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Abstract

Manifold representations of rotational/ translational motion and conformational space of a ligand
were previously shown to be effective for local energy optimization. In this paper we report the
development of the Monte-Carlo energy minimization approach (MCM), which uses the same
manifold representation. The approach was integrated into the docking pipeline developed for
the current round of D3R experiment, and according to D3R assessment produced high
accuracy poses for Cathepsin S ligands. Additionally, we have shown that (MD) refinement
further improves docking quality. The code of the Monte-Carlo minimization is freely available at
https://bitbucket.org/abc-group/mcm-demo.

Introduction

Manifold-based representations of rotational and translational degrees of freedom of a ligand
with respect to its receptor were shown to be effective for local optimization of energy function'.
Manifold is a topological space, which locally resembles Euclidean space around each point.
Each point can be assigned a space of vectors (tangent space), which intuitively denote the
possible directions on the manifold. The basic idea of the approach is to map the tangent space
at a current point on a rotational manifold to the neighboring points using exponential map’. The
map is used to locally transform SO(3) x Rgroup product into R Euclidean space and treat
energy as a 6 variable function. Thus, energy minimization can be done using any Euclidean
gradient based function optimization algorithm, such as L-BFGS®. This results in unconstrained
local optimization, which leads to efficient energy minimization algorithms'#. Such local
straightening of space also provides insights into the geometry of protein association
landscapes®.



This manifold approach can be extended to fully flexible local optimization by adding internal
degrees of freedom to the above framework. Flexible ligands and receptor amino acid
sidechains can be represented as a forest graph structure, i.e., set of tree graphs. Each degree
of freedom can be seen as an S" manifold (circle) and again, using the concept of the
exponential map, can be incorporated into the above manifold optimization approach by
expanding Rto R~ , where dis a number of rotatable bonds in the molecule®.

This representation can be used for medium-range Monte Carlo (MC) sampling, such as ligand
pose optimization within the binding site. In this work we report implementation of such Monte
Carlo Minimization approach and its application to ligand pose prediction as a part of our
docking pipeline in the latest round of D3R. In addition, we have studied effects of short MD
refinement on the quality of the prediction.

In this round of D3R the docking part of the challenge consisted of pose prediction for 24
Cathepsin S ligands. The experiment contained two stages. In the first stage (1A) the groups
were required to predict the poses of the ligands without any additional information, in the next
stage (1B) the organizers provided crystal structures of the complexes with ligands removed.

Cathepsin S system was previously well studied®, hence multiple bound ligand structures were
available in the PDB. To account for this, we have developed the following protocol. First, the
ligand was aligned to the closest known bound ligand in the proposed binding site, then
manifold MCM was performed and accepted poses were clustered. Additionally, for the stage
1B short MD simulations were run starting from the aligned poses and the results were added to
the MCM output. Each conformation in the resulting set was minimized and reranked using
Vina-based score’ and 5 best poses were used for submission.

The designed protocol demonstrated good performance on a large number of targets. In this

paper we describe our algorithm, evaluate its performance on the provided targets and
demonstrate its effectiveness in small molecule docking. The code of the MCM approach is
freely available at https://bitbucket.org/abc-group/mcm-demo.

Methods

Implementation of the Manifold Monte Carlo sampling approach

Method Overview

Here we provide a brief description of the methodology used for Monte Carlo based optimization
of ligand docking poses. The early prototype of the protocol was tested in the previous D3R
round®. The source code of the implementation is available at https://bitbucket.org/abc-
group/mcm-demo.

The underlying assumption used in our modeling approach is that the changes in covalent
bond-lengths and bond-angles can be neglected, and the molecule can be viewed as a set of

rigid molecular clusters interconnected with rotatable bonds. Configurational state of any
molecule can then be described in terms of 6 rigid body and d internal degrees of freedom,
where d is the number of torsions associated with rotatable bonds. Implementation-wise, an
aggregate of rigid and rotatable elements forming a molecule is represented as a torsion tree



data structure* (see figure 1). In general, this type of representation is common for small
molecule docking methods”®.

Figure 1. Representation of a small molecule as a torsion tree. The ligand is decomposed into a set of
rigid fragments interconnected by rotatable bonds, thus forming a torsion tree.

One distinctive feature of our docking method is related to its ability to perform minimization of
molecular poses in internal and rigid body manifold coordinates, as opposed to performing full-
atomic minimization. This becomes possible due to the fact that the space of rigid body motions,
SO(3) x R, the space of internal torsional motions,T = = {S* x S* x...x §*}. , @pg their
direct product SO(3) x R x T~ are all Riemannian manifolds, or locally Euclidean topological
spaces, and thus energy minimization can be formulated directly on this space as a manifold
optimization problem. We have previously shown that although the global geometry of this
manifold is not ftrivial, the local Euclidean property allows to use conventional optimization
techniques once suitable parametrization has been chosen, while smaller dimensionality
provides a significant speed advantage over all-atom minimization approaches'*.

Energy Function

The method includes a variety of potential energy functions, including bonded ( E... ) and Van
der Waals (E. ) terms, analytical continuum electrostatics model Fg7)', knowledge-based
hydrogen bonding (E,... ). In D3R 2017, we also used a quadratic geometric restraint potential
(Es7.¢ ) to constrain the positions of certain atoms (see MCM configuration below for details).

The total interaction energy used for small molecule docking is computed as a linear
combination of these individual terms:
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where w... ,W._, ,Wg7 ... , Wy denote the corresponding weights. All weights were kept
equal with hydrogen bonding disabled, which was proved to be effective during our previous
studies:

W.. = - W @7 B7TW = 1.0 WWy.... = 0.0,



E. includes standard bonded terms, such as bond, angle, dihedral and improper
terms,E . is computed using linearized repulsion with 1-4 interaction scaling factor and

E grcontains Coulomb interaction and a non-polar solvation term. Force field parameters were
obtained from GAFF'' Amber'? and charges were assigned according to AM1-BCC protocol™®
using antechamber module.

MCM Steps

When applied to ligand docking, the general Monte Carlo minimization protocol is performed as

a series of consecutive steps, each composed of 3 stages (see figure 2). The first stage is
perturbation of the ligand conformation. We currently use a simplistic move set consisting of
random rigid body moves and random perturbations of all ligand torsions. The second stage is
sliding: ligand is being slid into contact with the receptor along the line connecting the
geometrical centers of the ligand and the binding site. In this stage, the direction of ligand sliding

is towards the protein if there is not sufficient contact between receptor and ligand and away

from the protein if ligand and receptor clash. The last stage is local energy minimization
performed with a manifold-based optimization algorithm. The pose generated in these 3 stages

is accepted or declined using the Metropolis criterion.

Figure 2. The general scheme of the Monte Carlo minimization protocol. Each MCM simulation consists
of a series of steps each divided into 3 stages. In the first stage (1), a trial ligand pose is generated using
random rigid body and torsional perturbations. In the second stage (2), receptor and ligand are slid
towards/ away from each other to bring the molecules into contact or resolve severe clashes. In the third
stage (3), the trial pose is refined using the local manifold-based minimization algorithm. The resulting
binding conformation is accepted or declined based on the Metropolis criterion.

Challenge targets

Current D3R challenge included prediction of binding poses of 24 small organic molecules in
complex with Cathepsin S, a lysosomal cysteine protease which plays a role in degrading
proteins into peptides for presentation® on Major Histocompatibility Complex (MHC). In stage 1A

the participants were provided with 2 Cathepsin S crystal structures and 24 ligands in SMILES
format. In stage 1B the D3R team released 24 complex structures with ligand removed, but
everything else present, including crystal water. The objective in the both parts was to predict
binding poses for each of the 24 ligands, given provided receptor structures.



Protocol steps

For the 2 stages we used slightly different pose prediction protocols. Each protocol consisted of
3 steps: Receptor and ligand preparation, Pose prediction and Ranking (see figure 3).

POSE PREDICTION RANKING

STAGE 1A R
1) In-house energy minimization

Monte-Carlo of MC + MD1 + MD2 poses
minimization only

PREPARED FINAL
STRUCTURES SUBMISSION

STAGE 1B

Monte-Carlo minimization 2) Ranking by Vina-based score
and 3) Re-ranking by LIGSIFT score

Molecular Dynamics 4) Keep 5 best

Figure 3. Block-scheme of the protocol.

Molecule preparation

Receptor preparation

In stage 1A two representative receptors with bound SO4 and DMSO were provided by the
organizers. Using BLAST™, we identified 31 structures of Cathepsin S in the Protein Data Bank
and manually examined them to eliminate those which did not contain any ligand or had a
modified environment in proximity to the binding site. For each of the 24 targets in D3R 2017 we
found the most structurally similar ligand among the remaining complex structures using RDkit'®
package, reducing the final receptor set to 4 co-crystal structures: 3iej, 3kwn, 3mpe, 3mpf. The
purpose of this selection was to choose a receptor with the most appropriate interface sidechain
conformations for each target, however, as the visual examination suggested, in all of the
discovered Cathepsin structures interface sidechains remained relatively fixed. The most
suitable co-crystal structure (one of the 4) was assigned to each target, which we will further
denote as reference.

Ligand conformers generation

For each of the 24 targets 1000 conformations were generated from SMILES strings using
RDkit. Each conformer was aligned to the corresponding bound ligand from the reference co-
crystal structure using LIGSIFT'® and the most similar conformation (according to LIGSIFT
score) was used for further processing. Most of the target ligands had scaffold very similar to

their assigned reference bound ligands. One of the common features among most of the
molecules was a central single or double ring. Since most of the reference bound ligands
shared the location of the ring(s) in the binding site, we realigned the ab initio conformations to
best fit the rings and the general scaffold of the reference bound ligand.

Pose prediction methods

While the starting ligand conformations and scoring scheme remained the same for both stages,
we used slightly different protocols for the docking step. In both stages for docking we used
Monte-Carlo minimization algorithm using the starting conformation obtained in the ligand



generation step. However, in stage 1B we supplemented it with MD simulations as an
alternative docking method.

MCM configuration

For the 2017 D3R challenge, the pre-aligned ligand structures were used as starting points for

the MCM algorithm. Rigid body translation steps of up to 0.1 Angstrom, rotations of up to 5.7
degrees and torsional perturbations up to 1.57 radian were used. Additionally, harmonic
restraints were imposed on the central ring of a ligand to keep it in the binding pocket. While the
sidechain packing is generally important for unbound docking®, visual inspection of the template
X-ray structures suggested, that the sidechain conformations in the binding site remained
relatively stable given various ligands. Therefore, we disabled sidechain flexibility throughout the
simulation. For each target, simulations of 2000-10000 steps were performed, the accepted
poses were clustered using Butina clustering algorithm provided with RDkit with 2.0A RMSD
threshold. Best-scoring poses (scored using MCM energy function from equation 1) in each
cluster were retained for a final re-ranking step (see Ranking).

Molecular dynamics simulations

In the stage 1B, where crystal structures of Cathepsin S corresponding to each of the 24 ligands
were provided, MD simulations were used as a second approach for pose prediction. The
resulting MD poses were mixed with the MC predictions and the combined set was considered
for scoring. Two different MD protocols were used.

MD protocol 1

A simple protocol was devised to accommodate the deadlines. A single structure coming from

the MC protocol was used to carry out restrained simulations. Restraints were imposed based

on the structure of the receptor and solvent molecules as given by the organization. Charge
state was determined based on the ligand structure and charges for MD assigned through the
antechamber module in Amber '? using the AM1-BCC protocol °. The system is solvated with a
TIP3P' water box using tleap and a 5A buffer region between proteins and crystallographic
waters and the edge of the box. The system was neutralized using Na+ or Cl- as needed  "®"°.
Ligand parameters come from the GAFF force field"" and protein parameters from FF14SB%.

The MD protocol included a multistage minimization and equilibration protocol described
previously?' for 2.05 ns. MD production runs were carried through 100 ns with at 2fs timestep, at
298.15 K and 1atm. Hard restraints (50 kcal/mol A 2) were applied to protein heavy atoms and
crystallographic waters. Soft restraints (0.5 kcal/mol A 2) were used for the ligand. This keeps
poses close to the docking conformation but allows a certain degree of relaxation. Finally,
DBSCAN? is used to cluster each trajectory (distance cut-off of 1.5A and population cut-off 20).
The centroid of the most populated cluster of each target is extracted and used further for
energy minimization.

MD protocol 2

Molecular dynamics simulations were performed using the 2017-4 GPU version of
Desmond??. We used the OPLSAA_2005 force field and SPC water in our simulations.
Every simulation started with the standard Desmond relaxation protocol as defined in
the Maestro GUI.

The production runs were configured NPT using Nose-Hoover chain with a 1 ps
relaxation time for thermostat (single temperature group), and Martyna-Tobias- Klein
barostat with 2 ps relaxation time and isotropic coupling. We utilized a RESPA



integrator with At = 2.5 fs for bonded and near nonbonded interactions and At = 7.5 fs

for far nonbonded interactions. The particle-mesh Ewald algorithm was used with
periodic boundary conditions to compute long-range electrostatic interactions with the
real space cutoff set to 9 A for both electrostatic and van der Waals interactions. Water
molecules were constrained with SHAKE. An aggregate of 1 us production sampling
was accomplished on each system by running 10 independent 100 ns simulations
starting with different random initial velocities. The resulting trajectories were
concatenated and subjected to clustering. A greedy clustering algorithm, which finds
nearest neighbors within a certain radius, uses pairwise fitted interface root mean
square deviation (RMSD) matrices as distance measures. The clustering radii were
tailored to individual trajectory with respect to pairwise RMSD distribution, based on our
previous experience?*. The clustering radii we eventually applied ranged from 1.0 A to
2.5 A. The top 10 cluster centers with the largest cluster populations were supplied as
suggested models coming from these MD simulations and were further evaluated. Due to the
time limits we ran simulations only for the first 8 targets.

Ranking

MCM and MD (in the stage 1B) conformations were combined into a single set and each was
relaxed by our energy minimization protocol with fixed C-alpha atoms using L-BFGS algorithm.
Both minimized and non-minimized conformations were ranked by affinity values produced by
AutoDock Vina’ (--score_only flag), which are computed using intermolecular energy terms only.
Five poses with the best affinity scores were subsequently ranked by similarity to the pose of
the native ligand using LIGSIFT scores.

Results and discussion

The results of our docking protocol for stages 1A and 1B are provided in figure 4 and figure 5.
Our method demonstrates good performance for the majority of the targets, excluding several
ligands, for which our submission did not contain low RMSD poses. Here we describe some of
the successfully predicted cases as well as those, for which low RMSD poses were not present
in the final submission.

Stage 1A

-

Stage 1B
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Figure 4. Predictions for different targets. Starting ligand conformation - magenta, native conformation -
purple, final prediction - green. Pairs of cases for each protocol contain an example of successful
prediction and an example, where the protocol failed to find a near-native conformation.

(A - target 16, B - target 9): result of MCM, stage 1A.
(C - target 15, D - target 9): result of MCM, stage 1B.
(E - target 3, F - target 7): result MD1, stage 1B.
(G - target 8, H - target 7): result MD2, stage 1B.

MCM

The Monte-Carlo protocol has corrected a large number of poses towards the native
conformation in both of the stages, being however, more efficient in the stage 1A.

One successful example is target 16 from stage 1A (figure 4A). In the starting structure
(magenta) piperidine group and the opposing isopropyl tail had orientation different from the
native one (purple). MCM has fixed the starting conformation by placing the tails at the
orientation close to the native one. Another case from the stage 1B is target 15 (figure 4C). It

had improperly oriented phenyl tail, which was corrected by MC algorithm, which rotated it by
about 180 degrees.

However, there are 3 cases (targets 7, 9 and 14) where all submitted structures in both stages
have relatively high RMSD due to a common cause. Target 9, for instance, shows in both A and

B stages (figures 4B and 4D) 180 degrees flip of nearly the whole (except 4-fluoropiperidine tail)
ligand molecule (green) with respect to the native structure (purple). The reason is that the
starting pose (magenta) as well as the reference bound ligand had a binding mode reverse to

the native one and spring-like restraints used in the protocol prevent MC from placing the target
into a near-native state, which would require a 180-degree rotation.

MD protocol 1

The MD protocol was designed to correct small issues with the structures. Mostly in terms of
sidechain flexibility in the receptor and ligand reorientation. Hence, in figure 5B for most targets
with an initial RMSD lower than 5A there is refinement (compare the grey lines to the blue and
orange ones). The yellow bars represent the centroid of a cluster, a single structure to represent
them all, and hence is often not the best we can pick up in the ensemble. Minimizing this
structure results in further improvement -- usually better, than just minimizing the starting pose.
In the initial generation of the starting poses, the receptor is kept rigid. The ligand preparation
step used to create the starting conformations results in overlap of atoms. These steric clashes
are corrected with the minimization and equilibration protocol described in methods.
Subsequence MD leads to refinement in some cases, the best case being target 3 (see figure
4E).

Due to the positional restraints, higher reorientation was not possible. Hence, we can see in
figure 5 that whenever we start from a pose that is far away from the correct position we are
never able to recover from the initial error (targets 7, 9 and 14). Figure 4F exemplifies this for
target 7, where the docking site was correct for half of the ligand, but the other half was rotated
roughly 180 degrees with respect the right pose.

In future we plan to have a more flexible approach. Instead of placing cartesian restraints on the
ligand position we will satisfy a subset of contacts found in the initial ligand/receptor



conformation. This way the method has a chance to refine targets where the initial poses are
only partially correct (targets 7, 9 and 14). We have had success with this approach outside of
the D3R competition, where we were not bound by stringent deadlines using the MELD
approach®2¢.

MD protocol 2

As described previously, we ran 100 ns simulations and generated representative structures
with clustering. Such short MD simulations would not have allowed drastic transformation of
conformations but would serve as refinement of the starting structures. The results (see figure 5,
stage 1B) demonstrate the effects and limitations of such MD simulations. For instance, in target

7 (figure 4H) and target 8 (figure 4G), poses generated by MD refinement were ranked highly
according to our scoring scheme and were included in the final submission. However, in target

7, none of the top ranked models had the correct binding mode as the native structure. It seems
that the starting structure has rotated 180 degrees away from the X-ray structure. Following MD
refinement, the predicted models all ended in a similar binding mode as the starting structure
(magenta), overlapping poorly with the correct pose (purple). On the other hand, MD simulations
performed well with target 8. Figure 4G shows that the starting structure for MD (magenta) was

in the same orientation as the crystal structure (purple). MD refinement reproduced the correct
binding mode and also further adjusted the positioning of branches and the conformations of

rings.
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Figure 5. RMSD of predicted poses for stages 1A and 1B. Stage 1B: If orange, yellow or green column is
absent, it means that the corresponding method was not represented among the top5 poses in the
submission of the particular target.

Summary

Overall, MCM performed well in stage 1A finding a lower RMSD pose in almost every case
(figure 5A), with median of closest RMSD values 1.52A (figure 6). In stage 1B we were provided
with receptor X-ray structures, which combined with using both MC and MD protocols further
improved the accuracy of the models by 0.3A to 1.23A (median of closest RMSD values). MD
simulations were designed in order to refine the ligand’s starting conformation, other than
strongly perturb it, which resulted in overall improvement of the predicted set (figure 5B). For

some cases in stage 1B, MC protocol requires some adjustments to account for the presence of
water molecules.

Conclusion

In this work we report implementation of manifold MCM based approach and its application to

the latest round of D3R Grand Challenge. Additionally, we have studied the effect of MD
refinement on the submission accuracy. The designed protocol was placed among the top
performers by median overall RMSD (closest among top 5 poses for each target) in the current
challenge (see figure 6). For the majority of the targets our submission included many
predictions below 2A RMSD (1A: 17/24, 1B: 17/24). However, some targets (7, 9 and 14) had
binding mode different from that of ligands in the reference co-crystal structures, leading to
incorrect orientation of aligned starting poses. In future, we plan to improve our protocol by
using a number of different starting poses, which could potentially allow to overcome this issue.



MD protocols introduced some improvement, but the moves were localized, hence starting MD
with multiple MC poses instead of running it in parallel could potentially improve the results as
well. Additionally, the pose scoring can be improved? %, since in many cases our lowest RMSD
pose was within top 5 models, rather than top 1.

The code of the manifold MCM is available at https://bitbucket.org/abc-group/mem-demo.
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