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H I G H L I G H T S

• Dry-cooled generators are most negatively impacted by rises in air temperature.• Cooling water conditions are better predictors for wet-cooled generator efficiency.• Natural gas combustion units in hot and dry areas likely utilize inlet air cooling.
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A B S T R A C T

The efficiency of a thermoelectric generator is dependent on a number of operational and climatic variables,
including ambient air temperature. To date, there has not been a data-driven analysis of the impacts of climate
variability on electricity generator performance that includes a statistically representative set of generators. This
study develops regression models to estimate changes in the efficiencies of over one thousand coal and natural
gas generators as a function of ambient air temperature and operational variables, across different fuel types,
prime movers, cooling systems, and climate zones during the years ranging from 2008 to 2017. The efficiencies
of generators with dry cooling, particularly those in hot and dry climates, demonstrated the greatest sensitivity
to increases in ambient temperature. Results for generators utilizing wet cooling systems were largely incon-
clusive, most likely because other factors, such as cooling water temperature, are better predictors of efficiency.
Natural gas combustion generator efficiencies exhibit large sensitivities to rises in air temperature in theoretical
models but had a counterintuitive trend in our findings, where losses were relatively small in the hottest and
driest climates. This result is likely due to the fact that natural gas combustion generators in hot and arid regions
often utilize inlet air cooling technologies to reduce the temperature of ambient air before it enters the com-
pressor, thereby mitigating efficiency losses. The analytical framework developed offers generalized methods for
cleaning, processing, and merging federally available electricity generation and climate datasets to increase their
value in future studies.

1. Introduction

Thermal power production, accounting for 83% of total electricity
generation, contributed to 28% of greenhouse gas (GHG) emissions [1],
50% of sulfur dioxide (SO2) emissions, 10% of nitrogen oxide (NOx)
emissions [2], 40% of freshwater withdrawals [3], and 3% of fresh-
water consumption [3] nation-wide in 2017. Coal and natural gas-
fueled generators alone contributed 74% of thermoelectric generation
(62% of total electricity generation) [1], and thus, a significant fraction
of these environmental impacts associated with the U.S. power sector.
The GHG emissions, air pollutants, and cooling water usage associated
with power production depend on the efficiency of the electricity

generating unit (EGU), which is influenced by factors such as fuel type,
prime mover, cooling system, and pollution controls. Less efficient
EGUs generally require more fuel and cooling water to generate one
unit of electricity.

The impacts of climate variability and/or climate change on the
operational capacity and efficiency of electricity infrastructure has been
studied in past analyses. Several studies in the literature have analyzed
the influence of climate change on power infrastructure using ther-
modynamic modeling. Studies utilizing thermodynamic models to as-
sess the impact of temperature increases on gas turbine efficiency found
that a 1 °C increase in temperature correlates to an efficiency decrease
of approximately 0.1% [4,5]. Maulbetsch and DiFilippo studied natural
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gas combined-cycle power plants in four different environments and
found that recirculating tower cooled power plants and dry-cooled
power plants experienced capacity reductions between 0.3–0.5% and
0.7% per 1 °C increase in air temperature, respectively [6]. Erdem and
Sevilgen showed that the electricity generation of a gas turbine can
decrease by 1.67–6.22% when temperatures surpass 15 °C [7].

Other analyses have utilized an integrated modeling approach to
assess changes in the electricity grid due to climate change. Van Vliet
et al. applied a hydrology-electricity modeling framework to predict
that during the period spanning 2031–2060, approximately 4.4–16%
and 6.3–19% of thermoelectric generation in the U.S. and Europe, re-
spectively, will be lost [8]. They also found that by the 2050s, thermal
power plants globally could experience capacity reductions of 7–12%
[9]. Sathaye et al. used temperature projections from general circula-
tion models to estimate changes in natural gas power plant capacity in
California and found that 1.1–4.6% of peak capacity could be lost by
the end of the century [10]. Bartos and Chester combined climate,
hydrology, and thermodynamic power plant models to estimate a 1–3%
reduction in summer generating capacity by mid-century in the Western
U.S., with reductions up to 7–9% when analyzed within the context of a
ten-year drought scenario [10]. Cook et al. used a combination of re-
gression, climate, and thermodynamic modeling to find that a 1 °C rise
in cooling water temperature can lead to a 0.15–0.5% decrease in
power output [11]. Liu et al. assessed the impact of climate change and
thermal discharge regulations on thermoelectric generators in the U.S.
using a regional Earth system model and a thermoelectric power gen-
eration model. The study found that by the 2060s, climate change alone
could reduce generation capacity by 2–3%, but environmental regula-
tions could actually raise capacity reductions up to 12% if power plant
operators are forced to curtail operation when water discharge tem-
peratures exceed legal limits [12]. Miara et al. used the coupled Water
Balance Model and Thermoelectric Power and Thermal Pollution Model
(WBM-TP2M) to project changes in U.S. thermoelectric power plant
capacity due to water constraints and climate change and found that
under modeled contemporary climate scenarios, once-through-cooled
power plants experience the greatest reduction in capacity [13].

Only a handful of studies have statistically modeled the relationship
between generator efficiency and climatological parameters based on
real-world empirical data [14,15], and only one has been a peer-re-
viewed journal publication [16]. Henry and Pratson used regression
modeling to develop a relationship between climate parameters (water
and air temperature) and generator efficiency [16]. The study indicated
that once-through cooled generators will experience a change of
−0.11% to −0.05% in efficiency per 1 °C increase in intake water
temperature and an efficiency change of −0.02% to +0.05% per 1 °C
increase in intake ambient air temperature based on a sample of 20
once-through power plants. The study also found that power plants
with recirculating cooling systems had an efficiency change ranging
from −0.06% to +0.04% per 1 °C increase in wet-bulb temperature
based on a sample size of 19 power plants. Because Henry and Pratson’s
study only analyzed water-cooled thermal power plants, natural gas
fired combustion generators and dry-cooled generators were not in-
cluded in their analysis. Furthermore, their limited samples of 20 once-
through-cooled and 19 recirculating-cooled power plants might not be
sufficient for capturing variability across different fuels, prime movers,
cooling systems, and local climate.

With predicted climate change expected to increase air tempera-
tures, it is important to understand how generators react to changes in
climatic parameters as changes in the performance of generators will
consequently affect pollutant emissions, GHG emissions, and water
usage. As much of the prior body of work described above utilizes
theoretical physics-based models to establish predicted capacity re-
ductions, to date there is a lack of data-driven studies that quantify the
historical relationship between power plant efficiency and changes in
temperature for a statistically significant population of power plants.
Here we investigate how the efficiencies of real-world thermoelectric

generators respond to changes in ambient air temperature, as the op-
erational and climatic variables affecting the performance of opera-
tional power plants are typically too complex to capture in purely
theoretical models. We also look at how the responses vary across fuel
types, prime mover, and cooling type. To do so, we utilize regression
modeling, applied to over one thousand EGUs (representing 618 unique
power plants) to assess and critique the capability of federally available
datasets to support such an analysis. To the best of the authors’
knowledge, this will be the first study to look at the impact of air
temperature on generator efficiency based on a statistically re-
presentative set of electricity generating units. We also comment on
how federal datasets could be improved for usability to facilitate more
data-driven studies in the future.

2. Methods

2.1. Preparing operational datasets for the regression analysis

A series of datasets characterizing each EGU in terms of its technical
configuration and historical operational data were cleaned, filtered, and
processed to prepare the data required for the regression analysis. In
this study, the term “EGU” is used to represent a coal steam (CL-ST)
generator, natural gas combustion (NG-GT) generator, natural gas
steam (NG-ST) generator, or natural gas combined-cycle (NG-CC)
system. Data from the years 2008 to 2017 were considered.

Each EGU’s fuel type, prime mover, cooling technology, and com-
bined heat and power (CHP) status were characterized according to the
U.S. Energy Information Administration’s (EIA) Form 860, which pro-
vides information on every EGU over 1MW nationally [17]. The EIA
860 Form assigns a unit code to each generator for identification. For
coal steam, natural gas combustion, and natural gas steam EGUs, no
unit code is usually given, as each generator is its own unit. For natural
gas combined-cycle systems, multiple generators share a single unit
code. Thus, each coal steam, natural gas combustion, and natural gas
steam EGU refers to a single generator, whereas a natural gas com-
bined-cycle EGU refers to all generators that share the same unit code.
Nameplate capacity for each generator was aggregated to the EGU
level. Generators are linked to its respective boiler(s), and each boiler is
linked to its respective cooling system (if any is used).

This analysis focused on EGUs that utilize natural gas and coal as
fuel and excluded all combined heat and power units. For coal steam,
natural gas steam, and natural gas combined-cycle EGUs, only those
with once-through without cooling pond (ON), once-through with
cooling pond (OC), recirculating with cooling pond (RC), recirculating
with towers (RT) and dry (DRY) cooling were considered. (Cooling
systems classified as “other” or “hybrid” in the EIA dataset were ex-
cluded from the study.) Natural gas combustion EGUs, which do not
utilize wet or dry cooling systems, were labeled as having a cooling
system of “NONE (GT)”. Units with one or more cooling systems of the
same type across an entire year were kept in the final dataset, but in-
stances where a unit had (1) more than one cooling type within the year
of analysis and/or (2) changed, added, or removed a cooling system
within the course of a single year of analysis were removed. For ex-
ample, if an EGU and its respective cooling system began operation in
May 2009, only data from 2010 and onward for that EGU was used.
Similarly, if a generator that began operation before 2008 switched
from a once-through cooling system to a recirculating cooling system in
August 2012, the entire year of 2012 is removed from that EGU’s data.

Hourly gross load (MWh) and heat input (MMBtu) data were ob-
tained from Environmental Protection Agency’s (EPA) Air Markets
Program Data (AMPD) [18]. The AMPD provides continuous emissions
monitoring (CEM) data for generators that are required to monitor
under the EPA’s Clean Air Markets Programs [18]. The AMPD classifies
collection methods for heat input data into one of the following cate-
gories: “Measured”, “Calculated”, “Substitute”, “Measured and Sub-
stitute”, “Not Applicable”, “Undetermined”, “Unknown Code”. For this
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analysis, we used only observations where the heat input was labeled as
“Measured”.

While the power plant codes between the two datasets were fairly
consistent in the years analyzed, the generator/boiler IDs had much
greater variance. A script was developed to detect naming patterns and
inconsistencies to match as many generators as possible. While most
generators were matched with this method, a few had to be matched
manually. Difficulties in joining the EIA and EPA datasets are elabo-
rated further in the discussion.

After matching units between the EIA and EPA datasets, the heat
rate (HR), efficiency ( ), and capacity factor (CF) at every hour were
calculated using Eqs. (1)–(3), respectively. The heat input is the pri-
mary energy used to generate the electricity load. The heat rate (with
units of MMBtu/MWh) is the amount of energy used to generate one
unit of electricity and is calculated by dividing the heat input by the
gross load. The efficiency is the percentage of primary energy that gets
converted into electrical energy and is calculated by multiplying the
inverse of the heat rate by a conversion factor. Capacity factor refers to
the percentage of the total nameplate capacity at which the EGU is
operating over a period of time. In this analysis, we define the change in
capacity factor, also referred to here as the ramping rate, as the dif-
ference in capacity factor from one hour to the next. The AMPD con-
tained observations where measured heat rate were unreasonable or
nonsensible. Lower and upper limits on hourly heat rate (for all non-
zero gross load hours) were applied based on the limits developed by
the EPA for their Power Sector Modeling Platform [19]. The limits are
dependent on the fuel and prime mover configuration of the generating
unit and are provided in Table A1.

=HR Hourly Heat Input MMBtu
Hourly Gross Load MWh

[ ]
[ ] (1)

= ×Hourly Gross Load MWh
Hourly Heat Input MMBtu

MMBtu
MWh

[ ]
[ ]

3.412 [ ]
[ ] (2)

=
×

CF Hourly Gross Load MWh
Nameplate Capacity MW h

[ ]
[ ] 1 (3)

Upon inspection of the heat rates, it became apparent that some
natural gas combined-cycle EGUs in the EPA dataset reported opera-
tional data for only the gas turbine part of the natural gas combined-
cycle EGUs, while others reported data representative of the entire unit
[18]. All natural gas combined-cycle EGUs with duct burners, a tech-
nology added to heat recovery steam generators to increase their high-
pressure steam output, should report generation (i.e., gross load) from
the entire unit (i.e., both the steam cycle and gas cycle generation),
whereas units without duct burners are not mandated to report steam
generation. (The heat input of all components of a natural gas com-
bined-cycle EGU is reported regardless due to emissions monitoring
regulations.) More information on the reporting procedures can be
found in the EPA Emissions Monitoring Policy Manual [20] and the
Clean Air Markets Emissions Collection and Monitoring Plan System
Reporting Instructions [21]. Fig. 1a illustrates a density plot of all re-
ported heat rates from 2008 to 2017 of natural gas combined-cycle
EGUs, separated according to whether the natural gas combined-cycle
EGU has a duct burner as reported by the EIA Form 860 [17]. All duct
burner classifications are determined by year; thus, a natural gas
combined-cycle EGU could be classified as having a duct burner in some
years but not others. The majority of calculated heat rates for the EGUs
with reported duct burners range from 5.5 to 10 MMBtu/MWh (Fig. 1a,
left), which is consistent with the average heat rate of natural gas
combined-cycle EGUs [22]. However, the density plot shown in for the
units without duct burners (Fig. 1a, right) is bimodal, with about half of
the heat rates ranging from 5.5 to 10 MMBtu/MWh and the other half
ranging from 10 to 15 MMBtu/MWh (i.e., consistent with just the gas
turbine part of the natural gas combined-cycle EGU). This bimodal
distribution indicates that for natural gas combined-cycle generating

units that do not have duct burners, some operators report generation
from both the steam and gas cycles, whereas other operators only report
the gas generation.

Consequently, natural gas combined-cycle EGUs had to be re-
categorized to determine whether the entire system’s generation or just
the gas cycle generation was reported in the EPA dataset to prevent
misinterpretation of the calculated heat rates. Natural gas combined-
cycle EGUs reported as having a duct burner in the EIA 860 form were
automatically marked as reporting both steam and gas generation. More
analysis was required for EGUs that did not report a duct burner. For
each natural gas combined-cycle EGU, the 90th quantile of the hourly
heat rates within each calendar year of study was calculated. A density
plot of the 90th percentiles showed a similar bimodal distribution to the
units without duct burners in Fig. 1a, with a split between 5.5 to 10
MMBtu/MWh and 10 to 15 MMBtu/MWh. Accordingly, all natural gas
combined-cycle EGUs that had a 90th percentile heat rate value equal
to or less than 10 MMBtu/MWh were categorized as “Reporting Total
Combined Cycle Generation”. A natural gas combined-cycle generating
unit with a 90th percentile heat rate above 10 MMBtu/MWh was
marked as “Not Reporting Total Combined Cycle Generation”, meaning
that only the gas generation of the combined-cycle EGU was reported.

The revised classification of units is illustrated in the density plot of
heat rates shown in Fig. 1b. In comparing Fig. 1a and b, the bimodal
distribution in Fig. 1b is much less prominent for units not reporting
steam generation, with the vast majority of heat rates falling in between
10 and 15 MMBtu/MWh. As for the units reporting steam generation,
there is a unimodal distribution, with most heat rates ranging from 5.5
to 10 MMBtu/MWh.

There are still some observations that do not fall within the larger

(a)

(b)

Fig. 1. (a) Hourly heat rates for natural gas combined-cycle electricity gen-
erating units are plotted and categorized by whether each unit has a duct
burner or not for each operating year, based on EIA Form 860 data [17]. The
density plot for units with duct burners show a unimodal distribution between
5.5 and 10 MMBtu/MWh. The plot for units without duct burners show a bi-
modal distribution, with one distribution ranging from 5 to 10 MMBtu/MWh
and another ranging from 10 to 15 MMBtu/MWh. (b) Hourly heat rates for
natural gas combined-cycle electricity generating units are plotted and cate-
gorized by whether each unit is reporting steam generation based on our pro-
posed classification methodology. Units with duct burners were automatically
classified as reporting steam generation, while units without duct burners were
classified based on the 90th percentile of their hourly heat rates each year.
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distribution, which is most likely due to increased heat rate (decreased
efficiency) during hours where the generating unit is rapidly increasing
or decreasing its output, commonly referred to as a period of ramping.
(The ramping rate refers to an increase or decrease in an EGU’s elec-
trical output per unit time.) Since ramping would likely obscure any
impact of temperature on unit efficiency, we attempted to eliminate any
operational data occurring during hours of significant ramping. The
change in capacity factor from one hour to the next (i.e., CF ) was used
as a proxy to detect ramping up or down during generation, in efforts to
remove these periods from skewing the efficiency analysis. The CF at
each hour t CF( )t was calculated by subtracting the capacity factor at
said hour t CF( )t from the capacity factor at the previous hour CF( )t 1 .
For hours where operational data were missing (either due to the EPA
dataset not having the data or due to the data being filtered out), the
CF could not be calculated for the following hour, and a value of “NA”
(not available) was assigned to CF . All hours with a CF of “NA” were
removed from the analysis. After calculating the ramp rate at every
hour for all units, hours with a gross load of “0” MW were also re-
moved.

When plotting the efficiency versus capacity factor for natural gas
combined-cycle EGUs, two clusters were often found (e.g., one smaller
cluster of lower hourly capacity factor values and a larger cluster of
higher hourly capacity factor values). Having two clusters would skew
the regression, so the smaller cluster containing fewer hourly capacity
factor values (since these values were less representative of the typical
operation of the EGU) were removed. Density-based clustering, through
the dbscan package in R [23], was implemented to detect two clusters
of efficiency versus capacity factor for every natural gas combined-cycle
unit. The cluster with the lowest count of observations was removed
from the dataset. (On average, approximately 74% of each NG-CC unit’s
data were part of the larger cluster.) By analyzing the most prominent
cluster of operational capacity factor values, each regression considered
hours at which the EGUs generated electricity within similar opera-
tional conditions, thus reducing the impact of other operational char-
acteristics on efficiency variability (e.g., operating at a high versus low
capacity factor).

To remove other outliers in the operational data, observations
where the efficiencies and capacity factors were not within the 5th and
95th percentiles (of each respective generating unit) were omitted from
the analysis. The distribution of CF indicated that most values fell
between −0.1 and 0.1 (i.e. signifying a change of operational output
within 10% of the previous hour). Data in hours where the values of
CF fell outside of these bounds were omitted from the regression
models, so that ramping did not skew the efficiency analysis. (On
average, 96%, 87%, and 80% of the data records considered for CL-ST
and NG-CC, NG-ST, and NG-GT generation units, respectively, fell
within range and were kept for the analysis.).

2.2. Preparing climate datasets for the regression analysis

Local Climatological Data (LCD) from the National Oceanic and
Atmospheric Administration (NOAA) were used to obtain ambient
temperature [24]. The NOAA dataset includes hourly (and sub-hourly)
dry-bulb temperature (Tdb), wet-bulb temperature (Twb), and relative
humidity data from thousands of weather stations around the country.
For instances where multiple observations were given within the same
hour at a weather station, the average of each indicator (temperature,
relative humidity, etc.) for that hour at was calculated.

The longitude and latitude of each power plant were retrieved from
the EIA 860 form [17] and each power plant was matched to the nearest
NOAA weather station for each year of EGU operation. The reason for
assigning a weather station for each year is to account for instances
where a weather station was installed closer to a power plant within the
2008–2017 timespan. Most power plants were within 20 km (12 mi) of
a NOAA station. However, there were some plants where the nearest

NOAA station was more than 30 km (18.6 mi) away, with a handful
reaching up to 50 km (31 mi). (A map of the distance from each EGU to
the nearest weather station is provided in Fig. A1.) For this analysis, we
did not place a filter on records based on the maximum distance be-
tween power plant and weather station, but we acknowledge that the
accuracy of climate data can decrease with increasing distance between
the unit and weather station.

After assigning a weather station to each generating unit, climate
data from NOAA were merged with operational data from the AMPD
set. Any missing hourly data in the climate or operational datasets were
removed from the analysis. To remove outliers in the climate data, the
1st and 99th percentiles for the wet-bulb and dry-bulb temperatures,
respectively, were identified for each EGU. For EGUs with recirculating
tower cooling systems, observations where the wet-bulb temperature
did not fall within the 1st and 99th percentile wet-bulb temperatures
were removed. For EGUs with all other cooling systems, the same
methodology was applied for dry-bulb temperature. The reasoning
behind why wet-bulb and dry-bulb temperatures were applied based on
cooling system is explained in Section 2.3.

The impact of the local climate on the response of each EGU to
temperature change was also analyzed. County-level climate zones,
defined by the U.S. Department of Energy’s (DOE) Building America
Program, were utilized for data sorting purposes [25]. Based on climate
regions developed by the Pacific Northwest National Laboratory for the
International Energy Conservation Code, each county in the U.S. was
classified to reflect one of seven climate zones: Marine, Very Cold, Cold,
Mixed-Humid, Hot-Humid, Mixed-Dry, and Hot-Dry. Each EGU was
assigned a climate zone based on the county it is located in.

2.3. Regression analysis

We developed a regression model to relate EGU efficiency with
operational variables and ambient air temperature. An exponential re-
lationship was observed between hourly capacity factor and efficiency
data. For the relationship between efficiency and CF , a symmetrical
relationship was found: for negative values of CF , as the magnitude
increased, the efficiency of the EGU decreased. Conversely, as positive
CF values grew in magnitude, efficiency values decreased, suggesting
that ramping an EGU up has a similar impact on efficiency as ramping
operations down. Thus, CF was fitted as linear spline, with a knot at

=CF 0. We acknowledge that some generating unit types, such as
natural gas combustion units, are more susceptible to ramping events
than other unit types, such as coal steam units. However, by filtering
out hours where CF were below −0.1 and above 0.1, we aimed to
remove instances where ramping would be the prominent influencing
variable on efficiency. Furthermore, a priori analysis showed that
having CF versus not having CF , as well as keeping unfiltered versus
filtered CF values, did not have significant impacts on the regression
results.

For regressing efficiency versus temperature, choosing between dry-
bulb and wet-bulb temperature is important. For natural gas combus-
tion EGUs, the effect of humidity on the efficiency is minimal [26], and
therefore the dry-bulb temperature was chosen as the dependent vari-
able. Humidity typically does not have a significant effect on the effi-
ciency of wet-cooled generating units, with the exception of units
cooled with recirculating towers. In a recirculating cooling tower,
steam is cooled to a temperature approaching wet-bulb temperature
[26–29]. Thus, for EGUs with recirculating cooling towers, the effi-
ciency was predicted using wet-bulb temperature. For dry-cooled gen-
erating units, the evaporation process is not used, and heat is trans-
ferred only to ambient air [29]. The steam is cooled to a temperature
that reaches the dry-bulb temperature, and therefore the efficiencies of
EGUs with dry cooling were predicted using dry-bulb temperature [30].
Once-through cooling systems and recirculating with cooling pond
systems do not rely on the evaporative process (since water itself is used
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to remove heat), and as such, the efficiencies of EGUs utilizing once-
through cooling and recirculating cooling with ponds were regressed
against dry-bulb temperature.

Each hourly temperature value was binned to account for more
drastic decreases in efficiency at higher ambient temperatures. The
50th, 75th, and 90th percentiles of temperature values (wet-bulb for
recirculating tower-cooled and dry-bulb for all other cooling types)
were calculated for each generating unit. Then, each hourly observation
was assigned a temperature bin depending on if temperature value fell
into one of the following categories: below the 50th percentile, between
the 50th and 75th percentiles, between the 75th and 90th percentiles,
and above the 90th percentile.

Before performing the regression, any EGU with less than 1000
hourly observations was removed from the analysis, as having a small
number of observations can result to a skewed regression fit.
Furthermore, we noticed that even if an EGU had more than 1,000
observations, it is possible that the number of observations per tem-
perature category could be small (i.e., an EGU might only experience
temperatures above the 90th percentile for 80 observations). Thus, any
EGU that has less than 250 observations in any temperature category
was excluded from the analysis as well. In the end, over one thousand

generating units (over the span of 2008 to 2017), representing 618
unique power plants, were analyzed (Fig. 2) Fig. A2 provides maps of
each EGU analyzed in the study by year.

Because of the combination of linear and non-linear relationships
between efficiency and the various variables we examined, non-linear
least squares (NLS) analysis was utilized. The regression models shown
in Eqs. (4) and (5) were used, where a (%/°C) is the coefficient relating
the change in efficiency due to a unit degree Celsius increase in dry-
bulb temperature (Tdb), and b (%/°C) is the coefficient corresponding to
change in efficiency due to a unit degree Celsius increase in wet-bulb
temperature (Twb). For both equations, the capacity factor is ex-
ponentially regressed to a power of k, with a coefficient of d (%) and the
change in capacity factor is linearly fit with a coefficient of g. The is a
mean-zero random error term. The models used here are similar to the
ones developed by Henry and Pratson [16], who analyzed the impacts
of water temperature and dry-bulb temperature on once-through
cooling systems and the impact of wet-bulb temperature on re-
circulating cooling systems.

= + + +aT dCF g CFDRY RC OT NONE db
k

, , , (4)

= + + +bT dCF g CFRT wb
k (5)

To ensure that there was not significant collinearity amongst re-
gression variables, we performed diagnostic tests for the regression
variables on a few dozen random generating units. We did not see a
strong correlation between CF and CF . Furthermore, there did not
seem to be any collinearity, as the variance inflation factor (VIF) for all
variables was typically below 5.

3. Results

We assumed a linear relationship between efficiency and tempera-
ture, and it is possible some of the complexities in the relationship
between the two variables were lost. Rahman et al. found that the heat
rate of a natural gas combustion EGU increased (and thus, efficiency
decreased) fairly linearly with increasing ambient temperature [31].
Henry and Pratson, using the EPA and EIA datasets, also found a linear
relationship between temperature and efficiency [16]. While it is pos-
sible that the relationship between temperature and EGU performance
is nonlinear, Sathaye et al. argued that it is likely that nonlinear re-
lationships occur at temperatures outside of current and future tem-
perature projections [10].

The p-value of a regression model can be used to infer if there is
indeed a relationship between the predictor (ambient temperature) and
the response (efficiency), and a small p-value (usually 0.05 or less)
indicates there is indeed an association between the two variables. The
majority of EGUs (1220) have p-values that are less than 0.05, while
101 EGUs have p-values greater than 0.05. Of the 101 EGUs, 33 are
natural gas combustion turbine units, 37 are coal steam units, 14 are
natural gas steam units, and 17 are natural gas combined-cycle units.
For the natural gas combustion turbine units, all 33 units have name-
plate capacities below 200MW. All coal and natural gas steam units
with p-value>0.05 were installed before 1980 and most are cooled with
once-through cooling systems. We were unable to identify a trend for
natural gas combined-cycle units across nameplate capacity, installa-
tion year, climate zone, or number of data records per unit. For analyses
of results onward, EGUs with a p-value above 0.05 will be excluded.

The effect of air temperature on EGU efficiency is inconsistent, as
most generating units (872) experience a drop in efficiency due to rising
temperatures, while other generating units (396) experience a rise in
efficiency instead. While the median change in efficiency (regressing
using all temperatures) for each cooling type is −0.01%/°C (Table A2),
the range of responses for each cooling type varies. Results for dry-
cooled generating units are the most consistent, having the smallest
range of efficiency response (-0.05%/°C to +0.03%/°C), whereas gen-
erating units with once-through cooling (no ponds) and recirculating

Fig. 2. The final number of electricity generating units included in the analysis,
characterized by (top) cooling type, (middle) fuel type and prime mover tech-
nology, and (bottom) climate zone. The decrease in number of units in 2012 is
due to a large number of NOAA weather stations missing temperature data in
that year.
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towers have the widest range of values (-0.09%/°C to +0.07%/°C).
Applying the regression model within temperature bins, dry-cooled

generating units are likely to experience a greater reduction in effi-
ciency per 1 °C increase in ambient temperature when temperatures are
above average (i.e., above the 90th percentile) compared to when
temperatures are average (i.e., between the 50th and 75th percentiles).
The residual standard error values remain consistent when regressing
all temperatures together versus regressing temperature bins (Fig. A4),
indicating the accuracy of the regression models across temperature
bins are relatively similar to one another. No distinguishable difference
can be seen between coal steam and natural gas combined-cycle gen-
erating units that utilize dry cooling (Fig. A3). However, a visible dif-
ference can be seen when analyzing dry-cooled generating units across
climate zones. In regions that are hot and arid, units with dry cooling
are more likely to experience greater efficiency losses due to increasing
ambient temperature (Fig. 4). At temperatures above the 90th percen-
tile, the median change in efficiency for dry-cooled generating units
located in Hot-Dry regions is −0.09%/°C. We expected dry-cooled
generating units located in cold regions to be less negatively impacted
by temperature increases, but our results show that these units are
likely to experience similar decreases in efficiency (Fig. 4) as units lo-
cated in Hot-Dry regions. Upon closer inspection, many EGUs in regions
classified as Cold experience warmer temperatures of over 30 °C in the
summer months (e.g., counties in Nevada and Utah), which can skew
the results differentiated by climate zone when compared to counties
that are typically more mild year-round.

The impacts of rising ambient temperature on the efficiency of wet-
cooled electricity generating units are still inconclusive and incon-
sistent after regressing within temperature bins. For 225 generating
units, a 1 °C increase in ambient temperature leads to increases in ef-
ficiency, even at temperatures above the 90th percentile or between the
75th and 90th percentiles. Of the 225 generating units, 66 are coal
steam units with once-through cooling (no ponds), 45 are natural gas
combustion units, 40 are coal steam units with recirculating tower
cooling, and 25 are natural gas combined-cycle with recirculating tower
cooling.

Similar to dry cooling systems, many generating units utilizing re-
circulating cooling towers experience greater efficiency losses when
temperatures are above average (i.e., above the 90th percentile), but
the results also span a wider range at higher temperatures. No sig-
nificant trend can be found for recirculating tower-cooled generating
units when further broken down by fuel and prime mover (Fig. A3) or
climate zone (Fig. 4). For generating units with recirculating systems
that have cooling ponds, the trend of more significant reductions in
efficiency at higher than average temperatures cannot be seen.

No trends in efficiency changes due to ambient air temperature
increase can be found for generating units with once-through cooling
systems (with or without cooling ponds). The median change in effi-
ciency per 1 °C increase in ambient temperature at higher than average
temperatures (i.e., above the 90th percentile) does not vary much from
the change in efficiency at average temperatures. Additionally, unlike
generating units with recirculating cooling towers, the widest range of
results for once-through cooled generating units do not occur at the
highest temperature bin (above the 90th percentile). Instead, for once-
through cooled generating units, the widest range of efficiency re-
sponses occur at ambient temperatures between the 50th and 75th
percentiles.

Results for natural gas combustion turbines are mainly inconclusive
and inconsistent. Distinguishing the regression across temperature bins
does not have significant impacts on the results. Furthermore, there are
no visible trends across climate zones (Fig. 4), nameplate capacity (Fig.
A5), or installation year (Fig. A6).

4. Discussion

4.1. General implications

We observe discernible relationships between ambient temperature
and power plant efficiency for dry-cooled generating units. Generating
units utilizing dry cooling show a trend in decreasing efficiency with
increasing ambient temperature, especially when temperatures are
above average (i.e., above the 90th percentile). We also found that local
climate plays a large role in determining the vulnerability of dry-cooled
systems to temperature increases. The power plant that shows the most
significant decrease in efficiency is the Chuck Lenzie Generating Station
in Nevada; its two dry-cooled natural gas combined-cycle generating
units experience a decrease of approximately −0.2%/°C (at tempera-
tures above the 90th percentile). With increasing installations of dry
cooling technologies, many of which in hot and arid regions, it is im-
portant to consider how these systems will be impacted by future cli-
mate change scenarios.

There are no other empirical analyses focusing on the impacts of
ambient air temperature on the efficiency of dry-cooled generating
units, so we can only compare our results of theoretical models. For
natural gas combined-cycle units with dry cooling, at temperatures
above the 90th percentile, the median change in efficiency at tem-
peratures above the 90th percentile is −0.07%/°C with a range of
−0.20%/°C to +0.05%/°C. Maulbetsch and DiFilippo found that at
temperatures greater than 15 °C, natural gas combined-cycle units that
are dry-cooled experience a 0.7% decrease in capacity per 1 °C increase
in temperature [6]. While we cannot directly compare change in effi-
ciency to change in capacity, our results are similar in magnitude in
some cases and up to an order of magnitude less in others, depending on
the generating unit, than the value obtained by Maulbetsch and DiFi-
lippo [6].

The results obtained for wet-cooled generating units show that
ambient temperature alone is not sufficient to predict the efficiency of
electricity generating units. While we expected increasing ambient
temperatures to result in decreasing generator efficiency, our results are
mainly inconclusive. Additionally, at higher temperature bins (i.e.,
above the 90th percentile), the change in efficiency for generating units
with recirculating cooling systems (with and without cooling ponds)
span a wider range. Generating units with once-through cooling (with
and without cooling ponds) do not indicate a strong or discernible re-
lationship between generator efficiency and ambient air temperature.

Results for generating units utilizing wet cooling systems, while
similar to previous empirical work, differ from thermodynamic and
integrated models. Henry and Pratson found the impact of wet-bulb
temperature on the efficiency of power plants with recirculating cooling
towers to be approximately −0.06%/°C to +0.04%/°C [16], which
reflects the range of values obtained from our regression at tempera-
tures below the 50th percentile (−0.07%/°C to +0.08%/°C). However,
for all other temperature bins, the resulting change in efficiency for
generating units with recirculating cooling towers span a wider range of
values. At temperatures above the 90th percentile, the change in effi-
ciency ranges from −0.33%/°C to +0.21%/°C (Fig. 3). For natural gas
combined-cycle units with recirculating cooling towers, at temperatures
above the 90th percentile, the median efficiency change per 1 °C in-
crease in ambient temperature is −0.06%/°C, with a range of −0.29%/
°C to +0.16%/°C (Fig. A3). Our results are a magnitude of order greater
than the results obtained by González-Díaz et al. [32] who found that
the efficiency of one recirculating tower-cooled natural gas combined-
cycle generating unit decreases from 50.95% to 48.01% when the
temperature increases from 15 °C to 45 °C (equivalent to −0.098%/°C)
[32]. Arrieta and Lora found that between temperatures 0–35 °C, the
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net power of a 600MW recirculating-cooled natural gas combined-cycle
units decreases by 75MW [33]. The only other study to our knowledge
that has studied the impact of ambient air temperature on the efficiency
of once-through-cooled generating units is by Henry and Pratson, who
estimated the impact of temperature on the efficiency of once-through
cooled power plants to be approximately −0.02%/°C to +0.05%/°C
[16]. The results obtained from our analysis fall within a wider range,
especially at higher temperatures (i.e., above the 90th percentile),
where once-through cooled (no ponds) generating units can experience
a change in efficiency from −0.16%/°C to +0.13%/°C. Our results
have a greater range than the previous empirical analysis conducted by
Henry and Pratson likely because of the greater sample size used and
therefore a wider range of possible responses from the generating units.

Inconsistencies in responses in efficiency to rising air temperatures
for wet-cooled generating units indicate that there are likely other
variables which will influence the efficiency, especially at abnormally
high temperatures. While recirculating cooling towers are tightly linked
with the evaporative process, the efficiency of the generating unit is still
dependent on streamflow variability as well [12]. The efficiencies of
power plants with once-through cooling or recirculating cooling with a
pond/reservoir are heavily dependent on the temperature of cooling
water, since higher intake water temperatures are less effective in re-
moving heat in thermoelectric plants [34]. As mentioned previously in
the Results section, a large number of generating units whose effi-
ciencies do not have strong relationships with ambient temperature (p-
values greater than 0.05) are coal and natural gas steam generating
units installed before 1980 (and primarily have once-through cooling
systems). The cooling systems of power plants are often not as flexible
in operation as their boilers and generators (i.e., while a generator can
operate at partial load, its cooling system might still operate at full

load) [35], and further, dry-bulb air temperature does not scale linearly
with water temperature, which will matter more in terms of moderating
power plant efficiency. Thus, particularly for older once-through cooled
units with low capacity factors, the relationships between cooling water
usage, generator efficiency, and ambient climatic conditions might be
skewed [36,34].

Previous studies utilizing theoretical models estimated that the ef-
ficiencies of gas turbines decrease by approximately 0.08–0.1% per 1 °C
increase in ambient air temperature [4,5], but the median efficiency
change for natural gas combustion EGUs from our results is an order of
magnitude smaller at approximately −0.01%/°C. Generally, increasing
ambient temperatures should lead to decreases in the efficiencies of
natural gas combustion generating units. We expected to see that nat-
ural gas combustion generating units in Hot-Dry regions experience
more significant decreases in efficiency as temperature increases when
compared to other climate zones. However, our analysis across climate
zones was inconclusive, which we believe to be due to inlet air cooling
technologies that reduce the temperature of the ambient air before it
enters the compressor. Inlet cooling technologies are often installed at
natural gas combustion turbines located in hot and arid regions to
prevent decreases in efficiency from temperature rises [37,34].

4.2. Data limitations

Increased data availability opens up possibilities for applications of
machine learning and artificial intelligence in developing energy
models [38]. However, many issues persist in merging climate, water,
and energy data datasets for integrated analyses [39]. Some data
challenges include missing data, varying spatio-temporal resolutions
between datasets, heterogeneity in the data, and non-uniformity in data
collection standards [40]. Furthermore, applying machine learning
techniques to energy, water, and climate data can prove to be difficult
in the presence of incomplete datasets and outliers [40]. Many of these
issues also impeded this investigation, particularly in regards to
matching data across disparate datasets (e.g., due to erroneous or
missing EGU identification numbers) and identifying outliers in the
data.

It is possible to incorporate water temperature, water elevation, and
streamflow data into a quantitative analysis, but attempting to utilize
historical water data raises complications. Based on water stations
provided the United States Geological Survey (USGS) and the
Environmental Protection Agency, significant numbers of hourly read-
ings of water temperature did not become available until recent years.
Additionally, only a few water stations provide data at short enough
distances upstream to power plants to be of value. Water temperature
readings are also further complicated by other parameters such as
streamflow and the depth at which sensors are located. The EIA Form
923 dataset provides self-reported values for water intake temperature
at power plants [41], but these values are at the monthly level and their
validity needs to be assessed. Studies that analyzed reported water
withdrawal values from the same EIA Form 923 dataset found many
inconsistent and unrealistic values [42–44].

Despite the exclusion of water availability and water temperature
impacts in this analysis, we gained many insights on the state of elec-
tricity grid operations data. One of the biggest difficulties in working
with both the EPA AMPD and EIA Form 860 datasets is the lack of
consistencies in how generators and boilers are named, which makes it
difficult to cross reference information between the databases. These
inconsistencies have likely been major factors in preventing other large
statistical analyses using these data. Almost all generator matching
between the two datasets was done through pattern detection in R.
However, there were a dozen or so units that had to be matched
manually due to the fact that there was no discernible pattern between
the two datasets to match the units. We were able to match over a
thousand units, a larger sample size than previous studies utilizing the
AMPD and EIA datasets by several orders of magnitude. We

Fig. 3. Regression results for generating unit efficiency change per 1 °C increase
in temperature ( T/ ), plotted and characterized by cooling system type.
(Outliers are not included in box plots.) Dry-cooled systems experience the
greatest decreases in efficiency due to rising temperatures. For generating units
with recirculating cooling towers, wet-bulb temperature was used in the re-
gression ( =T Twb). For all other cooling types and for natural gas combustion
generators, dry bulb temperature was used in the regression ( =T Tdb).
Subscripts on temperature variables on the y-axis refer to quartile bounds based
on distributions of hourly temperatures.
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acknowledge that there are likely a few units that were not matched
properly, but we believe this to be a very small percentage.

The reporting of data was also inconsistent across the years ana-
lyzed. For example, many EGUs had unit codes and cooling system
types that were missing in the earlier releases of the EIA Form 860
datasets, which made it difficult to properly match natural gas com-
bined-cycle EGUs, as we were concerned with a single cooling type for
the unit (not the generator). Because the reporting instructions for the
AMPD database differed for earlier years [20], it is possible that power
plant operators are not reporting data consistently across the span of
the analysis (2008–2017). We tried to accommodate for this by doing
most of our characterization of EGUs by year. Another issue with the
EPA AMPD database is that steam generation is not reported for all
natural gas combined-cycle EGUs. We believe many previous studies
have been utilizing the AMPD reported load values without thoroughly
considering or analyzing the quality of the data. While aggregating
electricity generation to the plant level (as many previous studies have
done) is sufficient in many contexts, plant-level aggregation can be a

problem when analyzing differences in efficiency across technologies
since many power plants use multiple fuels, prime movers, and cooling
systems.

We matched each EGU to the nearest NOAA weather station (for
each year in the study). Because we did not implement a filter for
maximum distance, there might be discrepancies between the tem-
perature reported at a weather station and the temperature at the actual
EGU site. Furthermore, heat sources at power plants can raise the local
temperature at the EGU site itself [28].

4.3. Implications for future work

Empirical analyses of electricity generation and climatic data can
provide insights into how power systems have responded historically to
changes in climate conditions, but insufficient available data make it
difficult to accurately and extensively capture the impacts of climate
conditions on power systems. The use of thermodynamic and/or in-
tegrated models, in conjunction with empirical data, can help (1)

Fig. 4. Regression results for generating unit efficiency change per 1 °C increase in temperature ( T/ ), plotted and characterized by cooling system type and
climate zone. (Outliers are not included in box plots.) The most extreme decreases in efficiency can be seen for dry-cooled generating units located in Hot-Dry regions.
For generating units with recirculating cooling towers, wet-bulb temperature was used in the regression ( =T Twb). For all other cooling types and for natural gas
combustion generators, dry bulb temperature was used in the regression ( =T Tdb).
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address quality and quantity issues in historical data and (2) improve
understanding of the relationship between climatic variables and gen-
erator operations in the following ways:

• Climate: The inclusion of cooling water characteristics will provide a
more robust understanding of the vulnerability of wet-cooled gen-
erating units to climate variability. Because current observational
data available on streamflow, water quality, and water elevation are
insufficient for a large scale analysis, modeling of cooling water
characteristics could fill in existing data gaps.
• Operation: While sufficient data on operational variables such as
capacity factor and ramping exist, the use of technologies such as
inlet cooling will change how generating units perform under cli-
mate variability. Furthermore, the use of emissions control equip-
ment can impact the net generation (and therefore efficiency) of an
electricity generating unit. While the EIA Form 860 has information
regarding pollution controls installed at U.S. power plants [17], the
actual operations of emission control systems are not available.
• Regulation: While some permitting data are available, no informa-
tion provides insight into which hours power plants modify opera-
tions to comply with regulations. For example, the Clean Water Act
(CWA) Section 316(a) regulates variations in surface water tem-
perature due to thermal effluent from power plants and requires
power plants to curtail operations when either the discharge water
temperature or the temperature difference between the intake and
the discharge is too high [45]. With water availability projected to
decrease and water temperatures projected to increase in many re-
gions, accounting for curtailments related to regulated intake water
temperatures and/or discharge water temperatures will be im-
portant in assessing the resiliency of the electricity grid [12].

5. Conclusions

As climate change is expected to increase temperatures in many
areas across the country, the performance and reliability of the elec-
tricity grid will decrease. A regression model was developed and ap-
plied to a large set of EGUs to quantify the impact of ambient air
temperature on generator efficiency over a 10 year period of time. The
impacts were analyzed across varying fuel types, prime movers, cooling
system types and climate regions. This study is the first to statistically

analyze the impacts of climate and operational variables on generator
efficiency with such a large sample size. While previous studies focused
on dozens of generators at most, this analysis included over one thou-
sand electricity generating units (618 unique power plants).

Results indicate that while air temperature alone is insufficient to
capture the relationship between generators using wet cooling tech-
nologies, dry-cooled generating units can experience a decrease in ef-
ficiency of up to 0.2% per 1 °C increase in ambient temperature, espe-
cially in areas that are hot and arid. As the number of dry-cooled power
plants will likely continue to grow into the future, the potential impact
of the vulnerability of these power plants to climate variability and
climate change could be significant. Results regarding the efficiency
losses of natural gas combustion turbines, which do not utilize water-
cooled or air-cooled condensers for electricity generation, were also
inconclusive. The use of inlet cooling technologies, which are com-
monly installed at natural gas combustion units in hot regions to im-
prove generator performance on hot days, likely distorted the re-
lationship between generator efficiency and temperature in this
analysis.

We also believe the insights acquired on the state of power plant
operations data are useful for the scientific community. We suggest that
authors who plan to use the EPA CEMS data do so with caution, par-
ticularly for natural gas combined-cycle units because both steam and
gas generation are not always reported. Although we present a method
for identifying whether or not generation from the entire natural gas
combined-cycle unit is reported, there is no perfect solution. For the EIA
dataset, we recommend checking for inconsistencies between recent
and older years when attempting to do multi-year analyses. These issues
were compounded by the fact that there are many inconsistencies in
how generators are named in the EPA and EIA datasets. Despite these
data challenges, there is a great deal of merit to these datasets when
meticulous care is taken in the interpretation and analyses processes.
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Appendix A. Methods

A.1. Data filtering

Table A1.

Table A1
Lower and upper limits placed on heat rates, based on the Environmental Protection Agency's assumptions for the Power Sector Modeling Platform
[19].

Unit Type Nameplate
Capacity

Lower Heat Rate
Limit (Btu/KWh)

Upper Heat Rate Limit
(Btu/KWh)

CL-ST All 8,300 14,500
NG-ST All 8,300 14,500
NG-GT >= 80MW 8,700 18,700
NG-GT < 80MW 8,700 36,800
NG-CC All 5,500 15,000
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A.2. Final set of units

Figs. A1 and A2.

Fig. A1. Generating units analyzed in each year are mapped and characterized by distance to nearest NOAA weather station.

M. Meng and K.T. Sanders Applied Energy 253 (2019) 113486

10



Fig. A2. Generating units analyzed in each year are mapped and characterized by fuel, prime mover, and cooling system type.
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Appendix B. Results

Table A2.
Figs. A3–A6.

Table A2
Changes in efficiency per 1 °C increase in ambient air temperature, differentiated by cooling type: NONE (no cooling, for natural gas combustion generators), RT
(recirculating cooling with tower), DRY (dry cooling), RC (recirculating with cooling pond), OC (once-through with cooling pond), and ON (once-through without
cooling pond). The statistical summaries provided are: Min (minimum), Q25 (25th percentile), Med (median), Q75 (75th percentile), and Max (maximum).

°T C/ (%/ )wb

Cooling Type Temperature Break Category # of EGUs Min Q25 Med Q75 Max

RT All 491 −0.09% −0.03% −0.01% 0.01% 0.07%
RT Twb <= Twb,50 491 −0.07% −0.02% 0.004% 0.02% 0.08%
RT Twb,50 < Twb <= Twb,75 491 −0.15% −0.06% −0.02% 0.01% 0.10%
RT Twb,75 < Twb <= Twb,90 491 −0.23% −0.09% −0.04% 0.001% 0.14%
RT Twb > Twb,90 491 −0.33% −0.12% −0.06% 0.01% 0.21%

°T C/ (%/ )db

Min Q25 Med Q75 Max

DRY
All 37 −0.05% −0.02% −0.01% 0.001% 0.03%

DRY Tdb <= Tdb,50 37 −0.05% −0.01% 0.003% 0.02% 0.07%
DRY Tdb,50 < Tdb <= Tdb,75 37 −0.08% −0.03% −0.01% 0.01% 0.05%
DRY Tdb,75 < Tdb <= Tdb,90 37 −0.15% −0.07% −0.03% −0.01% 0.05%
DRY Tdb > Tdb,90 37 −0.20% −0.11% −0.07% −0.03% 0.03%
RC All 102 −0.06% −0.03% −0.01% 0.002% 0.04%
RC Tdb <= Tdb,50 102 −0.06% −0.01% 0.01% 0.02% 0.07%
RC Tdb,50 < Tdb <= Tdb,75 102 −0.13% −0.06% −0.03% 0.002% 0.06%
RC Tdb,75 < Tdb <= Tdb,90 102 −0.11% −0.05% −0.02% 0.003% 0.06%
RC Tdb > Tdb,90 102 −0.16% −0.06% −0.02% 0.01% 0.12%
OC All 51 −0.07% −0.03% −0.01% 0.005% 0.05%
OC Tdb <= Tdb,50 51 −0.04% −0.01% 0.0002% 0.01% 0.05%
OC Tdb,50 < Tdb <= Tdb,75 51 −0.19% −0.08% −0.02% 0.03% 0.10%
OC Tdb,75 < Tdb <= Tdb,90 51 −0.16% −0.06% −0.01% 0.02% 0.12%
OC Tdb > Tdb,90 51 −0.14% −0.05% −0.01% 0.02% 0.12%
ON All 383 −0.09% −0.04% −0.01% 0.01% 0.07%
ON Tdb <= Tdb,50 383 −0.08% −0.02% −0.003% 0.02% 0.08%
ON Tdb,50 < Tdb <= Tdb,75 383 −0.19% −0.08% −0.03% 0.001% 0.12%
ON Tdb,75 < Tdb <= Tdb,90 383 −0.16% −0.06% −0.02% 0.02% 0.12%
ON Tdb > Tdb,90 383 −0.16% −0.05% −0.01% 0.02% 0.13%

NONE (GT) All 204 −0.06% −0.02% −0.01% 0.01% 0.04%
NONE (GT) Tdb <= Tdb,50 204 −0.06% −0.02% −0.003% 0.01% 0.04%
NONE (GT) Tdb,50 < Tdb <= Tdb,75 204 −0.08% −0.03% −0.01% 0.01% 0.07%
NONE (GT) Tdb,75 < Tdb <= Tdb,90 204 −0.10% −0.03% −0.01% 0.01% 0.08%
NONE (GT) Tdb > Tdb,90 204 −0.09% −0.02% −0.001% 0.02% 0.08%
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Fig. A4. Residual standard error (RSE) values
from regression models, plotted and character-
ized by fuel, prime mover, and cooling type. Note
that in this regression model, modeling is not
split by temperature categories. (Outliers are not
included in box plots.) For generating units with
recirculating cooling towers, wet-bulb tempera-
ture was used in the regression ( =T Twb). For all
other cooling types and for natural gas combus-
tion generators, dry bulb temperature was used
in the regression ( =T Tdb).

Fig. A5. Regression results for generating unit efficiency change per 1 °C increase in temperature ( T/ ), plotted and characterized by cooling system type and
nameplate capacity. (Outliers are not included in box plots.) For generating units with recirculating cooling towers, wet-bulb temperature was used in the regression
( =T Twb). For all other cooling types and for natural gas combustion generators, dry bulb temperature was used in the regression ( =T Tdb).

Fig. A3. Regression results for generating unit efficiency change per 1 °C increase in temperature ( T/ ), plotted and characterized by fuel, prime mover, and
cooling system type. (Outliers are not included in box plots.) For generating units with recirculating cooling towers, wet-bulb temperature was used in the regression
( =T Twb). For all other cooling types and for natural gas combustion generators, dry bulb temperature was used in the regression ( =T Tdb).
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