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Abstract 
Manifold representations of rotational/ translational motion and conformational space of a ligand 
were previously shown to be effective for local energy optimization. In this paper we report the 
development of the Monte-Carlo energy minimization approach (MCM), which uses the same 
manifold representation. The approach was integrated into the docking pipeline developed for 
the current round of D3R experiment, and according to D3R assessment produced high 
accuracy poses for Cathepsin S ligands. Additionally, we have shown that (MD) refinement 
further improves docking quality. The code of the Monte-Carlo minimization is freely available at 
https://bitbucket.org/abc-group/mcm-demo. 

Introduction 

Manifold-based representations of rotational and translational degrees of freedom of a ligand 
with respect to its receptor were shown to be effective for local optimization of energy function1. 
Manifold is a topological space, which locally resembles Euclidean space around each point. 
Each point can be assigned a space of vectors (tangent space), which intuitively denote the 
possible directions on the manifold. The basic idea of the approach is to map the tangent space 
at a current point on a rotational manifold to the neighboring points using exponential map2. The 
map is used to locally transform 𝑆𝑂(3) × 𝑅( group product into 𝑅) Euclidean space and treat 
energy as a 6 variable function. Thus, energy minimization can be done using any Euclidean 
gradient based function optimization algorithm, such as L-BFGS3. This results in unconstrained 
local optimization, which leads to efficient energy minimization algorithms1,4. Such local 
straightening of space also provides insights into the geometry of protein association 
landscapes5. 



 

 

 
This manifold approach can be extended to fully flexible local optimization by adding internal 
degrees of freedom to the above framework. Flexible ligands and receptor amino acid 
sidechains can be represented as a forest graph structure, i.e., set of tree graphs. Each degree 
of freedom can be seen as an 𝑆+ manifold (circle) and again, using the concept of the 
exponential map, can be incorporated into the above manifold optimization approach by 
expanding 𝑅) to 𝑅),- , where 𝑑 is a number of rotatable bonds in the molecule4. 
 
This representation can be used for medium-range Monte Carlo (MC) sampling, such as ligand 
pose optimization within the binding site. In this work we report implementation of such Monte 
Carlo Minimization approach and its application to ligand pose prediction as a part of our 
docking pipeline in the latest round of D3R. In addition, we have studied effects of short MD 
refinement on the quality of the prediction. 
 
In this round of D3R the docking part of the challenge consisted of pose prediction for 24 
Cathepsin S ligands. The experiment contained two stages. In the first stage (1A) the groups 
were required to predict the poses of the ligands without any additional information, in the next 
stage (1B) the organizers provided crystal structures of the complexes with ligands removed.  
 
Cathepsin S system was previously well studied6, hence multiple bound ligand structures were 
available in the PDB. To account for this, we have developed the following protocol. First, the 
ligand was aligned to the closest known bound ligand in the proposed binding site, then 
manifold MCM was performed and accepted poses were clustered. Additionally, for the stage 
1B short MD simulations were run starting from the aligned poses and the results were added to 
the MCM output. Each conformation in the resulting set was minimized and reranked using 
Vina-based score7 and 5 best poses were used for submission. 
 
The designed protocol demonstrated good performance on a large number of targets. In this 
paper  we  describe  our  algorithm,  evaluate  its  performance  on  the  provided  targets  and 
demonstrate  its  effectiveness  in  small  molecule  docking.  The  code  of  the  MCM  approach  is 
freely available at https://bitbucket.org/abc-group/mcm-demo. 

Methods 

Implementation of the Manifold Monte Carlo sampling approach    

Method Overview 

Here we provide a brief description of the methodology used for Monte Carlo based optimization 
of  ligand  docking poses.  The early  prototype of the  protocol  was  tested  in  the previous  D3R 
round8. The source code of the implementation is available at https://bitbucket.org/abc-
group/mcm-demo. 
 
The  underlying  assumption  used  in  our  modeling  approach  is  that  the  changes  in  covalent 
bond-lengths and bond-angles can be neglected, and the molecule can be viewed as a set of 
rigid  molecular  clusters  interconnected  with  rotatable  bonds.  Configurational  state  of  any 
molecule  can  then be described  in terms of 6  rigid body  and  d  internal degrees  of  freedom, 
where  d  is  the  number  of  torsions  associated  with  rotatable  bonds.  Implementation-wise,  an 
aggregate of rigid and rotatable elements forming a molecule is represented as a torsion tree 



 

 

data  structure4  (see  figure  1).  In  general,  this  type  of  representation  is  common  for  small 
molecule docking methods7,9. 
 

 
Figure 1. Representation of a small molecule as a torsion tree. The ligand is decomposed into a set of 
rigid fragments interconnected by rotatable bonds, thus forming a torsion tree.  
 
One distinctive feature of our docking method is related to its ability to perform minimization of 
molecular poses in internal and rigid body manifold coordinates, as opposed to performing full-
atomic minimization. This becomes possible due to the fact that the space of rigid body motions, 
𝑆𝑂(3) × 𝑅( ,  the  space  of  internal  torsional  motions, 𝑇 - = {𝑆+ × 𝑆+ ×. . .× 𝑆+}- 45678,  and  their 
direct product 𝑆𝑂(3) × 𝑅( × 𝑇-   are all  Riemannian  manifolds, or  locally  Euclidean  topological 
spaces, and thus energy minimization can be formulated directly on this space as a manifold 
optimization  problem.  We  have  previously  shown  that  although  the  global  geometry  of  this 
manifold  is  not  trivial,  the  local  Euclidean  property  allows  to  use  conventional  optimization 
techniques once suitable parametrization has been chosen, while smaller dimensionality 
provides a significant speed advantage over all-atom minimization approaches1,4. 

Energy Function 

The method includes a variety of potential energy functions, including bonded ( 𝐸:;<- ) and Van 
der  Waals  (𝐸=-> )  terms,  analytical  continuum  electrostatics  model  (𝐸?@7)

10,  knowledge-based 
hydrogen bonding (𝐸A:;<- ). In D3R 2017, we also used a quadratic geometric restraint potential 
(𝐸B7;6 ) to constrain the positions of certain atoms (see MCM configuration below for details). 
The total interaction energy used for small molecule docking is computed as a linear 
combination of these individual terms: 
  
𝐸  =  𝑤:;<- 𝐸:;<- + 𝑤=-> 𝐸=-> + 𝑤?@7𝐸?@7 + 𝑤A:;<- 𝐸A:;<- + 𝑤B7;6 𝐸B7;6                                  (1) 
 
where 𝑤:;<- , 𝑤=-> , 𝑤?@7, 𝑤A:;<- , 𝑤B7;6 denote the corresponding weights. All weights were kept 

equal with hydrogen bonding disabled, which was proved to be effective during our previous 
studies: 
 
𝑤:;<- =  𝑤=->  =  𝑤?@7  =  𝑤B7;6 = 1.0 , 𝑤A:;<- = 0.0 , 

 



 

 

 𝐸:;<-  includes standard bonded terms, such as bond, angle, dihedral and improper 
terms,𝐸=-> is computed using linearized repulsion with 1-4 interaction scaling factor and 
𝐸?@7contains Coulomb interaction and a non-polar solvation term. Force field parameters were 
obtained from GAFF11 Amber12 and charges were assigned according to AM1-BCC protocol13 
using antechamber module.  

MCM Steps 

When applied to ligand docking, the general Monte Carlo minimization protocol is performed as 
a  series  of  consecutive  steps,  each  composed  of  3  stages  (see  figure  2).  The  first  stage  is 
perturbation  of the  ligand  conformation.  We  currently use  a  simplistic  move  set  consisting  of 
random rigid body moves and random perturbations of all ligand torsions. The second stage is 
sliding:  ligand  is  being  slid  into  contact  with  the  receptor  along  the  line  connecting  the 
geometrical centers of the ligand and the binding site. In this stage, the direction of ligand sliding 
is towards the protein if there is not sufficient contact between receptor and ligand and away 
from  the  protein  if  ligand  and  receptor  clash.  The  last  stage  is  local  energy  minimization 
performed with a manifold-based optimization algorithm. The pose generated in these 3 stages 
is accepted or declined using the Metropolis criterion. 

 
Figure 2. The general scheme of the Monte Carlo minimization protocol. Each MCM simulation consists 
of a series of steps each divided into 3 stages. In the first stage (1), a trial ligand pose is generated using 
random rigid body and torsional perturbations. In the second stage (2), receptor and ligand are slid 
towards/ away from each other to bring the molecules into contact or resolve severe clashes. In the third 
stage (3), the trial pose is refined using the local manifold-based minimization algorithm. The resulting 
binding conformation is accepted or declined based on the Metropolis criterion. 

Challenge targets 
Current D3R challenge included prediction of binding poses of 24 small organic molecules in 
complex  with  Cathepsin  S,  a  lysosomal  cysteine  protease  which  plays  a  role  in  degrading 
proteins into peptides for presentation6 on Major Histocompatibility Complex (MHC). In stage 1A 
the participants were provided with 2 Cathepsin S crystal structures and 24 ligands in SMILES 
format.  In  stage  1B  the  D3R  team  released  24  complex  structures  with  ligand  removed,  but 
everything else present, including crystal water. The objective in the both parts was to predict 
binding poses for each of the 24 ligands, given provided receptor structures. 



 

 

Protocol steps 
For the 2 stages we used slightly different pose prediction protocols. Each protocol consisted of 
3 steps: Receptor and ligand preparation, Pose prediction and Ranking (see figure 3). 
 

 
Figure 3. Block-scheme of the protocol. 

Molecule preparation 

Receptor preparation 

In  stage  1A  two  representative  receptors  with  bound  SO4  and  DMSO  were  provided  by  the 
organizers. Using BLAST14, we identified 31 structures of Cathepsin S in the Protein Data Bank 
and  manually  examined  them  to  eliminate  those  which  did  not  contain  any  ligand  or  had  a 
modified environment in proximity to the binding site. For each of the 24 targets in D3R 2017 we 
found the most structurally similar ligand among the remaining complex structures using RDkit15 
package, reducing the final receptor set to 4 co-crystal structures: 3iej, 3kwn, 3mpe, 3mpf. The 
purpose of this selection was to choose a receptor with the most appropriate interface sidechain 
conformations  for  each  target,  however,  as  the  visual  examination  suggested,  in  all  of  the 
discovered Cathepsin structures interface sidechains remained relatively fixed. The most 
suitable co-crystal structure (one of the 4) was assigned to each target, which we will further 
denote as reference. 

Ligand conformers generation 

For  each  of  the  24  targets  1000  conformations  were  generated  from  SMILES  strings  using 
RDkit. Each conformer was aligned to the corresponding bound ligand from the reference co-
crystal  structure  using  LIGSIFT16  and  the  most  similar  conformation  (according  to  LIGSIFT 
score) was used for further processing. Most of the target ligands had scaffold very similar to 
their  assigned  reference  bound  ligands.  One  of  the  common  features  among  most  of  the 
molecules  was  a  central  single  or  double  ring.  Since  most  of  the  reference  bound  ligands 
shared the location of the ring(s) in the binding site, we realigned the ab initio conformations to 
best fit the rings and the general scaffold of the reference bound ligand. 

Pose prediction methods 

While the starting ligand conformations and scoring scheme remained the same for both stages, 
we  used  slightly different protocols for the docking step. In  both  stages for docking  we  used 
Monte-Carlo  minimization  algorithm  using  the  starting  conformation  obtained  in  the  ligand 



 

 

generation step. However, in stage  1B we  supplemented it with MD simulations as an 
alternative docking method. 

MCM configuration 

For the 2017 D3R challenge, the pre-aligned ligand structures were used as starting points for 
the MCM algorithm. Rigid body translation steps of up to 0.1 Angstrom, rotations of up to 5.7 
degrees  and  torsional  perturbations  up  to  1.57  radian  were  used.  Additionally,  harmonic 
restraints were imposed on the central ring of a ligand to keep it in the binding pocket. While the 
sidechain packing is generally important for unbound docking 9, visual inspection of the template 
X-ray  structures  suggested,  that  the  sidechain  conformations  in  the  binding  site  remained 
relatively stable given various ligands. Therefore, we disabled sidechain flexibility throughout the 
simulation.  For  each  target,  simulations  of  2000-10000  steps  were  performed,  the  accepted 
poses  were  clustered  using  Butina  clustering  algorithm  provided  with  RDkit  with  2.0Å  RMSD 
threshold.  Best-scoring  poses  (scored  using  MCM  energy  function  from  equation  1)  in  each 
cluster were retained for a final re-ranking step (see Ranking). 

Molecular dynamics simulations 

In the stage 1B, where crystal structures of Cathepsin S corresponding to each of the 24 ligands 
were  provided,  MD  simulations  were  used  as  a  second  approach  for  pose  prediction.  The 
resulting MD poses were mixed with the MC predictions and the combined set was considered 
for scoring. Two different MD protocols were used. 

MD protocol 1 

A simple protocol was devised to accommodate the deadlines. A single structure coming from 
the MC protocol was used to carry out restrained simulations. Restraints were imposed based 
on the  structure  of  the  receptor  and  solvent  molecules  as  given by the  organization.  Charge 
state was determined based on the ligand structure and charges for MD assigned through the 
antechamber module in Amber 12 using the AM1-BCC protocol 13. The system is solvated with a 
TIP3P17  water  box  using tleap  and a  5Å  buffer  region  between proteins and  crystallographic 
waters and the edge of the box. The system was neutralized using Na+ or Cl- as needed 18,19. 
Ligand parameters come from the GAFF force field11 and protein parameters from FF14SB20. 
 
The  MD  protocol  included  a  multistage  minimization  and  equilibration  protocol  described 
previously21 for 2.05 ns. MD production runs were carried through 100 ns with at 2fs timestep, at 
298.15 K and 1atm. Hard restraints (50 kcal/mol Å 2) were applied to protein heavy atoms and 
crystallographic waters. Soft restraints (0.5 kcal/mol Å 2) were used for the ligand. This keeps 
poses  close  to  the  docking  conformation  but  allows  a  certain  degree  of  relaxation.  Finally, 
DBSCAN22 is used to cluster each trajectory (distance cut-off of 1.5Å and population cut-off 20). 
The  centroid  of  the  most  populated  cluster  of  each  target  is  extracted  and  used  further  for 
energy minimization. 

MD protocol 2 

Molecular dynamics simulations were performed using the 2017-4 GPU version of 
Desmond23. We used the OPLSAA_2005 force field and SPC water in our simulations. 
Every simulation started with the standard Desmond relaxation protocol as defined in 
the Maestro GUI. 
The production runs were configured NPT using Nose-Hoover chain with a 1 ps 
relaxation time for thermostat (single temperature group), and Martyna-Tobias- Klein 
barostat with 2 ps relaxation time and isotropic coupling. We utilized a RESPA 



 

 

integrator with ∆t = 2.5 fs for bonded and near nonbonded interactions and ∆t = 7.5 fs 
for far nonbonded interactions. The particle-mesh Ewald algorithm was used with 
periodic boundary conditions to compute long-range electrostatic interactions with the 
real space cutoff set to 9 Å for both electrostatic and van der Waals interactions. Water 
molecules were constrained with SHAKE. An aggregate of 1 μs production sampling 
was accomplished on each system by running 10 independent 100 ns simulations 
starting with different random initial velocities. The resulting trajectories were 
concatenated and subjected to clustering. A greedy clustering algorithm, which finds 
nearest neighbors within a certain radius, uses pairwise fitted interface root mean 
square deviation (RMSD) matrices as distance measures. The clustering radii were 
tailored to individual trajectory with respect to pairwise RMSD distribution, based on our 
previous experience24. The clustering radii we eventually applied ranged from 1.0 A to 
2.5 A. The top 10 cluster centers with the largest cluster populations were supplied as 
suggested models coming from these MD simulations and were further evaluated. Due to the 
time limits we ran simulations only for the first 8 targets. 

Ranking 

MCM and MD (in the stage 1B) conformations were combined into a single set and each was 
relaxed by our energy minimization protocol with fixed C-alpha atoms using L-BFGS algorithm. 
Both minimized and non-minimized conformations were ranked by affinity values produced by 
AutoDock Vina7 (--score_only flag), which are computed using intermolecular energy terms only. 
Five poses with the best affinity scores were subsequently ranked by similarity to the pose of 
the native ligand using LIGSIFT scores. 

Results and discussion 

The results of our docking protocol for stages 1A and 1B are provided in figure 4 and figure 5. 
Our method demonstrates good performance for the majority of the targets, excluding several 
ligands, for which our submission did not contain low RMSD poses. Here we describe some of 
the successfully predicted cases as well as those, for which low RMSD poses were not present 
in the final submission. 
 

 



 

 

Figure 4. Predictions for different targets. Starting ligand conformation - magenta, native conformation - 
purple, final prediction - green. Pairs of cases for each protocol contain an example of successful 

prediction and an example, where the protocol failed to find a near-native conformation.  
 

 (A - target 16, B - target 9): result of MCM, stage 1A.  
(C - target 15, D - target 9): result of MCM, stage 1B.  

(E - target 3, F - target 7): result MD1, stage 1B. 
(G - target 8, H - target 7): result MD2, stage 1B.  

MCM 
The Monte-Carlo protocol has corrected a large number of poses towards the native 
conformation in both of the stages, being however, more efficient in the stage 1A. 
 
One  successful  example  is  target  16  from  stage  1A  (figure  4A).  In  the  starting  structure 
(magenta)  piperidine  group  and  the  opposing  isopropyl  tail  had  orientation  different  from  the 
native  one  (purple).  MCM  has  fixed  the  starting  conformation  by  placing  the  tails  at  the 
orientation close to the native one. Another case from the stage 1B is target 15 (figure 4C). It 
had improperly oriented phenyl tail, which was corrected by MC algorithm, which rotated it by 
about 180 degrees. 
 
However, there are 3 cases (targets 7, 9 and 14) where all submitted structures in both stages 
have relatively high RMSD due to a common cause. Target 9, for instance, shows in both A and 
B stages (figures 4B and 4D) 180 degrees flip of nearly the whole (except 4-fluoropiperidine tail) 
ligand  molecule  (green)  with  respect  to  the  native  structure  (purple).  The  reason  is  that  the 
starting pose (magenta) as well as the reference bound ligand had a binding mode reverse to 
the native one and spring-like restraints used in the protocol prevent MC from placing the target 
into a near-native state, which would require a 180-degree rotation. 

MD protocol 1 
The MD protocol was designed to correct small issues with the structures. Mostly in terms of 
sidechain flexibility in the receptor and ligand reorientation. Hence, in figure 5B for most targets 
with an initial RMSD lower than 5Å there is refinement (compare the grey lines to the blue and 
orange ones). The yellow bars represent the centroid of a cluster, a single structure to represent 
them  all,  and  hence  is  often  not  the  best  we  can  pick  up  in  the  ensemble.  Minimizing  this 
structure results in further improvement -- usually better, than just minimizing the starting pose. 
In the initial generation of the starting poses, the receptor is kept rigid. The ligand preparation 
step used to create the starting conformations results in overlap of atoms. These steric clashes 
are corrected with the minimization and equilibration protocol described in methods. 
Subsequence MD leads to refinement in some cases, the best case being target 3 (see figure 
4E). 
 
Due to  the positional  restraints,  higher  reorientation  was not possible.  Hence,  we  can  see  in 
figure 5 that whenever we start from a pose that is far away from the correct position we are 
never able to recover from the initial error (targets 7, 9 and 14). Figure 4F exemplifies this for 
target 7, where the docking site was correct for half of the ligand, but the other half was rotated 
roughly 180 degrees with respect the right pose.  
 
In future we plan to have a more flexible approach. Instead of placing cartesian restraints on the 
ligand position we will satisfy a subset of contacts found in the initial ligand/receptor 



 

 

conformation. This way the method has a chance to refine targets where the initial poses are 
only partially correct (targets 7, 9 and 14). We have had success with this approach outside of 
the  D3R  competition,  where  we  were  not  bound  by  stringent  deadlines  using  the  MELD 
approach25,26.  
 

MD protocol 2 
As  described  previously,  we  ran  100  ns  simulations  and  generated  representative  structures 
with  clustering.  Such  short  MD  simulations  would  not  have  allowed  drastic  transformation  of 
conformations but would serve as refinement of the starting structures. The results (see figure 5, 
stage 1B) demonstrate the effects and limitations of such MD simulations. For instance, in target 
7 (figure 4H) and target 8 (figure 4G), poses generated by MD refinement were ranked highly 
according to our scoring scheme and were included in the final submission. However, in target 
7, none of the top ranked models had the correct binding mode as the native structure. It seems 
that the starting structure has rotated 180 degrees away from the X-ray structure. Following MD 
refinement, the predicted models all ended in a similar binding mode as the starting structure 
(magenta), overlapping poorly with the correct pose (purple). On the other hand, MD simulations 
performed well with target 8. Figure 4G shows that the starting structure for MD (magenta) was 
in the same orientation as the crystal structure (purple). MD refinement reproduced the correct 
binding mode and also further adjusted the positioning of branches and the conformations of 
rings. 

 



 

 

 
Figure 5. RMSD of predicted poses for stages 1A and 1B. Stage 1B: If orange, yellow or green column is 

absent, it means that the corresponding method was not represented among the top5 poses in the 
submission of the particular target. 

 

Summary 
Overall,  MCM  performed  well  in  stage  1A  finding  a  lower  RMSD  pose  in  almost  every  case 
(figure 5A), with median of closest RMSD values 1.52Å (figure 6). In stage 1B we were provided 
with receptor X-ray structures, which combined with using both MC and MD protocols further 
improved the accuracy of the models by 0.3Å to 1.23Å (median of closest RMSD values). MD 
simulations  were  designed  in  order  to  refine  the  ligand’s  starting  conformation,  other  than 
strongly perturb it, which resulted in overall improvement of the predicted set (figure 5B). For 
some cases in stage 1B, MC protocol requires some adjustments to account for the presence of 
water molecules.  

Conclusion 

In this work we report implementation of manifold MCM based approach and its application to 
the  latest  round  of  D3R  Grand  Challenge.  Additionally,  we  have  studied  the  effect  of  MD 
refinement  on  the  submission  accuracy.  The  designed  protocol  was  placed  among  the  top 
performers by median overall RMSD (closest among top 5 poses for each target) in the current 
challenge (see figure 6). For  the majority  of  the targets  our submission included many 
predictions below 2Å RMSD (1A: 17/24, 1B: 17/24). However, some targets (7, 9 and 14) had 
binding  mode  different  from  that  of  ligands  in  the  reference  co-crystal  structures,  leading  to 
incorrect  orientation  of  aligned  starting  poses.  In  future,  we  plan  to  improve  our  protocol  by 
using a number of different starting poses, which could potentially allow to overcome this issue. 



 

 

MD protocols introduced some improvement, but the moves were localized, hence starting MD 
with multiple MC poses instead of running it in parallel could potentially improve the results as 
well. Additionally, the pose scoring can be improved 27,28, since in many cases our lowest RMSD 
pose was within top 5 models, rather than top 1. 
 
The code of the manifold MCM is available at https://bitbucket.org/abc-group/mcm-demo. 

 
 
Figure 6. Submissions sorted by median of lowest RMSD values for each target (official results released 

by D3R organizers). The green arrow indicates our submission. 
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