
Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications, pages 48–56

Minneapolis, USA, June 6, 2019. c©2019 Association for Computational Linguistics

48

An Analysis of Deep Contextual Word Embeddings and Neural
Architectures for Toponym Mention Detection in Scientific Publications

Matthew Magnusson

Department of Computer Science

University of New Hampshire

mfm2@cs.unh.edu

Laura Dietz

Department of Computer Science

University of New Hampshire

dietz@cs.unh.edu

Abstract

Toponym detection in scientific papers is an

open task and a key first step in place en-

tity enrichment of documents. We examine

three common neural architectures in NLP: 1)

convolutional neural network, 2) multi-layer

perceptron (both applied in a sliding window

context) and 3) bi-directional LSTM and ap-

ply contextual and non-contextual word em-

bedding layers to these models. We find that

deep contextual word embeddings improve

the performance of the bi-LSTM with CRF

neural architecture achieving the best perfor-

mance when multiple layers of deep contex-

tual embeddings are concatenated. Our best

performing model achieves an average F1 of

0.910 when evaluated on overlap macro ex-

ceeding previous state-of-the-art models in the

toponym detection task.

1 Introduction

The available scientific knowledge is growing ev-

ery day.1 Yet, this knowledge is often locked into

publications in pdf format, that are not condusive

to machine-reading or automated analyses. In this

work we take a step towards automated knowl-

edge extraction that is compatible with extraction

and visualization frameworks for scientific publi-

cations (Ronzano and Saggion, 2016).

Many scientific publications contain geographic

references which are commonly confused by ex-

tractors with other entities such as people or pro-

teins whose name contains references to places.

Extracting such placenames, or toponyms, has

several important applications such as the identifi-

cation of virus outbreak locations (Weissenbacher

et al., 2015), treatment adherence (Zhang et al.,

2012), and mapping of research findings (Level-

ing, 2015).

1 In 2016, 2.3 million science and engineering publica-
tions were produced globally up from 1.2 million in 2003 for
a 5.2% compound annual growth rate (NSF, 2018).

Toponyms are textual spans of text that iden-

tify geospatial locations. This can range from

the canonical name of populated places, such as

“Chengdu” to direct or indirect mentions of geo-

graphic entities, including “Cho Oyu” or “5 km

south of Mirnyy”. The parsing of geographic lo-

cations from unstructured text is often addressed

with gazeteers. It is generally very difficult to

achieve high accuracy due to domain diversity,

place name ambiguity, metonymic language and

limited contextual cues (Gritta et al., 2018). Fur-

thermore, major challenges to toponym detection

in scientific texts come from the fact that names

of institutions, viruses and proteins often contain

geographic references. Moreover, the extractor

needs to handle the overall noisy nature of sci-

entific articles after PDF extraction—with chal-

lenges include associating figures and tables as

well as handling character encodings.

Task: Toponym detection. Given the text of a

scientific publication (as extracted from the PDF),

the task is to extract character offset locations of

true toponyms. This location is referred to as a

toponym mention in the following. A toponym is

defined to include proper names and geographic

entities but to exclude indirect mentions of places

and metonyms. Toponym detection is a first step

towards toponym resolution where each toponym

mention is to be aligned to a geospatial location.

In this work we focus on toponym detection and

evaluate different neural specialization models for

word embeddings on this task.2 This approach

has benefitted many natural language processing

(NLP) tasks, such as named entity recognition

(Collobert et al., 2011). Previous work in toponym

detection has mostly focused on non-contextual

word embeddings (Magge et al., 2018). Here we

study which neural model and which word embed-

2Data and code available in appendix: https://cs.

unh.edu/˜mfm2/index.html



49

ding types are best suited for the detection of to-

ponyms in scientific publications. We also demon-

strate the benefits of neural architectures in com-

parison to Tagme, a state-of-the-art entity linker,

from which we isolate toponym spots based on

DBpedia categories.

The contribution of our work lies in answering

the following research questions in regards to the

task of toponym detection in scientific papers:

RQ1 Independent of the neural model architec-

ture for specialization, which embedding

demonstrates better performance: A task-

independent deep contextual embeddings or

a non-contextual embedding trained on a

scientific-domain specific corpus?

RQ2 Given an optimal embedding, which neural

specialization architecture is optimal for the

task?

RQ3 Given an optimal word embedding and neu-

ral architecture, what are the performance im-

pacts of different combinations of the embed-

ding and the classifier?

Our findings show that the best performance on

toponym detection is achieved by deep contex-

tual embeddings (even though trained on a non-

scientific corpus) when using bidirectional LSTMs

with CRFs as the specialization architecture (Pe-

ters et al., 2018), while concatenating the layers of

the embeddings. However, other deep contextual

configurations including weighted average, and

single layer selection also yield similar average

performance. We also find that handcrafted ortho-

graphic features did not impact bi-LSTM model

performance, but did positively impact MLP and

negatively impacted CNN.

Outline. In Section 2 we discuss related work.

Section 3 explains the neural models types in-

cluded in our analysis and discusses word embed-

ding types. In Section 4, we provide details on the

approaches examined in our study. In Section 5 we

discuss the data, metrics, and results obtained. We

finish with a conclusion about the research ques-

tions posed.

2 Related Work

There is significant work in the area of toponym

detection (Matsuda et al., 2015; Lieberman et al.,

2010) and the closely related fields of named en-

tity recognition (Li et al., 2018) and entity men-

tion detection (Shen et al., 2015) with many dif-

ferent approaches. State-of-the-art named entity

detection models have historically employed a

combination of hand-crafted features, rules, natu-

ral language processing, string-pattern matching,

and domain knowledge using supervised learn-

ing on relatively-small manually annotated cor-

pora (Piskorski and Yangarber, 2013). A common

approach to toponym detection has been to utilize

place name gazetteers which are directories of ge-

ographic names and their corresponding geoloca-

tions to perform string matching of place names in

text (Lieberman et al., 2010).

Contemporary approaches in entity detection

have included conditional random fields (CRF)

(Lafferty et al., 2001) and neural-based architec-

tures. (Collobert et al., 2011) propose a window-

based, multi-layer, dense feed-forward neural ar-

chitecture using word embeddings concatenated

with orthographic features and a gazetteer as an

input layer with a hard Tanh output layer for

superior performance on a standard NER task.

Huang et al. (2015) utilise a bi-directional LSTM

with a sequential conditional random layer using

a gazetteer and Senna word embeddings to ob-

tain superior performance. Magge et al. (2018)

achieves state-of-the-art results in toponym de-

tection by utilizing a window-based deep neural

network, word embeddings trained on a domain-

specific corpus, orthographic features, and a

gazetteer.

3 Background

We briefly recap the background of several meth-

ods we include in our study.

3.1 Neural Models

Many neural approaches to natural language appli-

cations make use of in input layer that consists of

tokenized text mapped to a pre-trained word em-

bedding matrix. One common neural architecture

is the deep multi-layer perceptron (MLP) which

is a densely connected feed forward network with

multiple layers. One or more layers of densely

connected neurons are combined allowing for

complex function approximation. Another com-

mon architecture, the convolutional neural net-

work (CNN), uses mathematical cross-correlation

to reduce the number of free parameters in deep



50

models. Pooling layers can be used to combine

the output of specific sets of neurons in one layer

to a single neuron in a subsequent layer.

Recently, more approaches incorporate a re-

current neural network (RNN) architecture which

contrasts with MLP or CNN by using internal state

in subsequent processing of input sequences. A

bi-LSTM is a variant of a recurrent neural net-

work that processes sequences of input in both di-

rections with a hidden state shared between each

“step” of the sequence processing. Many deep

models contain mixtures in different layers of

these three architecture types.

3.2 Word Embeddings

A word embedding is a popular approach for rep-

resenting text using a dense vector representation.

This contrasts with traditional bag-of-word model

encodings where high dimensional one-hot vec-

tors are used to represent each words. A drawback

of the bag-of-words approach is that the seman-

tic similarity between words is lost, while dense

embeddings have been shown to exhibit seman-

tic similarity with linear relationships (Turney and

Pantel, 2010).

Pre-trained embedding models can be applied

as the input layer of a neural model which is then

specialized for the task at hand. Mikolov et al.

(2013) brought the concept of word embeddings

to the forefront of natural language research with

the continuous skip-gram word2vec model. This

method utilizes a feedforward neural net to create

a language model. The dense continuous vector

representation of words in these models demon-

strate superior performance on semantic word re-

lationship tests relative to sparse term vectors.

A limitation of feedforward language models in-

cluding word2vec is that they are non-contextual

which means that all senses of a word are merged

into one dense vector.

Peters et al. (2018) propose a deep neural model

(ELMo) that generates contextual word embed-

dings which are able to model both language and

semantics of word use. ELMo embeddings assign

a representation to a token as a function of the en-

tire input token sequence. Devlin et al. (2018) in-

troduce a pre-trained language model transformer

architecture called BERT that is jointly condi-

tioned on left and right context in all layers. The

model can be fine-tuned or deep contextual em-

beddings can be extracted from the model layers.

4 Approach

We study three different neural approaches for to-

ponym detection: 1) sliding windows convolu-

tional neural networks, 2) sliding window multi-

layer perceptrons, and 3) bi-LSTM. Both con-

textual and non-contextual word embeddings are

used and enriched with a limited number of hand-

crafted features. We run 5 trials for each config-

uration. Deep embedding variants in the analysis

are: first, middle (mid), and last layer; layer con-

catenation (concat); weighted-average (w-avg);

softmax classifier (soft) and no orthographic fea-

tures (no-ortho).

We study the effects on the performance, when

choosing a particular embedding (4.1) in a spe-

cialization architecture (4.3), with or without hand

crafted features (4.2). The remainder of this sec-

tion lays out the options we included in our study.

4.1 Embeddings

ELMo: We use deep contextual embeddings from

ELMo embeddings (Peters et al., 2018) which rep-

resent learned functions of the internal states of a

deep bidirectional language model that has been

pre-trained on the 1B Word Benchmark (Chelba

et al., 2013). In Table 2 ELMo embeddings are

abbreviated as EL.

BERT: We use deep contextual embeddings

generated by extracting the three uppermost layers

of the model (Devlin et al., 2018) using the pre-

trained BERT-Base 12-layer Cased model.3 The

BERT model uses WordPiece embeddings (Wu

et al., 2016) with a 30,000 token vocabulary. We

use the WordPiece embedding corresponding to

the input source token and concatenate the three

upper layers of the model.

w2v: The scientific-domain specific non-

contextual word embeddings are provided by

Pyysalo et al. (2013) which are generated from

Wikipedia, PubMed, and PMC texts using the

word2vec tool. They are 200-dimensional vectors

trained using the skip-gram model.

For the MLP model an input embedding is gen-

erated by concatenating the ELMo vectors with

the one-hot encoding of orthographic features and

an additional binary encoding indicating if the to-

ken was contained within the set of gazetteer to-

kens. The CNN is not enhanced with either ortho-

graphic or gazetteer tokens. The bi-LSTM embed-

ding is only enhanced with orthographic features.

3https://github.com/google-research/bert



51

4.2 Hand-crafted Features

Neural network based approaches have been

shown to achieve strong results without the use

of hand-crafted features, however, in many cases,

hand-crafted features can boost model perfor-

mance. We use two sets of hand-crafted features

that frequently appear in the literature to increase

performance in named entity recognition. In both

sets of features, their inclusion did benefit perfor-

mance.

Orthographic Features: a one hot encoding is

assigned to each token based on its orthographic

structure including presence of digits, alphabetic

characters, and upper case characters. The ortho-

graphic features assist the model for managing out

of vocabulary tokens.

Gazeteer Features: a set of toponynm tokens is

generated from the GeoNames entries.4 For exam-

ple, for the entry in Geonames, “Gulf of Mexico”,

the tokens “Gulf”, ”of”, and ”Mexico” are added

to the toponym set. This approach does include

stop words such as “of”. The impact of excluding

stop words was not examined. This is used as a bi-

nary feature for the presence of the parsed token in

the constructed Geonames token set. An indicator

of inclusion in a gazetteer is a common feature in

toponym detection models. Our study shows that

this approach yields a small improvement in the

MLP model performance.

4.3 Specialization Architectures

MLP: We use a sliding window multi-layer per-

ceptron model with w2v and ELMo embeddings.

A sliding window (size = 5) is applied to each to-

kenized sentence using the corresponding embed-

dings. The input layer is connected to two fully

connected layers with 128 hidden units each and

relu activation. The output layer uses a sigmoid

with a binary output to indicate if the token is part

of a toponym. MLP-EL-max is the maximum run

by macro overlap F1 when using ELMo embed-

dings with orthographic features and gazetter in-

dicator. MLP-w2v-max is the same model only

differing by using the w2v embedding.

CNN: We use a sliding window convolutional

neural network using w2v and ELMo embeddings.

A sliding window (size = 5) is applied to each tok-

enized sentence using the corresponding embed-

dings. The input layer is two 1d convolutional

layers with filter sizes of 250 and a kernel size

4https://www.geonames.org/export/

of 3. A global 1-d max pooling layer follows the

convolutional layers. Two fully connected layers

with 100 hidden units each and relu activation fol-

low max pooling. A sigmoid function is applied

in output layer to indicate if the token is part of

a toponym. CNN-EL-max is the maximum run

by macro overlap F1 when using ELMo embed-

dings with gazetter indicator. CNN-w2v-max is

the same model only differing by using the w2v

embedding.

Bi-LSTM with CRF: The implementation used

is based on the approach develped by Lample

et al. (2016) using code adapted from Reimers and

Gurevych (2017).5 Input sentences for the model

are generated in IOB representation for labeled to-

ponyms in the training data. Each LSTM has a

size of 100 and is trained with a dropout of 0.50.

Character embeddings are generated using a con-

volutional neural network and the maximum char-

acter length is 50. We use the w2v, ELMo and

BERT embeddings for token encoding. LSTM-

w2v uses w2v and orthographic features; LSTM-

BERT uses BERT embeddings (top 3-layers con-

catenated) without orthographic features; LSTM-

EL uses concatenated ELMo embeddings with

orthographic features. LSTM-EL-concat-w2v is

LSTM-EL embeddings concatenated with w2v.

4.4 Baseline

The following two models are included as base-

lines in the evaluation.

MLP-Baseline-w2v: A sliding window multi-

layer perceptron as suggested by Magge et al.

(2018). The system has a specific component for

toponym detection using a two-layer feedforward

neural network (200 hidden units per layer). The

baseline features a sliding window (size = 5) over

each sentence using the w2v embeddings for to-

ken encoding. The baseline did not include a

gazetter-based lookup but did incorporate ortho-

graphic structure of the tokens.

TagMe: TagMe (Ferragina and Scaiella, 2010)

is a state-of-the-art entity linking tool that aligns

spans in text to entities in Wikipedia snapshots

of April, 2016. We filter entity links to include

location entities only. Spots are included as to-

ponyms if their linked Wikipedia entity is asso-

ciated with a category that contains one of the

words: place, capital, province, nations, coun-

tries, territories, territory, geography, or continent

5https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf



52

Table 1: Gold Standard Corpus Statistics.

Documents Tokens Toponyms

Train 72 396,668 3,637

Valid 32 179,443 2,141

Test 45 253,159 4,616

Total 149 829,720 10,394

(TagMe-Baseline). We also run a SVM classifier

that takes all categories as phrases and words. It

is using LibSVM with the c-SVC algorithm and

a linear kernel. The regularizer (aka ”C” parame-

ter) is tuned on the tuning split to optimize F1 and

the dataset is balanced before training and tuning

(TagMe-SVM).

5 Experiment Evaluation

In the following we describe our experimental

evaluation using data and metrics from the Se-

mEval Toponym resolution task.

5.1 Data

The experimental evaluation is based on a dataset

of 150 full texts of open access journal articles

from PubMed Central (PMC) which is provided

by Davy Weissenbacher (2019).6 To create the

corpus, they convert PDF to text with the “pdf-

to-text” software and then manually annotate to-

ponym spots using the Brat annotator 3. Table 1

details statistics of this dataset.

The text documents are parsed from PDF files

as many scientific articles are still not available

in well-structured text formats such as XML and

therefore annotators need to be adaptable to noisy

inputs. The structure of the text demonstrates the

challenge of using scientific text for toponym de-

tection as the pdf-to-text conversion process re-

sults in text that introduces new line characters at

non-sentence boundaries and exhibits hyphenation

which splits tokens in the middle of the word. This

complicates tokenization and sentence boundary

detection. The pdf conversion process also injects

header and footer text in the document which in-

terrupts the flow of the documents. Tables and

equations add additional noise to the text with ir-

regular line lengths that can further complicate the

extraction of toponym mentions from documents.

6From the train data set, PMC4009295.txt was not in-
cluded because of encoding issues

5.2 Metrics

Quality of predictions is evaluated in terms of pre-

cision, recall and F1-measure. The model is tuned

on F1 with validation on the valid set and predic-

tion on the test set.

The dataset comes with a recommendation for

two variants of evaluation: strict boundaries and

overlapping boundaries. In the strict evaluation,

spots must match the exact span boundaries in the

gold standard. In the overlapping evaluation, a

match occurs when the spot span and gold stan-

dard span overlap.

Furthermore, two options for computing preci-

sion and recall are available handling spots qual-

ity per publication. In micro-averaging all spans

across the corpus treated as one set on which pre-

cision and recall is calculated. In macro averag-

ing precision, recall, and F1 are calculated on a

per publication basis, and then the results are av-

eraged.

Over all four the evaluations measures provide

similar results, we only report results on the over-

lapping evaluation with macro-averaging. Be-

cause the average performance of the CNN and

MLP were below the average performance demon-

strated by bi-LSTM, we show the maximum value

of CNN and MLP to highlight that even best ob-

tained result is less than bi-LSTM.

5.3 Results

The results are provided for precision (P), recall

(P), and F1 for overlapping boundaries and macro-

averages. Because of small errors in character off-

set alignment, the performance across all of the

models for strict evaluation is slightly lower over-

all (omitted results will be available online).

Table 2 provides the comparison of different ar-

chitectures, embeddings, and baselines.

TagMe-SVM obtains the lowest performance of

all measures with a F1 of 0.330. TagMe-Baseline

achieves a F1 of 0.544 and is the only model not

directly trained on the data. The TagMe-SVM has

a recall that is similar to that of the CNN and MLP

neural methods but with a severe degradation in

precision.

The ELMo embeddings enhance the F1 per-

formance of the bi-LSTM model but appear to

have limited benefit to the other studied neural

models. The convolutional network using the

ELMo-based embeddings exhibits higher perfor-

mance on the F1 score relative to MLP-ELMo.



53

The CNN exhibits higher precision with similar

recall to other methods that are not bi-LSTM. Bi-

LSTM with CRF outperforms the MLP and CNN

models independent of the embedding type. The

best average performance of the bi-LSTM model

is achieved when the three ELMo embeddings

were concatenated, obtaining 0.910 F1. When

word2vec and averaged ELMo embeddings are

concatenated, a similar average F1 is achieved

(0.909), however this model has the highest aver-

age precision (0.909).

Table 3 reports the results of different combina-

tions of the ELMo embeddings based on bi-LSTM

with CRF, the best performing neural model in

our study. We also examine replacing the CRF

classifier with a softmax when the ELMo embed-

dings are concatenated. The softmax classifier ex-

hibits decreased performance with an F1 of 0.900.

This indicates the importance of choosing the right

classifier for the task in the bi-LSTM architecture.

We examine the effect of only using one of the

three vectors provided in the ELMo embedding. In

terms of average F1, the poorest performing layer

is the first layer. The middle and last layer ex-

hibit similar F1 performance. Peters et al. (2018)

indicates that the lowest layer captures more syn-

tactical information while the upper layers have a

higher degree of semantic information, which may

explain the performance difference in the layers.

Across all measures, the concatenation of all

three ELMo vectors performed the best on aver-

age over any layer in isolation. Concatenating

these three embeddings performs also slightly bet-

ter than calculating an average or weighted aver-

age of the embeddings. This is based on a sample

size of 5 for each measure evaluated.

Orthographic features yields an average abso-

lute performance benefit of 2.4% in the tested

MLP-w2v model. But somewhat surprisingly,

causes a substantial degradation in CNN-w2v per-

formance (-16.6% absolute). In bi-LSTM, the re-

moval of orthographic features causes a very slight

degradation in performance. This indicates that in

MLP and CNN models, handcrafted features are

a consideration, but may not be necessary in bi-

LSTM models for toponym detection.

We also compare the performance between two

contextual embeddings BERT and ELMo. Both

contextual embeddings exhibit similar average F1

measures with BERT slightly underperforming

ELMo. An explanatory factor could be that by

Table 2: Comparison of different architectures and em-

beddings.

Run P R F1

TagMe-SVM 0.214 0.712 0.330
TagMe-Baseline 0.449 0.692 0.544
MLP-Baseline-w2v 0.864 0.797 0.829
MLP-EL-max 0.886 0.798 0.840
CNN-w2v-max 0.896 0.797 0.843
CNN-EL-max 0.908 0.788 0.844
MLP-w2v-max 0.888 0.835 0.861
LSTM-w2v 0.893 0.871 0.882
LSTM-BERT 0.895 0.913 0.904
LSTM-EL-concat-w2v 0.909 0.910 0.909
LSTM-EL-concat 0.904 0.916 0.910

only extracting the first WordPiece embedding

per corresponding source token (based on the ap-

proach (Devlin et al., 2018) undertake for NER

task) that information is being lost by not using

all WordPiece tokens. We also use the Cased

Based model, alternatively the uncased and/or

Large models may yield better performance. From

an implementation standpoint, the WordPiece to-

kenization is challenging for maintaining align-

ment in embedding layer composition approaches

other than mapping source-to-head WordPiece to-

ken. The additional coding effort complicates the

implementation of this approach.

For implementations using CNN or MLP, the

results of this task did not indicate that the

implementation of deep contextual embeddings

yields superior performance. The appeal of non-

contextual embeddings such as word2vec is their

ease of implementation, which require only map-

ping a source token to its corresponding vector in a

fixed vocabulary (or unknown if OOV). Deep con-

textual embeddings require mapping a token to a

vector based on the ”key” of its entire sentence.

This is reasonable to implement but does require

extra effort. The results of bi-LSTM clearly in-

dicate that the additional performance may justify

the additional implementation resources.

Figure 1 illustrates the different variations ap-

plied to the bi-LSTM with ELMo embeddings af-

ter 5 runs for each variation. Using the first layer

alone in the embedding appeared to have the most

negative impact on performance. Either concate-

nation or weighted average appear to have the

most consistent highest level of performance. This

is consistent with Peters et al. (2018) that found

that weighted average had the best performance

on a NER task using ELMo embeddings and De-





55

believe the increase in performance due to ELMo-

based embeddings is due to the richer context and

character structure contained in the embeddings.

This richer representation did not benefit toponym

detection in the CNN and MLP neural models

tested and in fact the maximum result for MLP

was using the domain specific non-contextual em-

bedding vectors.

Out of all the neural architectures, the neural

model with the best performance is bi-LSTM with

CRF using concatenated ELMo contextual embed-

dings. This finding is consistent with other re-

search using bi-LSTM with CRF that has demon-

strated state of the art results for named entity

recognition tasks. It is noteworthy, that the Bi-

LSTM with CRF is able to extract toponym men-

tions using context from embeddings without rely-

ing on the presence of a gazetteer. An open ques-

tion is if a gazetteer or other knowledge graph re-

sources could be incorporated into a neural model

to achieve superior performance.

Areas of future research include exploring the

integration of dense, convolutional, or other neu-

ral architectures as a top layer of the bi-LSTM

to enhance classification. Concatenating contex-

tual and the non-contextual embeddings improved

recall and incorporating both into future models

could be an area that yield further performance

gains.

Acknowledgements

This material is based upon work supported by

the National Science Foundation under Grant No.

1846017. Any opinions, findings, and conclusions

or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect

the views of the National Science Foundation.

References

2018. Science and engineering indicators 2018. NSB-
2018-1. National Science Board, Alexandria, VA.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One bil-
lion word benchmark for measuring progress in sta-
tistical language modeling. CoRR, abs/1312.3005.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Karen O’Connor Matthew Scotch Graciela Gonzalez
Davy Weissenbacher, Arjun Magge. 2019. Semeval-
2019 task 12: Toponym resolution in scientific pa-
pers. In Proceedings of The 13th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Paolo Ferragina and Ugo Scaiella. 2010. Tagme:
On-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th
ACM International Conference on Information and
Knowledge Management, CIKM ’10, pages 1625–
1628, New York, NY, USA. ACM.

Milan Gritta, Mohammad Taher Pilehvar, Nut Lim-
sopatham, and Nigel Collier. 2018. What’s miss-
ing in geographical parsing? Lang. Resour. Eval.,
52(2):603–623.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. CoRR,
abs/1508.01991.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
CoRR, abs/1603.01360.

Johannes Leveling. 2015. Tagging of temporal expres-
sions and geological features in scientific articles. In
Proceedings of the 9th Workshop on Geographic In-
formation Retrieval, GIR ’15, pages 6:1–6:10, New
York, NY, USA. ACM.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2018. A survey on deep learning for named entity
recognition. CoRR, abs/1812.09449.

Michael D. Lieberman, Hanan Samet, and Jagan
Sankaranayananan. 2010. Geotagging: Using prox-
imity, sibling, and prominence clues to understand
comma groups. In Proceedings of the 6th Work-
shop on Geographic Information Retrieval, GIR ’10,
pages 6:1–6:8, New York, NY, USA. ACM.

Arjun Magge, Matthew Scotch, Abeed Sarker, Davy
Weissenbacher, and Graciela Gonzalez-Hernandez.
2018. Deep neural networks and distant supervision
for geographic location mention extraction. Bioin-
formatics, 34(13):i565–i573.

Koji Matsuda, Akira Sasaki, Naoaki Okazaki, and Ken-
taro Inui. 2015. Annotating geographical entities on
microblog text. In Proceedings of The 9th Linguistic



56

Annotation Workshop, pages 85–94. Association for
Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

Jakub Piskorski and Roman Yangarber. 2013. Informa-
tion extraction: Past, present and future. In Thierry
Poibeau, Horacio Saggion, Jakub Piskorski, and Ro-
man Yangarber, editors, Multi-source, Multilingual
Information Extraction and Summarization, Theory
and Applications of Natural Language Processing,
pages 23–49. Springer Berlin Heidelberg.

Sampo Pyysalo, Filip Ginter, Hans Moen, Tapio
Salakoski, and Sophia Ananiadou. 2013. Distribu-
tional semantics resources for biomedical text pro-
cessing.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 338–348, Copenhagen, Denmark.

Francesco Ronzano and Horacio Saggion. 2016.
Knowledge extraction and modeling from scientific
publications. In Semantics, Analytics, Visualization.
Enhancing Scholarly Data, pages 11–25, Cham.
Springer International Publishing.

W. Shen, J. Wang, and J. Han. 2015. Entity linking
with a knowledge base: Issues, techniques, and so-
lutions. IEEE Transactions on Knowledge & Data
Engineering, 27(2):443–460.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of seman-
tics. CoRR, abs/1003.1141.

Davy Weissenbacher, Tasnia Tahsin, Rachel Beard,
Mari Figaro, Robert Rivera, Matthew Scotch,
and Graciela Gonzalez. 2015. Knowledge-
driven geospatial location resolution for phylo-
geographic models of virus migration. Bioin-
formatics, 31(12):i348–i356. Exported from
https://app.dimensions.ai on 2019/03/04.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap

between human and machine translation. CoRR,
abs/1609.08144.

Juan Zhang, Jun Xie, Wanli Hou, Xiaochen Tu, Jing
Xu, Fujian Song, Zhihong Wang, and Zuxun Lu.
2012. Mapping the knowledge structure of research
on patient adherence: Knowledge domain visualiza-
tion based co-word analysis and social network anal-
ysis. PLOS ONE, 7(4):1–7.


