
Noname manuscript No.
(will be inserted by the editor)

Strong Extension-Free Proof Systems

Marijn J.H. Heule 1 · Benjamin Kiesl 2,3 · Armin Biere 4

the date of receipt and acceptance should be inserted later

Abstract We introduce proof systems for propositional logic that admit short
proofs of hard formulas as well as the succinct expression of most techniques
used by modern SAT solvers. Our proof systems allow the derivation of clauses
that are not necessarily implied, but which are redundant in the sense that
their addition preserves satisfiability. To guarantee that these added clauses are
redundant, we consider various efficiently decidable redundancy criteria which
we obtain by first characterizing clause redundancy in terms of a semantic im-
plication relationship and then restricting this relationship so that it becomes
decidable in polynomial time. As the restricted implication relation is based
on unit propagation—a core technique of SAT solvers—it allows efficient proof
checking too. The resulting proof systems are surprisingly strong, even with-
out the introduction of new variables—a key feature of short proofs presented
in the proof-complexity literature. We demonstrate the strength of our proof
systems on the famous pigeon hole formulas by providing short clausal proofs
without new variables.

1 Introduction

Satisfiability (SAT) solvers are used to determine the correctness of hardware
and software systems [4, 16]. It is therefore crucial that these solvers justify
their claims by providing proofs that can be independently verified. This holds

Disclaimer : This is the recommended version with the intended content and typesetting—in
contrast to the article published by Springer.

This work has been supported by the National Science Foundation under grant CCF-1526760
and by the Austrian Science Fund (FWF) under project W1255-N23.

1 Department of Computer Science, The University of Texas at Austin, USA
2 Institute of Logic and Computation, TU Wien, Vienna, Austria
3 CISPA Helmholtz Center i.G., Saarland Informatics Campus, Saarbrücken, Germany
4 Institute for Formal Models and Verification, Johannes Kepler University Linz, Austria

2

also for various other applications that use SAT solvers. Just recently, long-
standing mathematical problems were solved using SAT, including the Erdős
Discrepancy Problem [21], the Pythagorean Triples Problem [13], and the com-
putation of the fifth Schur number [10]. Especially in such cases, proofs are at
the center of attention and without them the result of a solver is almost worth-
less. What the mathematical problems and the industrial applications have in
common is that proofs are often of considerable size—about 200 terabytes in
the case of the Pythagorean Triples Problem and even two petabytes for the
fifth Schur number. As the size of proofs is influenced by the strength of their
underlying proof system, the search for shorter proofs goes hand in hand with
the search for stronger proof systems.

In this article, we introduce highly expressive clausal proof systems that
can capture most of the techniques used by modern SAT solvers. Informally, a
clausal proof system allows the addition of redundant clauses to a formula in
conjunctive normal form (CNF). Here, a clause is considered redundant if its
addition preserves satisfiability. If the repeated addition of clauses allows us to
eventually add the empty clause—which is, by definition, unsatisfiable—then
the unsatisfiability of the original formula has been established.

Since the redundancy of clauses is not efficiently decidable in general, prac-
tical proof systems only allow the addition of a clause if it fulfills some effi-
ciently decidable criterion that ensures redundancy. For instance, the popular
DRAT proof system [30], which is the de-facto standard in practical SAT solv-
ing, only allows the addition of so-called resolution asymmetric tautologies [18].
Given a formula and a clause, it can be decided in polynomial time whether
the clause is a resolution asymmetric tautology with respect to the formula
and therefore the soundness of DRAT proofs can be checked efficiently.

We present various new redundancy criteria by introducing a characteri-
zation of clause redundancy based on a semantic implication relationship be-
tween formulas. By replacing the implication relation in this characterization
with restricted notions of implication that are computable in polynomial time,
we then obtain powerful redundancy criteria that are still efficiently decidable.
These redundancy criteria not only generalize earlier ones such as resolution
asymmetric tautologies [18] or set-blocked clauses [19], but they are also closely
related to other concepts from the literature, including autarkies [24], safe as-
signments [29], variable instantiation [1], and symmetry breaking [6].

Proof systems based on our new redundancy criteria turn out to be highly
expressive, even without allowing the introduction of new variables. This is
in contrast to resolution, which is considered relatively weak as long as the
introduction of new variables via definitions—as in the stronger proof system of
extended resolution [26, 9]—is not allowed. The introduction of new variables,
however, has a major drawback—the search space of variables and clauses we
could possibly add to a proof is clearly exponential. Finding useful clauses
with new variables is therefore hard in practice and resulted only in limited
success in the past [2, 23].

We illustrate the strength of our strongest proof system by providing short
clausal proofs for the famous pigeon hole formulas without introducing new

3

variables. The size of the proofs is linear in the size of the formulas and the
clauses added in the proof contain at most two literals. In these proofs, we
add redundant clauses that are similar in nature to symmetry-breaking pred-
icates [6, 7]. To verify the correctness of proofs in our new system, we imple-
mented a proof checker. The checker is built on top of DRAT-trim [30], the
checker used to validate the unsatisfiability results of the recent SAT com-
petitions [3]. We compare our proofs with existing proofs of the pigeon hole
formulas in other proof systems and show that our new proofs are much smaller
and cheaper to validate.

This invited article is an extended version of our CADE’17 best paper [14].
Apart from several small improvements throughout the article, we extended
the conference version by adding Section 7, which describes further interesting
properties of the redundant clauses introduced in this article. We also included
a new discussion of open problems in Section 9.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF), which
are defined as follows. A literal is either a variable x (a positive literal) or the
negation x of a variable x (a negative literal). The complement l of a literal
l is defined as l = x if l = x and l = x if l = x. For a literal l, we denote
the variable of l by var(l). A clause is a disjunction of literals. If not stated
otherwise, we assume that clauses do not contain complementary literals, i.e., a
literal and its complement. A formula is a conjunction of clauses. Clauses can
be viewed as sets of literals and formulas as sets of clauses. For a set L of
literals and a formula F , we define FL = {C ∈ F | C ∩L 6= ∅}. We sometimes
write Fl to denote F{l}.

An assignment is a function from a set of variables to the truth values
1 (true) and 0 (false). An assignment is total with respect to a formula if it
assigns a truth value to all variables occurring in the formula, otherwise it
is partial. We often denote assignments by the sequences of literals they sat-
isfy. For instance, x y denotes the assignment that makes x true and y false.
We denote the domain of an assignment α by var(α). A literal l is satisfied
by an assignment α if l is positive and α(var(l)) = 1 or if it is negative and
α(var(l)) = 0. A literal is falsified by an assignment if its complement is satis-
fied by the assignment. A clause is satisfied by an assignment α if it contains
a literal that is satisfied by α. Finally, a formula is satisfied by an assignment
α if all its clauses are satisfied by α. A formula is satisfiable if there exists
an assignment that satisfies it. Two formulas are logically equivalent if they
are satisfied by the same total assignments; they are satisfiability equivalent if
they are either both satisfiable or both unsatisfiable.

We denote the empty clause by ⊥ and the satisfied clause by >. Given an
assignment α and a clause C, we define C |α = > if α satisfies C, otherwise C |α
denotes the result of removing from C all the literals falsified by α. Moreover,
for a formula F , we define F |α = {C |α | C ∈ F and C |α 6= >}. We say that

4

a clause C blocks an assignment α if C = {x | α(x) = 0} ∪ {x | α(x) = 1}. A
unit clause is a clause that contains only one literal. The result of applying the
unit-clause rule to a formula F is the formula F |α with α being an assignment
that satisfies a unit clause in F . The iterated application of the unit-clause
rule to a formula, until no unit clauses are left, is called unit propagation. If
unit propagation on a formula F yields the empty clause ⊥, we say that it
derived a conflict on F . For example, unit propagation derives a conflict on
F = (x ∨ y) ∧ (y) ∧ (x) since F |x = (y) ∧ (y) and F |xy = ⊥.

By F � F ′, we denote that F implies F ′, i.e., every assignment that satisfies
F and assigns all variables in var(F ′) also satisfies F ′. Furthermore, by F 1̀ F ′

we denote that for every clause (l1 ∨ · · · ∨ lk) ∈ F ′, unit propagation derives a
conflict on F ∧ (l1) ∧ · · · ∧ (lk). If F 1̀ F ′, we say that F implies F ′ via unit
propagation. As an example, (x) ∧ (y) 1̀ (x ∨ z) ∧ (y), since unit propagation
derives a conflict on both (x) ∧ (y) ∧ (x) ∧ (z) and (x) ∧ (y) ∧ (y). Similarly,
F 0̀ F ′ denotes that every clause in F ′ is subsumed by (i.e., is a superset of)
a clause in F . Observe that F ⊇ F ′ implies F 0̀ F ′, F 0̀ F ′ implies F 1̀ F ′,
and F 1̀ F ′ implies F � F ′.

3 Clause Redundancy and Clausal Proofs

In the following, we introduce a formal notion of clause redundancy and
demonstrate how it provides the basis for clausal proof systems. We start
by introducing clause redundancy [19]:

Definition 1 A clause C is redundant with respect to a formula F if F and
F ∧ C are satisfiability equivalent.

For instance, the clause C = x ∨ y is redundant with respect to the formula
F = (x∨ y) since F and F ∧C are satisfiability equivalent (although they are
not logically equivalent). This redundancy notion allows us to add redundant
clauses to a formula without affecting its satisfiability and so it provides the
basis for so-called clausal proof systems.

In general, given a formula F = {C1, . . . , Cm}, a clausal derivation of a
clause Cn from F is a sequence (Cm+1, ωm+1), . . . , (Cn, ωn) of pairs where
Ci is a clause and ωi, called the witness, is a string (for all i > m). Such a
sequence gives rise to formulas Fm, Fm+1, . . . , Fn, where Fi = {C1, . . . , Ci}. We
call Fi the accumulated formula corresponding to the i-th proof step. A clausal
derivation is correct if every clause Ci (i > m) is redundant with respect to the
formula Fi−1 and if this redundancy can be checked in polynomial time (with
respect to the size of the proof) using the witness ωi. A clausal derivation
is a (refutation) proof of a formula F if it derives the empty clause, i.e., if
Cn = ⊥. Clearly, since every clause-addition step preserves satisfiability, and
since the empty clause is unsatisfiable, a refutation proof of F certifies the
unsatisfiability of F .

By specifying in detail what kind of redundant clauses—and corresponding
witnesses—can be added to a clausal derivation, we obtain concrete proof

5

systems. This is usually done by defining an efficiently checkable syntactic
criterion that guarantees that clauses fulfilling this criterion are redundant. A
popular example for a clausal proof system is DRAT [30], the de-facto standard
for unsatisfiability proofs in practical SAT solving. DRAT allows the addition
of a clause if it is a so-called resolution asymmetric tautology [18] (RAT, defined
in the next section). As it can be efficiently checked whether a clause is a RAT
with respect to a formula, and since RATs cover many types of redundant
clauses, the DRAT proof system is very powerful.

The strength of a clausal proof system depends on the generality of the
underlying redundancy criterion. We say that a redundancy criterion R1 is
more general than a redundancy criterion R2 if, whenever R2 identifies a
clause C as redundant with respect to a formula F , then R1 also identifies C
as redundant with respect to F . For instance, whenever a clause is subsumed
in some formula, it is a RAT with respect to that formula. Therefore, the RAT
redundancy criterion is more general than the subsumption criterion. In the
next section, we develop redundancy criteria that are even more general than
RAT, thus giving rise to proof systems that are stronger than DRAT.

4 Clause Redundancy via Implication

In the following, we introduce a characterization of clause redundancy that
reduces the question whether a clause is redundant with respect to a certain
formula to a simple question of implication. The advantage of this is that we
can replace the logical implication relation by polynomially decidable impli-
cation relations to derive powerful redundancy criteria that are still efficiently
checkable. These redundancy criteria can then be used to obtain highly ex-
pressive clausal proof systems.

Our characterization is based on the observation that a clause in a CNF
formula can be seen as a constraint that blocks those assignments that falsify
the clause. Therefore, a clause can be safely added to a formula if it does not
constrain the formula too much. What we mean by this is that after adding the
clause, there should still exist other assignments (i.e., assignments not blocked
by the clause) under which the formula is at least as satisfiable as under the
assignments blocked by the clause. Consider the following example:

Example 1 Let F = (x∨y)∧ (x∨z)∧ (x∨y∨z) and consider the (unit) clause
C = x which blocks all assignments that falsify x. The addition of C to F does
not affect satisfiability: Let α = x and ω = x. Then, F |α = (y) ∧ (z) while
F |ω = (y ∨ z). Clearly, every satisfying assignment of F |α is also a satisfying
assignment of F |ω, i.e., F |α � F |ω. Thus, F is at least as satisfiable under
ω as it is under α. Moreover, ω satisfies C. The addition of C does therefore
not affect the satisfiability of F . ut

This motivates our new characterization of clause redundancy presented next.
The characterization requires the existence of an assignment that satisfies the
clause and so it is only applicable to non-empty clauses. Note that for a given

6

clause C, “the assignment α blocked by C”, as defined above in Sect. 2, is
in general a partial assignment and thus C actually rules out all assignments
that extend α:

Theorem 1 Let F be a formula, C a non-empty clause, and α the assignment
blocked by C. Then, C is redundant with respect to F if and only if there exists
an assignment ω such that ω satisfies C and F |α � F |ω.

Proof For the “only if” direction, assume that F and F ∧ C are satisfiability
equivalent. If F |α is unsatisfiable, then F |α � F |ω for every ω, hence the
statement trivially holds. Assume now that F |α is satisfiable, implying that
F is satisfiable. Then, since F and F ∧ C are satisfiability equivalent, there
exists an assignment ω that satisfies both F and C. Thus, since ω satisfies F ,
it holds that F |ω = ∅ and so F |α � F |ω.

For the “if” direction, assume that there exists an assignment ω such that
ω satisfies C and F |α � F |ω. Now, let γ be a (total) assignment that satisfies
F and falsifies C. We show how γ can be turned into a satisfying assignment
γ′ of F ∧C. As γ falsifies C, it coincides with α on var(α). Therefore, since γ
satisfies F , it must satisfy F |α and since F |α � F |ω it must also satisfy F |ω.
Now, consider the following assignment:

γ′(x) =

{
ω(x) if x ∈ var(ω),

γ(x) otherwise.

Clearly, since ω satisfies C, γ′ also satisfies C. Moreover, as γ satisfies F |ω
and var(F |ω) ⊆ var(γ) \ var(ω), γ′ satisfies F . Hence, γ′ satisfies F ∧ C. ut

This alternative characterization of redundancy allows us to replace the logical
implication relation by restricted implication relations that are polynomially
decidable. For instance, we can replace the condition F |α � F |ω by the re-
stricted condition F |α 1̀ F |ω (likewise, we could also use relations such as
“ 0̀ ” or “⊇” instead of “ 1̀ ”). Now, if we are given a clause C—which implicitly
gives us the blocked assignment α—and a witnessing assignment ω, then we
can check in polynomial time whether F |α 1̀ F |ω, which is a sufficient con-
dition for the redundancy of C with respect to F . We can therefore use this
implication-based redundancy notion to define proof systems. The witnessing
assignments can then be used as witnesses in the proof.

In the following, we use the propagation-implication relation “ 1̀ ” to define
the redundancy criteria of

LPR: literal-propagation redundancy,
SPR: set-propagation redundancy, and
PR: propagation redundancy.

Basically, the three notions differ in the way we allow the witnessing assign-
ment ω to differ from the assignment α blocked by a clause. The more freedom
we give to ω, the more general the redundancy notion we obtain. We show
that LPR clauses—the least general of the three—coincide with RAT. For the

7

R

PR SPR LPR

RAT [18, 30]

RS [18]

BC [22, 17]SBC [19]

RUP [8, 28]

IMP

S

F |α 0̀ ⊥

F |α 1̀ ⊥

F |α ⊇ F |αL
∗

F |α 1̀ F |αL⊆C F |α 1̀ F |αl

F |α 0̀ F |αl

F |α ⊇ F |αl
∗

F |α � F |ω F |α � ⊥

F |α 1̀ F |ω

new [14]

satisfiability

equivalence

logical

equivalence

Fig. 1 Landscape of redundancy notions of non-empty clauses. R denotes all redundant
clauses and IMP stands for implied clauses. A path from X to Y indicates that X is more gen-
eral than Y . The asterisk (∗) denotes that the exact characterization implies the shown one,
e.g., for every set-blocked clause, the property F |α ⊇ F |αL holds, but not vice versa.

more general SPR clauses, we show that they generalize set-blocked clauses
(SBC) [19], which is not the case for LPR clauses. Finally, PR clauses are
the most general ones. They give rise to an extremely powerful proof system.
The new landscape of redundancy notions we thereby obtain is illustrated in
Fig. 1. In the figure, RUP stands for the redundancy notion based on reverse
unit propagation [8, 28], S stands for subsumed clauses, RS for clauses with
subsumed resolvents [18], and BC for blocked clauses [22, 17].

As we will see, when defining proof systems based on LPR (e.g., the DRAT
system) or SPR clauses, we do not need to explicitly add the redundancy
witnesses (i.e., the witnessing assignments ω) to a proof. Thus, LPR and SPR
proofs can just be seen as a sequence of clauses. In particular, a proof system
based on SPR clauses can have the same syntax as DRAT proofs, which makes
it “downwards compatible”. This is in contrast to proof systems based on PR
clauses, where in general witnessing assignments have to be added to a proof.
Otherwise redundancy of a clause can not be checked in polynomial time.

We start by introducing LPR clauses. In the following, given a (partial)
assignment α and a set L of literals, we denote by αL the assignment obtained
from α by making all literals in L true. If L contains only a single literal, we
sometimes write αl to denote α{l}. In the conference paper [14], we used a
slightly different definition, saying that αL is obtained from α by flipping the
truth values of all literals in L. Since we only defined αL for assignments α
that falsify all the literals in L, nothing changes. We do, however, believe that
the new notion is more intuitive.

8

Definition 2 Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is literal-propagation redundant (LPR) with respect to F if
there exists a literal l ∈ C such that F |α 1̀ F |αl.

Example 2 Let F = (x∨y)∧(x∨y∨z)∧(x∨z) and let C be the unit clause x.
Then, α = x is the assignment blocked by C, and αx = x. Now, consider
F |α = (y) ∧ (y ∨ z) and F |αx = (z). Clearly, F |α 1̀ F |αx and therefore C is
literal-propagation redundant with respect to F . ut

The LPR definition is quite restrictive since it requires the witnessing assign-
ment αl to disagree with α on exactly one variable. Nevertheless, this already
suffices for LPR clauses to coincide with RATs [18]:

Definition 3 Let F be a formula and C a clause. Then, C is a resolution
asymmetric tautology (RAT) with respect to F if there exists a literal l ∈ C
such that, for every clause D ∈ Fl, F 1̀ C ∪ (D \ {l}).

Theorem 2 A clause C is LPR with respect to a formula F if and only if it
is a RAT with respect to F .

Proof For the “only if” direction, assume that C is LPR with respect to F ,
i.e., C contains a literal l such that F |α 1̀ F |αl. Now, let D ∈ Fl. We have

to show that F 1̀ C ∪ (D \ {l}). First, note that F |α is exactly the result
of propagating the negated literals of C on F , i.e., applying the unit-clause
rule with the negated literals of C but not performing further propagations.
Moreover, since αl falsifies l, it follows that D |αl ⊆ (D \ {l}). But then, since
F |α 1̀ D |αl, it must hold that F 1̀ C ∪ (D \ {l}), hence C is a RAT with
respect to F .

For the “if” direction, assume that C is a RAT with respect to F , i.e., C
contains a literal l such that, for every clause D ∈ Fl, F 1̀ C ∪ (D \ {l}).
Now, let D |αl ∈ F |αl for D ∈ F . We have to show that F |α 1̀ D |αl. Since
αl satisfies l and α falsifies C, D does neither contain l nor any negations of
literals in C except for possibly l. If D does not contain l, then D |α = D |αl

is contained in F |α and hence the claim immediately follows.
Assume therefore that l ∈ D. As argued for the other direction, propagating

the negated literals of C (and no other literals) on F yields F |α. Therefore,
since F 1̀ C ∪ (D \ {l}) and D \ {l} does not contain any negations of literals
in C (which could otherwise be the reason for a unit propagation conflict that
only happens because of C containing a literal whose negation is contained in
D \ {l}), it must be the case that F |α 1̀ D \ {l}. Now, the only literals of
D \ {l} that are not contained in D |αl are the ones falsified by α, but those
are anyhow not contained in F |α. Hence, F |α 1̀ D |αl and thus C is LPR with
respect to F . ut

By allowing the witnessing assignments to disagree with α on more than only
one literal, we obtain the more general notion of set-propagation-redundant
clauses, which we introduce next. In the following, for a set L of literals, we
define L̄ = {l | l ∈ L}.

9

Definition 4 Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is set-propagation redundant (SPR) with respect to F if there
exists a non-empty set L ⊆ C of literals such that F |α 1̀ F |αL.

Example 3 Let F = (x∨ y)∧ (x∨ y∨ z)∧ (x∨ z)∧ (x∨u)∧ (u∨x), C = x∨u,
and L = {x, u}. Then, α = x u is the assignment blocked by C, and αL = x u.
Now, consider F |α = (y)∧ (y ∨ z) and F |αL = (z). Clearly, F |α 1̀ F |αL and
so C is set-propagation redundant with respect to F . Note also that C is not
literal-propagation redundant with respect to F . ut

Since L is a subset of C, we do not need to add it (or the assignment αL)
explicitly to an SPR proof. By requiring that L must consist of the first literals
of C when adding C to a proof (viewing a clause as a sequence of literals), we
can ensure that the SPR property is efficiently decidable. For instance, when a
proof contains the clause l1 ∨ · · · ∨ lk, we first check whether the SPR property
holds under the assumption that L = {l1}. If not, we proceed by assuming
that L = {l1, l2}, and so on until L = {l1, . . . , lk}. Thereby, only linearly many
candidates for L need to be checked. In contrast to LPR clauses and RATs, the
notion of SPR clauses generalizes set-blocked clauses [19]:

Definition 5 A clause C is set-blocked (SBC) by a non-empty set L ⊆ C in
a formula F if, for every clause D ∈ FL̄, the clause (C \ L) ∪ L̄ ∪D contains
two complementary literals.

To show that set-propagation-redundant clauses generalize set-blocked clauses,
we first characterize them as follows:

Lemma 3 Let F be a clause, C a formula, L ⊆ C a non-empty set of literals,
and α the assignment blocked by C. Then, C is set-blocked by L in F if and
only if, for every D ∈ F , D |α = > implies D |αL = >.

Proof For the “only if” direction, assume that there exists a clause D ∈ F
such that D |α = > but D |αL 6= >. Then, since α and αL disagree only on
literals in L, it follows that D contains a literal l ∈ L̄ and thus D ∈ FL̄. Now,
αL falsifies exactly the literals in (C \L)∪ L̄ and since it does not satisfy any
of the literals in D, it follows that there exists no literal l ∈ D such that its
complement l is contained in (C \L)∪ L̄. Therefore, C is not SBC by L in F .

For the “if” direction, assume that C is not SBC by L in F , i.e., there exists
a clause D ∈ FL̄ such that (C \ L) ∪ L̄ ∪D does not contain complementary
literals. Now, D |α = > since α falsifies L and D∩ L̄ 6= ∅. Since D contains no
literal l such that l ∈ (C \ L) ∪ L̄ and since αL falsifies exactly the literals in
(C \ L) ∪ L̄, it follows that αL does not satisfy D, hence D |αL 6= >. ut

Theorem 4 If a clause C is set-blocked by a set L in a formula F , it is
set-propagation redundant with respect to F .

Proof Assume that C is set-blocked by L in F . We show that F |α ⊇ F |αL,
which implies that F |α 1̀ F |αL, and therefore that C is set-propagation

10

redundant with respect to F . Let D |αL ∈ F |αL. First, note that D cannot
be contained in FL, for otherwise D |αL = > and thus D |αL /∈ F |αL. Second,
observe that D can also not be contained in FL̄, since that would imply that
D |α = > and thus, by Lemma 3, D |αL = >. Therefore, D /∈ FL ∪ FL̄ and so
D |α = D |αL. But then, D |αL ∈ F |α. It follows that F |α ⊇ F |αL. ut

We thus know that set-propagation-redundant clauses generalize both resolu-
tion asymmetric tautologies and set-blocked clauses. As there are resolution
asymmetric tautologies that are not set-blocked (and vice versa) [19], it follows
that set-propagation-redundant clauses are actually a strict generalization of
these two kinds of clauses.

Note that F |α 1̀ F |αL is equivalent to F |α 1̀ FL̄ |αL. To see this, observe
that if a clause D |αL ∈ F |αL contains no literals from L̄, then αL does not
assign any of its literals, in which case D |αL is also contained in F |α. We
therefore do not need to check for every D |αL ∈ F |αL whether F |α 1̀ D |α.

By giving practically full freedom to the witnessing assignments, i.e., by
only requiring them to satisfy C, we finally arrive at propagation-redundant
clauses, the most general of the three redundancy notions:

Definition 6 Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is propagation redundant (PR) with respect to F if there exists
an assignment ω such that ω satisfies C and F |α 1̀ F |ω.

Example 4 Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z), C = x, and let ω = x z be
the witnessing assignment. Then, α = x is the assignment blocked by C. Now,
consider F |α = (y) and F |ω = (y). Clearly, unit propagation with the negated
literal y of the unit clause y ∈ F |ω derives a conflict on F |α. Therefore,
F |α 1̀ F |ω and so C is PR with respect to F . Note that C is not set-propa-
gation redundant because for L = {x}, we have αL = x and so F |αL contains
the two unit clauses y and z, but it does not hold that F |α 1̀ z. The fact that
ω satisfies z is crucial for ensuring propagation redundancy. ut

Since the witnessing assignments ω are allowed to assign variables that are
not contained in C, we need—at least in general—to add them to a proof to
guarantee that redundancy can be efficiently checked.

We can now explicitly define the PR proof system as an instance of a clausal
proof system as defined on page 4:

Definition 7 Given a formula F = {C1, . . . , Cm}, a PR derivation of a clause
Cn from F is a sequence (Cm+1, ωm+1), . . . , (Cn, ωn) where for every pair
(Ci, ωi), one of the following holds: (1) ωi is an assignment that satisfies
Ci and Fi−1 |αi 1̀ Fi−1 |ωi with αi being the assignment blocked by Ci, or
(2) Cn = ⊥ and Fn−1 1̀ ⊥. A PR derivation of ⊥ from F is a PR proof of F .

The LPR proof system and the SPR proof system are defined accordingly. Note
that in the definition above we treat the empty clause separately because only
non-empty clauses can be propagation redundant. If we allow the mentioned
proof systems to delete arbitrary clauses, we obtain the proof systems DLPR,
DSPR, and DPR. We will not consider deletion in the rest of the article.

11

5 Short Proofs of the Pigeon Hole Principle

In a landmark article, Haken [9] showed that pigeon hole formulas cannot
be refuted by resolution proofs that are of polynomial size with respect to
the size of the formulas. In contrast, Cook [5] proved that there are actually
polynomial-size refutations of the pigeon hole formulas in the stronger proof
system of extended resolution. What distinguishes extended resolution from
general resolution is that it allows the introduction of new variables via defi-
nitions. Cook showed how the introduction of such definitions helps to reduce
a pigeon hole formula of size n to a pigeon hole formula of size n− 1 over new
variables. The problem with the introduction of new variables, however, is that
the search space of possible variables—and therefore clauses—that could be
added to a proof is exponential.

In the following, we illustrate how the PR proof system admits short proofs
of pigeon hole formulas without the need for introducing new variables. This
shows that the PR system is strictly stronger than the resolution calculus,
even when we forbid the introduction of new variables. A pigeon hole formula
PHPn intuitively encodes that n + 1 pigeons have to be assigned to n holes
such that no hole contains more than one pigeon.1 In the encoding, a variable
xp,h intuitively denotes that pigeon p is assigned to hole h:

PHPn :=
∧

1≤p≤n+1

(xp,1 ∨ · · · ∨ xp,n) ∧
∧

1≤p<q≤n+1

∧
1≤h≤n

(xp,h ∨ xq,h)

Clearly, pigeon hole formulas are unsatisfiable. The main idea behind our ap-
proach is similar to that of Cook, namely to reduce a pigeon hole formula
PHPn to the smaller PHPn−1. The difference is that in our case PHPn−1 is
still defined on the same variables as PHPn. Therefore, reducing PHPn to
PHPn−1 boils down to deriving the clauses xp,1 ∨ · · · ∨ xp,n−1 for 1 ≤ p ≤ n.

Following Haken [9], we use array notation for clauses: Every clause is
represented by an array of n+ 1 columns and n rows. An array contains a “ ”
(“ ”) in the p-th column and h-th row if and only if the variable xp,h occurs
positively (negatively, respectively) in the corresponding clause. Representing
PHPn in array notation, we have for every clause xp,1 ∨ · · · ∨ xp,n, an array in
which the p-th column is filled with “ ”. Moreover, for every clause xp,h∨xq,h,
we have an array that contains two “ ” in row h—one in column p and the
other in column q. For instance, PHP3 is given in array notation as follows:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

1
2
3

1 2 3 4
1
2
3

1 2 3 4

. . .
1
2
3

1 2 3 4

. . .
1
2
3

1 2 3 4
1
2
3

1 2 3 4

1 We changed the definition of PHPn from putting n pigeons into n− 1 holes to putting
n+ 1 pigeons into n holes in order to fix a discrepancy with the formulas in the evaluation.

12

We illustrate the general idea for reducing a pigeon hole formula PHPn to the
smaller PHPn−1 on the concrete formula PHP3. It should, however, become
clear from our explanation that the procedure works for every n > 1. If we
want to reduce PHP3 to PHP2, we have to derive the following three clauses:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

We can do so by removing the “ ” from the last row of every column full of “ ”,
except for the last column, which can be ignored as it is not contained in PHP2.
The key observation is that a “ ” in the last row of the p-th column can be
removed with the help of so-called “diagonal clauses” of the form xp,n∨xn+1,h

(1 ≤ h ≤ n− 1). We are allowed to add these diagonal clauses since they are,
as we will show, propagation redundant with respect to PHPn. The arrays
below represent the diagonal clauses to remove the “ ” from the last row of
the first (left), second (middle), and third column (right):

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

We next show how exactly these diagonal clauses allow us to remove the bot-
tom “ ” from a column full of “ ”, or, in other words, how they help us to
remove the literal xp,n from a clause xp,1 ∨ · · · ∨ xp,n (1 ≤ p ≤ n). Consider,
for instance, the clause x2,1 ∨ x2,2 ∨ x2,3 in PHP3. Our aim is to remove the
literal x2,3 from this clause. Before we explain the procedure, we like to re-
mark that proof systems based on propagation redundancy can easily simulate
resolution: Since every resolvent of clauses in a formula F is implied by F , the
assignment α blocked by the resolvent must falsify F and thus F |α 1̀ ⊥. We
explain our procedure textually before we illustrate it in array notation:

First, we add the diagonal clauses D1 = x2,3 ∨x4,1 and D2 = x2,3 ∨x4,2 to
PHP3. Now, we can derive the unit clause x2,3 by resolving the two diagonal
clauses D1 and D2 with the original pigeon hole clauses P1 = x2,3 ∨ x4,3 and
P2 = x4,1 ∨ x4,2 ∨ x4,3 as follows: We obtain x2,3 ∨ x4,2 ∨ x4,3 by resolving D1

with P2. Then, we resolve this clause with D2 to obtain x2,3 ∨ x4,3, which we
resolve with P1 to obtain x2,3. Note that our proof system actually allows us to
add x2,3 immediately without carrying out all the resolution steps explicitly.
Finally, we resolve x2,3 with x2,1 ∨ x2,2 ∨ x2,3 to obtain the desired clause
x2,1 ∨ x2,2.

We next illustrate this procedure in array notation. We start by visualizing
the clauses D1, D2, P1, and P2 that can be resolved to yield the clause x2,3.
The clauses are given in array notation as follows:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

D1 D2 P1 P2 x2,3

13

We can then resolve x2,3 with x2,1 ∨ x2,2 ∨ x2,3 to obtain x2,1 ∨ x2,2:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

x2,3 x2,1 ∨ x2,2 ∨ x2,3 x2,1 ∨ x2,2

This should illustrate how a clause of the form xp,1 ∨ · · · ∨ xp,n (1 ≤ p ≤ n)
can be reduced to a clause xp,1 ∨ · · · ∨ xp,n−1. By repeating this procedure for
every column p with 1 ≤ p ≤ n, we can thus reduce a pigeon hole formula
PHPn to a pigeon hole formula PHPn−1 without introducing new variables.
Note that the last step, in which we resolve the derived unit clause x2,3 with
the clause x2,1 ∨ x2,2 ∨ x2,3, is actually not necessary for a valid PR proof of a
pigeon hole formula, but we added it to simplify the presentation.

It remains to show that the diagonal clauses are indeed propagation re-
dundant with respect to the pigeon hole formula. To do so, we show that
for every assignment α = xp,n xn+1,h that is blocked by a diagonal clause
xp,n ∨ xn+1,h, it holds that for the assignment ω = xp,n xn+1,h xp,h xn+1,n,
PHPn |α = PHPn |ω, implying that PHPn |α 1̀ PHPn |ω. We also argue why
other diagonal and unit clauses can be ignored when checking whether a new
diagonal clause is propagation redundant.

We again illustrate the idea on PHP3. We now use array notation also for
assignments, i.e., a “ ” (“ ”) in column p and row h denotes that the assign-
ment makes variable xp,h true (false, respectively). Consider, for instance, the
diagonal clause D2 = x2,3 ∨ x4,2 that blocks α = x2,3 x4,2. The corresponding
witnessing assignment ω = x2,3 x4,2 x2,2 x4,3 can be seen as a “rectangle” with
two “ ” in the corners of one diagonal and two “ ” in the other corners:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

D2 α ω

To see that PHP3 |α and PHP3 |ω coincide on clauses xp,1 ∨ · · · ∨ xp,n,
consider that whenever α and ω assign a variable of such a clause, they both
satisfy the clause (since they both have a “ ” in every column in which they
assign a variable) and so they both remove it from PHP3. For instance, in the
following example, both α and ω satisfy x2,1 ∨ x2,2 ∨ x2,3 while both do not
assign a variable of the clause x3,1 ∨ x3,2 ∨ x3,3:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

x2,1 ∨ x2,2 ∨ x2,3 x3,1 ∨ x3,2 ∨ x3,3 α ω

To see that PHP3 |α and PHP3 |ω coincide on clauses of the form xp,h∨xq,h,
consider the following: If α falsifies a literal of xp,h ∨ xq,h, then the resulting
clause is a unit clause for which one of the two literals is not assigned by α

14

(since α does not assign two variables in the same row). Now, one can show that
the same unit clause is also contained in PHP3 |ω, where it is obtained from
another clause: Consider, for example, again the assignment α = x2,3 x4,2 and
the corresponding witnessing assignment ω = x2,3 x4,2 x2,2 x4,3 from above.
The assignment α turns the clause C = x3,2 ∨ x4,2 into the unit C |α = x3,2.
The same clause is contained in PHP3 |ω, as it is obtained from C ′ = x2,2∨x3,2

since C ′ |ω = C |α = x3,2:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

α C C |α = C′ |ω C′ ω

Note that diagonal clauses and unit clauses that have been derived earlier
can be ignored when checking whether the current one is propagation redun-
dant. For instance, assume we are currently reducing PHPn to PHPn−1. Then,
the assignments α and ω under consideration only assign variables in PHPn.
In contrast, the unit and diagonal clauses used for reducing PHPn+1 to PHPn

(or earlier ones) are only defined on variables outside of PHPn. They are there-
fore contained in both PHPn |α and PHPn |ω. We can also ignore earlier unit
and diagonal clauses over variables in PHPn, i.e., clauses used for reducing an
earlier column or other diagonal clauses for the current column: If α assigns
one of their variables, then ω satisfies them and so they are not in PHPn |ω.

Finally, we want to mention that short SPR proofs (without new variables)
of the pigeon hole formulas can be constructed by first adding SPR clauses
of the form xp,n ∨ xn+1,h ∨ xp,h ∨ xn+1,n and then turning them into diago-
nal clauses using resolution. We left these proofs out since they are twice as
large as the PR proofs and their explanation is less intuitive. A recent result
shows that the conversion of a PR proof into a DRAT proof requires only one
auxiliary variable [11]. We can thus construct short DRAT proofs without new
variables from short PR proofs without new variables. To do so, we first elim-
inate a single variable from the original formula and then reuse that variable
in the conversion algorithm. This is only possible because DRAT allows clause
deletion. We consider it unlikely that there exist short proofs for the pigeon
hole formulas in the RAT/LPR proof system, where no deletions are allowed.

6 Evaluation

We implemented a PR proof checker on top of DRAT-trim [30]. The tool, for-
mulas, and proofs are available at https://www.cs.utexas.edu/~marijn/pr.
Fig. 2 shows the pseudo code of the checking algorithm. The first “if” state-
ment is not necessary but significantly improves the efficiency of the algorithm.
The worst-case complexity of the algorithm is O(n3), where n is the size of
the final formula. The reason for this is that there are n−m iterations of the
outer for-loop and for each of these iterations, the inner for-loop is performed
|Fi| times, i.e., once for every clause in Fi. Given that Fi contains i clauses,

https://www.cs.utexas.edu/~marijn/pr

15

we know that the size of F is bounded by n. It follows that the inner for-loop
is performed mn times. Now, there is a unit propagation test in the inner
if-statement: If k is the maximal clause size and n is an upper bound for the
size of the formula, then the complexity of unit propagation is known to be at
most kn. Hence, the overall worst-case complexity of the algorithm is bounded
by mkn2 = O(n3).

This complexity is the same as for RAT-proof checking. In fact, the pseudo-
code for RAT-proof checking and PR-proof checking is the same apart from the
first if-statement, which is always true in the worst case, both for RAT and
PR. Although the theoretical worst-case complexity makes proof checking seem
very expensive, it can be done quite efficiently in practice: For the RAT proofs
produced by solvers in the SAT competitions, we observed that the runtime
of proof checking is close to linear with respect to the sizes of the proofs.

Moreover, we want to highlight that verifying the PR property of a clause
is relatively easy as long as a witnessing assignment is given. For an arbitrary
clause without a witnessing assignment, however, it is an NP-complete problem
to decide if the clause is PR [15]. We therefore believe that in general, the
verification of PR proofs is simpler than the actual solving/proving.

The format of PR proofs is an extension of DRAT proofs: the first numbers
of line i denote the literals in Ci. Positive numbers refer to positive literals, and
negative numbers refer to negative literals. In case a witness ωi is provided, the
first literal in the clause is repeated to denote the start of the witness. Recall
that the witness always has to satisfy the clause. It is therefore guaranteed that
the witness and the clause have at least one literal in common. Our format
requires that such a literal occurs at the first position of the clause and of the
witness. Finally, 0 marks the end of a line. Fig. 3 shows the formula and the
PR proof of our running example PHP3.

Table 1 compares our PR proofs with existing DRAT proofs of the pigeon
hole formulas and of formulas from another challenging benchmark suite of
the SAT competition that allows two pigeons per hole. For the latter suite,
PR proofs can be constructed in a similar way as those of the classical pigeon
hole formulas. Notice that the PR proofs do not introduce new variables and
that they contain fewer clauses than their corresponding formulas. The DRAT

PRcheck (formula Fm = C1, . . . , Cm; PR proof (Cm+1, ωm+1), . . . , (Cn, ωn))

for i ∈ {m+ 1, . . . , n} do
for D ∈ Fi−1 do

if D |ωi 6= > and (D |αi = > or D |ωi ⊂ D |αi) then

if Fi−1 |αi 01 D |ωi then return failure

Fi := Fi−1 ∪ {Ci}
return success

Fig. 2 Pseudo Code of the PR-Proof Checking Algorithm.

16

CNF Formula

x1,1 ∨ x1,2 ∨ x1,3
x2,1 ∨ x2,2 ∨ x2,3
x3,1 ∨ x3,2 ∨ x3,3
x4,1 ∨ x4,2 ∨ x4,3

x1,1 ∨ x2,1
x1,2 ∨ x2,2
x1,3 ∨ x2,3
x1,1 ∨ x3,1
x1,2 ∨ x3,2
x1,3 ∨ x3,3

. . .

DIMACS File

p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0
10 11 12 0

-1 -4 0
-2 -5 0
-3 -6 0
-1 -7 0
-2 -8 0
-3 -9 0
...

PR Proof File

-3 -10 -3 -10 1 12 0
-3 -11 -3 -11 2 12 0

-3 0
-6 -10 -6 -10 4 12 0
-6 -11 -6 -11 5 12 0

-6 0
-9 -10 -9 -10 7 12 0
-9 -11 -9 -11 8 12 0

-9 0
-2 0
-5 0

0

Lemmas

x1,3 ∨ x4,1
x1,3 ∨ x4,2

x1,3
x2,3 ∨ x4,1
x2,3 ∨ x4,2

x2,3
x3,3 ∨ x4,1
x3,3 ∨ x4,2

x3,3
x1,2
x2,2
⊥

Fig. 3 Left, ten clauses of PHP3 using the notation as elsewhere in this article and next
to it the equivalent representation of these clauses in the DIMACS format used by SAT
solvers. Right, the full PR refutation consisting of clause-witness pairs. A repetition of the
first literal indicates the start of the optional witness.

Table 1 The sizes (in terms of the number of variables and clauses) of pigeon hole formulas
(top) and two-pigeons-per-hole formulas (bottom) as well as the sizes and validation times
(in seconds) for their PR proofs (as described in Section 5) and their DRAT proofs (based
on symmetry breaking [12]).

input PR proofs DRAT proofs
formula #var #cls #var #cls time #var #cls time

hole10.cnf 110 561 110 385 0.17 440 3 685 0.22

hole11.cnf 132 738 132 506 0.18 572 5 236 0.23

hole12.cnf 156 949 156 650 0.19 728 7 228 0.27

hole13.cnf 182 1 197 182 819 0.21 910 9 737 0.34

hole20.cnf 420 4 221 420 2 870 0.40 3 080 49 420 2.90

hole30.cnf 930 13 981 930 9 455 2.57 9 920 234 205 61.83

hole40.cnf 1 640 32 841 1 640 22 140 13.54 22 960 715 040 623.29

hole50.cnf 2 550 63 801 2 550 42 925 71.72 44 200 1 708 925 3 158.17

tph8.cnf 136 5 457 136 680 0.32 3 520 834 963 5.47

tph12.cnf 300 27 625 300 2 300 1.81 11 376 28 183 301 1 396.92

tph16.cnf 528 87 329 528 5 456 11.16 not available, too large
tph20.cnf 820 213 241 820 10 660 61.69 not available, too large

proof of PHPn contains a copy of the formula PHPk for each k < n. Checking
PR proofs is also more efficient, as they are more compact.

7 Properties of Propagation Redundancy

In the following, we discuss some properties of propagation redundancy and
its restricted variants of literal-propagation redundancy and set-propagation
redundancy. We first prove that if a clause C is either LPR, SPR, or PR with
respect to a formula F , then every superclause of C (i.e., every clause D such
that C ⊆ D) is also LPR, SPR, or PR (respectively) with respect to F . After

17

this, we show how propagation-redundant clauses can be shortened based on
unit propagation. Finally, we present an observation that clarifies the relation-
ship between propagation-redundant clauses and their corresponding witness-
ing assignments.

Our strategy for showing that the superclauses of LPR, SPR, and PR clauses
are also LPR, SPR, and PR is as follows: Assume, for instance, that C is a PR
clause with respect to F and let α be the assignment blocked by C. We then
know that there exists an assignment ω such that F |α 1̀ F |ω. To show that
every superclause C ′ of C is also propagation redundant with respect to F , we
extend α so that it becomes the assignment α′ blocked by C ′. After this, we
extend ω to an assignment ω′ such that F |α′ 1̀ F |ω′. The following example
shows that we cannot simply extend α without extending ω:

Example 5 Let F = (x∨ y)∧ (x∨ y) and let α = x and ω = x. Then, F |α and
F |ω both contain only the unit clause y and so it holds that F |α 1̀ F |ω. If
we only extend α to αy, then F |αy contains no clauses and thus F |αy 01 F |ω.
However, if we also extend ω to ωy, then we again have F |αy 1̀ F |ωy. ut

In the following, we present several statements that help us extend ω in the
right way. We start with a simple observation about the relation between unit
propagation and variable assignments. If a formula is unsatisfiable, then the
formula remains unsatisfiable after we assign some of its variables. A similar
property holds when unsatisfiability can be shown by unit propagation: If unit
propagation derives a conflict on a formula, then we can assign truth values
to arbitrary variables of the formula and unit propagation will still derive a
conflict. This property will be useful below when we prove other properties
about propagation redundancy:

Proposition 5 If unit propagation derives a conflict on a formula F , then it
derives a conflict on F |x for every literal x.

Proof Assume unit propagation derives a conflict on F . Then, there must exist
a sequence C1, . . . , Ck of clauses from F such that C1 is the unit clause a1,
C2 |a1 is the unit clause a2, and so on until Ck−1 |a1 . . . an−2 = ak−1, and
finally Ck |a1 . . . ak−1 = ⊥. Now, if the variable var(x) does not occur in any
of the clauses C1, . . . , Ck, then Ci |x = Ci for each i ∈ 1, . . . , n and thus
unit propagation derives a conflict on F |x. Assume now that var(x) occurs in
C1, . . . , Ck and let Ci be the clause with the smallest i such that var(x) ∈ Ci.
Then, C1, . . . , Ci−1 ∈ F |x and so unit propagation derives the unit clauses
a1, . . . , ai−1 on F |x. We proceed by a case distinction.

x ∈ Ci: In this case, Ci /∈ F |x, but we know that Ci |a1 . . . ai−1 = ai = x since
var(x) cannot occur in a1, . . . , ai−1. But then the assignment a1 . . . ai−1ai,
derived by unit propagation on F , is the assignment a1 . . . ai−1x, derived by
unit propagation on F |x. Hence, unit propagation on F |x derives a conflict
using the clauses C1 |x, . . . , Ci−1 |x,Ci+1 |x, . . . Ck |x.

x ∈ Ci: In that case, Ci |a1 . . . ai−1 must be the unit clause x. It follows that
Ci ⊆ a1∨· · ·∨ai−1∨x and thus Ci |x ⊆ a1∨· · ·∨ai−1. Hence, unit propagation

18

on F |x derives a conflict with the clauses C1, C2, . . . , Ci |x since it derives all
the unit clauses a1, . . . , ai−1. ut

In Example 5, we presented a formula F with two assignments α and ω such
that F |α 1̀ F |ω. After extending α to αx, however, we could observe that
F |αx 01 F |ω. The problem in the example is that in contrast to F |α, the
formula F |αx does not contain the unit clause x anymore while F |ω still
contains x as a clause. Hence, F |αx does not imply F |ω. However, as the
next statement tells us, it is guaranteed that F |αx implies all those clauses of
F |ω that contain neither x nor x.

In the rest of this section, given a clause C = (c1 ∨ · · · ∨ cn), we write ¬C
for the conjunction c1∧· · ·∧ cn of unit clauses. In the following statement, the
requirement that α must not falsify x makes sure that αx is well-defined:

Lemma 6 Let F be formula, let α, ω be assignments such that F |α 1̀ F |ω,
and let x be a literal that is not falsified by α. Then, F |αx 1̀ D |ω for every
clause D |ω ∈ F |ω such that var(x) /∈ var(D |ω).

Proof Assume that F |α 1̀ F |ω and let D |ω ∈ F |ω be a clause such that
var(x) /∈ D |ω. Since F |α 1̀ D |ω, we know that unit propagation derives a
conflict on F |α∧¬(D |ω), with ¬(D |ω) being the conjunction of the negated
literals of D |ω. Since var(x) /∈ var(D |ω), it follows that D |ω = D |ωx. Thus,
(F |α∧¬(D |ω)) |x = F |αx∧¬(D |ω). But then, since unit propagation derives
a conflict on F |α∧¬(D |ω), we know, by Proposition 5, that unit propagation
derives a conflict on F |αx ∧ ¬(D |ω). It follows that F |αx 1̀ D |ω. ut

Using Lemma 6, we can show that every literal that is neither falsified by α
nor by ω can just be appended to both α and ω:

Lemma 7 Let F be formula, α and ω assignments, and x a literal that is
neither falsified by α nor by ω. Then, F |α 1̀ F |ω implies F |αx 1̀ F |ωx.

Proof Suppose F |α 1̀ F |ω and let D |ωx ∈ F |ωx for D ∈ F . We show that
F |αx 1̀ D |ωx. If x ∈ D |ω, then D |ω = D |ωx ∨ x. Hence, unit propagation
derives a conflict on F |α∧¬(D |ωx)∧x, with ¬(D |ωx) being the conjunction
of the negated literals of D |ωx. But then unit propagation derives a conflict
on F |αx ∧ ¬(D |ωx) and thus F |αx 1̀ D |ωx. If x /∈ D, then D |ωx = D |ω.
Now, we know that F |α 1̀ D |ω and hence F |α 1̀ D |ωx. Thus, by Lemma 6,
it follows that F |αx 1̀ D |ωx. ut

Assume that a clause C is LPR with respect to a formula F . Let D be a super-
clause of C, α be the assignment blocked by C, and αx1 . . . xk the assignment
blocked by D. Then, we know that there exists a literal l ∈ C such that
F |α 1̀ F |αl. But then Lemma 7 tells us that F |αx1 . . . xk 1̀ F |αlx1 . . . xk
and thus D is LPR with respect to F . The same argument applies to SPR
clauses (but not to PR clauses in general) and thus we get:

Theorem 8 If a clause C is LPR (SPR) with respect to F , then every super-
clause of C is LPR (SPR, respectively) with respect to F .

19

To show that the corresponding statement also holds for PR clauses that are
not SPR clauses, we need to show some additional properties of PR clauses.
The next statement, which is a simple consequence of Lemma 6, tells us that
the extension of α to αx is harmless if ω already falsifies x:

Lemma 9 Let F be formula, let α and ω be assignments, and let x be a literal
that is not falsified by α. Then, F |α 1̀ F |ωx implies F |αx 1̀ F |ωx.

Proof Assume that var(x) occurs in a clause D ∈ F . If x ∈ D, then D |ωx does
not contain x. If x ∈ D, then D is satisfied by ωx and thus D |ωx /∈ F |ωx.
Thus, by Lemma 6, F |αx 1̀ F |ωx. ut

Putting everything together, we can now show that we can always extend α if
we just extend ω accordingly:

Lemma 10 Let F be a formula, let α and ω be two assignments such that
F |α 1̀ F |ω, and let α′ be an assignment such that α ⊆ α′. Then, there exists
an assignment ω′ such that ω ⊆ ω′ and F |α′ 1̀ F |ω′.

Proof Suppose α′ is an assignment such that α ⊆ α′. Then, α′ is of the form
αx1 . . . xk where n ∈ 0, . . . , n. Now, starting with x1, we stepwise extend α
with x1, . . . , xk to finally obtain αx1 . . . xk. We just have to extend ω to an
assignment ωk accordingly to ensure that F |αx1 . . . xk 1̀ F |ωk. We start with
ω0 = ω and proceed as follows for i ∈ 1, . . . , n: If var(xi) ∈ var(ω), define
ωi = ωi−1. In contrast, if var(xi) /∈ var(ω), define ωi = ωi−1xi.

By a simple induction on i we can now show F |αx1 . . . xi 1̀ F |ωi for every
i ∈ 0, . . . , k: The base case, F |α 1̀ F |ω, holds by assumption. The induc-
tion hypothesis states that F |αx1 . . . xi−1 1̀ F |ωi−1. Now, for the induction
step, if ω(xi) = 0, then ωi is of the form ωi−1xi. In this case, by Lemma 9,
F |αx1 . . . xi 1̀ F |ωi−1xi. If var(xi) /∈ var(ω) or ω(xi) = 1, then ωi is of the
form ωi−1xi. In that case, by Lemma 7, F |αx1 . . . xi 1̀ F |ωi−1xi . ut

As immediate consequence we obtain one of our main statements:

Theorem 11 If a clause C is PR with respect to F , then every superclause of
C is PR with respect to F .

Next, we show that we can remove certain literals from propagation-redundant
clauses without violating their property of being propagation redundant. The
idea is as follows: Let C be a clause that is propagation redundant with respect
to a formula F and let αx1 . . . xk be the assignment blocked by C. Now, if
unit propagation on F |α derives the unit clauses x1, . . . , xk, then the clause
that blocks only α—and not the whole assignment αx1 . . . xk—is propagation
redundant with respect to F too. To show this, we first introduce the notion of
propagation extensions. Note that in the following definition, by a consistent
set of unit clauses, we mean a set of unit clauses that does not contain two
complementary unit clauses x and x:

20

Definition 8 Let F be a formula, let α be an assignment, and let {x1, . . . , xk}
be a consistent set of unit clauses derived by unit propagation on F |α. Then,
αx1 . . . xk is a propagation extension of α on F .

Example 6 Let F = (x ∨ y) ∧ (y ∨ z) and let α = x. Unit propagation on F |α
derives the unit clauses y and z. Hence, the assignments αy, αz, and αyz are
propagation extensions of α on F . Now consider the formula F ∧ z. Then,
unit propagation on (F ∧ z) |α derives the unit clauses y, z, and z. Thus, the
propagation extensions of α on F ∧ (z) are the assignments αz and αyz as well
as all the propagation extensions of α on F . ut

If F |α+
1̀ F |ω for some propagation extension α+ of an assignment α, we

can simply shorten α+ to α without modifying ω and it will still hold that
F |α 1̀ F |ω:

Lemma 12 Let F be a formula, α an assignment, and α+ a propagation ex-
tension of α on F . Then, F |α 1̀ F |ω if and only if F |α+

1̀ F |ω.

Proof The “only if” direction is an immediate consequence of Lemma 10. For
the “if” direction, assume that F |α+

1̀ F |ω and let D |ω ∈ F |ω. We know
that unit propagation derives a conflict on F |α+∧¬(D |ω) where ¬(D |ω) is the
conjunction of the negated literals of D |ω. Since unit propagation derives F |α+

from F |α, it follows that unit propagation derives a conflict on F |α∧¬(D |ω).
Hence, F |α 1̀ D |ω and thus F |α 1̀ F |ω. ut

Using Lemma 12, we can now show that the removal of propagated literals
from PR clauses is harmless:

Theorem 13 Let C be a clause that is PR with respect to a formula F and
let α+ be the assignment blocked by C. If α+ is a propagation extension of an
assignment α on F , then the clause that blocks α is PR with respect to F .

Proof Assume that α+ is a propagation extension of an assignment α on F
and let C− be the clause that blocks α. Then, α+ is of the form αx1 . . . xk
where x1, . . . xk are all the literals derived by unit propagation on F |α. Since
C is propagation redundant with respect to F , we know that there exists
some assignment ω such that ω satisfies C and F |αx1 . . . xk 1̀ F |ω. Hence,
by Lemma 12, F |α 1̀ F |ω. Now, if ω satisfies C−, then C− is propagation
redundant with respect to F .

Assume thus that ω does not satisfy C−. Then, since ω satisfies C, it must
falsify a literal in x1, . . . , xk. Let xi be the first literal (i.e., the one with the
smallest index) of x1, . . . , xk that is falsified by ω. Then, there exists a clause
D ∈ F such that D |αx1 . . . xi−1 is the unit clause xi and thus ω falsifies D.
Hence, F |α 1̀ ⊥. But then, C− is trivially PR with respect to F since it holds
for every assignment τ (and in particular for every τ that satisfies C) that
F |α 1̀ F |τ . ut

21

We can prove a corresponding result about LPR clauses: If we remove prop-
agated literals from an LPR clause, then the resulting clause is also an LPR
clause. As we will see later, this is not the case for SPR clauses. We start with
two lemmas:

Lemma 14 Let F be a formula, α and ω assignments, and x a literal such
that F |α 1̀ x. Then, F |α 1̀ F |ωx implies F |α 1̀ F |ω.

Proof Suppose to the contrary that there exists a clause D |ω ∈ F |ω such that
F |α 01 D |ω. Then, D must contain x, for otherwise ωx would not satisfy D,
which would in turn imply F |α 01 F |ωx. Therefore, the clause ¬(D |ω), being
the conjunction of the negated literals of D |ω, must contain x. But then, since
unit propagation on F |α derives x, it follows that unit propagation derives a
conflict on F |α ∧ ¬(D |ω). Hence, F |α 1̀ D |ω and thus F |α 1̀ F |ω. ut

Lemma 15 Let F be a formula, α an assignment, α+ a propagation extension
of α on F , and l a literal. Then, F |α+

1̀ F |αl
+ implies F |α 1̀ F |αl.

Proof Assume that α+ is a propagation extension of α. Then, α+ is of the form
ατ where τ make the literals true that have been derived by unit propagation
on F |α. To show that F |α 1̀ F |αl, we distinguish two cases:

var(l) ∈ var(α): In this case, F |ατ 1̀ F |αlτ and thus F |α 1̀ F |αlτ . Now,
since F |α 1̀ x for every literal x satisfied by τ , we use Lemma 14 to repeatedly
remove from αlτ all assignments made by τ to obtain F |α 1̀ F |αl.

var(l) ∈ var(τ): In that case, F |ατ 1̀ F |ατl. Since unit propagation on
F |α derives l, there exists a clause D ∈ F such that ατl—which satisfies l—
falsifies D. Hence, D |ατl = ⊥, and since F |ατ 1̀ D |ατl, it follows that unit
propagation derives a conflict on F |ατ . But then unit propagation must derive
a conflict on F |α and thus F |α implies every clause via unit propagation. We
thus conclude that F |α 1̀ F |αl. ut

The following Theorem is now an immediate consequence of Lemma 15:

Theorem 16 Let C be a clause that is LPR with respect to a formula F and
let α+ be the assignment blocked by C. If α+ is a propagation extension of an
assignment α on F , then the clause that blocks α is LPR with respect to F .

The corresponding property does not hold for SPR clauses, as illustrated by
the following example:

Example 7 Let F = (x ∨ y) ∧ (x ∨ y), C = x ∨ y, and L = {x, y}. Then,
α+ = x y, which is the assignment blocked by C, is a propagation extension
of the assignment α = x. Moreover, since F |αL

+ contains no clauses, we have
F |α+

1̀ F |αL
+ and thus C is set-propagation redundant with respect to F .

However, F |α 01 F |αx and thus the subclause x of C is not set-propagation
redundant with respect to F . ut

22

We conclude this section with an observation about the witnessing assignments
of propagation-redundant clauses. In the case of propagation redundancy, the
domain of the witnessing assignment ω is not constrained to a particular set of
variables. Thus, if we are given a clause C and we want to find a corresponding
assignment ω that witnesses the propagation redundancy of C, we would have
to consider assignments over all possible sets of variables. It turns out, however,
that there is always a witnessing assignment that assigns all variables occurring
in C, and possibly more. Thus, if α is the assignment blocked by C, we only
need to consider assignments ω such that var(α) ⊆ var(ω). The reason for
this is that we can extend every witness ω to the variables of var(α):

Proposition 17 Let F be a formula, α and ω assignments, and x a literal
such that var(x) ∈ var(α) \ var(ω). Then, F |α 1̀ F |ω implies F |α 1̀ F |ωx.

Proof Let D |ωx ∈ F |ωx. We show that F |α 1̀ D |ωx. Clearly, x is not con-
tained in D for otherwise D |ωx = >. Therefore, the only possible difference
between D |ω and D |ωx is that x is contained in D |ω but not in D |ωx. Now,
since var(x) ∈ var(α), we know that var(x) /∈ F |α. But then, F |α 1̀ D |ωx if
and only if F |α 1̀ D |ω. It thus follows that F |α 1̀ F |ωx. ut

8 Related Work

Here, we discuss how the concepts in this article are related to variable instan-
tiation [1], autarkies [24], safe assignments [29], and symmetry breaking [6]. If
F |x � F |x holds for some literal x, then variable instantiation, as described
by Andersson et al. [1], allows to make the literal x true in the formula F .
Analogously, our redundancy notion identifies the clause x as redundant.

As presented by Monien and Speckenmeyer [24], an assignment ω is an
autarky for a formula F if it satisfies all clauses of F that contain a literal to
which ω assigns a truth value. If an assignment ω is an autarky for a formula F ,
then F is satisfiability equivalent to F |ω. Similarly, propagation redundancy
PR allows us to add all the unit clauses satisfied by an autarky, with the
autarky serving as a witness:2 Let ω be an autarky for some formula F , C = x
for a literal x satisfied by ω, and α = x the assignment blocked by C. Notice
that F |α ⊇ F |ω and thus C is PR with respect to F .

According to Weaver and Franco [29], an assignment ω is considered safe
if, for every assignment α with var(α) = var(ω), it holds that F |α � F |ω. If
an assignment ω is safe, then F |ω is satisfiability equivalent to F . In a similar
fashion, our approach allows us to block all the above-mentioned assignments
α 6= ω. Through this, we obtain a formula that is logically equivalent to F |ω.
Note that safe assignments generalize autarkies and variable instantiation.
Moreover, while safe assignments only allow the application of an assignment
ω to a formula F if F |α � F |ω holds for all assignments α 6= ω, our approach
enables us to block an assignment α as soon as F |α � F |ω.

2 In the conference version [14] of this article, we wrongly stated that we can add all
falsified unit clauses instead of the satisfied ones.

23

Finally, symmetry breaking [6] can be expressed in the DRAT proof sys-
tem [12] but existing methods introduce many new variables and duplicate
the input formula multiple times. It might be possible to express symmetry
breaking without new variables in the PR proof system. For one important
symmetry, row-interchangeability [7], the symmetry breaking using PR with-
out new variables appears similar to the method we presented for the pigeon
hole formulas.

9 Open Problems and Future Work

In a more recent paper, we showed that there exists a polynomial-time proce-
dure that translates PR proofs to DRAT proofs by introducing one new vari-
able [11]. Moreover, we proved that extended resolution polynomially simulates
the DRAT proof system [20]. The combination of these two results demon-
strates that extended resolution polynomially simulates the PR proof system
and therefore also its restricted variants. An open question is how the PR proof
system without new variables relates to other strong proof systems for proposi-
tional logic that do not introduce new variables, such as Frege systems. Other
open questions are related to the space and width bounds of the smallest PR
proofs, again without new variables, for well-known other hard problems such
as Tseitin formulas [26, 27] or pebbling games [25].

On the practical side, we want to pursue some ideas to improve SAT
solving by learning short PR clauses. Our first approach, called satisfaction-
driven clause learning, generalizes the well-known conflict-driven clause learn-
ing paradigm by checking whether certain assignments—encountered during
solving—can be pruned from the search space by adding PR clauses [15]. Our
current implementation can find short proofs of pigeon hole formulas, although
the solver can only find a subset of all possible PR clauses. Moreover, we are
still searching for efficient heuristics that help solvers with finding short PR
clauses in general formulas. Another problem we are currently exploring is the
minimization of conflict clauses by checking if a subset of a conflict clause
is propagation redundant with respect to the formula under consideration.
Finally, we want to implement a formally-verified proof checker for PR proofs.

10 Conclusion

We presented a clean and simple characterization of clause redundancy that is
based on an implication relation between a formula and itself under different
partial assignments. Replacing the implication relation by efficiently decidable
notions of implication, e.g., the superset relation or implication via unit prop-
agation, gives then rise to various polynomially-checkable redundancy criteria.
One variant yields a proof system that turns out to coincide with RAT, which
together with deletion is the de-facto standard in SAT solving. We conjecture
the proof systems based on the other two variants to be stronger if the intro-
duction of new variables is not allowed. We showed that these more general

24

proof systems admit short clausal proofs without new variables for the famous
pigeon hole formulas. Experiments show that our proofs are much smaller
than existing clausal proofs and that they are also much faster to check. Our
new proof systems concisely simulate many other concepts from the literature
such as autarkies, variable instantiation, safe assignments, and certain kinds
of symmetry reasoning.

References

1. Andersson G, Bjesse P, Cook B, Hanna Z (2002) A proof engine approach
to solving combinational design automation problems. In: Proc. of the 39th
Annual Design Automation Conference (DAC 2002), ACM, pp 725–730

2. Audemard G, Katsirelos G, Simon L (2010) A restriction of extended
resolution for clause learning sat solvers. In: Proc. of the 24th AAAI Con-
ference on Artificial Intelligence (AAAI 2010), AAAI Press

3. Balyo T, Heule MJH, Järvisalo M (2017) SAT competition 2016: Recent
developments. To appear in: Proc. of the 31st AAAI Conference on Arti-
ficial Intelligence (AAAI 2017), AAAI Press

4. Clarke EM, Biere A, Raimi R, Zhu Y (2001) Bounded model checking
using satisfiability solving. Formal Methods in System Design 19(1):7–34

5. Cook SA (1976) A short proof of the pigeon hole principle using extended
resolution. SIGACT News 8(4):28–32

6. Crawford J, Ginsberg M, Luks E, Roy A (1996) Symmetry-breaking pred-
icates for search problems. In: Proc. of the 5th Int. Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 1996), Morgan
Kaufmann, pp 148–159

7. Devriendt J, Bogaerts B, Bruynooghe M, Denecker M (2016) Improved
static symmetry breaking for SAT. In: Proc. of the 19th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT 2016), Springer,
Cham, LNCS, vol 9710, pp 104–122

8. Goldberg EI, Novikov Y (2003) Verification of proofs of unsatisfiability for
CNF formulas. In: Proc. of the Conference on Design, Automation and
Test in Europe (DATE 2003), IEEE Computer Society, pp 10,886–10,891

9. Haken A (1985) The intractability of resolution. Theoretical Computer
Science 39:297–308

10. Heule MJH (2018) Schur number five. In: Proc. of the 32nd AAAI Con-
ference on Artificial Intelligence (AAAI 2018), AAAI Press, pp 6598–6606

11. Heule MJH, Biere A (2018) What a difference a variable makes. In: Proc. of
the 24th Int. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2018), Springer, Cham, LNCS, vol 10806,
pp 75–92

12. Heule MJH, Hunt Jr WA, Wetzler ND (2015) Expressing symmetry break-
ing in DRAT proofs. In: Proc. of the 25th Int. Conference on Automated
Deduction (CADE-25), Springer, Cham, LNCS, vol 9195, pp 591–606

25

13. Heule MJH, Kullmann O, Marek VW (2016) Solving and verifying the
Boolean Pythagorean Triples problem via Cube-and-Conquer. In: Proc.
of the 19th Int. Conference on Theory and Applications of Satisfiability
Testing (SAT 2016), Springer, Cham, LNCS, vol 9710, pp 228–245

14. Heule MJH, Kiesl B, Biere A (2017) Short proofs without new variables.
In: Proc. of the 26th Int. Conference on Automated Deduction (CADE-
26), Springer, Cham, LNCS, vol 10395, pp 130–147

15. Heule MJH, Kiesl B, Seidl M, Biere A (2017) PRuning through satis-
faction. In: Proc. of the 13th Haifa Verification Conference (HVC 2017),
Springer, Cham, LNCS, vol 10629, pp 179–194

16. Ivančić F, Yang Z, Ganai MK, Gupta A, Ashar P (2008) Efficient SAT-
based bounded model checking for software verification. Theoretical Com-
puter Science 404(3):256–274

17. Järvisalo M, Biere A, Heule MJH (2012) Simulating circuit-level simplifi-
cations on CNF. Journal on Automated Reasoning 49(4):583–619

18. Järvisalo M, Heule MJH, Biere A (2012) Inprocessing rules. In: Proc. of
the 6th Int. Joint Conference on Automated Reasoning (IJCAR 2012),
Springer, Heidelberg, LNCS, vol 7364, pp 355–370

19. Kiesl B, Seidl M, Tompits H, Biere A (2016) Super-blocked clauses.
In: Proc. of the 8th Int. Joint Conference on Automated Reasoning
(IJCAR 2016), Springer, Cham, LNCS, vol 9706, pp 45–61

20. Kiesl B, Rebola-Pardo A, Heule MJH (2018) Extended resolution sim-
ulates DRAT. In: Proc. of the 9th Int. Joint Conference on Automated
Reasoning (IJCAR 2018), Springer, Cham, LNCS, vol 10900, pp 516–531

21. Konev B, Lisitsa A (2015) Computer-aided proof of Erdős discrepancy
properties. Artificial Intelligence 224(C):103–118

22. Kullmann O (1999) On a generalization of extended resolution. Discrete
Applied Mathematics 96-97:149–176

23. Manthey N, Heule MJH, Biere A (2013) Automated reencoding of
boolean formulas. In: Proc. of the 8th Int. Haifa Verification Conference
(HVC 2012), Springer, Heidelberg, LNCS, vol 7857

24. Monien B, Speckenmeyer E (1985) Solving satisfiability in less than 2n

steps. Discrete Applied Mathematics 10(3):287 – 295
25. Nordström J (2009) A simplified way of proving trade-off results for reso-

lution. Information Processing Letters 109(18):1030–1035
26. Tseitin GS (1968) On the complexity of derivation in propositional calcu-

lus. Studies in Mathematics and Mathematical Logic 2:115–125
27. Urquhart A (1995) The complexity of propositional proofs. The Bulletin

of Symbolic Logic 1(4):425–467
28. Van Gelder A (2012) Producing and verifying extremely large propo-

sitional refutations. Annals of Mathematics and Artificial Intelligence
65(4):329–372

29. Weaver S, Franco JV, Schlipf JS (2006) Extending existential quantifica-
tion in conjunctions of BDDs. JSAT 1(2):89–110

30. Wetzler ND, Heule MJH, Hunt Jr WA (2014) DRAT-trim: Efficient
checking and trimming using expressive clausal proofs. In: Proc. of the

26

17th Int. Conference on Theory and Applications of Satisfiability Testing
(SAT 2014), Springer, Cham, LNCS, vol 8561, pp 422–429

