatic
classification of signal versus noise. Though it is designed for tweets, it is
specifically a text only system. AIDR uses machine learning methods that
are trained on human labeled-data. This has produced quite impressive re-
sults. Specifically, AIDR's accuracy has been reported at 80% for identifying
relevant tweets during the 2013 Pakistan earthquake [15]. Imran et al. [16]
also leveraged machine learning to understand how individuals extracted
valuable “information nuggets,” which are defined as brief, self-contained
information items that could be deemed relevant to man-made disaster
response.

Tweedr is another machine-based pipeline that uses tweets to extract
actionable information for disaster relief workers [3]; this tool uses classifi-
cation, clustering and extraction. Recent work studying the use of social
media used during Hurricane Harvey by O'Neal et al. [28] employs super-
vised learning methods, specifically with images, as AIDR and Tweedr are
text-based. O'Neal et al.'s [28] study, however, is not focused on Twitter,
but seeks to evaluate the use of supervised learning based on samples of pri-
vate social media data. Deep learning methods are not evaluated, nor are
training sets developed from noisy, public social media platforms. How-
ever, their work suggests machines are likely able to learn from human
knowledge and leverage this to classify the basic features of images by cat-
egories (e.g. rescuee and rescuer). In Elbanna et al.'s [6] work, a series of
workshops with first responders revealed the need for machine learning
to be applied to social media data in meaningful ways, given that disaster
victims are increasingly using social media as their first lifeline in crises.
In turn, governmental agencies who manage disasters are interested in
novel methods to capture emerging social media use during disasters —
and machine learning may be one way to classify those who need help.

4. Research questions

Based on our review of the literature, the need suggested by Elbanna
et al. [6], and the call to action proposed by O'Neal et al. [28], we propose
the following research question:

RQ1: Can we achieve high, real-time accuracy and classification rates of
images – ignoring included text - posted to Twitter during a natural disaster
for aid-and-need using deep learningmachinemethodswith a human in the
loop? If so, can this be done on harder classification tasks such as the time
period an image corresponds to or the state of urgency an image represents?
3

Our next goal is to gather insights frommanual coding of images posted
to Twitter during a natural disaster and compare those to developing train-
ing sets for deep learning methods. Therefore, we propose the following re-
search question:

RQ2: What are the unique values of human coding inputs when de-
ployed alongside deep learning methods?

5. Method

5.1. Data collection

To collect data, we used Twitter's 1% random ‘Spritzer’ sample retrieved
directly from Twitter's streaming API. We studied tweets from August 17,
2017 to September 17, 2017 and extracted from our Spritzer sample all
Hurricane Harvey-related tweets with the keywords: ‘hurricane’, ‘harvey’,
‘hurricaneharvey’, ‘harveyhouston’. From these tweets, we extracted all
the non-video media-related links to retrieve images. Duplicate images
were removed by computing an MD5 checksum for each image, which is
an “algorithm that is used to verify data integrity through the creation of
a 128 bit message digest from data input (which may be a message of any
length); the product is claimed to be as unique to that specific data as a fin-
gerprint is to the specific individual” ([1], p. 132). An MD5 checksum
“scheme guarantees storing exactly the same file only once and easily iden-
tifying duplicates or near duplicates (accounting for images in various for-
mats, at different resolutions and with minor modifications such as some
watermarks)” ([50], p. 3).

The resulting total number of images was 23,692. 17,483 images
remained after duplicates and empty images were removed. To develop
the training dataset for our deep learning classification study, we randomly
sampled 1128 images (approximately 6.45%) and human coded these im-
ages using a rubric with 10 questions [see human coding information in
4.2 and Appendix A for the rubric].

5.2. Deep learning pipeline

In this section, we describe the methodology used to classify images by
time period and urgency. A high-level overview of ourmethodology is illus-
trated in Fig. 1.

5.2.1. Transfer learning for feature extraction
Transfer learning refers to application of knowledge gained by solving a

prior problem to a new, but related problem. The effectiveness of classic
deep learning methods, like Convolutional Neural Networks, is limited by
the size of the training set [13]; transfer learning offers the benefits of these
deep learning methods while not requiring a large training set. The high di-
mensionality of images, typically represented as a matrix of pixels where
each pixel has a value for its red, green, and blue elements, can be challenging
for traditional machine learning methods to interpret. Instead of feeding raw
images into models, images can be fed into convolutional neural networks to
reduce the dimensionality of images. These networks use convolutional and
pooling layers to extract features, or “feature vectors” before making a classi-
fication or regressive prediction. These feature vectors can be understood as
the collection of nonlinear features, such as edges, shadows, and areas of in-
terest that fully describe the original image. In this way, pre-trained
convolutional neural networks trained on large, diverse datasets can be
used as feature extractors for other machine learning tasks [12].

For the purpose of this study, we used VGG-16, a popular convolutional
neural network traditionally used to classify images into categories of ob-
jects, as a method of feature extraction [37]. Instead of classifying candi-
date images into categories, we collected the output from the second-to-
last layer of VGG-16 before classification and treated this output as a feature
vector representing each image.

5.2.2. Multi-layer perceptron models (MLPs)
After extracting the feature vectors for each model, two multilayer

perceptron networks were constructed to classify images by time period



Fig. 2.MLP classifier architecture.

Fig. 1. High-level overview of image classification pipeline.
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and urgency for the labeled images. For each model, the image and label
pairs were randomly split into a training and validation set, where each
set represented a stratified random sample of images and their correspond-
ing labels. Ultimately, the training set constituted 67% of the total images
and the validation set consisted of the remaining 33% images.

Each model was evaluated against the categorical cross-entropy loss
function [54] and its classification accuracy. Error minimization was
achieved using the Adam optimizer, which has been shown to converge
faster compared to traditional methods like stochastic gradient descent
[18]. To combat the effect of class imbalance on model training, we scaled
the penalty on misclassification according to the proportion of samples
which contained that label. Furthermore, each model was trained with
early-stopping, which halts model training once an increase in training ac-
curacy is accompanied by a significant decrease in the validation accuracy
of the model.

Each feed-forward network consisted of three dense layers, with each
subsequent layer having fewer nodes than the previous layer. Each layer
contained a sigmoidal activation function to normalize each layer's output
to values between 0 and 1. Furthermore, each dense layer was succeeded
by a dropout layer, which randomly reset the weights of a subset of nodes
in that layer. Finally, the output of the last dense layer is passed through
a softmax activation layer so that the final output of each network repre-
sented a classification probability for each of the relevant classification cat-
egories. Fig. 2 describes the architecture of the feedforward networks used
to classify each attribute.

6. Results of transfer learning

6.1. Time period classifier

The first classifier constructed predicted the time period defined as pre-
storm (August 17, 2017 to August 25, 2017; n=124 images), landfall (Au-
gust 26, 2017 to September 1, 2017; n= 735 images), and Harvey's after-
math/immediate cleanup (September 2, 2017 to September 17, 2017; n=
4

269 images). The time period classifier ultimately reached a training accu-
racy of 0.8954, a training loss of 0.3325, a validation accuracy of 0.6461,
and a validation loss of 1.0172 in 5 epochs, defined as a full training
cycle on the training set, in batches of 32. Fig. 3 illustrates the changes in
training and validation accuracy and categorical cross entropy for each
epoch of training. Prima facie, the high performance of the time period clas-
sifier seems to indicate that deep learningmethods based on a small sample
of images could be quickly deployed to identify whether the post date of an
image on social media likely corresponded with not only when the image
was taken, but, whether it content-wise corresponded to before, during,
or after a disaster hit.

Fig. 4 shows a heat-mapped confusion matrix for the time period classi-
fier on the validation data.

However, as the confusion matrix illustrated in Fig. 4 indicates, this is
likely due to the classifier guessing time period 1 ‘landfall’, rather than ac-
tually developing human-like neural pathways for recognizing what stage
the disaster occurred at. Specifically, despite the time period classifier's rel-
atively high accuracy, the confusion matrix for the time period classifier
suggests the model's tendency to predict time period ‘1’ regardless of an
image's feature vectors, despite our attempt to penalize such misclassifica-
tions by scaling the penalty in accordance with the relative frequency of
the time period labels. It is likely that the classifier simply predicts time



Fig. 3. Time period classifier accuracy and loss by epoch.
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period ‘1’ because the optimal accuracy for the classifier is achieved when
the majority of images are classified as the most frequent time period. Of
the 89 images in the validation set from time period ‘2’, only 6.7% were
classified correctly; likewise, of the 41 images from time period ‘0’, only
7.3% were classified correctly. The high performance of our model could
also be explained by class imbalance rather than the extraction of useful fea-
ture vectors. The implication of this for the study of images posted during
disasters is that people are still sharing and communicating images more
frequently during, rather than before or after a disaster.

The frequency of images posted during the disaster is significantly
larger than images posted before or after. Fig. 5 provides a frequency dis-
tributed from the images coded. This may suggest that, despite the restric-
tions on power and cellular service imposed during a disaster, images
remain a valuable and important medium for people to communicate
5

during natural disasters [38]. Furthermore, the time period classifier's
poor performance when classifying time period may suggest that, in order
for deep learning classifiers to be successful, a large dataset of labeled
image is needed. In scenarios where classification of these images is time-
sensitive, this suggests that deep learning models for time period classifica-
tion may require more human labeling than traditional methods of image
classification.

6.2. Urgency classifier

The urgency classifier was trained to predict the urgency of an image
into different levels. Saldana [35] suggests that it is important to identify
the level of importance of a social media post by adding amagnitude coding
to the coding scheme. Here, images were ranked in terms of importance to



Fig. 4. Confusion matrix for time period classifier.
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Hurricane Harvey (4 = highly urgent, 3 = moderately urgent, 2 = some-
what urgent, 1 = not urgent, 0 = spam/unrelated to Hurricane Harvey),
similar to Iakovou and Douligeris [14] recommendations on severity of a
hurricane. The urgency classifier ultimately reached a training accuracy
of 0.6768, a training loss of 0.8868, a maximum validation accuracy of
0.3038, and a validation loss of 1.7252 in 5 epochs, where each epoch rep-
resents a single pass of all training data through the network in batches of
32. Fig. 6 illustrates the changes in training and validation accuracy and
categorical cross entropy for each epoch of training.

Fig. 7 shows a heat-mapped confusion matrix for the time period classi-
fier on the validation data.

Similar to the time period classifier, the confusion matrix for the ur-
gency classifier suggests that the model tends to favor predicting that an
image belongs to urgency levels of ‘0’ and ‘2’; 71.4% of the model's predic-
tions belong to one of these categories, whereas 64.4% of the validation set
consists of images labeled as either ‘0’ or ‘2’. Table 1 summarizes the empir-
ical results for both of the trained classifiers.

Both classifiers indicate issues as revealed by Confusion Matrix testing
(see Figs. 4, 7). This is not uncommon with image classification testing;
however, this suggests some instabilities with our models, particularly as
it relates to class imbalance. In the case of the time-period classifier, it is
possible that additional data, from the less-frequently occurring classes
Fig. 5. Frequency of images by time period.

6

could address the issue posed by class imbalance. While the urgency classi-
fier displays many of the same issues as the time period classifier, it is pos-
sible that filtering out the ‘spam’ images, marked as ‘0’, prior to model
training, could improve the performance of the classifier. Despite these re-
sults, we believe that coding a larger random sample of images, coupled
with filtering out the images labeled ‘spam’ prior to model training could
improve the performance of the classifiers.

7. Human coding results

To help answer RQ1 and RQ2, human coding content analysis was used,
as both a way to create a training model, and for its own unique qualitative
utility. In this section, we detail our qualitative method and results of this
study. For this analysis, 1128 images (from the 17,483 images) were ran-
domly selected to be manually coded by two coders (approximately
6.45%).

A preferred method is to do a content analysis by creating a coding
schema and manually code to evaluate tweets—the unit of analysis
[4,20]. In our study, the unit of analysis is images posted on Twitter. Under-
standably, images are far more challenging than text and due to the large
volume of images needed to interpret, our coding methods focused on
broader ‘motif’ categories, a common practice in disaster-related social
media research [26,49]. Each image was coded using a closed-deductive
codebook, and the coding framework was theoretically derived from previ-
ous literature [20] that represented the following variables: the urgency of
the image [14,35], type of image posted [30], a description of the image
[30], and the type of motif the image represented [26]. The categories we
used for coding were designed to relate to all three phases of Harvey: pre-
storm, landfall, and Harvey's aftermath and immediate cleanup. See Appen-
dix A for codebook.

7.1. Coder training and intercoder reliability

Prior to coding, the authors used the literature to draft an initial coding
framework. Two coders coded the same dataset, and average Cohen's kappa
was 0.937 across coded categories, signifying very strong coder agreement.
The coders held a meeting prior to coding to discuss the codebook and
trained with a sample dataset for practice together. Throughout coding,
the coders met twice to discuss operationalization and trends that emerged
from the coding process.

7.2. Frequency data

Drawing from Stephens&Malone's [42] content analysesmethodology,
we present the results of the content analyses as frequencies to provide a
grounding for the deep learning methods used in study one of this manu-
script. It appears almost one third (exactly 31.6%) of images shared on
Twitter were not related to the Hurricane Harvey disaster (e.g., spam or
noise), while 31.2% of images shared were seen as ‘somewhat urgent’ in
the perception of an image's urgency. See Fig. 8. We can perhaps interpret
these results by demonstrating that highly urgent information was not nec-
essarily disseminated through Twitter images during Harvey (7.7% of Twit-
ter images were coded as highly urgent). Research (see [38,41]) explains
that highly urgent information (including addresses and phone numbers
for rescues) during the disaster was often shared through private social
media feeds, not public.

Using Paul's [30] typology of social media posts shared during a disas-
ter, we find that many posts shared during Hurricane Harvey were reports
(n = 740), including reports of damage, reporting community behavior,
and reporting news coverage (Fig. 9). Note that the sample size does not
add up to 1128, as some images did not fit the typology, and other images
couldfit more than one code.We also see requests (n=26)were not shared
as much as reports and reactions. Requests included immediate help and
rescue, material support, medical assistance, or simply for information.
Like the ‘highly urgent’ finding above, it makes sense that perhaps Twitter
was not used during Hurricane Harvey for requesting aid and need in



Fig. 6. Urgency classifier accuracy and loss by epoch.
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situations requiring highly urgent and time sensitive assistance, following
in line with Smith et al.'s [38] finding that private social media platforms
(e.g., neighborhood Facebook groups and Nextdoor community pages)
were usedmore frequently for the purposes of seeking and providing rescue
to teams with high-water rescue boats.

Finally, drawing from the work by Murthy et al. [26] looking at images
crossed-posted to Twitter and Instagram during Hurricane Sandy, we em-
ploy their same coding framework to imagemotifs shared during Hurricane
Harvey.Murthy et al. [26] argue that usingmotif categories allows us to un-
derstand the basic social experience of disasters.
7

Table 2 illustrates the frequency of codes applied to images. The major-
ity of the motifs can be taken at face value, however, the “MACRO” motif
was used to denote ‘image macros’, images that have a “picture
superimposed with text with a specific purpose of being funny” ([26],
p. 119). The motif of “GEAR” included any equipment or supplies
(e.g., boats, trucks, etc.). Aggregated frequencies are important because
they help to tell alternative stories of Harvey, rather than simply main-
stream accounts of the disaster. Specifically, there is a high frequency of
the motifs OUTSIDE (defined as images depicting the built environment,
nature, or spaces/places not indoors), PEOPLE (defined as images depicting



Fig. 7. Confusion matrix for the urgency classifier.

Table 1
Empirical results of classifiers.

Classifier Training
loss

Training
accuracy

Validation
loss

Maximum
validation
accuracy

Time
period

0.3325 0.8954 1.017 0.6461

Urgency 0.8868 0.6768 1.7252 0.3038

Fig. 9. Type of image (n.b. sample size does not total 1128 as some images did not
fit the typology and some images fit more than one typology).
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people, not inclusive of cartoon depictions of people; inclusive of selfies, in-
dividuals, and groups of people) andDAMAGE (defined as images depicting
storm-related damage to the built environment). We interpret this as indi-
viduals' desire to document the disaster experience through showcasing
weather-related conditions, instances of flooding, and high-water rescues.
This is in juxtaposition to the low frequency of RELIEF (defined as images
depicting relief efforts and relief campaigns, inclusive of screenshots of re-
lief campaigns). We also have ‘OTHER’with a relatively high frequency. As
the two coders met to discuss findings from the dataset, they agreed that a
Fig. 8. Urgency of image
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large number of the images includes maps, weather radars, or wind and
rainfall predictions (n = 168 that included “map”). “MAPS,” as an emerg-
ing motif category in our data, give credence to the idea that during this di-
saster, people were more concerned about the prediction of weather and
changes in the forecast. This is an important change in the image corpora
of Hurricane Sandy versus Harvey. Together, these image frequencies
help sketch an outline of the types of narratives that unfolded during Hur-
ricane Harvey. Taken together, the motifs paint a picture of the disaster
from the lived experiences of the individuals who experienced it.

8. Discussion

In this paper, we present a framework for feature extraction using the
VGG-16 convolutional neural network and construct multilayer perceptron
classifiers for classifying the urgency and time period for a given image.
This framework was created through a qualitative deductive coding
schema, in which the qualitative results (presented as frequencies) describe
the unique disaster experience through the eyes of photos. Of course, the
to Hurricane Harvey.



Table 2
Frequency of coded image motifs.

Frequency Percent

Ad 5 0.25
Animals 56 2.85
Damage 295 15.03
Drink 15 0.77
Food 20 1.02
Gear 99 5.05
Macro 66 3.40
Other 404 20.59
Outside 492 25.07
People 428 21.81
Relief 82 4.18
Total 1962 100% (not exact due to rounding)
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images produced during a natural disaster on socialmedia have value to un-
derstand how aid and relief can be facilitated, but finding genuine content
(and not noise), is not straightforward and we detail our approach to ad-
dress these challenges and provide initial results for our deep learning
image classification methodology.

The results obtained by using transfer learning to extract features to
feed to a simplemulti-layer perceptronmodel indicate bothmodels learned
the relationship between feature vectors from the VGG-16 model and each
image's urgency and time period beyond random guessing; however, the
tendency of both models to grossly misclassify images towards more fre-
quent labels suggests a lack of robustness for our trained models. We sug-
gest two possibilities for the weak performance of our classifiers: class
imbalance and dataset size.

8.1. Class imbalance

The descriptive analysis on the frequency of labels for time period and
urgency coupled with each model's tendency to favor labels which occur
more frequently suggest class imbalance as a potential explanation for the
weak performance of our models. While solutions to the class-imbalance
problem exist on both data and algorithmic levels [19], the class imbalance
in the dataset used for our study could be explained by the inherent bias in
human-coding. This bias may be present when images are more likely to be
classified as ‘spam/not relevant’ and ‘somewhat urgent’ due to the inclu-
sive, catch-all wording of these categories.

8.2. Dataset size

Recent literature suggests that transfer learning for feature extraction
can be useful when the number of available training samples is low [55].
However, the noisy, diverse set of images characteristic of those posted
on Twitter can be difficult to capture in such a small number of samples,
even with transfer learning. It is possible that the sample of images col-
lected in this study do not adequately encapsulate the patterns and relation-
ships between the feature vectors collected from VGG-16 and therefore the
deep learning models constructed are unable to extract meaning from the
feature vectors and their corresponding labels.
Table 3
Comparison of machine learning and human coded results.

Machine learning results H

• Successfully used transfer learning to extract features to feed to a simple multi-layer
perceptron model indicate both models learned the relationship between feature vectors
from the VGG-16 model and each image's urgency and time period beyond random
guessing.

• However, the tendency of both models to grossly misclassify images towards more
frequent labels suggests a lack of robustness for our trained models.

• If images are time-sensitive, a deep learning model for time period classification may
require more human labeling than traditional methods of image classification.

• Coding a larger random sample of images, coupled with filtering out the images labeled
‘spam’ prior to model training could improve the performance of the classifiers.

•

•

•

•
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In terms of qualitative results, the use of qualitative image coding was
important, not only for creating the training model, but on its own merit,
as scholars argue that image content on social media goes beyond how peo-
ple experienced the disaster firsthand, and these images reflected the van-
tage point of disaster victims and official relief and rescue organizations.
Our results demonstrate that highly urgent and time sensitive images (in-
cluding requests for immediate help, material support, and information)
were the least shared onTwitter. This makes sense given the context of Hur-
ricane Harvey, where those seeking help and those providing help often
used private social networks for rescue efforts. Therefore, the utility of
tweets for urgent aid requests during disasters might be overemphasized
in existing literature. We also expand upon the motif framework provided
by Murthy et al. [26] and find that maps emerged as a motif category in
our dataset. This indicates that there are some changes in the types of im-
ages being posted during Hurricane Harvey versus Hurricane Sandy. Com-
putational work with future hurricane data would be useful to chart
changes in imagemotifs over time andwhether particular types of disasters
(earthquake versus hurricane) caused major changes in motif types and
their frequency.

The tendency of both classifiers to act as ‘lazy’ classifiers and predict
only the most frequent categories may suggest that, in their current state,
these deep learning classifiers require additional tuning, data, and prepro-
cessing in order to truly be effective. For example, it is plausible that filter-
ing out the spam and irrelevant images from the dataset the urgency
classifier could drastically improve the classifier's ability to learn the com-
plex relationships between the feature vectors and their corresponding ur-
gency and time period labels. In Table 3, we present a summary of the
comparison between our machine learning and human-coded results.

9. Conclusion

Overall, it is crucial to continue probing how machine learning can aid
in disaster response, particularly considering that the 9-1-1 system in the
United States can become overloaded with calls for help. The scale of social
media data relevant to studying disasters is only likely to grow. This study is
novel by taking a first step at investigating whether or not deep learning
machine methods can filter through the noise on social media and identify
authentic calls for help or urgent situations during a disaster.

This study is one of the first studies to combine qualitative methods and
results using a traditional content analysis with ‘deep’ machine learning
methods.While bothmethods inform each other in our study, they also pro-
vide utility on their own. After reviewing the literature, our team found that
no study has used these two methods together. Although our classifiers did
not perform as expected, our research opens the door for new interdisciplin-
ary methods to be used in future disaster research.

Our study does have some limitations. Specifically, we use 1128 ran-
domly selected images (approximately 6.45%) from a larger corpus of
17,483 images. While smaller data sets have been found to be acceptable
for transfer learning methods, the classifiers still performed weaker than
anticipated. Coding a larger percentage of images may be more useful for
both transfer learning and traditional content analyses, and our future
work seeks to address this. This analysis also did not include the use of
uman-coded results

Close to one third (exactly 31.6%) of images shared on Twitter were not related to the
Hurricane Harvey disaster, while 31.2% of images shared were seen as ‘somewhat
urgent’ in the perception of an image's urgency.
Many posts shared during Hurricane Harvey were reports (n = 740), including reports
of damage, reporting community behavior, and reporting news coverage.
Many images shared represented thematic motifs of outside, people and damage. Maps
emerged as a motif to depict weather-related conditions.
These human codes serve, not only on their own qualitative/content analysis merit, but
work hand-in-hand within the image classification of the deep-learning pipeline.
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rumors or misinformation, but this was common during Hurricane Harvey
(see [41] for examples of how citizens dealt with misinformation). Finally,
our work only addressed images shared on Twitter. Other social media plat-
forms, including private Facebook groups, Nextdoor, Instagram, WeChat,
Mastodon and Weibo are also likely to be fruitful venues of data for future
work seeking to understand image-based sharing.

Our results have particular significance to hurricane events and we are
unsure how generalizable our findings are to other disasters – particularly
outside the contiguous U.S. As Palen and Hughes [29] lament, lessons
learned from one kind of emergency may not be applicable to others,
even when the medium stays the same. Although Hurricane Harvey and
its effect on the greater Houston area were unique, our work provides a
new framework that could be readily drawn upon when disaster strikes.
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Appendix A. Theoretical codebook

Date/Image

• Date of Image
• Image Number

Time Period

• 1 = immediately prior: August 17 to 25
• 2 = during: August 26 to September 1, 2017
• 3 = after/immediate clean-up efforts: September 2 to September 17,
2017

Relevancy to Hurricane Harvey

• 0 = no
• 1 = yes
• 2 = uncertain

Urgency of Image [14,35]

• 4 = highly urgent
• 3 = moderately urgent
• 2 = somewhat urgent
• 1 = not urgent
• 0 = spam/unclear relationship to disaster

Type of Image in a Disaster [30]

• 1 = Request
• 2 = Report
• 3 = Reaction

Description of Type of Image [30]

• 1 = request for material support
• 2 = request for medical assistance
• 3 = request for information
• 4 = request for immediate help/rescue
• 5 = report of damage
• 6 = reporting community behavior
• 7 = report of news coverage
10
• 8 = reaction from community
• 9 = reaction from official sources

Motif [26]

• 1 = ad
• 2 = animals
• 3 = damage
• 4 = drink
• 5 = food
• 6 = gear
• 7 = macro
• 8 = outside
• 9 = people
• 10 = relief
• 11 = other

Image attributes/keywords [open ended]

• map, meme, cartoon, celebrity, water, house, street, bridge

Text attributes/keywords [open ended]

• percentage, address, request, phone number
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