
Empirical Software Engineering
https://doi.org/10.1007/s10664-018-9672-z

Using bug descriptions to reformulate queries during
text-retrieval-based bug localization

Oscar Chaparro1 · Juan Manuel Florez1 ·Andrian Marcus1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Text Retrieval (TR)-based approaches for bug localization rely on formulating an initial
query based on the full text of a bug report. When the query fails to retrieve the buggy
code artifacts, developers can reformulate the query and retrieve more candidate code doc-
uments. Existing research on query reformulation focuses mostly on leveraging relevance
feedback from the user or on expanding the original query with additional information.
We hypothesize that the title of the bug reports, the observed behavior, expected behavior,
steps to reproduce, and code snippets provided by the users in bug descriptions, contain the
most relevant information for retrieving the buggy code artifacts, and that other parts of the
descriptions contain more irrelevant terms, which hinder retrieval. This paper proposes and
evaluates a set of query reformulation strategies based on the selection of existing informa-
tion in bug descriptions, and the removal of irrelevant parts from the original query. The
results show that selecting the bug report title and the observed behavior is the strategy that
performs best across various TR-based bug localization approaches and code granularities,
as it leads to retrieving the buggy code artifacts within the top-N results for 25.6% more
queries (on average) than without query reformulation. This strategy is highly applicable
and consistent across different thresholds N. Selecting the steps to reproduce or the expected
behavior (when provided in the bug reports) along with the bug title and the observed
behavior leads to higher performance (i.e., between 31.4% and 41.7% more queries) and
comparable consistency, yet it is applicable in fewer cases. These reformulation strategies
are easy to use and are independent of the underlying retrieval technique.

Keywords Bug descriptions · Query reformulation · Bug localization · Text retrieval

Communicated by: Lu Zhang, Thomas Zimmermann, Xin Peng and Hong Mei

� Oscar Chaparro
ojchaparroa@utdallas.edu

Juan Manuel Florez
jflorez@utdallas.edu

Andrian Marcus
amarcus@utdallas.edu

1 Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9672-z&domain=pdf
http://orcid.org/0000-0003-2838-685X
mailto: ojchaparroa@utdallas.edu
mailto: jflorez@utdallas.edu
mailto: amarcus@utdallas.edu

Empirical Software Engineering

1 Introduction

Text Retrieval (TR) has been widely used by researchers to support developers during bug
localization in source code (Saha et al. 2013; Wang and Lo 2014; Wang et al. 2014a; Le
et al., 2015; Nguyen et al. 2011; Nichols 2010; Rao and Kak 2011; Sisman and Kak 2012;
Wong et al. 2014; Ye et al. 2016a, b; Youm et al. 2017; Zhou et al. 2012, Wen et al. 2016,
Zhang et al. 2016, Eddy et al. 2018).1 TR-based bug localization (TRBL) techniques address
bug localization as a document retrieval problem where an initial query, formulated from
the information provided in a bug report, is used to retrieve a ranked list of candidate code
artifacts (a.k.a. code documents, such as files, classes, or methods) that are likely to contain
the bug. In the general TRBL process (Marcus and Haiduc 2013; Dit et al. 2012; De Lucia
et al. 2012), once the TRBL technique produces the list of candidates, the developer pro-
ceeds to check the top-N (say, top-5) candidates, one at a time, and determine whether or
not they contain the bug.

The developer performs this process by inspecting each candidate’s name as well as its
internal code. Deciding how relevant each candidate is (i.e., whether it is buggy or not) with
respect to the bug report, is determined largely on the developer’s knowledge of the system
(Marcus et al. 2004). Once one buggy code document is found, the process ends successfully
(i.e., the query is successful). If the top-N candidates are not deemed buggy, the developer
has three main options: (1) inspect additional candidates (say, N more) in the result list;
(2) reformulate the initial query, run the reformulated query with the TRBL technique at
hand, and inspect the returned candidate code documents; or (3) switch to other strategies
for localizing the buggy code such as, navigating program dependencies.

Traditionally, TRBL approaches use the full textual information from bug reports (i.e.,
bug descriptions) as queries. In many cases, the queries fail to return the buggy code arti-
facts within the top-N results (i.e., the queries are unsuccessful) and the developer requires
following any of the options described above for locating the buggy code. Exiting research
on TRBL has focused on improving the ranking produced by the initial query, primarily
by combining various types of software information, such as code dependencies (Wang and
Lo 2014, 2016; Saha et al. 2013; Youm et al. 2017; Ali et al. 2012; Takahashi et al. 2018),
execution traces from the bug report (Moreno et al. 2014; Wong et al. 2014; Wang and Lo
2016; Youm et al. 2017; Sisman et al. 2016), past bug reports and code changes (Zhou et al.
2012; Wang and Lo 2014, 2016; Youm et al. 2017; Saha et al. 2013; Davies et al. 2012;
Wong et al. 2014; Rath et al. 2018; Sisman and Kak 2012), etc. Other research has focused
on techniques to reformulate the initial query, mostly by leveraging relevance feedback
from the user Gay et al. (2009), pseudo-relevance feedback based on previous search results
(Haiduc et al. 2013), or additional information to replace or expand the query (e.g., adding
synonyms) (Shepherd et al. 2007; Rahman and Roy 2016; Marcus et al. 2004). However,
in many cases, the bug description contains terms that are irrelevant for code retrieval, that
is, they act as noise and result in the retrieval of irrelevant (i.e., non-buggy) code artifacts.
This is because reporters do not write bug descriptions as queries for a text retrieval engine,
instead, they write them to communicate the software problem to the developers. Previous
research (Chaparro and Marcus 2016; Mills et al. 2018) showed that removing the irrele-
vant terms from the queries (i.e., query reduction) leads to substantial improvement in code
retrieval. Unfortunately, little research has focused on identifying parts of bug descriptions

1See Section 6 for details

Empirical Software Engineering

that contain irrelevant terms with respect to code retrieval (Rahman and Roy 2016, 2017a,
2018b; Haiduc et al. 2013; Chaparro and Marcus 2016, 2017a).

This paper proposes and investigates the effectiveness of several query reduction strate-
gies, based on the structure of bug descriptions, which are easy to apply when using TRBL
approaches. Such reformulation techniques can be used when the initial query does not
retrieve the relevant code artifacts within the top-N results and the users choose to investi-
gate more retrieved documents after reformulation. Typically, bug reports are composed of
three major parts: the title, the description, and bug meta information. The title is a sum-
mary of the software problem, the description is a detailed account of the problem, and the
meta information includes other data about the bug such as software version affected, oper-
ating system, bug severity, etc. The description may contain technical information such as
code snippets (i.e., CODE) or stack traces. More importantly, the description contains the
user’s account of the software (mis)behavior (i.e., the Observed Behavior or OB), the steps
to trigger the (mis)behavior (i.e., the Steps to Reproduce or S2R), and the expected soft-
ware behavior (i.e., EB) (Zimmermann et al. 2010; Davies and Roper 2014; Chaparro et al.
2017a, b). Both, the title and description, i.e., the textual account of the problem written
by the reporter, is what we call bug description. We hypothesize that the TITLE of the bug
reports, the OB, EB, and S2R, as well as any CODE present in the bug description, con-
tain the most relevant information with respect to TRBL. Conversely, we argue that other
parts of the bug descriptions contain more irrelevant terms, which lead to false positives
(i.e., the retrieval of non-buggy code artifacts). We propose leveraging these parts of the bug
description for query reformulation.

This paper introduces and empirically evaluates 31 different reformulation strategies,
which reduce the initial query to parts that correspond to the TITLE, OB, EB, S2R,
and/or CODE of the bug report. The reformulation strategies are independent of any
TRBL approach and were used with five different techniques, namely Lucene (Hatcher and
Gospodnetic 2004), Lobster (Moreno et al. 2014), BugLocator (Zhou et al. 2012), BRTracer
(Wong et al. 2014), and Locus (Wen et al. 2016), which retrieve code artifacts at different
code granularities (i.e., file, class, and method). Using existing TRBL datasets (Zhou et al.
2012; Wong et al. 2014; Moreno et al. 2014; Mills et al. 2017; Chaparro et al. 2017a; Lee
et al. 2018), we randomly sampled a set of 1,221 queries that fail to retrieve the buggy code
artifacts within the top-N results when using the TRBL techniques. We compared the per-
formance achieved by the five TRBL approaches at three code granularities when using the
complete bug reports as queries versus a reduced version produced by each reformulation
strategy. The results indicate that the combination of TITLE+OB is the strategy that per-
forms best across the five TRBL approaches, as it returns the buggy code artifacts within the
top-N results for 25.6% more queries (on average) than without query reformulation. This
strategy is highly-applicable and highly-consistent across different thresholds N. Combin-
ing the TITLE and the OB with the S2R (when present in the bug reports) leads to higher
performance (i.e., for 31.4% more queries with respect to no reformulation) and compara-
ble consistency, yet it is applicable in fewer cases. Likewise, using the EB (when available)
along with the OB and TITLE leads to higher performance (i.e., 41.7% more queries with
respect to no reformulation) and comparable consistency, yet its low applicability makes it
less practical. The results support our hypothesis, which means that developers can reformu-
late an initial query by simply selecting the part that describes the TITLE, OB, and S2R/EB
(when present), and expect better retrieval results.

We envision a straightforward usage scenario for reformulation, where developers use
the entire content of a bug report as initial query (i.e., both title/summary and descrip-
tion), and optionally other information leveraged by the used TRBL technique, which is the

Empirical Software Engineering

typical TRBL scenario (Dit et al. 2012). If none of the buggy code documents are found
in the top-N candidates (by inspecting each candidate’s name and/or source code), then the
developer selects the TITLE, OB, and S2R/EB (if present) from the bug report and uses
their combination as the new query, hoping to locate the buggy code artifacts. This refor-
mulation approach is independent of the underlying TRBL technique and does not depend
on the returned results or any information from other bug reports and external sources. In
other words, it is easy to use by any potential user and should work with any existing TRBL
technique based on bug descriptions.

This paper is a substantial extension of our previous research on using OB to reformulate
queries for TRBL (Chaparro et al. 2017a). We extend our prior work in four major ways:

– We investigate how specific types of information from bug descriptions (i.e., EB, S2R,
TITLE, and CODE) can be used to reformulate the initial query in TRBL application.
One of the main findings of this research is that using OB only (as we reported in the
previous work) is not the best query reformulation strategy in this application.

– Our empirical study investigates the effect of query reformulation on TRBL by using
nearly three times more queries than in our prior work, which were collected from a
total of 30 open source software projects (i.e., nine more projects than in our prior
work). The number of queries and projects strengthens the external validity of our
conclusions.

– In addition to the four TRBL techniques used in our prior research, the evaluation pre-
sented in this paper includes one additional state-of-the-art TRBL technique, called
Locus (Wen et al. 2016), which further strengthens the external validity of our research.

– The evaluation of the strategies focuses on HITS@N, a measure of the proportion of
queries that return at least one buggy code document within the top-N results. We
contend that this metric, compared to traditional metrics such as MRR or MAP, approx-
imates better an actual reformulation usage scenario given a TRBL tool. The user is
likely to inspect only the top-N results to find the relevant code documents, before
switching strategies. The ranks of the relevant documents, outside top-N, is less rele-
vant to the user. In other words, we consider a reformulation strategy to be effective
when it improves HITS@N, rather than MRR or MAP.

We provide an online replication package (Chaparro et al. 2018) for our empirical study.
The package includes code corpora, initial and reformulated queries, gold sets (i.e., buggy
code documents for each query), and additional material that enable the reproducibility
of our study. The package also contains details and additional empirical results of our
evaluation, which are not included in the paper.

The rest of this paper is structured as follows. Section 2 explains in detail the proposed
reformulation strategies. Section 3 describes the design of the empirical study for the eval-
uation of the reformulation strategies, and Section 4 presents and discusses the empirical
results. Section 5 discusses the threats to validity we identified, followed by the related work
in Section 6. Finally, we present our conclusions in Section 7.

2 Query Reformulation Strategies

We propose a user-driven query reformulation approach based on the structure of bug
descriptions, with a two-step scenario for bug localization in mind. In the first step, the
developer issues an initial query (manually or automatically) from the full text of the bug
report and inspects the top-N code candidates returned by the TRBL technique at hand.

Empirical Software Engineering

Sophisticated TRBL techniques may require extra information to the bug report such as
execution traces or past bug report data. In this case, the developer collects and provides
such information to the TRBL technique, either manually or automatically. If any of the
returned candidates is deemed buggy (i.e., the query is successful), the bug localization pro-
cess ends and the developer proceeds to fix the bug. Conversely, if none of the candidates
are buggy (i.e., the query is unsuccessful), the developer reformulates the initial query in the
second step (via the proposed reformulation strategies - see below), runs it with the TRBL
approach, and investigates additional N retrieved code artifacts. The N results retrieved in
the second step should not include the N results returned by the initial query, as they were
deemed non-buggy. If a buggy code artifact is found within the new result list (i.e., the
reformulated query is successful), then the bug localization process ends and the developer
proceeds to fix the bug. Otherwise (i.e., the reformulated query is unsuccessful), the devel-
oper may refine the query or switch to other methods for localizing the buggy code (e.g.,
navigating code dependencies).

We contend that the following five parts of a bug description contain the most relevant
terms for locating the buggy code:

– The bug title (a.k.a. TITLE): it is the summary of the software problem found by
the user. Our assumption is that users carefully write the titles to include the most
relevant terms. The title is found in all bug reports, hence it can be easily used for query
reformulation. Some existing approaches (Wang and Lo 2014, 2016; Saha et al. 2013;
Youm et al. 2017; Ali et al. 2012) treat the bug title as an individual field, but unlike
our reformulation approach, they use it along with the full description.

– Observed behavior (a.k.a.OB): it describes the software (mis)behavior observed by the
user, which is typically deemed to be incorrect or unexpected. Our prior work (Chaparro
et al. 2017a) found that the OB contains relevant information that helps locate the buggy
code, more than other parts of the bug description.

– Expected behavior (a.k.a. EB): it describes the normal or regular software behavior
expected by the user. As the EB describes the opposite to the OB, we hypothesize that
it contains relevant terms with respect to code retrieval.

– Steps to reproduce (a.k.a. S2R): it describes the steps that the user followed to trigger
the OB. The S2R may contain terms that point to software features, hence it is also a
good candidate for query reformulation.

– Code snippets (a.k.a. CODE): in many cases, especially for software libraries or
frameworks, users provide code snippets that help developers better understand and
reproduce the software problem. Code snippets are likely to reference places in the
source code related to the bug.

Figure 1 shows an example of a bug report containing each one of these parts.
We propose 31 different reformulation strategies based on the combination of the five

types of information described above: TITLE, OB, EB, S2R, and CODE. We denote their
combination by using a plus sign (+) between them. For example, the strategy using OB and
CODE is denoted as OB+CODE, and the strategy using EB, S2R, and TITLE is denoted as
EB+S2R+TITLE. When using such a reformulation strategy, the user simply needs to select
and concatenate the parts of the text corresponding to the types of information used by the
strategy from the title and bug description, and remove the rest of the textual description.
It is important to note that the strategy only applies if the bug contains all the types of
information. As an example, reformulating the (initial) query from the bug report shown in
Fig. 1, by using the OB+TITLE strategy, will result in the following query: “[code assist]

Empirical Software Engineering

Fig. 1 Bug report #89621 from Eclipse. The highlighted text corresponds to the title (TITLE), code snippets
(CODE), observed behavior (OB), expected behavior (EB), and steps to reproduce (S2R)

the caret position is wrong after code assist The result is: addWindowListene< POSITION
OF THE CARET>rListener”.

3 Empirical Evaluation

We conducted an empirical evaluation to assess the effectiveness of the proposed reformu-
lation strategies. The evaluation aims at answering the following research question:

Which query reformulation strategies help TRBL approaches retrieve more buggy
documents within the top-N results when compared to the case in which query
reformulation is not used?

This section describes the procedure we followed to answer our research question, while
Section 4 discusses the evaluation results. We used five TRBL techniques (Sections 3.1 and
3.2) to locate the buggy code artifacts for a large set of queries/bug reports (Section 3.3).
Then, for a subset of the queries for which the tools failed to retrieve duplicates within the
top-N results (Section 3.4), we manually identified the structure of the corresponding bug
descriptions (Section 3.5). We used the 31 strategies to reformulate the queries (based on

Empirical Software Engineering

the identified structure) and compared how many more buggy code artifacts are retrieved
among the next-N candidates with and without reformulation (Sections 3.6 and 3.7).

3.1 TRBL Techniques

We used five TRBL techniques to perform our empirical evaluation on both initial and
reformulated queries, namely Lucene (Hatcher and Gospodnetic 2004), Lobster (Moreno
et al. 2014), BugLocator (Zhou et al. 2012), BRTracer (Wong et al. 2014), and Locus (Wen
et al. 2016). We were interested in finding out whether the reformulation strategies are
equally effective on different TBRL techniques.

Lucene (Hatcher and Gospodnetic 2004) is a retrieval technique implemented in the
open source library of the same name (Lucene Apache 2017). Lucene combines the standard
information retrieval Boolean model and the Vector Space Model (VSM), based on the TF-
IDF representation (Salton et al. 1975), to compute the similarity between a bug report
(i.e., the query) and a code document (e.g., a file, class, or method). Lucene relies only on
textual information to retrieve the relevant (buggy) documents, independently of the code
granularity. Typically, a Lucene query is created by concatenating the bug report’s title and
description, including any information embedded in these sources (e.g., code snippets).

The remaining four techniques also rely on textual similarity to rank the buggy code
artifacts. However, they include additional information to boost the similarity score of the
documents.

Lobster (Moreno et al. 2014) is a TRBL technique that leverages stack traces found in
bug reports. It boosts the classes that appear in these traces and also their related classes
by using the system’s call graph. Lobster works at class-level granularity and only makes a
difference on bug reports that contain stack traces.

BugLocator (Zhou et al. 2012) is a TRBL approach that combines information from bug
fix history and file length to boost certain corpus documents. This approach uses a record of
previously-fixed bug reports to boost the corresponding fixed files, according to the textual
similarity of these reports to the query. Additionally, it boosts all corpus source files based
on their length (i.e., number of terms). BugLocator works at file-level granularity.

BRTracer (Wong et al. 2014) is an extension of BugLocator, which uses stack trace
information from bug reports and source file segmentation to boost source code files
retrieved by BugLocator. Similar to Lobster, this technique boosts the source code files
that appear in the traces, and other files (or classes) that are used in their corresponding
source code. In addition, the files are segmented into smaller documents, and the highest
textual similarity between the segments and the query is used as the similarity of the whole
file.

Locus (Wen et al. 2016) is a TRBL technique that leverages textual and additional infor-
mation from past code changes to identify the buggy code documents for a bug report/query.
This technique segments source code files into code hunks, i.e., small code segments, prod-
uct of code changes throughout the project history. This means that this technique is able to
retrieve code hunks and also entire source files.

Locus utilizes textual similarity between bug reports and code hunks (including their
corresponding commit messages), using two corpus extraction strategies, one that uses the
whole textual content, and one that uses only the code entities referenced in the text (i.e.,
package names, classes, and methods). The approach also increases the suspiciousness
degree of a source file based on how many times the file was changed, and boosts the score
of a hunk based on how recent it was applied in the code with respect to the current bug
report.

Empirical Software Engineering

3.2 Implementation of the TRBL Techniques

In our evaluation, we used Apache Lucene v5.3.0 with the default similarity measure and
parameters, and the original implementation of Lobster, provided by its authors (Moreno
et al. 2014).

Regarding Locus, we used the implementation provided in Bench4BL (Lee et al. 2018).
However, we did not use Bench4BL’s scripts to execute Locus’ implementation because we
identified two issues.

The first issue relates to the corpus preprocessing. As the bug reports in Bench4BL
are stored in XML files, some characters are escaped into their corresponding character
entity reference (e.g., ‘&’ or ‘<’ would be escaped to ‘&’ or ‘<’, respec-
tively). However, when running Locus using the Bench4BL’s scripts, such characters are not
unescaped correctly. The queries would contain the text corresponding to the entity refer-
ences (i.e., ‘amp’ or ‘lt’), even after they are preprocessed (e.g., using special-character
removal). We confirmed that this issue leads to different TRBL results, compared to cor-
rect unescaping, which change the set of unsuccessful queries that require reformulation
(see Section 3.4 for more details). Therefore, we implemented our own scripts for running
Locus.

The second issue stems from Locus calling the Git executable as a subprocess to retrieve
and read the project’s commit history via the subprocess’ standard streams. Note that Locus
is implemented in Java. Due to Java’s handling of subprocesses, reading the subprocess’ out-
put has to be done in separate threads – see ExecCommand.exec(String command,
String[] envp, String workpath) in Locus’ original implementation2. Read-
ing the standard output on a separate thread would cause the read data (i.e., the commits log)
to be randomly truncated. This would cause the tool to behave unpredictably, sometimes
producing different results on different runs with the same data, and sometimes crashing
during the execution. We fixed the bug by reading the standard output on the main thread
while letting the standard error to be read on a different thread, as this output was being
ignored by the original implementation anyway. Our replication package (Chaparro et al.
2018) contains the fix to Locus’ issue, as well as the code we used to run our experiments.

We used our own implementation of BugLocator (Zhou et al. 2012) and BRTracer (Wong
et al. 2014), based on the description provided in their corresponding publications.

We obtained the implementations of BugLocator and BRTracer made available by their
authors, along with the experimental data they used (Zhou et al. 2012;Wong et al. 2014), and
attempted to replicate the results of the empirical studies reported in each paper. However,
for BugLocator, we could only replicate the results for two of the four systems: Eclipse and
SWT (Wong et al. 2014). The tool failed to complete the evaluation on the AspectJ system
and it was not possible to acquire the source code for the ZXing system, because it was not
provided by the authors and the corresponding system version is no longer available online.
However, the results on Eclipse and SWT matched those reported in the paper.

Since we could not completely replicate the experimental results, we decided to imple-
ment our own version of the tool. Our implementation also failed to exactly replicate the
experimental results reported in the mentioned study (Zhou et al. 2012). Since the source
code for the authors’ implementation was not available at the time, we examined the byte-
code of the original implementation and compared it with our own code. We discovered two

2https://tinyurl.com/ybye2zhc

https://tinyurl.com/ybye2zhc

Empirical Software Engineering

key differences between the approach detailed in the paper and the implementation provided
by its authors:

1. The paper proposes a normalization function for a source code file length x as part of
its rVSM model, which is defined as:

N(x) = x − xmin

xmax − xmin

However, after examining the bytecode of the original implementation, we found
that it is actually being computed in the following manner:

N(x) =
⎧
⎨

⎩

0.5 if x < bl

1 if x > bu
x−bl

bu−bl
otherwise

Where bl and bu correspond to a lower and upper bound, respectively, and are
calculated as follows:

bl =
{

μ − 3σ if μ − 3σ ≥ 0
0 if μ − 3σ < 0

bu = μ + 3σ

With μ and σ being the average length and standard deviation of document lengths
in the code corpus, respectively.

2. As part of the rVSM model, the authors propose a length score for a source code file,
defined in the paper as:

g(#terms) = 1

1 + e−N(#terms)

However, an examination of the implementation revealed that what is being com-
puted is:

g(#terms) = e6N(#terms)

1 + e6N(#terms)

We decided to test these findings by modifying our implementation to imitate the origi-
nal implementation. After testing it on the Eclipse system with the same preprocessing used
by the original tool, we were able to replicate the results reported in the paper, with minor
differences. We considered that our implementation is fit for experimentation. The differ-
ences between the performance of our implementation and the performance reported by the
authors are presented in Table 1. The difference cast a threat to the validity of our findings
for Buglocator, which we may address in the future.

A similar situation happened when replicating the results of the empirical study on the
BRTracer tool (Wong et al. 2014). We replicated the results reported in the paper using the
tool provided by the authors, but we decided to use our own version to facilitate our process.
After re-implementing the tool on top of our version of BugLocator, we found discrepancies
when trying to replicate the study results. Since the source code of the authors’ version is
readily available, we compared it with the description of the approach in the paper.

This is a non-exhaustive list of findings:

1. The bugs for the evaluation are sorted by resolution date, however, their submission
date is not checked. The paper states that for a bug report to be considered “previously
fixed” for the current bug being located, both the submission and resolution dates must

Empirical Software Engineering

Table 1 Performance differences between our implementation (Our impl.) of BugLocator and the original
implementation (Original impl.) provided by its authors (Zhou et al. 2012)

System MRR MAP

Original Our Diff. Original Our Diff.

impl. impl. impl. impl.

AspectJ v1.5.3 41% 35% − 6% 22% 18% − 4%

Eclipse v3.1 41% 25% − 16% 30% 19% − 11%

SWT v3.1 53% 33% − 20% 45% 30% − 15%

happen before the current bug’s submission date. However, in the way that the tool is
implemented, some bugs are considered previously fixed when their submission date
happens after the current bug’s submission date. This results in an unrealistic evaluation,
i.e., future bugs are used as previously fixed bugs.

2. The calculation of the SimiScore (the score boost of source files according to previously
fixed bugs) is done against file segments, instead of whole files, as it is explained in the
paper.

3. The BoostScore (the score boost to files found in stack traces or related to these files)
is formulated in the paper as:

BoostScore(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
rank if x ∈ D and rank ≤ 10
0.1 if x ∈ D and rank > 10
0.1 if x ∈ C

0 otherwise

Where D is the set of source files appearing in stack traces in the bug report, and C is
the set of files used in import statements by the files inD. However, the implementation
assigns a constant value of 0.5 for files in D and 0.2 for files in C.

We decided to use our implementation, which works as described in the paper. Table 2
contains a comparison between the results reported by the authors and the ones achieved by
our implementation. It can be observed that, even though the underlying BugLocator imple-
mentation achieves somewhat different results compared to the original, our implementation
of BRTracer achieves nearly identical results to ones provided by the authors.

Finally, we executed BugLocator and BRTRacer with the parameter α = 0.2. This value
leads to the best TRBL performance, according to the respective evaluation results (Wong
et al. 2014; Wen et al. 2016).

Table 2 Performance differences between our implementation (Our impl.) of BRTracer and the original
implementation (Original impl.) provided by its authors (Wong et al. 2014)

System MRR MAP

Original Our Diff. Original Our Diff.

impl. impl. impl. impl.

AspectJ v1.5.3 49% 53% 4% 29% 30% 2%

Eclipse v3.1 43% 40% − 3% 33% 31% − 2%

SWT v3.1 60% 64% 5% 53% 56% 3%

Empirical Software Engineering

Table 3 Statistics of the TRBL data sets used in the evaluation

Data set Code # of # of code # of # of buggy

granularity systemsa documentsb queries code documentsc

CDS Class 13 (16) 2,366.9 815 2 (3.4)

FDS File 11 (172) 1,669.2 4,429 2 (3.1)

MDS Method 14 (65) 16,704.9 360 1 (5.9)

Total 30 (248) 7,523.5 5,604 2 (3.3)

a In parenthesis, # of system versions. b Average values across system versions. c Median (avg.) values across
queries

3.3 TRBL Data

We compiled three TRBL data sets from existing TRBL data (see Table 3). Each data set
contains corpora at a different code granularity, namely class-, method-, and file-level gran-
ularity. We aim to assess the effectiveness of the query reformulation strategies across these
code granularities. The data sets we collected are the following:

– The class-level data set (i.e., CDS) is based on Moreno et al.’s bug localization data
(Moreno et al. 2014) from 16 versions of 13 open source projects (e.g., ArgoUML v0.22
or OpenJPA v2.0.1). This data set accounts for 815 queries.

– The file-level data set (i.e., FDS) is based on Wong et al.’s bug localization data (Wong
et al. 2014) and on data from the Bench4BL TRBL benchmark (Lee et al. 2018). From
Wong et al.’s data, we used two projects, namely Eclipse v3.1 and SWT v3.1, and from
Bench4BL, we used nine projects (e.g., Commons IO, Jboss Wildfly Core, and Spring
Data MongoDB). This data set accounts for 4,429 queries from 172 versions from 11
software projects.

– The method-level data set (i.e., MDS) is based on Mills et al.’s data on query quality
assessment (Mills et al. 2017), and on Chaparro et al.’s adaptation (Chaparro et al.
2017a) of Just et al.’s Defects4J data (Just et al. 2014) for TRBL. Both existing data
sets account for 360 queries from 65 versions of 14 open source projects (e.g., Apache
Lang and JEdit v4.2).

We built the three data sets from the data set we collected in our prior work (Cha-
parro et al. 2017a). However, we expanded the FDS data set3 with nine systems from the
Bench4BL benchmark, which span different domains across three open source ecosystems
(i.e., Apache, Spring, and Jboss). The total number of queries for these systems is 1,340.

As the data sources we used to compile our three data sets were built independently, some
projects and versions are used in more than one data set. This is the case of Apache Derby
v10.9.1.0, which belongs to the MDS and CDS data sets. The total number of systems and
versions without this overlap is shown in Table 3. Given the overlap, our whole data set
contains 98 queries from five projects that belong to both the MDS and CDS data sets (i.e.,
they are duplicated). In addition to these cases, our whole data set includes extra duplicated

3This data set is called BRT in our prior work (Chaparro et al. 2017a).

Empirical Software Engineering

queries. Since a bug can affect multiple versions of a software system, it is possible to have
the same queries for multiple system versions. Our data set contains a subset of these cases,
i.e., 6 queries that belong to two different versions of three projects (one from MDS and
two from CDS). In addition, the FDS data set contains 98 additional queries that belong to
both Eclipse and SWT. These queries are originally duplicated in Wong et al. ’s data (Wong
et al. 2014). The duplication stems from the fact that SWT is a subproject of Eclipse. In
any case, the code corpus for both systems is different. In total, 202 queries in our whole
data set are duplicated. We decided to keep these queries because they are likely to behave
differently across different granularities, system versions, and code corpora. A query can fail
to retrieve the buggy method(s) while succeeding at retrieving the buggy class(es). Likewise,
a query can fail to retrieve the buggy code documents for one system version (or code
corpus), while succeeding for another one. This means that, in some sense, they can be
treated as different queries. Also, removing them from our data set would imply a lower
number of queries, which is undesirable (especially for MDS and CDS). Our replication
package includes the full list of projects, versions, and queries, including the duplicated ones
(Chaparro et al. 2018).

We were not able to use all the queries from the Bench4BL data (Lee et al. 2018) for
the nine systems we selected because, for several queries, the gold set files did not exist
in the code corpus. We decided to discard these cases, which amount to 84 queries (out of
1,340 queries for the selected nine Bench4BL systems). In addition, we re-formatted the
remaining 1,256 queries because of the XML-character-escaping problem we described in
Section 3.2 and also so that we could use our existing code for running the queries with
the file-level TRBL approaches (i.e., Lucene, BugLocator, BRTracer, and Locus). See our
replication package for the list of discarded queries as well as the reformatted query set
(Chaparro et al. 2018).

All three data sets include: (1) a set of queries generated from the bug reports submitted
on the projects’ issue tracker; (2) the corresponding fixed (a.k.a. buggy) code artifacts that
represent the gold set; and (3) the source code corpora which represent the document search
space for bug localization. In total, our data sets amount to 5,604 queries from 248 versions
of 30 open source projects written in Java, which vary in size and domain (e.g., software
development, databases, bibliography management, or text edition), and span different soft-
ware types (e.g., desktop, web, libraries, or frameworks). The full list of projects for each
data set and their TRBL data is included in our online replication package (Chaparro et al.
2018).

We created a document corpus from the source code of each software version (i.e., one
corpus per version) according to the granularity of each data set. The corpus was created
by extracting the identifiers, comments, and string literals present in the source code. All
Java files (i.e., test and production Java files) within each project were included in the
corresponding corpus. All documents in the code corpus and the queries were normal-
ized using standard preprocessing for text retrieval, such as identifier splitting based on
the camel case and underscore formats (e.g., CodeIdentifier or code identifier would split
into code and identifier), special characters removal (e.g., # or $), common English stop
words and Java keywords removal (e.g., for, while, at, with, etc.), and stemming based on
Porter’s algorithm (Porter 1980). We implemented and executed this preprocessing before
running the TRBL techniques, except for Locus. This is because Locus incorporates the
preprocessing by default in its implementation, which is similar to the preprocessing we
just described – see Wen et al. (2016) for more details. The full set of stop words, bug
reports, queries, gold sets, and preprocessing code are available in our replication package
(Chaparro et al. 2018).

Empirical Software Engineering

3.4 Low-quality Queries

As mentioned in Section 2, our reformulation approach follows the scenario in which the
developer issues the initial query and inspects the top-N code candidates returned by the
TRBL technique. If none of the candidates are deemed buggy, the developer reformulates
the query (via the reformulation strategies) and inspects additional N candidates. In this
scenario, the developer would inspect a total of 2N candidates. Large N values (say 20 and
beyond) would mean that our approach is impractical because, in the worst case scenario,
it would imply inspecting 40 results total, which could demand a significant effort from
the developer. It is likely that developers will change strategies before investing so much
in retrieval. Very small N values (say less than 5) would imply an unrealistic scenario.
If the developers find the buggy code within the top-5 results, then they do not need a
reformulation. According to existing research on code search4 (Rahman et al. 2018a; Sim
et al. 2011), developers inspect (on average) between 10 and 13 results within a single search
session, i.e., issuing a query and inspecting the results.

We contend that inspecting between 5 and 10 documents (i.e., 10 to 20 documents total,
following reformulation) is a realistic scenario for TRBL. In other words, if a query retrieves
the buggy code in top-5, then it is likely that no reformulation is needed.

Similar thresholds have been used in prior TRBL research (Mills et al. 2017; Lee et al.
2018; Marcus and Haiduc 2013; Dit et al. 2012; Wang and Lo 2014; Zhou et al. 2012;
Moreno et al. 2014; Wong et al. 2014; Chaparro et al. 2017a). Given that there is no spe-
cific research on user behavior during query reformulation for TRBL (to the best of our
knowledge), we do not want to limit the evaluation only to the thresholds we consider
most realistic. Hence, in this paper, we include results for the threshold set N={5, 6, 7, ...,
30}, which amounts to 26 thresholds total. The replication package includes the results for
high-quality queries (i.e., for N={1, 2, 3, 4}).

Our reformulation strategies focus on queries that fail to retrieve the buggy code artifacts
within the top-N results (i.e., low-quality queries). Therefore, in order to determine the set
of low-quality queries, we executed each of the TRBL techniques with the initial queries
(generated from the entire text of the bug report’s title and description) and checked if none
of the buggy code artifacts were retrieved in the top-N results, for N={5, 6, 7, ..., 30}.

As some TRBL techniques do not support all code granularities, we executed the tech-
niques on the data corresponding to their granularity. Since Lucene does not depend on the
granularity, we used it on all three data sets. Lobster was used only on the CDS data set,
while BugLocator, BRTracer, and Locus were executed on the FDS data set. We executed
Locus using all queries for all FDS projects, except for Eclipse. For this project, we used
the queries that correspond to the Eclipse sub-projects JDT and PDE. The reason is that the
Eclipse code repository, which is required for running Locus’ implementation, is nowadays
managed separately into sub-projects (i.e., each sub-project has its own code repository),
and JDT and PDE are among the largest sub-projects within Eclipse. In this way, we maxi-
mized the number of queries when running the four file-level TRBL techniques used in the
evaluation. Note that these two sub-projects are also used in Bench4BL (Lee et al. 2018)
and in Locus’ original evaluation (Wen et al. 2016), as opposed to the entire Eclipse project.
Finally, we executed the queries on the corpus of their specific system version; in other
words, we adopted a “multiple version matching” strategy (Lee et al. 2018).

4Code search is a task similar but more general than TRBL.

Empirical Software Engineering

Table 4 Number (and proportion) of queries for which the TRBL techniques fail to retrieve the buggy code
documents within the top-5 results

Data set Lucene Lobster BRTracer BugLocator Locus

CDS 305 (37.4%) 49 (6.0%) – – –

FDS 1,768 (39.9%) – 1,721 (38.9%) 2,583 (58.3%) 715 (16.1%)

MDS 199 (55.3%) – – – –

Total 2,272 (40.5%) 49 (0.9%) 1,721 (30.7%) 2,583 (46.1%) 715 (12.8%)

All proportions are computed with respect to the total number of queries for each data set, i.e., the values
from column “# of queries” in Table 3

Table 4 shows the proportion of the queries for which each one of the TRBL techniques
fail to retrieve the buggy code documents within the top-5 results (which contain the query
subsets for larger N values). Except for Lobster and Locus, there is a large proportion of
low-quality queries (from 37.4% to 58.3%) across TRBL techniques. The main reason for
having fewer low-quality queries for Lobster is that this technique works only on bug reports
that contain stack traces (i.e., on 139 reports from the CDS data set). This means that the 49
low-quality queries for Lobster represent, in fact, 35.3% of the CDS queries. Similarly, for
Locus, we obtained 715 low-quality queries because, as mentioned before, Locus was exe-
cuted on two Eclipse sub-projects (i.e., JDT and PDE) and not on the entire Eclipse project,
so in total, Locus executed 2,261 queries of the FDS data set. Hence, the 715 low-quality
queries represent 31.6% of the queries. These results motivate our research on reformulating
the low-quality queries to improve TRBL.

We found that 658 (i.e., 19.2%) queries consistently fail to retrieve the buggy code arti-
facts within the top-5 results across all TRBL techniques. In total, 3,431 (i.e., 61.2%), 2,833
(i.e., 50.6%), 2,474 (i.e., 44.1%), 2,249 (i.e., 40.1%), 2,065 (i.e., 36.8%), and 1,916 (i.e.,
34.2%) queries are low-quality for at least one of the TRBL techniques, when the top-5,
-10, -15, -20, -25, and -30 results are inspected, respectively (see Table 5).

Table 5 Number (and proportion) of queries for which the TRBL techniques fail to retrieve the buggy code
documents within the top-N results

Data set Top-5 Top-10 Top-15

CDS 307 (37.7%) 231 (28.3%) 202 (24.8%)

FDS 2,925 (66.0%) 2,427 (54.8%) 2,115 (47.8%)

MDS 199 (55.3%) 175 (48.6%) 157 (43.6%)

Total 3,431 (61.2%) 2,833 (50.6%) 2,474 (44.1%)

Data set Top-20 Top-25 Top-30

CDS 176 (21.6%) 161 (19.8%) 139 (17.1%)

FDS 1,926 (43.5%) 1,773 (40.0%) 1,653 (37.3%)

MDS 147 (40.8%) 131 (36.4%) 124 (34.4%)

Total 2,249 (40.1%) 2,065 (36.8%) 1,916 (34.2%)

Size of the union set of queries across all TRBL techniques. Proportions with respect to the total # of queries
for each data set

Empirical Software Engineering

3.5 Structure Identification in Bug Descriptions

In order to answer our research question, we need to manually identify the terms corre-
sponding to the system’s observed behavior (OB), the expected behavior (EB), and the steps
to reproduce (S2R) in the bug reports that require reformulation (i.e., the ones that are low-
quality queries), just as a potential user would do. We also need to identify the code snippets
(CODE) in the bug reports. The bug title (TITLE) is present as a separate field within the
bug report and its identification is trivial.

3.5.1 Bug Report Sampling

As shown in Table 5, the number of bug reports in the CDS andMDS data sets is manageable
for manual identification (i.e., 307 and 199 bug reports for N=5, respectively). This is not
the case for the FDS data set, which contains 2,925 low-quality reports/queries for N=5.
Therefore, we took a random sample of the FDS bug reports (for N=5), and selected all the
reports from the other two data sets, manually excluding the ones referring to new features
and enhancements (i.e., non-bugs). We sampled a set of 792 (out of 2,925, i.e., 27.1%) FDS
bug reports, ensuring that the sample includes reports for each project in the FDS data set
(see Table 6).

In total, our sample includes 1,221 bug reports used as queries (i.e., 792 FDS + 270 CDS
+ 159 MDS bug reports), which fail to retrieve the buggy code artifacts within the top-5
results when using the TRBL techniques (see Table 6). This represents 35.6% of the 3,431
low-quality queries for N=5. This query set also contains a subsample of the queries that fail
to retrieve to buggy code in top-10 (i.e., 1,058 or 30.8% of the queries), in top-15 (i.e., 958
or 27.9% of the queries), in top-20 (i.e., 895 or 26.1% of the queries), in top-25 (i.e., 837 or
24.4% of the queries), and in top-30 (i.e., 785 or 22.9% of the queries) – see Table 6. It is
important to note that while we experimented with top-N results for N={5, 6, ... , 30}, our
reformulation strategies and their evaluation can be done for any threshold N. Table 7 shows
the distribution of the sampled queries across TRBL techniques. The number of low-quality
reports/queries in our sample varies from technique to technique because some queries are
not low-quality when given as input to one or more techniques. Also, the total number of

Table 6 Number (and proportion) of sampled queries for which the TRBL techniques fail to retrieve the
buggy code documents within the top-N results

Data set Top-5 Top-10 Top-15

CDS 270 (87.9%) 205 (66.8%) 181 (59.0%)
FDS 792 (27.1%) 715 (24.4%) 653 (22.3%)
MDS 159 (79.9%) 138 (69.3%) 124 (62.3%)
Total 1,221 (35.6%) 1,058 (30.8%) 958 (27.9%)

Data set Top-20 Top-25 Top-30
CDS 159 (51.8%) 145 (47.2%) 123 (40.1%)
FDS 619 (21.2%) 587 (20.1%) 562 (19.2%)
MDS 117 (58.8%) 105 (52.8%) 100 (50.3%)
Total 895 (26.1%) 837 (24.4%) 785 (22.9%)

Size of the union query set across TRBL techniques. Proportions with respect to the total # of low-quality
queries (for N=5) for each data set

Empirical Software Engineering

Table 7 Number (and proportion) of sampled queries for which the TRBL techniques fail to retrieve the
buggy code documents within the top-5 results

Data set Lucene Lobster BRTracer BugLocator Locus

CDS 268 (87.3%) 49 (16.0%) – – –

FDS 653 (22.3%) – 630 (21.5%) 728 (24.9%) 332 (11.4%)

MDS 159 (79.9%) – – – –

Total 1,080 (31.5%) 49 (1.4%) 630 (18.4%) 728 (21.2%) 332 (9.7%)

Proportions with respect to the total # of low-quality queries for each data set (for N=5)

sampled queries for CDS and MDS shown in Table 5 is lower than the total number of
low-quality queries shown in Table 6. The difference between these values represents the
number of reports that we discarded manually (i.e., new feature and enhancement requests,
rather than bug reports).

As mentioned in Section 3.3, a small subset of queries are duplicated across the three
data sets and projects versions. Likewise, our sample contains 16 queries that belong to both
MDS and CDS, one additional duplicated query for different versions of Derby in CDS,
and 9 extra queries that are duplicated across Eclipse and SWT in FDS. We kept these (26)
queries in our sample because their respective code corpus (and granularity) is different,
hence, they can be treated as different queries. In any case, given the small proportion of
these queries (i.e., 4.3% total), we believe that their impact in the results is minimal.

3.5.2 Identification of OB, EB, and S2R

The first two authors of this paper and one master student conducted the identification of
OB, EB, and S2R in the 1,221 sampled bug reports. The reports were distributed evenly
among the coders in such a way that one report was coded by one person. The three coders
conducted sentence-level qualitative coding (Seaman 1999) on the bug reports using the
coding framework and criteria defined in our prior work (Chaparro et al. 2017a, b). The
coders’ job was to tag the sentences in the title and description of the reports that corre-
sponded to OB, EB, and S2R. This task was performed using a web-based text annotation
tool called BRAT5, in combination with one of our own tools that splits the text into sen-
tences and paragraphs, based on the Stanford CoreNLP toolkit (Manning et al. 2014) and
heuristics (e.g., using punctuation).

We summarize the most important criteria used by the coders to tag the OB, EB, and
S2R in the bug descriptions. The full list can be found in our replication package (Chaparro
et al. 2018).

OB Coding Criteria

– The coding of OB focused only on natural language content written by the reporters,
ignoring code snippets, stack traces, or program logs. However, the natural language
referencing this information may indicate OB. Such cases were allowed for coding. An
example of this case is: “When I click the File menu, I get the following error and stack
trace: ...”.

5http://brat.nlplab.org/

http://brat.nlplab.org/

Empirical Software Engineering

– Internal behavior of the system, described by the reporters, was also allowed for coding,
for example: “The open() method in the class FileMenu reads the menu options from
the XML file...”.

– Descriptions of graphical user interface issues can be considered as OB, for example:
“The menu’s color is too light, it should be darker”.

– Uninformative sentences, such as “The File menu does not work” are insufficient to be
considered OB. There must be a clear description of the software’s OB, e.g., “The File
menu doesn’t open when I click on it”.

– Explanations of attached code to the bug reports are not considered OB, for exam-
ple: “The attached code defines the openMenu() method, which iterates on the menu
options...”.

EB Coding Criteria

– Only sentences written by the reporters corresponding to the expected software
behavior were allowed for coding.

– Like for OB, uninformative sentences, such as “The File menu should work” are insuf-
ficient to be considered EB. Only sentences with a clear description of the EB were
allowed for coding, for instance: “The File menu should open when I click on it”.

– Solutions or recommendations to solve the bug are not considered EB, hence they
were not allowed for coding. An example of these cases is: “You should refactor the
FileMenu class...”

– Imperative sentences that do not describe S2R may convey EB, for example: “Make
the File menu not to open automatically when I hover over it”. However, often times,
imperative sentences describe tasks that should be completed by developers, instead of
describing EB (Chaparro et al. 2017a).

S2R Coding Criteria

– One or more sentences in a bug report can express steps to reproduce. The sentences
may form a complete paragraph or be part of one. A paragraph describing S2R may
contain OB or EB sentences. In such cases, the OB/EB/S2R sentences must be tagged
accordingly. In any case, only the S2R text written by users is allowed for coding. This
means that source code, commands, or attachments to the bug report are excluded from
coding. The natural language referencing this information may indicate S2R and was
allowed for coding. An example of this case is: “When I execute the script attached, I
get the following error: ...”.

– Some S2R may be labeled with phrases such as “to reproduce:” or “steps to reproduce”.
The label per se cannot be considered S2R, only the natural language content that such
phrases are labeling must be coded as S2R. An example of these cases is shown in
Figure 2.

– Imperative and conditional sentences are often used to describe S2R (Chaparro et al.
2017b). However, only the sentences giving enough details about how to reproduce the
bug were allowed for coding. For example, the sentence “When I use the wall, facebook
will not retrieve...” does not give details on the S2R, thus should not be tagged. In
contrast, the sentence “When I share a URL in my Facebook wall page, Facebook will
not retrieve...” gives a specific and clear description of the S2R, hence should be tagged
accordingly.

Empirical Software Engineering

Fig. 2 Bug report #101434 from Eclipse. The highlighted text corresponds to the title (TITLE), observed
behavior (OB), expected behavior (EB), and steps to reproduce (S2R)

We made the choice of having one coder for each bug report in order to maximize the
number of queries used in the evaluation. Given the nature of the coding task, one would
expect differences between different coders (Chaparro et al. 2017a, b). Our future work
will investigate the differences between coders and assess the robustness of the proposed
reformulation strategies with respect to these differences. In any case, our past experience
when we had multiple coders per bug report, revealed high agreement between coders.

3.5.3 Identification of TITLE and CODE

The identification of TITLE and CODE in the sampled bug reports was performed automat-
ically. The TITLE was given by the default structure of the bug reports collected from the
issue trackers as they contain a separate field for the title. The CODE was identified using
the StORMeD island parser6 provided by Ponzanelli et al. (2015), which automatically
identifies (in)complete multi-language code elements within natural language documents.
We only considered code snippets as CODE, as opposed to identifiers referenced in the text
written by the reporters.

3.5.4 Structure Identification Results

Overall, 1,185 (i.e., 97.1%) of the tagged bug reports describe an OB (see Table 8), and
only 284 (23.2%), 625 (51.2%), and 481 (39.4%) of the bug reports contain sentences

6https://stormed.inf.usi.ch/

https://stormed.inf.usi.ch/

Empirical Software Engineering

Table 8 Number (and proportion) of sampled queries that contain TITLE, OB, EB, S2R, and CODE

Data set TITLE OB EB S2R CODE

CDS 270 (100%) 266 (98.5%) 65 (24.1%) 142 (52.6%) 118 (43.7%)

FDS 792 (100%) 763 (96.3%) 180 (22.7%) 421 (53.2%) 286 (36.1%)

MDS 159 (100%) 156 (98.1%) 39 (24.5%) 62 (39.0%) 77 (48.4%)

Total 1,221 (100%) 1,185 (97.1%) 284 (23.3%) 625 (51.2%) 481 (39.4%)

corresponding to EB, S2R, and CODE, respectively. These proportions are in line with the
ones measured in other bug reports data sets (Davies and Roper 2014; Chaparro et al. 2017a,
b). The TITLE is always present in all bug reports, and the OB is found in almost all of them,
hence they are more applicable for query reformulation than the other bug information.
The coding required significant manual effort for the 1,221 reports, however, in an actual
usage scenario, the user only needs to select the OB/EB/S2R/TITLE/CODE sentences from
a single report, which takes seconds. For example, from the bug report shown in Fig. 2,
the user would only select the highlighted text and use it for reformulation, depending on
the reformulation strategy. Note that the OB, EB, S2R, or CODE may be described in non-
contiguous parts of the text, including in parts of the title. Other parts of the bug description
are ignored when reformulating the query.

3.6 Evaluation Procedure andMeasures

The evaluation focuses on the initial queries that fail to retrieve the buggy code artifacts in
top-N (i.e., low-quality queries), in the first step of our proposed bug localization scenario
(see Section 2). We reformulate the low-quality initial queries by retaining the sentences
tagged as OB, EB, S2R, TITLE, or CODE, and removing the rest of the sentences in the
bug description, depending on the reformulation strategy. We call the reformulated queries
reduced queries. Note that if a sentence is tagged as more than one type of content (e.g., both
OB and S2R), we include the sentence only once in the reduced query. We reformulated all
1,221 initial queries using each one of the reformulation strategies. The only condition for
having a valid reduced query, given a reformulation strategy, is the presence of all types of
information in the bug descriptions corresponding to the strategy. For example, for the stra-
tegy OB+EB+CODE, we reformulated only the initial queries containing OB, EB, and CODE
in their bug descriptions. When all five information types are present in the bug report (i.e.,
TITLE, OB, EB, S2R, and CODE), we will have the initial query and 31 reduced queries.

We executed the initial and reduced queries with the five TRBL techniques, depending
on the code granularity (see Table 9). We measured the TRBL performance using HITS@N,
which is the proportion of queries for which a TRBL approach returns at least one buggy
code document within the top-N candidates. This is one of the most commonly used mea-
sures in TRBL research (Wang and Lo 2014; Zhou et al. 2012; Moreno et al. 2014; Wong
et al. 2014) and it is ideal for assessing the performance of TRBL techniques as, in practice,
developers would likely inspect the top-N results only, rather than the full list of results.

Our empirical evaluation mimics an actual usage scenario of our reformulation approach,
where the developer issues the initial query and inspects the N results returned by a TRBL
engine (step #1). If she does not find any buggy code artifact, then she makes the choice
of reformulating the initial query (e.g., via any of the proposed reformulation strategies)

Empirical Software Engineering

Table 9 Number (and proportion) of reduced queries (for N=5) generated by each reformulation strategy and
executed by each TRBL technique

Reformulation strategy Lucene Lobster BugLocator BRTracer Locus

TITLE 1,080 (100%) 49 (100%) 728 (100%) 630 (100%) 332 (100%)

OB 1,047 (97%) 48 (98%) 699 (96%) 605 (96%) 318 (96%)

OB+TITLE 1,048 (97%) 48 (98%) 699 (96%) 605 (96%) 318 (96%)

S2R 544 (50%) 29 (59%) 387 (53%) 333 (53%) 202 (61%)

S2R+TITLE 547 (51%) 29 (59%) 391 (54%) 337 (53%) 202 (61%)

OB+S2R 542 (50%) 29 (59%) 387 (53%) 334 (53%) 200 (60%)

OB+S2R+TITLE 542 (50%) 29 (59%) 387 (53%) 334 (53%) 200 (60%)

CODE 403 (37%) 23 (47%) 249 (34%) 218 (35%) 161 (48%)

TITLE+CODE 415 (38%) 25 (51%) 255 (35%) 222 (35%) 161 (48%)

OB+CODE 402 (37%) 25 (51%) 244 (34%) 213 (34%) 155 (47%)

OB+TITLE+CODE 402 (37%) 25 (51%) 244 (34%) 213 (34%) 155 (47%)

S2R+CODE 244 (23%) 15 (31%) 166 (23%) 142 (23%) 110 (33%)

S2R+TITLE+CODE 244 (23%) 15 (31%) 166 (23%) 142 (23%) 110 (33%)

OB+S2R+CODE 242 (22%) 15 (31%) 164 (23%) 141 (22%) 109 (33%)

OB+S2R+TITLE+CODE 242 (22%) 15 (31%) 164 (23%) 141 (22%) 109 (33%)

EB 237 (22%) 5 (10%) 167 (23%) 135 (21%) 78 (23%)

EB+TITLE 240 (22%) 5 (10%) 167 (23%) 135 (21%) 78 (23%)

OB+EB 232 (21%) 4 (8%) 161 (22%) 129 (20%) 76 (23%)

OB+EB+TITLE 232 (21%) 4 (8%) 161 (22%) 129 (20%) 76 (23%)

EB+S2R 131 (12%) 1 (2%) 92 (13%) 75 (12%) 48 (14%)

EB+S2R+TITLE 131 (12%) 1 (2%) 92 (13%) 75 (12%) 48 (14%)

OB+EB+S2R 129 (12%) 1 (2%) 91 (13%) 74 (12%) 48 (14%)

OB+EB+S2R+TITLE 129 (12%) 1 (2%) 91 (13%) 74 (12%) 48 (14%)

EB+CODE 91 (8%) 3 (6%) 67 (9%) 50 (8%) 41 (12%)

EB+TITLE+CODE 91 (8%) 3 (6%) 67 (9%) 50 (8%) 41 (12%)

OB+EB+CODE 89 (8%) 3 (6%) 65 (9%) 48 (8%) 40 (12%)

OB+EB+TITLE+CODE 89 (8%) 3 (6%) 65 (9%) 48 (8%) 40 (12%)

EB+S2R+CODE 55 (5%) 1 (2%) 43 (6%) 30 (5%) 26 (8%)

EB+S2R+TITLE+CODE 55 (5%) 1 (2%) 43 (6%) 30 (5%) 26 (8%)

OB+EB+S2R+CODE 55 (5%) 1 (2%) 43 (6%) 30 (5%) 26 (8%)

OB+EB+S2R+TITLE+CODE 55 (5%) 1 (2%) 43 (6%) 30 (5%) 26 (8%)

Total 1,080 49 728 630 332

or using the same initial query (i.e., no reformulation) to retrieve additional N candidates
(step #2). The N results returned by the initial query in step #1 are removed from the result
lists produced in step #2 by both the reformulated query and the initial query (because
they are deemed non-buggy), and then HITS@N is computed for both the initial and the
reformulated query in the second step. We repeat this process for the queries generated
based on all 31 reformulation strategies, using the five TRBL approaches, for N={5, 6, 7,
..., 30} – 26 thresholds N total. The replication package also includes the results for N={1,
2, 3, 4} and for additional evaluation metrics (see below). In the end, if the HITS@N for the
reformulated queries is higher than the one for the initial queries, we can conclude that the

Empirical Software Engineering

reformulation is a better strategy. If the measures are the other way around, we can conclude
that it is not worth reformulating the query, as there is no gain over just simply investigating
N more results returned by the initial query. We perform the comparison only in the cases
where an initial query could be successfully reduced since otherwise, the reformulation
would have no effect.

When comparing different TRBL techniques, researchers also use Mean Reciprocal
Rank (MAP) and Mean Average Precision (MAP) (Dit et al. 2012).

Mean Reciprocal Rank (MRR) is a statistic that measures the quality of the ranking of
TRBL technique by capturing how close to the top of the result list a relevant (i.e., buggy)
code document (to a query q) is retrieved. MRR is given by the average of the reciprocal
rank of a set of queries Q:

MRR(Q) = 1

|Q|
∑

q∈Q

1

rank(q)
(1)

where rank(q) is the rank of the first buggy code artifact found in the result list produced by
q. The higher theMRR value, the higher the ranking quality of the bug localization approach
will be. MRR is an aggregate measure of how high the first relevant document ranks.

Mean Average Precision (MAP) is a measure of the accuracy of a retrieval approach
based on the average precision of each query q in the set Q. Given Rq , the set of documents
relevant to query q, the average precision is computed as the average of the precision values
at the resulting rank of each document. MAP is the mean of the average precision of the set
of queries Q, defined as follows:

MAP(Q) = 1

|Q|
∑

q∈Q

1

|Rq |
∑

r∈Rq

precision(rank(r)) (2)

where rank(r) is the rank of the buggy document r in the result list and precision(N) =
(# buggy docs. in top-N)/N , i.e., the proportion of code documents found in top-N that are
buggy. MAP reflects how well all the buggy code documents rank, in aggregate.

We measured the Magnitude of Improvement (Improv) for the metrics used in this eval-
uation (i.e., HITS@N, MAP, and MRR), by computing the change percentage of metric M

before (Mb) and after reformulation (Ma):

Improv(M) = Mb − Ma

Mb

(3)

We aim at maximizing Improv, avoiding negative values, which would mean deterio-
ration rather than improvement. When Ma and Mb equal to zero, then Improv is zero.
Otherwise, Improv is undefined when Mb is zero.

We assessed the statistical significance of our measures using the Mann-Whitney test
(Hollander et al. 2013), a non-parametric test for comparing paired samples whose distri-
butions are not assumed to follow a normal distribution (which is our case). This method
was used to test if an evaluation measure M , when applying a reformulation strategy (Ma),
is higher than when using no reformulation (Mb). We carried out the test on the HITS@N,
MRR, and MAP paired values that we collected across the 26 threshold values and 3 data
sets, for each TRBL technique. For each metric M , we defined the null hypothesis as
H0 : Mb ≥ Ma , and the alternative hypothesis as H1 : Mb < Ma . We applied the test
with a 95% confidence level, thus rejecting the null hypothesis, in favor of the alternative,
if p-value < 5%.

Empirical Software Engineering

3.6.1 HITS@N vs. MRR/MAP

The main difference between HITS@N and MRR/MAP is that HITS@N is based on check-
ing the top-N results only, while MRR and MAP are based on checking the entire list of
retrieved code elements. HITS@N and MRR are based on the rank of the first buggy code
artifact found in the result list (i.e., the closest artifact to the top of the list), while MAP is
based on rank of all the buggy code artifacts in the result list (when there is more than one).
Note that MRR and MAP are the same when there is only one buggy code artifact for a
query.

We focus the analysis in this paper on HITS@N for the following reasons: (1) Devel-
opers are likely to inspect the top-N results retrieved by a TRBL technique (rather than the
entire list of results) before switching to other methods for localizing the bug (e.g., navi-
gating code dependencies). We contend that checking the top-N results only (captured by
HITS@N) is more realistic than checking the entire result list (captured by MRR/MAP); (2)
For the cases when more than one buggy code artifact exist, developers are likely to switch
to other strategies when they find one of the buggy artifacts in the result list. It is likely
that other strategies, such as navigating code dependencies, will lead to finding the other
artifacts faster since the artifacts may be related in the code structure. In other words, it is
more important for developers to retrieve one of the buggy code artifacts (rather than all of
them) in top-N. The ranking of the other buggy artifacts, outside the top-N, is less impor-
tant. HITS@N and MRR measure this phenomenon better than MAP, however, HITS@N
is more intuitive and easier to interpret than MRR; (3) When comparing two TRBL tech-
niques, MRR and MAP do a very good job in capturing the overall retrieval performance
and support the comparison when the two techniques are tested with a large number of
queries. However, we are not comparing two TRBL techniques using the same query, but
comparing two queries used with the same TRBL technique: the reformulated query and
the original one, for retrieving at least one buggy code artifact in the additional N results. In
this case, HITS@N is more intuitive and easier to interpret than MRR and MAP, since it is
based on the binary result of finding the first buggy artifact within the top-N results.

For the sake of completeness, we also measured MAP and MRR and included the results
in the replication package (Chaparro et al. 2018). We observed that MRR and MAP do not
necessarily correspond with HITS@N. In some cases, we observed HITS@N improvement
andMRR/MAP deterioration and also the other way around. For example, the reformulation
strategy EB, when using Lucene, deteriorates HITS@N by 10.6%, but improves MRR/MAP
by 35.5%/45.0%, on average7. As such, a MAP/MRR improvement may not mean that
the developer will retrieve the buggy code faster after reformulation (i.e., within the top-N
results).

3.7 Analysis Framework

We define three criteria for determining the best reformulation strategies, and thus,
answering our research question: effectiveness, applicability, and consistency.

We categorized the strategies by their effectiveness, in terms of HITS@N improvement.
The strategies that lead to HITS@N improvement (i.e., Improv(HITS@N) > 0) are called
effective; the ones that lead to deterioration (i.e., Improv(HITS@N) < 0) are called ineffec-
tive; and those that lead to no change of HITS@N (i.e., Improv(HITS@N) = 0) are called

7See Table 11 and our replication package for more details.

Empirical Software Engineering

neutral. We defined two sub-categories for the effective and ineffective categories, based on
the entire set of HITS@N improvement values that we collected for each TRBL technique,
each data set/granularity, and each threshold N. We relied on the distribution quartiles to
define the criteria for categorizing the strategies across TRBL techniques, granularities, and
thresholds N. Specifically, we used the 1st and 3rd quartiles of the entire HITS@N improve-
ment distribution, whose values are -20.6% and 21.4%, respectively – the median is zero.
Hence, we categorized the strategies that lead to improvement up to 21.4% (i.e., 0% <

Improv(HITS@N) ≤ 21.4%) as somewhat-effective, and those that lead to higher improve-
ment (i.e., Improv(HITS@N) > 21.4%) as very-effective. Likewise, the strategies that lead
to deterioration up to 20.6% (i.e., −20.6% ≤ Improv(HITS@N) < 0%) are categorized
as somewhat-ineffective, and those that lead to higher deterioration (i.e., Improv(HITS@N)
< −20.6%) as very-ineffective. Note that one strategy can fall in one sub-category for a
particular TRBL technique, granularity, or threshold N, and fall in another sub-category for
another {technique, granularity, threshold} combination.

Regarding applicability, we categorize the reformulation strategies according to the
number of initial queries that can be reformulated by each one of the strategies. Table
10 shows that the OB, TITLE, and OB+TITLE strategies can be used to reformulate
nearly all initial queries (i.e., 97.1% - 100%), which means they are the most appli-
cable strategies in an actual usage scenario. We call these strategies highly-applicable,
which are characterized for retaining the OB and TITLE sentences. The strategies S2R,
OB+S2R, S2R+TITLE, and OB+S2R+TITLE are applicable in ∼ 50% of the cases, hence
we call them moderately-applicable. In addition to OB and TITLE, these strategies
retain the S2R sentences found in the bug reports. The strategies CODE, TITLE+CODE,
OB+CODE, and OB+TITLE+CODE are categorized as somewhat-applicable because they
reformulate ∼ 38% of the initial queries. Note that the CODE is the common infor-
mation type across these strategies. The remaining strategies can be applied to less
than 25% of the queries, hence their applicability is low. The reformulation strate-
gies using EB alone or in combination with other information types belong to this
sub-category.

The third criteria is the consistency that a strategy achieves across all thresholds N. In
other words, we aim to determine if a strategy is effective, neutral, or ineffective for most
(if not all) thresholds N, within the selected set, i.e., N={5, 6, ..., 30}. Therefore, the degree
of consistency is determined by the proportion of thresholds N (out of the 26 values) for
which a strategy is effective, neutral, and ineffective, depending on the {technique, gran-
ularity, threshold} combination. Ideally, a reformulation strategy improves HITS@N for
all 26 thresholds. However, a strategy may lead to improvement for some thresholds, and
to deterioration or no effect for some others. For instance, the strategy OB+S2R may be
effective for 22 thresholds, neutral for another one, and ineffective for the remaining three.
Hence, the best strategies are the ones that maximize the number of N values for which they
improve HITS@N (i.e., effective), while minimizing the number of thresholds N for which
they deteriorate HITS@N (i.e., ineffective).

Intuitively, the best strategies are the ones that are effective (ideally, very-effective),
highly- or moderately-applicable, and improve HITS@N for most thresholds N (out of the
26 N values). Conversely, the worst cases are the most ineffective strategies, whose appli-
cability is low, and consistently deteriorate HITS@N for most thresholds N. Note that the
highly-applicable strategies that are ineffective are quite undesirable, as they lead to a sig-
nificant negative impact from a practical point of view, i.e., they can be used frequently
but they lead to retrieving the buggy code documents in the top-N results for fewer cases,
compared to no reformulation.

Empirical Software Engineering

Table 10 Overall number (and proportion) of reduced queries generated by each reformulation strategy, and
the applicability of each strategy

Reformulation strategy Reduced queries Applicability

TITLE 1,221 (100.0%) High

OB 1,185 (97.1%)

OB+TITLE 1,185 (97.1%)

S2R 625 (51.2%) Moderate

S2R+TITLE 625 (51.2%)

OB+S2R 619 (50.7%)

OB+S2R+TITLE 619 (50.7%)

CODE 481 (39.4%) Somewhat

TITLE+CODE 481 (39.4%)

OB+CODE 468 (38.3%)

OB+TITLE+CODE 468 (38.3%)

S2R+CODE 290 (23.8%) Low

S2R+TITLE+CODE 290 (23.8%)

OB+S2R+CODE 288 (23.6%)

OB+S2R+TITLE+CODE 288 (23.6%)

EB 284 (23.3%)

EB+TITLE 284 (23.3%)

OB+EB 275 (22.5%)

OB+EB+TITLE 275 (22.5%)

EB+S2R 159 (13.0%)

EB+S2R+TITLE 159 (13.0%)

OB+EB+S2R 156 (12.8%)

OB+EB+S2R+TITLE 156 (12.8%)

EB+CODE 120 (9.8%)

EB+TITLE+CODE 120 (9.8%)

OB+EB+CODE 118 (9.7%)

OB+EB+TITLE+CODE 118 (9.7%)

EB+S2R+CODE 77 (6.3%)

EB+S2R+TITLE+CODE 77 (6.3%)

OB+EB+S2R+CODE 77 (6.3%)

OB+EB+S2R+TITLE+CODE 77 (6.3%)

Size of the union query set across the five TRBL techniques

4 Evaluation Results and Discussion

We present and discuss the results obtained from the empirical evaluation of the 31 refor-
mulation strategies, across the three code granularities/data sets and 26 thresholds (N=5,
6, 7, ..., 30), for Lucene (Section 4.1), Lobster (Section 4.2), BugLocator (Section 4.3),
BRTracer (Section 4.4), and Locus (Section 4.5). In addition, we analyze the results for
each code granularity (Section 4.6) and for all TRBL techniques on aggregate (Section 4.7).
We provide examples and discuss the best and worst reformulation strategies (Section 4.8),
including the trade-offs between successful and unsuccessful queries (Section 4.9).

Empirical Software Engineering

Table 11 Average number (and proportion) of queries for which Lucene retrieves at least one buggy code
document within the top-N results using each one of the reformulation strategies (Reform) vs. no reformu-
lation (No reform); and number of thresholds for which each strategy is Effective (E), Neutral (N), and
Ineffective (I)

Reformulation # of HITS@N Thresholds

strategy queries No reform. Reform. Improv. E N I

OB+EB+TITLE 155.2 39.5 (26.0%) 51.1 (33.7%) 30.3% 26 0 0

OB+TITLE 763.6 173.5 (23.3%) 224.0 (29.9%) 29.3% 26 0 0

OB+S2R+TITLE 409.0 90.7 (22.9%) 116.0 (29.0%) 29.2% 26 0 0

OB+EB+S2R+TITLE 90.3 20.8 (23.5%) 26.5 (30.3%) 28.6% 25 0 1

OB+EB 155.2 39.5 (26.0%) 49.4 (32.5%) 26.1% 26 0 0

OB+TITLE+CODE 285.1 69.2 (24.9%) 86.2 (30.8%) 25.6% 26 0 0

OB+EB+S2R 90.3 20.8 (23.5%) 25.8 (29.4%) 24.9% 24 0 2

OB+S2R 409.0 90.7 (22.9%) 110.1 (27.5%) 22.4% 26 0 0

TITLE 783.5 178.7 (23.4%) 214.4 (27.9%) 20.1% 26 0 0

S2R+TITLE 409.9 91.5 (23.0%) 107.7 (26.8%) 19.1% 26 0 0

EB+TITLE 161.3 40.3 (25.5%) 46.9 (29.9%) 17.3% 25 0 1

OB 762.6 173.5 (23.3%) 201.5 (27.0%) 16.2% 26 0 0

OB+CODE 285.1 69.2 (24.9%) 78.8 (28.2%) 14.7% 26 0 0

EB+S2R+TITLE 90.8 21.2 (23.8%) 23.9 (27.7%) 14.4% 14 4 8

TITLE+CODE 292.5 70.9 (24.9%) 79.3 (27.5%) 12.4% 24 1 1

OB+EB+TITLE+CODE 55.3 15.1 (27.4%) 15.9 (29.0%) 6.7% 14 4 8

OB+S2R+TITLE+CODE 176.8 41.3 (24.0%) 43.7 (25.2%) 6.2% 18 3 5

OB+EB+CODE 55.3 15.1 (27.4%) 15.3 (28.1%) 3.3% 12 5 9

OB+S2R+CODE 176.8 41.3 (24.0%) 42.5 (24.6%) 3.2% 12 2 12

S2R+TITLE+CODE 176.9 41.5 (24.0%) 39.7 (22.8%) − 4.1% 8 2 16

OB+EB+S2R+ 37.1 8.3 (22.3%) 7.2 (19.3%) − 9.8% 5 4 17

TITLE+CODE

EB+S2R 90.8 21.2 (23.8%) 18.6 (21.4%) − 10.6% 6 1 19

EB 158.9 39.4 (25.2%) 34.8 (22.5%) − 10.6% 2 2 22

OB+EB+S2R+CODE 37.1 8.3 (22.3%) 6.8 (18.4%) − 15.1% 4 2 20

EB+TITLE+CODE 57.3 15.1 (26.4%) 12.3 (21.1%) − 20.0% 1 0 25

S2R+CODE 176.9 41.5 (24.0%) 29.8 (17.2%) − 27.9% 0 0 26

EB+CODE 57.3 15.1 (26.4%) 10.7 (18.7%) − 29.3% 0 0 26

S2R 408.5 91.1 (23.0%) 62.3 (15.5%) − 30.6% 0 0 26

CODE 284.5 69.2 (25.0%) 43.3 (15.6%) − 37.2% 0 0 26

EB+S2R+TITLE+CODE 37.1 8.3 (22.3%) 5.0 (13.1%) − 41.5% 0 1 25

EB+S2R+CODE 37.1 8.3 (22.3%) 4.3 (11.1%) − 49.8% 0 0 26

Average # of queries and HITS@N values across the 3 data sets and 26 thresholds N. Strategies
sorted by average HITS@N improvement (Improv). All strategies with positive improvement, except
EB+S2R+TITLE, achieve a statistically-significant higher HITS@N, compared to no reformulation (Mann-
Whitney, p-value< 5%)

Empirical Software Engineering

Table 12 Categorization of each reformulation strategy according to their Effectiveness and Applicability
when using Lucene

In parenthesis, average HITS@N improvement across the 3 data sets and 26 thresholds N. Strategies sorted
by avg. HITS@N improvement for each Applicability-Effectiveness category. Applicability categories: High
(H), Moderate (M), Somewhat (S), and Low (L). Effectiveness categories: Very Effective (VE), Somewhat
Effective (SE), Somewhat Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to the
effective category and the strategies in red to the ineffective category. Information types: OB (O), EB (E),
S2R (S), TITLE (T), and CODE (C).

4.1 Performance for Lucene

Tables 11 and 12 show the results obtained for Lucene across the 26 thresholds N and three
code granularities (or data sets). The replication package (Chaparro et al. 2018) contains the
breakdown for each data set and each threshold N (N=5, 6, 7, ..., 30). The way to interpret the
results in Table 11 is as follows. For example, let us look at the OB reformulation strategy,
reading its corresponding row in the table. OB is present in 762.6 queries (on average across
all N and data sets) – second column “# of queries”. If the user investigates N more returned
code documents without reformulating the initial query, then 173.5 (23.3%) of them will
retrieve a relevant code document in top-N – third column “No reform.”. Conversely, using
OB to reformulate the queries results in 201.5 (27%) of them returning relevant code doc-
uments in top-N – fourth column “Reform.”. This means 16.2% avg. improvement when
reformulating – fifth column “Improv.”.

We measured the number of thresholds N (out of the 26 N we used) for which each
reformulation strategy is effective, neutral and ineffective. Table 11 also shows the results
we obtained for Lucene regarding this aspect. Let us focus on the OB strategy once more.
The last three columns in the table show that OB is effective (E) across all 26 thresholds
N, while never being neutral (N) and ineffective (I). Another example is the following:
the OB+EB+S2R reformulation strategy (in row #9) is effective for 24 thresholds N (sixth
column ‘E’), and ineffective for the remaining two thresholds (seventh column ‘I’). The
strategy is never neutral, i.e., the value of the last column ‘N’ is zero.

We categorized each reformulation strategy into the categories defined in Section 3.7 for
effectiveness and applicability, according to how much a strategy improves HITS@N and
the number of queries it can reformulate. For Lucene, this categorization is shown in Table
12, and the way to interpret the table is as follows. For example, let us keep looking at the
OB8 reformulation strategy. As OB can be used to reformulate 97.1% of the queries (see
Table 10), its applicability is considered high (HI). Since OB’s HITS@N improvement (i.e.,

8We changed the notation in the table for space reasons.

Empirical Software Engineering

16.2%) is positive but less than 21.4%, the strategy is considered as somewhat-effective
(SE). Therefore, the OB strategy (labeled as ‘O’ in the table) is placed in the cell of the
second row and third column of Table 12, which corresponds to the intersection of the
categories “Applicability-H” and “Effectiveness-SE”. Note that the TITLE strategy (labeled
as ‘T’ in the table) also belongs to this Applicability-H/Effectiveness-SW category, however,
since it achieves a greater avg. HITS@N improvement than OB (i.e., 20.1%), it ranks above
OB.

Tables 11 and 12 reveal that 19 (out of 31) strategies improve HITS@N by 3.2% -
30.3%, on average (i.e., they are effective). Among these, 8 strategies are very-effective
(i.e., their HITS@N improvement is higher than 21.4%), OB+EB+TITLE leading to the
highest HITS@N improvement, i.e., it retrieves the buggy code document(s) for 30.3%
more queries (on average) than without using the reformulation (i.e., ∼51 vs ∼40 queries).
This strategy also achieves 54.2% (51%) MRR (MAP) average improvement with respect
to no reformulation - see our replication package for the full MRR/MAP results (Cha-
parro et al. 2018). Table 12 reveals that while OB+EB+TITLE is the most effective, it is
one of the least applicable strategies (because of the EB). Other strategies are more appli-
cable and achieve comparable effectiveness. OB+TITLE is the highly-applicable strategy
that achieves the highest avg. HITS@N improvement (i.e., 29.3% – also 57.8%/60.5%
avg. MRR/MAP improvement). In fact, OB+TITLE is the second most effective strategy,
which consistently improves HITS@N for all 26 thresholds N (see Table 11). The other
two highly-applicable strategies, namely TITLE and OB, achieve lower avg. HITS@N
improvement (i.e., 20.1% and 16.2%, respectively), and fall in the somewhat-effective cat-
egory. Among the moderately-applicable strategies, OB+S2R+TITLE is the most-effective
(3rd most-effective overall), as it improves TRBL for 29.2% more queries (on average)
compared to no reformulation (i.e., 45.9%/51.2% average MRR/MAP improvement). As
for the other moderately-applicable strategies, OB+S2R is very-effective, S2R+TITLE
is somewhat-effective, and S2R very-ineffective. All highly- and moderately-applicable
strategies, except S2R, consistently improve HITS@N for all thresholds N, and their
improvement is statistically-significant (Mann-Whitney, p-value < 5%). Our replication
package contains the full results of the statistical tests for HITS@N, MRR, and MAP
(Chaparro et al. 2018).

The remaining 12 strategies are ineffective (i.e., they deteriorate HITS@N compared
to the initial queries). Among these, EB+S2R+TITLE+CODE and EB+S2R+CODE are
the ones with the lowest applicability and highest deterioration, i.e., more than 40%
HITS@N/MAP/MRR deterioration (see Tables 11 and 12, and our online replication pack-
age). Also, these strategies consistently lead to deterioration for 25 thresholds N (see
Table 11). Note that the strategies that retain the EB, S2R, and CODE alone or in combi-
nation belong to the very-ineffective category (their HITS@N deterioration is greater than
20.6%), S2R and CODE being the ones with the highest negative impact in practice, i.e.,
they are moderately- and somewhat-applicable, respectively, and achieve high deterioration
levels.

We conclude that OB+TITLE is the best reformulation strategy when using Lucene,
because it is very-effective, highly-applicable, and consistently leads to HITS@N improve-
ment (with respect to no reformulation) for all 26 thresholds N.

4.2 Performance for Lobster

The results obtained for Lobster reveal that 25 (out of 31) reformulation strategies are effec-
tive (see Tables 13 and 14). In particular, 23 strategies return the buggy code artifacts in

Empirical Software Engineering

Table 13 Average number (and proportion) of queries for which Lobster retrieves at least one buggy code
document within the top-N results using each one of the reformulation strategies (Reform) vs. no reformu-
lation (No reform); and number of thresholds for which each strategy is Effective (E), Neutral (N), and
Ineffective (I)

Reformulation # of HITS@N Thresholds

strategy queries No reform. Reform. Improv. E N I

OB+EB+TITLE 3.2 1.0 (31.5%) 3.2 (100.0%) 222.2% 18 8 0

OB+EB 3.2 1.0 (31.5%) 3.2 (100.0%) 222.2% 18 8 0

EB+TITLE 4.2 1.0 (23.9%) 3.2 (75.0%) 216.7% 18 8 0

EB 4.2 1.0 (23.9%) 2.2 (52.2%) 122.2% 18 8 0

S2R+TITLE 20.7 4.8 (22.2%) 9.0 (42.0%) 116.2% 23 3 0

OB+S2R+TITLE 20.7 4.8 (22.2%) 8.9 (41.5%) 113.8% 23 3 0

OB+S2R 20.7 4.8 (22.2%) 8.6 (40.3%) 108.9% 23 3 0

EB+TITLE+CODE 2.2 1.0 (46.3%) 2.0 (92.6%) 100.0% 18 8 0

OB+EB+TITLE+CODE 2.2 1.0 (46.3%) 2.0 (92.6%) 100.0% 18 8 0

OB+EB+CODE 2.2 1.0 (46.3%) 2.0 (92.6%) 100.0% 18 8 0

TITLE 35.6 6.8 (18.5%) 13.0 (35.2%) 97.1% 26 0 0

OB+TITLE+CODE 17.2 4.0 (22.9%) 7.7 (42.6%) 95.2% 26 0 0

TITLE+CODE 17.2 4.0 (22.9%) 7.5 (41.8%) 92.0% 26 0 0

OB+CODE 17.2 4.0 (22.9%) 7.4 (41.5%) 89.9% 26 0 0

OB+TITLE 34.6 6.8 (19.0%) 12.2 (34.4%) 88.3% 26 0 0

OB 34.6 6.8 (19.0%) 11.7 (33.2%) 82.1% 26 0 0

S2R 20.7 4.8 (22.2%) 6.4 (30.0%) 60.8% 17 9 0

S2R+TITLE+CODE 10.9 3.4 (31.7%) 5.3 (47.4%) 58.4% 19 7 0

OB+S2R+TITLE+CODE 10.9 3.4 (31.7%) 5.1 (46.0%) 55.3% 16 10 0

OB+S2R+CODE 10.9 3.4 (31.7%) 4.9 (45.0%) 50.9% 16 10 0

S2R+CODE 10.9 3.4 (31.7%) 4.8 (44.2%) 45.7% 19 7 0

CODE 16.1 3.9 (23.9%) 4.8 (29.1%) 28.9% 17 8 1

EB+CODE 2.1 0.9 (41.7%) 1.1 (48.3%) 20.0% 4 22 0

EB+S2R+TITLE 1 0.0 (0.0%) − (0.0%) 0.0% 0 26 0

EB+S2R 1 0.0 (0.0%) − (0.0%) 0.0% 0 26 0

EB+S2R+TITLE+CODE 1 0.0 (0.0%) − (0.0%) 0.0% 0 26 0

EB+S2R+CODE 1 0.0 (0.0%) − (0.0%) 0.0% 0 26 0

OB+EB+S2R+CODE 1 0.0 (0.0%) − (0.0%) 0.0% 0 26 0

OB+EB+S2R+TITLE+CODE 1 0.0 (0.0%) − (0.0%) 0.0% 0 26 0

OB+EB+S2R 1 0.0 (0.0%) 1.0 (100.0%) − 26 0 0

OB+EB+S2R+TITLE 1 0.0 (0.0%) 1.0 (100.0%) − 26 0 0

Average # of queries and HITS@N values across CDS and the 26 thresholds N. Strategies sorted
by average HITS@N improvement (Improv). All strategies with positive improvement, including
OB+EB+S2R(+TITLE), achieve a statistically-significant higher HITS@N, compared to no reformulation
(Mann-Whitney, p-value< 5%)

top-N for 20% - 222.2%more queries (on average) than without reformulation. Unlike when
using no reformulation, the other two strategies, i.e., OB+EB+S2R(+TITLE), are able to

Empirical Software Engineering

Table 14 Categorization of each reformulation strategy according to their Effectiveness and Applicability
when using Lobster

In parenthesis, average HITS@N improvement across CDS and 26 thresholds N. Strategies sorted by avg.
HITS@N improvement for each Applicability-Effectiveness category. Applicability categories: High (H),
Moderate (M), Somewhat (S), and Low (L). Effectiveness categories: Very Effective (VE), Somewhat Effec-
tive (SE), Neutral (N), Somewhat Ineffective (SI), and Very Ineffective (VI). The strategies in green belong
to the effective category and the strategies in red to the ineffective category. Information types: OB (O), EB
(E), S2R (S), TITLE (T), and CODE (C)

return the buggy code document(s) for the only query they can reformulate (see the last two
rows of Table 139).

All the effective strategies achieve HITS@N improvement with statistical significance
(Mann-Whitney, p-value < 5%). The 6 remaining strategies have no effect on TRBL (i.e.,
they are neutral).

Twenty-two of the effective strategies belong to the very-effective category,
OB+EB+TITLE and OB+EB being the most effective ones, i.e., they both achieve 222.2%
avg. HITS@N improvement, and 1,167.6%/839.8% avg. MRR/MAP improvement10. How-
ever, the applicability of these strategies is rather low, as they can reformulate ∼3 initial
queries only. All highly-applicable are very-effective (see Table 14), and consistently
improve HITS@N across all 26 thresholds N, with respect to no reformulation (see
Table 13). Among these, TITLE is the strategy with the highest effectiveness (i.e., 97.1%
avg. HITS@N improvement and 286.4%/243% avg. MRR/MAP improvement), followed
by OB+TITLE, which is able to retrieve the buggy code documents for 88.3% more queries
than the initial queries (on average). All moderately-applicable strategies, except S2R, con-
sistently improve TRBL for 23 thresholds and are neutral for the remaining 3 N, and all of
them are categorized as very-effective. It is important to note that the improvement rates for

9HITS@N improvement cannot be measured for these two strategies because the HITS@N achieved by the
initial queries (i.e., no reformulation) is zero, hence, the improvement is undefined (see Formula 3).
10See our replication package for the detailed MRR/MAP results (Chaparro et al. 2018).

Empirical Software Engineering

Lobster are (significantly) higher than for the other four TRBL approaches. This is because
Lobster can only be used for the bug reports that contain stack traces, which are not many
in our data sets (i.e., between 1 and 49 queries, see Table 9).

We conclude that TITLE is the best reformulation strategy when using Lobster, since it is
very-effective, highly-applicable, and it consistently retrieves more buggy code documents
than no reformulation across all 26 thresholds N.

4.3 Performance for BugLocator

Tables 15 and 16 shows the results obtained for BugLocator across the 26 thresholds N and
FDS (i.e., file-level granularity). The results reveal that only two reformulation strategies,
namely OB+TITLE+CODE and OB+EB+TITLE+CODE, retrieve more code artifacts in
top-N compared to no reformulation. OB+TITLE+CODE’s improvement reaches 4.4% (on
average) in terms of HITS@N (6.8%/21.9% avg. MRR/MAP improvement), and OB+EB+
TITLE+CODE’s improvement over the initial queries is minimal (i.e., 0.2% avg. HITS@N
and 7.5% avg. MAP improvement, and 7.3% avg. MRR deterioration). Further, none of
these improvements are statistically significant (Mann-Whitney, 5% significance level)
and these strategies present a low consistency level across thresholds (i.e., they improve
HITS@N for 14 and 8 thresholds N while deteriorating it for 12 and 14 N, respectively).
The remaining 29 reformulation strategies lead to HITS@N deterioration by 0.7% - 47.4%
(i.e., they are ineffective). Thirteen of these are very-ineffective, TITLE, S2R, and CODE
being the ones with the highest negative impact in practice, given their high, moderate, and
somewhat applicability, respectively. S2R and CODE are ineffective for all thresholds N,
and TITLE for 24 N values. In fact, all very-ineffective strategies never retrieve more buggy
documents than when using no reformulation for each one of the 26 thresholds (see Table
15). The highly-applicable strategies OB+TITLE and OB, and the moderately-applicable
strategies OB+S2R+TITLE, OB+S2R, and S2R+TITLE, are somewhat-ineffective, and
lead to deterioration for 15 or more thresholds. OB+S2R, OB, and S2R+TITLE, always
lead to deterioration for each threshold N. From all the strategies that lead to deteriora-
tion, only OB+CODE, OB+EB+CODE, OB+S2R+TITLE’s deterioration is not statistically
significant, compared to no reformulation (Mann-Whitney, 5% significance level). The
results indicate that OB+TITLE+CODE, OB+EB+TITLE+CODE, OB+CODE, OB+EB
+CODE, and OB+S2R+TITLE are nearly as effective as no reformulation, despite their
corresponding improvement or deterioration level.

We conclude that OB+TITLE+CODE is the best strategy for BugLocator, as it leads to
TRBL improvement with respect to the initial queries (in terms of HITS@N, MRR, and
MAP). The downside of this strategy is its somewhat applicability and low consistency
across thresholds N. The results indicate that BugLocator can retrieve the buggy code arti-
facts within the top-N candidates even if bug reports (used as input queries) contain noisy
information. In other words, BugLocator is very robust to noisy queries, and query reduction
has little effect on TRBL.

We experimented with the two scoring components of BugLocator in order to know
which one is more robust to noisy query terms. The first component (i.e., rVSM) computes
the similarity score between the query and a file by using a VSM-based similarity and a
boost factor for the file, according to its length. The second component (i.e., SimiScore)
computes the similarity score between the query and a file by using a VSM-based similarity
between the query and past bug reports that lead to changes in the file. The full version
of BugLocator combines the resulting similarity scores from both components in a linear
fashion, giving a 0.8 weight to rVSM and 0.2 weight to SimiScore. We found that using

Empirical Software Engineering

Table 15 Average number (and proportion) of queries for which BugLocator retrieves at least one buggy
code document within the top-N results using each one of the reformulation strategies (Reform) vs. no refor-
mulation (No reform); and number of thresholds for which each strategy is Effective (E), Neutral (N), and
Ineffective (I)

Reformulation # of HITS@N Thresholds

strategy queries No reform. Reform. Improv. E N I

OB+TITLE+CODE 174.7 33.1 (18.9%) 33.7 (19.5%) 4.4% 14 0 12

OB+EB+TITLE+CODE 36.0 9.7 (26.1%) 9.2 (25.7%) 0.2% 8 4 14

OB+CODE 174.7 33.1 (18.9%) 31.6 (18.4%) − 0.7% 12 2 12

OB+S2R+TITLE 309.1 47.3 (15.5%) 46.1 (15.1%) − 2.1% 8 3 15

OB+TITLE 552.4 91.3 (16.8%) 85.5 (15.8%) − 6.0% 6 2 18

OB+EB+CODE 36.0 9.7 (26.1%) 8.4 (23.4%) − 8.4% 8 3 15

OB+S2R+TITLE+CODE 117.4 21.3 (18.0%) 19.2 (16.3%) − 8.9% 4 4 18

OB+S2R 309.1 47.3 (15.5%) 41.5 (13.6%) − 11.9% 0 0 26

EB+TITLE+CODE 38.0 9.7 (24.7%) 8.0 (21.3%) − 12.2% 5 3 18

OB+EB+S2R+TITLE+CODE 25.0 6.8 (26.9%) 5.9 (23.1%) − 13.1% 2 8 16

OB 552.4 91.3 (16.8%) 78.9 (14.6%) − 13.2% 0 0 26

S2R+TITLE 311.2 48.0 (15.6%) 40.7 (13.3%) − 15.1% 1 0 25

OB+EB+TITLE 113.5 23.1 (20.6%) 19.5 (17.5%) − 15.8% 0 1 25

OB+S2R+CODE 117.4 21.3 (18.0%) 17.6 (15.0%) − 15.9% 4 2 20

TITLE+CODE 182.1 35.6 (19.5%) 29.0 (16.1%) − 17.0% 0 0 26

EB+TITLE 118.7 23.8 (20.4%) 18.9 (16.3%) − 20.2% 0 0 26

OB+EB+S2R+TITLE 66.7 13.4 (20.6%) 10.8 (16.5%) − 20.3% 0 2 24

S2R+TITLE+CODE 117.7 21.5 (18.1%) 17.0 (14.3%) − 20.4% 0 1 25

OB+EB+S2R 66.7 13.4 (20.6%) 10.7 (16.5%) − 20.6% 0 0 26

OB+EB+S2R+CODE 25.0 6.8 (26.9%) 5.4 (20.9%) − 21.0% 2 8 16

OB+EB 113.5 23.1 (20.6%) 18.1 (16.2%) − 21.8% 0 0 26

TITLE 571.7 96.4 (17.1%) 74.1 (13.2%) − 22.9% 0 0 26

EB+S2R+TITLE+CODE 25.0 6.8 (26.9%) 4.7 (18.4%) − 30.4% 0 4 22

EB+S2R+TITLE 67.5 13.9 (21.1%) 9.4 (14.3%) − 32.6% 0 0 26

S2R+CODE 117.7 21.5 (18.1%) 13.8 (11.7%) − 34.9% 0 0 26

EB+CODE 38.0 9.7 (24.7%) 5.9 (15.3%) − 37.0% 0 0 26

EB+S2R+CODE 25.0 6.8 (26.9%) 4.2 (16.3%) − 37.6% 0 2 24

CODE 177.2 34.8 (19.6%) 20.2 (11.6%) − 40.1% 0 0 26

EB 118.7 23.8 (20.4%) 12.7 (11.0%) − 46.8% 0 0 26

S2R 309.0 47.2 (15.5%) 25.0 (8.3%) − 46.9% 0 0 26

EB+S2R 67.5 13.9 (21.1%) 7.4 (11.3%) − 47.4% 0 0 26

Average # of queries and HITS@N values across FDS and the 26 thresholds N. Strategies sorted by avg.
HITS@N improvement (Improv). None of the strategies achieve a statistically-significant higher HITS@N,
compared to no reformulation (Mann-Whitney, 5% significance level)

rVSM alone leads to five effective reformulation strategies (i.e., they improve HITS@N by
5.9%-14.2% on average, compared to no reformulation), and using SimiScore alone leads
to twenty-two effective strategies (i.e., they improve HITS@N by 0.2%-55% on average,
with respect to no reformulation). In addition, we found that the HITS@N achieved by the

Empirical Software Engineering

Table 16 Categorization of each reformulation strategy according to their Effectiveness and Applicability
when using BugLocator

In parenthesis, average HITS@N improvement across FDS and 26 thresholds N. Strategies sorted by avg.
HITS@N improvement for each Applicability-Effectiveness category. Applicability categories: High (H),
Moderate (M), Somewhat (S), and Low (L). Effectiveness categories: Very Effective (VE), Somewhat Effec-
tive (SE), Somewhat Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to the effective
category and the strategies in red to the ineffective category. Information types: OB (O), EB (E), S2R (S),
TITLE (T), and CODE (C)

initial queries when using rVSM is substantially higher than when using SimiScore (i.e.,
17.8% vs 8.9%, on average across reformulation strategies). When both are combined (i.e.,
full BugLocator), the HITS@N achieved by the initial queries reaches 20.5% on average.
These results mean that rVSM achieves such a high performance with the initial queries
that the reformulations have little effect. Hence, rVSM is more robust to noisy information
in the queries than SimiScore. We conjecture that increasing the frequency of the terms in
the reformulated queries proportionally to their frequency in the full bug report can lead
to higher retrieval improvement when using rVSM. Verifying this conjecture is part of our
future research agenda.

4.4 Performance for BRTracer

The results for BRTracer (see Tables 17 and 18) reveal that 14 (out of 31) strategies improve
TRBL with respect to no reformulation. OB+EB+S2R is the reformulation strategy with
the highest average HITS@N improvement compared to no reformulation (i.e., 16.5%).
The improvement is statistically significant, according to the Mann-Whitney test (p-value<
5%). This strategy also achieves 44.7%/35.4% avg. MRR/MAP improvement, and improves
HITS@N for 20 thresholds while deteriorating it for only one. The downside of this strategy
is its low applicability (see Table 18), as only ∼55 queries (out of ∼47411) can be refor-
mulated with it, on average. OB+TITLE is the only highly-applicable strategy that achieves
avg. HITS@N improvement (i.e., 0.9%). However, the improvement is not statistically sig-
nificant (Mann-Whitney, 5% significance level), and this strategy improves and deteriorates

11The # of queries for TITLE in Table 17 represents the avg. total # of queries for BRTracer.

Empirical Software Engineering

Table 17 Average number (and proportion) of queries for which BRTracer retrieves at least one buggy code
document within the top-N results using each one of the reformulation strategies (Reform) vs. no reformu-
lation (No reform); and number of thresholds for which each strategy is Effective (E), Neutral (N), and
Ineffective (I)

Reformulation # of HITS@N Thresholds

strategy queries No reform. Reform. Improv. E N I

OB+EB+S2R* 55.2 10.7 (19.6%) 12.2 (22.5%) 16.5% 20 5 1

OB+S2R+TITLE* 255.5 51.2 (20.6%) 58.5 (23.4%) 15.6% 26 0 0

OB+EB+S2R+TITLE* 55.2 10.7 (19.6%) 12.0 (22.2%) 14.2% 20 2 4

OB+S2R+TITLE+CODE* 92.8 25.6 (28.3%) 27.1 (29.8%) 7.7% 17 4 5

OB+S2R* 255.5 51.2 (20.6%) 54.5 (21.9%) 7.7% 21 2 3

S2R+TITLE* 256.2 51.8 (20.7%) 54.4 (21.7%) 6.4% 17 2 7

EB+S2R+TITLE 55.3 10.8 (19.7%) 11.1 (20.7%) 5.5% 18 2 6

OB+EB 93.6 20.4 (22.2%) 21.0 (22.7%) 4.6% 13 3 10

OB+TITLE+CODE 139.3 39.2 (29.0%) 40.1 (29.2%) 2.8% 13 2 11

S2R+TITLE+CODE 93.1 25.8 (28.4%) 25.9 (28.3%) 2.7% 12 3 11

OB+EB+TITLE 93.6 20.4 (22.2%) 20.6 (22.1%) 1.9% 11 3 12

EB+S2R 55.3 10.8 (19.7%) 10.7 (19.6%) 1.8% 12 3 11

OB+TITLE 458.3 99.8 (22.4%) 99.8 (22.3%) 0.9% 13 0 13

OB+S2R+CODE 92.8 25.6 (28.3%) 25.3 (27.9%) 0.4% 10 2 14

TITLE 474.2 104.1 (22.6%) 99.3 (21.3%) − 3.7% 9 0 17

OB 458.3 99.8 (22.4%) 94.7 (21.2%) − 4.5% 5 4 17

OB+CODE 139.3 39.2 (29.0%) 37.2 (27.3%) − 4.6% 6 0 20

TITLE+CODE 145.0 40.9 (29.1%) 37.7 (26.5%) − 7.1% 4 2 20

OB+EB+S2R+CODE 16.7 5.7 (34.2%) 5.1 (30.0%) − 12.2% 1 11 14

EB+TITLE 98.0 20.8 (21.6%) 18.0 (18.6%) − 13.4% 2 1 23

OB+EB+S2R+TITLE+CODE 16.7 5.7 (34.2%) 4.9 (28.7%) − 16.0% 1 11 14

OB+EB+TITLE+CODE 25.9 9.0 (34.2%) 7.7 (27.8%) − 20.0% 3 2 21

EB+S2R+CODE 16.7 5.7 (34.2%) 4.4 (26.7%) − 21.0% 0 8 18

OB+EB+CODE 25.9 9.0 (34.2%) 7.5 (27.2%) − 21.5% 3 1 22

EB+S2R+TITLE+CODE 16.7 5.7 (34.2%) 4.5 (26.4%) − 22.3% 1 3 22

S2R+CODE 93.1 25.8 (28.4%) 19.3 (21.0%) − 22.8% 3 0 23

EB+TITLE+CODE 27.9 9.0 (31.6%) 7.0 (23.8%) − 24.5% 1 2 23

EB 98.0 20.8 (21.6%) 14.9 (15.5%) − 28.3% 0 0 26

S2R 254.1 51.0 (20.6%) 33.9 (13.6%) − 32.1% 0 0 26

EB+CODE 27.9 9.0 (31.6%) 6.3 (20.7%) − 34.5% 1 1 24

CODE 142.6 40.5 (29.4%) 24.1 (17.1%) − 40.7% 0 0 26

Average # of queries and HITS@N values across FDS and the 26 thresholds N. Strategies sorted by aver-
age HITS@N improvement (Improv). All strategies marked with * achieve a statistically-significant higher
HITS@N, compared to no reformulation (Mann-Whitney, p-value< 5%)

HITS@N for an equal number of thresholds (i.e., 13 N). Among the moderately-applicable
strategies, OB+S2R+TITLE is the one with the highest average HITS@N improvement
(i.e., 15.6%), and it is the only strategy of all that consistently improves HITS@N for all
thresholds. This strategy also leads to 12.8%/14.2% avg. MRR/MAP improvement, across

Empirical Software Engineering

Table 18 Categorization of each reformulation strategy according to their Effectiveness and Applicability
when using BRTracer

In parenthesis, average HITS@N improvement across FDS and 26 thresholds N. Strategies sorted by avg.
HITS@N improvement for each Applicability-Effectiveness category. Applicability categories: High (H),
Moderate (M), Somewhat (S), and Low (L). Effectiveness categories: Very Effective (VE), Somewhat Effec-
tive (SE), Somewhat Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to the effective
category and the strategies in red to the ineffective category. Information types: OB (O), EB (E), S2R (S),
TITLE (T), and CODE (C)

all thresholds N and FDS. Conversely, out of the 31 strategies, 17 of them lead to HITS@N
deterioration, and nine of them fall in the very-ineffective category, including S2R and
CODE, which have the highest impact since they are somewhat- andmoderately-applicable,
respectively.

We conclude that OB+S2R+TITLE is the best reformulation strategy when using
BRTracer, since it is effective, moderately-applicable, and it consistently retrieves more
buggy code documents than no reformulation across all 26 thresholds N. The results indi-
cate that BRTracer is more robust to noisy queries, compared to Lucene and Lobster, since
only six strategies achieve higher HITS@N (vs. no reformulation) with statistical signifi-
cance. Remember that BRTracer is an extension of BugLocator, consequently, BRTracer’s
robustness comes from BugLocator.

4.5 Performance for Locus

Tables 19 and 20 show the results obtained for Locus across the 26 thresholds N and
FDS (i.e., file-level granularity). Eleven strategies are effective, i.e., they improve HITS@N
by 0.1% to 36.1% (on average) with respect to no reformulation. The most effective
strategies belong to the low-applicability category, OB+EB+S2R being the strategy that
achieves the highest avg. improvement in terms of HITS@N (i.e., 36.1%). This strat-
egy consistently improves HITS@N for 24 thresholds, while deteriorating it for only one.
All highly-applicable strategies are effective with statistical significance (Mann-Whitney,
p-value< 5%) and fall in the somewhat-effective category (with 2.1% - 15.5% avg.
HITS@N, and 31.1%/45% - 30.7%/43.9% avg. MRR/MAP improvement). However, only
OB+TITLE is effective for all 26 thresholds N. Among themoderately-applicable strategies,

Empirical Software Engineering

Table 19 Average number (and proportion) of queries for which Locus retrieves at least one buggy code doc-
ument within the top-N results using each one of the reformulation strategies (Reform) vs. no reformulation
(No reform); and number of thresholds for which each strategy is Effective (E), Neutral (N), and Ineffective
(I)

Reformulation # of HITS@N Thresholds

strategy queries No reform. Reform. Improv. E N I

OB+EB+S2R* 26.9 7.3 (26.2%) 9.2 (34.5%) 36.1% 24 1 1

OB+EB+S2R+TITLE* 26.9 7.3 (26.2%) 8.9 (33.6%) 33.3% 23 1 2

OB+EB+TITLE* 40.6 13.6 (33.3%) 16.8 (41.6%) 25.4% 24 1 1

OB+EB* 40.6 13.6 (33.3%) 16.5 (41.2%) 24.2% 24 0 2

OB+TITLE* 190.7 60.0 (32.1%) 69.3 (37.0%) 15.5% 26 0 0

OB+S2R+TITLE* 124.4 37.0 (30.4%) 40.7 (33.4%) 10.2% 25 1 0

EB+S2R+TITLE 26.9 7.3 (26.2%) 7.6 (27.8%) 9.1% 14 5 7

TITLE* 199.6 62.7 (32.0%) 64.8 (33.1%) 3.5% 20 2 4

OB* 190.7 60.0 (32.1%) 61.2 (32.8%) 2.1% 17 5 4

OB+TITLE+CODE 92.5 29.4 (32.9%) 29.4 (32.5%) 1.1% 11 2 13

S2R+TITLE 125.6 37.2 (30.3%) 37.5 (30.1%) 0.1% 11 2 13

OB+EB+TITLE+CODE 16.5 7.3 (43.7%) 7.0 (43.4%) − 0.3% 6 14 6

EB+TITLE 42.1 13.9 (32.9%) 13.7 (32.4%) − 1.4% 8 4 14

OB+EB+CODE 16.5 7.3 (43.7%) 6.7 (42.5%) − 2.1% 6 14 6

OB+EB+S2R+CODE 10.5 4.1 (34.1%) 3.8 (32.4%) − 3.7% 1 19 6

OB+S2R 124.4 37.0 (30.4%) 35.4 (28.9%) − 4.3% 7 2 17

OB+EB+S2R+TITLE+CODE 10.5 4.1 (34.1%) 3.7 (32.0%) − 4.5% 1 18 7

EB+S2R+TITLE+CODE 10.5 4.1 (34.1%) 3.6 (31.2%) − 6.2% 0 18 8

OB+CODE 92.5 29.4 (32.9%) 26.8 (29.6%) − 7.8% 6 2 18

OB+S2R+TITLE+CODE 63.4 20.3 (32.9%) 18.1 (29.5%) − 10.0% 3 2 21

OB+S2R+CODE 63.4 20.3 (32.9%) 17.0 (27.7%) − 15.4% 1 1 24

EB+TITLE+CODE 17.5 7.3 (40.8%) 6.0 (34.0%) − 16.3% 0 7 19

TITLE+CODE 98.1 30.5 (32.1%) 24.5 (25.3%) − 18.6% 2 3 21

EB+S2R 26.9 7.3 (26.2%) 5.5 (20.3%) − 21.3% 0 3 23

S2R+TITLE+CODE 64.4 20.3 (32.4%) 15.6 (24.9%) − 22.6% 1 0 25

EB+S2R+CODE 10.5 4.1 (34.1%) 3.1 (25.1%) − 29.7% 0 8 18

S2R 125.6 37.2 (30.3%) 23.4 (19.1%) − 36.5% 0 0 26

EB+CODE 17.5 7.3 (40.8%) 4.2 (22.7%) − 44.4% 0 0 26

S2R+CODE 64.4 20.3 (32.4%) 11.0 (17.6%) − 45.0% 0 0 26

CODE 98.1 30.5 (32.1%) 16.1 (16.9%) − 46.7% 0 0 26

EB 42.1 13.9 (32.9%) 7.6 (17.5%) − 46.9% 0 0 26

Average # of queries and HITS@N values across FDS and the 26 thresholds N. Strategies sorted by aver-
age HITS@N improvement (Improv). All strategies marked with * achieve a statistically-significant higher
HITS@N, compared to no reformulation (Mann-Whitney, p-value< 5%)

OB+S2R+TITLE is the only one that leads to a statistically significant HITS@N improve-
ment (i.e., 10.2% on average) for 25 thresholds N. This strategy also achieves 23.2%/25.7%
avg. MRR/MAP improvement. Conversely, the 20 remaining strategies retrieve the buggy
code artifacts within top-N for less number of queries than when using no reformulation

Empirical Software Engineering

Table 20 Categorization of each reformulation strategy according to their Effectiveness and Applicability
when using Locus

In parenthesis, average HITS@N improvement across FDS and 26 thresholds N. Strategies sorted by avg.
HITS@N improvement for each Applicability-Effectiveness category. Applicability categories: High (H),
Moderate (M), Somewhat (S), and Low (L). Effectiveness categories: Very Effective (VE), Somewhat Effec-
tive (SE), Somewhat Ineffective (SI), and Very Ineffective (VI). The strategies in green belong to the effective
category and the strategies in red to the ineffective category. Information types: OB (O), EB (E), S2R (S),
TITLE (T), and CODE (C)

(i.e., they are ineffective). Eight of them are very-ineffective because they lead to more than
20.6% HITS@N deterioration, and consistently deteriorate HITS@N for a large amount of
thresholds (i.e., 18, 25, or 26 - see Table 19). S2R and CODE belong to this subset and
are the strategies with the most negative impact in practice, given its applicability level
(moderate and somewhat, respectively).

We conclude that OB+TITLE is the best reformulation strategy when using Locus,
since it is effective, highly-applicable, and it consistently retrieves the buggy code docu-
ments within the top-N results for more cases across all 26 thresholds N (compared to no
reformulation).

4.6 Analysis across Code Granularities

We analyze the performance of the reformulation strategies across the three code granulari-
ties for Lucene, which is the only TRBL approach among the five that we could use with all
granularities. Tables 21 and 22 reveal that the strategies have a different performance across
code granularities.

Regarding class-level granularity (i.e., CDS), twelve reformulation strategies achieve a
22.3% - 50.2% avg. HITS@N improvement with respect to no reformulation (i.e., they are
very-effective), and nine more strategies achieve 0.5% - 20.9% avg. HITS@N improve-
ment (i.e., they are somewhat-effective). The remaining 10 strategies lead to HITS@N
deterioration, hence, they are ineffective. Lucene performs best when using the moderately-
applicable strategies OB+S2R+TITLE, OB+S2R, and S2R+TITLE (i.e., 50.2%, 49.2%, and
46.7% avg. HITS@N improvement, respectively), and when using the highly-applicable
strategies OB+TITLE, OB, and TITLE (i.e., 44%, 31.7%, and 31.5% avg. HITS@N
improvement, respectively). These six strategies consistently improve HITS@N for all 26

Empirical Software Engineering

Ta
bl
e
21

A
ve
ra
ge

nu
m
be
r
of

re
du
ce
d
qu
er
ie
s
(|Q

|)a
nd

H
IT
S@

N
im

pr
ov
em

en
t(
Im

pr
ov
)
fo
r
L
uc

en
e
on

ea
ch

da
ta
se
tw

he
n
us
in
g
ea
ch

re
fo
rm

ul
at
io
n
st
ra
te
gy

R
ef
or
m
ul
at
io
n

C
D
S

FD
S

M
D
S

A
ll
da
ta
se
ts

st
ra
te
gy

|Q
|

Im
pr
ov

|Q
|

Im
pr
ov

|Q
|

Im
pr
ov

|Q
|

Im
pr
ov

O
B
+
E
B
+
T
IT
L
E

37
.4

22
.3
%

89
.6

34
.2
%

28
.1

50
.0
%

15
5.
2

30
.3
%

O
B
+
T
IT
L
E

17
0.
8

44
.0
%

47
2.
7

26
.4
%

12
0.
1

11
.7
%

76
3.
6

29
.3
%

O
B
+
S2

R
+
T
IT
L
E

97
.5

50
.2
%

26
3.
3

20
.8
%

48
.1

34
.8
%

40
9.
0

29
.2
%

O
B
+
E
B
+
S2

R
+
T
IT
L
E

21
.4

7.
1%

51
.6

34
.8
%

17
.3

90
.2
%

90
.3

28
.6
%

O
B
+
E
B

37
.4

19
.4
%

89
.6

30
.9
%

28
.1

35
.6
%

15
5.
2

26
.1
%

O
B
+
T
IT
L
E
+
C
O
D
E

80
.4

40
.3
%

15
1.
2

14
.3
%

53
.5

39
.4
%

28
5.
1

25
.6
%

O
B
+
E
B
+
S2

R
21
.4

8.
7%

51
.6

28
.8
%

17
.3

86
.3
%

90
.3

24
.9
%

O
B
+
S2

R
97
.5

49
.2
%

26
3.
3

10
.9
%

48
.1

30
.8
%

40
9.
0

22
.4
%

T
IT
L
E

17
2.
6

31
.5
%

48
8.
1

16
.6
%

12
2.
8

14
.2
%

78
3.
5

20
.1
%

S2
R
+
T
IT
L
E

98
.0

46
.7
%

26
3.
8

4.
1%

48
.1

47
.2
%

40
9.
9

19
.1
%

E
B
+
T
IT
L
E

38
.9

29
.4
%

94
.3

14
.2
%

28
.1

18
.2
%

16
1.
3

17
.3
%

O
B

16
9.
8

31
.7
%

47
2.
7

13
.5
%

12
0.
1

−4
.0
%

76
2.
6

16
.2
%

O
B
+
C
O
D
E

80
.4

27
.0
%

15
1.
2

3.
1%

53
.5

34
.6
%

28
5.
1

14
.7
%

E
B
+
S2

R
+
T
IT
L
E

21
.9

−6
.7
%

51
.6

15
.5
%

17
.3

13
1.
2%

90
.8

14
.4
%

T
IT
L
E
+
C
O
D
E

80
.4

31
.1
%

15
6.
8

−4
.1
%

55
.3

36
.0
%

29
2.
5

12
.4
%

Empirical Software Engineering

Ta
bl
e
21

(c
on
tin

ue
d)

R
ef
or
m
ul
at
io
n

C
D
S

FD
S

M
D
S

A
ll
da
ta
se
ts

st
ra
te
gy

|Q
|

Im
pr
ov

|Q
|

Im
pr
ov

|Q
|

Im
pr
ov

|Q
|

Im
pr
ov

O
B
+
E
B
+
T
IT
L
E
+
C
O
D
E

17
.6

5.
2%

25
.7

8.
7%

12
.0

21
.3
%

55
.3

6.
7%

O
B
+
S2

R
+
T
IT
L
E
+
C
O
D
E

50
.5

17
.3
%

99
.1

2.
4%

27
.2

35
.2
%

17
6.
8

6.
2%

O
B
+
E
B
+
C
O
D
E

17
.6

4.
5%

25
.7

2.
3%

12
.0

20
.5
%

55
.3

3.
3%

O
B
+
S2

R
+
C
O
D
E

50
.5

20
.9
%

99
.1

−5
.4
%

27
.2

34
.2
%

17
6.
8

3.
2%

S2
R
+
T
IT
L
E
+
C
O
D
E

50
.5

1.
9%

99
.2

−7
.5
%

27
.2

35
.7
%

17
6.
9

−4
.1
%

O
B
+
E
B
+
S2

R
+
T
IT
L
E
+
C
O
D
E

13
.0

−3
0.
1%

16
.6

8.
5%

7.
6

−1
.3
%

37
.1

−9
.8
%

E
B
+
S2

R
21
.9

0.
5%

51
.6

−1
3.
9%

17
.3

−1
3.
9%

90
.8

−1
0.
6%

E
B

37
.5

24
.9
%

94
.3

−1
8.
2%

27
.1

−5
1.
4%

15
8.
9

−1
0.
6%

O
B
+
E
B
+
S2

R
+
C
O
D
E

13
.0

−3
0.
1%

16
.6

0.
1%

7.
6

−2
.2
%

37
.1

−1
5.
1%

E
B
+
T
IT
L
E
+
C
O
D
E

17
.6

−1
7.
5%

27
.7

−2
2.
6%

12
.0

1.
3%

57
.3

−2
0.
0%

S2
R
+
C
O
D
E

50
.5

−3
2.
3%

99
.2

−2
6.
3%

27
.2

11
.6
%

17
6.
9

−2
7.
9%

E
B
+
C
O
D
E

17
.6

−2
4.
8%

27
.7

−3
4.
0%

12
.0

−1
3.
7%

57
.3

−2
9.
3%

S2
R

98
.0

−1
7.
6%

26
2.
4

−3
4.
0%

48
.1

−4
6.
5%

40
8.
5

−3
0.
6%

C
O
D
E

76
.2

−3
9.
5%

15
3.
4

−4
4.
9%

54
.8

−1
.4
%

28
4.
5

−3
7.
2%

E
B
+
S2

R
+
T
IT
L
E
+
C
O
D
E

13
.0

−5
5.
8%

16
.6

−3
3.
2%

7.
6

−1
.3
%

37
.1

−4
1.
5%

E
B
+
S2

R
+
C
O
D
E

13
.0

−5
9.
0%

16
.6

−4
6.
4%

7.
6

−2
.2
%

37
.1

−4
9.
8%

A
ve
ra
ge

va
lu
es

ac
ro
ss

th
re
sh
ol
ds

N
=

{5,
6,
7,
...

,
30

}.S
tr
at
eg
ie
s
so
rt
ed

by
av
g.

H
IT
S@

N
im

pr
ov
em

en
tf
or

al
ld

at
a
se
ts

Empirical Software Engineering

Table 22 Number of thresholds N (out of 26) for which each reformulation strategy is Effective (E), Neutral
(N), and Ineffective (I) when using Lucene on each data set

Reformulation CDS FDS MDS

Strategy E N I H@N E N I H@N E N I H@N

OB+EB+TITLE 25 1 0 22.3% 26 0 0 34.2% 22 1 3 50.0%

OB+TITLE 26 0 0 44.0% 26 0 0 26.4% 19 1 6 11.7%

OB+S2R+TITLE 26 0 0 50.2% 26 0 0 20.8% 21 5 0 34.8%

OB+EB+S2R+TITLE 11 7 8 7.1% 26 0 0 34.8% 13 12 1 90.2%

OB+EB 24 2 0 19.4% 26 0 0 30.9% 19 4 3 35.6%

OB+TITLE+CODE 25 0 1 40.3% 25 1 0 14.3% 25 1 0 39.4%

OB+EB+S2R 11 7 8 8.7% 26 0 0 28.8% 13 10 3 86.3%

OB+S2R 26 0 0 49.2% 25 1 0 10.9% 20 3 3 30.8%

TITLE 26 0 0 31.5% 24 0 2 16.6% 19 1 6 14.2%

S2R+TITLE 26 0 0 46.7% 13 3 10 4.1% 22 1 3 47.2%

EB+TITLE 26 0 0 29.4% 22 2 2 14.2% 14 4 8 18.2%

OB 26 0 0 31.7% 26 0 0 13.5% 7 4 15 − 4.0%

OB+CODE 20 3 3 27.0% 16 5 5 3.1% 24 0 2 34.6%

EB+S2R+TITLE 6 4 16 − 6.7% 14 4 8 15.5% 13 9 4 131.2%

TITLE+CODE 21 2 3 31.1% 3 6 17 − 4.1% 25 1 0 36.0%

OB+EB+TITLE+CODE 10 6 10 5.2% 14 9 3 8.7% 8 16 2 21.3%

OB+S2R+TITLE+CODE 9 5 12 17.3% 17 2 7 2.4% 17 5 4 35.2%

OB+EB+CODE 10 6 10 4.5% 10 9 7 2.3% 7 17 2 20.5%

OB+S2R+CODE 13 2 11 20.9% 9 4 13 − 5.4% 17 4 5 34.2%

S2R+TITLE+CODE 9 0 17 1.9% 4 9 13 − 7.5% 17 5 4 35.7%

OB+EB+S2R+TITLE+CODE 0 8 18 − 30.1% 7 10 9 8.5% 0 25 1 − 1.3%

EB+S2R 8 3 15 0.5% 5 2 19 − 13.9% 2 14 10 − 13.9%

EB 24 1 1 24.9% 0 1 25 − 18.2% 1 2 23 − 51.4%

OB+EB+S2R+CODE 0 8 18 − 30.1% 5 10 11 0.1% 0 24 2 − 2.2%

EB+TITLE+CODE 5 5 16 − 17.5% 0 3 23 − 22.6% 2 19 5 1.3%

S2R+CODE 4 0 22 − 32.3% 0 0 26 − 26.3% 10 8 8 11.6%

EB+CODE 1 5 20 − 24.8% 0 0 26 − 34.0% 0 17 9 −13.7%

S2R 5 1 20 − 17.6% 0 0 26 − 34.0% 0 1 25 − 46.5%

CODE 0 0 26 − 39.5% 0 0 26 − 44.9% 4 7 15 − 1.4%

EB+S2R+TITLE+CODE 0 2 24 − 55.8% 0 1 25 − 33.2% 0 25 1 − 1.3%

EB+S2R+CODE 0 2 24 − 59.0% 0 0 26 − 46.4% 0 24 2 − 2.2%

H@N is the average HITS@N improvement across 26 thresholds N. Strategies sorted by average HITS@N
improvement across all data sets

thresholds (see Table 22 - CDS columns). The worst strategies are EB+S2R+CODE and
EB+S2R+TITLE+CODE, which consistently fail to retrieve the buggy code documents
within the top-N results for 24 thresholds N. These two and five more strategies belong to
the very-ineffective category. S2R and CODE are the strategies with the highest negative
impact in practice, according to their level of applicability (i.e., moderate and somewhat,
respectively) and performance (i.e., they lead to more than 15% HITS@N deterioration,

Empirical Software Engineering

and consistently achieve deterioration for 20 and 26 thresholds, respectively). We consider
OB+TITLE as the best reformulation strategy for Lucene when retrieving buggy classes.

In the case of file-level granularity (i.e., FDS), we found that five strategies
achieve more than 21.4% average HITS@N improvement, namely OB+EB+S2R+TITLE,
OB+EB+TITLE, OB+EB, OB+EB+S2R, and OB+TITLE (i.e., 34.8%, 34.2%, 30.9%,
28.8%, and 26.4% average improvement, respectively), hence, they belong to the very-
effective category and they consistently improve HITS@N for all thresholds (see Table 22
- FDS columns). Among these, OB+TILE is the only highly-applicable strategy. Fourteen
more strategies lead to HITS@N improvement by 0.1% - 20.8%, on average, including
all moderately-applicable strategies, except S2R. The remaining 12 strategies are ineffec-
tive. Among these, seven lead to more than 20.6% HITS@N deterioration (i.e., they are
very-ineffective), including S2R and CODE, which consistently fail to retrieve the buggy
code documents for all thresholds. We conclude that OB+TITLE is the best reformulation
strategy for Lucene when retrieving buggy files.

As for the method-level granularity (i.e., MDS), 14 strategies are very-effective
(i.e., their HITS@N improvement is greater than 21.4%). Among these, five strate-
gies achieve more than 40% average HITS@N improvement, namely EB+S2R+TITLE,
OB+EB+S2R+TITLE, OB+EB+S2R, OB+EB+ TITLE, and S2R+TITLE (i.e., 131.2%,
90.2%, 86.3%, 50.0%, and 47.2% avg. HITS@N improvement, respectively), S2R+TITLE
being the only moderately-applicable. However, from these five strategies, only
OB+EB+TITLE and S2R+TITLE improve HITS@N for most thresholds N (i.e., 22 N - see
Table 22), while deteriorating it for few cases (i.e., 3 N). The strategies OB+CODE and
TITLE+CODE are the only ones that lead to improvement for nearly all thresholds (i.e.,
25 N). Seven more strategies achieve 1.3% - 21.3% average HITS@N improvement (i.e.,
they are somewhat-effective). The remaining 10 strategies do not lead to any improvement,
and among these, S2R and EB are the most ineffective ones, which lead to deterioration
for a large number of thresholds (i.e., 25 and 23 N values, respectively). We conclude
that S2R+TITLE is the best reformulation strategy for Lucene when retrieving buggy
methods.

We observed that the effective CODE-based strategies are more common for MDS than
for CDS and FDS (10 vs. 8 and 7 strategies, respectively), which indicates that the CODE
information in bug reports is more effective for retrieving methods than for retrieving files
or classes. We manually analyzed a subset of the MDS queries and their respective buggy
code methods (i.e., the gold set) and found that, indeed, code snippets are commonly found
in the MDS bug reports and they contain many relevant terms present in the buggy code.
This is more common on the queries from the Defects4J systems (Just et al. 2014), i.e.,
Lang, Joda-Time, and Math, than for other systems. Note that the Defects4J bugs were
originally collected for software testing research and have three main characteristics (Just
et al. 2014): (1) they are clearly related to the source code in the version control system; (2)
they are reproducible; and (3) their fixes were done independently of other code changes.
This explains (in part) why the code in the Defects4J queries is likely to contain relevant
terms with respect to TRBL.

All highly- and moderately-applicable strategies, except OB and S2R, are among the
strategies that achieve the highest HITS@N improvement across the three code granular-
ities. Among these, OB+TITLE and S2R+TITLE are the best-performing strategies, the
former for CDS and FDS, and the latter for MDS (i.e., 44%, 26.4%, and 47.2% avg.
HITS@N improvement, respectively). These results provide evidence of how effective it is
to combine the TITLE with OB or S2R for reformulating the initial queries.

Empirical Software Engineering

Note that the top-3 most effective strategies for MDS achieve a high avg. HITS@N
improvement, i.e., greater than 85%, which is substantially higher than the best improve-
ment rates achieved for CDS and FDS (i.e., 50.2% and 34.8%, respectively). These
differences come from the large improvement that the MDS strategies achieve for a sub-
set of the thresholds N. For example, EB+S2R+TITLE’s avg. HITS@N improvement is
300% for N={13, 21, 22, 23, 24, 25, 26} and 100% for N={12, 27, 28, 29, 30}. These values
lead to a high overall average improvement for this strategy. For the remaining thresholds,
HITS@N improvement values are similar to the ones from CDS and FDS. Finally, note that
for Java systems, we can consider class- and file-level granularities to be somewhat similar.
The performance for Lucene across the CDS and FDS data sets indicates that the corpus
granularity does not seriously impact the successful reformulation techniques.

4.7 Overall Reformulation Performance

In general, fewer strategies lead to TRBL improvement in terms of HITS@N for BugLoca-
tor, BRTracer, and Locus than for Lucene and Lobster (2, 14, and 11 vs. 19 and 25 strategies,
respectively). The results indicate that BugLocator, BRTracer, and Locus are less sensitive
to noisy queries than Lucene and Lobster, yet the reformulation strategies still lead to TRBL
improvement for all of them (i.e., buggy code retrieval in top-N for more cases than without
reformulation).

Summarizing across the TRBL techniques, code granularities, and thresholds N (see
Tables 23, 24, and 25), the results show that 18 query reformulation strategies achieve
improvement in terms of HITS@N, MRR, and MAP. Among these 18, all highly-applicable
strategies (i.e., OB, TITLE, and OB+TITLE) improve TRBL by 16.6% - 25.6% HITS@N,
and by 48.9% - 73.9% (51.6% - 69.8%) MRR (MAP), on average. OB+TITLE falls in
the very-effective category, and TITLE and OB in the somewhat-effective category (see
Table 25). OB+TITLE is the second best strategy (after OB+S2R+TITLE, see below) in
terms of the total number of thresholds N for which there is HITS@N improvement, i.e., 97
thresholds N (out of 130 total, on aggregate across TRBL approaches - see Table 23), ver-
sus 31 thresholds N for which there is HITS@N deterioration. This strategy also retrieves
the buggy code documents within the top-N results for 25.6% more queries (on average),
compared to no reformulation and achieves 58.6%/60.6% avg. MRR/MAP improvement.

In addition, among the effective strategies, three moderately-applicable (i.e.,
OB+S2R+TITLE, OB+S2R, and S2R+TITLE) stand out, since they achieve between 22.6%
and 31.4% avg. HITS@N improvement, and between 42.3% (49.1%) and 54.4% (57.3%)
avg. MRR/MAP improvement. All three strategies are very-effective, and OB+S2R+TITLE
is the best strategy in terms of avg. HITS@N improvement (i.e., 31.4%) and the number of
thresholds N for which there is HITS@N improvement, i.e., 108 thresholds N (out of 130,
on aggregate) versus 15 thresholds N for which there is HITS@N deterioration.

The remaining 12 effective strategies are less applicable and achieve between 2%
and 41.7% improvement in terms of HITS@N, and between 13.3% (9.3%) and 201.1%
(148.8%) MRR/MAP improvement, on average. OB+EB+TITLE is the strategy that per-
forms best in terms of HITS@N (i.e., 41.7% avg. improvement), but at the same time,
its applicability is rather low. All strategies with positive HITS@N improvement, exclud-
ing OB+EB+CODE and OB+S2R+CODE, achieve a statistically significant HITS@N
improvement, compared to no reformulation (Mann-Whitney, p-value< 5%).

Overall, OB+S2R+TITLE is the moderately-applicable reformulation strategy that
achieves the highest TRBL performance in terms of HITS@N across TRBL techniques, as

Empirical Software Engineering

Table 23 Average number (and proportion) of queries for which all five TRBL techniques retrieve at least
one buggy code document within the top-N results using each one of the reformulation strategies (Reform)
vs. no reformulation (No reform); and aggregated number of thresholds for which each strategy is Effective
(E), Neutral (N), and Ineffective (I), across all TRBL techniques

Reformulation # of HITS@N Thresholds

strategy queries No reform. Reform. Improv. E N I

OB+EB+TITLE 86.3 20.7 (26.4%) 23.5 (39.2%) 41.7% 79 13 38

OB+EB 86.3 20.7 (26.4%) 22.9 (38.8%) 39.8% 81 11 38

OB+S2R+TITLE 228.5 47.2 (22.3%) 55.1 (28.2%) 31.4% 108 7 15

EB+TITLE 90.1 21.2 (24.9%) 21.2 (31.8%) 28.2% 53 13 64

OB+TITLE+CODE 141.8 35.0 (25.7%) 39.4 (30.9%) 25.8% 90 4 36

OB+TITLE 399.9 86.3 (22.7%) 98.2 (27.9%) 25.6% 97 2 31

S2R+TITLE 229.5 47.6 (22.4%) 50.8 (26.4%) 23.2% 78 7 45

OB+S2R 228.5 47.2 (22.3%) 51.0 (26.1%) 22.6% 77 7 46

TITLE 412.9 89.7 (22.7%) 93.1 (26.2%) 18.8% 81 2 47

OB+CODE 141.8 35.0 (25.7%) 36.4 (29.0%) 18.3% 76 4 50

OB 399.7 86.3 (22.7%) 89.6 (25.7%) 16.6% 74 9 47

OB+EB+S2R 59.8 13.1 (22.5%) 14.5 (25.7%) 14.2% 68 32 30

OB+EB+S2R+TITLE 59.8 13.1 (22.5%) 14.6 (25.7%) 14.0% 68 31 31

TITLE+CODE 147.0 36.4 (25.7%) 35.6 (27.5%) 12.3% 56 6 68

OB+EB+TITLE+CODE 28.8 8.9 (34.8%) 8.8 (40.5%) 11.9% 49 32 49

OB+EB+CODE 28.8 8.9 (34.8%) 8.4 (39.5%) 8.6% 47 31 52

OB+S2R+TITLE+CODE 96.9 23.5 (26.7%) 23.6 (28.4%) 7.5% 58 23 49

OB+S2R+CODE 96.9 23.5 (26.7%) 22.4 (27.0%) 2.0% 43 17 70

S2R+TITLE+CODE 97.2 23.6 (26.7%) 21.6 (26.4%) − 0.3% 40 13 77

EB+TITLE+CODE 30.3 8.9 (33.1%) 7.4 (35.0%) − 0.8% 25 20 85

EB+S2R+TITLE 59.6 13.2 (22.5%) 12.9 (22.4%) − 0.9% 46 37 47

OB+EB+S2R+TITLE+CODE 21.0 5.8 (27.5%) 5.1 (24.1%) − 10.2% 9 67 54

EB 89.6 21.0 (24.9%) 15.2 (21.9%) − 10.2% 20 10 100

OB+EB+S2R+CODE 21.0 5.8 (27.5%) 5.0 (23.8%) − 12.2% 8 66 56

S2R 228.4 47.2 (22.3%) 30.7 (17.0%) − 18.9% 17 9 104

EB+S2R 59.6 13.2 (22.5%) 10.5 (18.0%) − 19.2% 18 33 79

S2R+CODE 97.2 23.6 (26.7%) 16.4 (21.1%) − 20.5% 22 7 101

EB+S2R+TITLE+CODE 21.2 5.9 (27.8%) 4.2 (21.1%) − 23.7% 1 52 77

CODE 143.7 35.8 (26.0%) 21.7 (18.1%) − 27.1% 17 8 105

EB+CODE 29.9 8.7 (32.6%) 5.8 (24.0%) − 27.2% 5 23 102

EB+S2R+CODE 21.2 5.9 (27.8%) 3.8 (18.7%) − 32.7% 0 44 86

Average # of queries and HITS@N values the 3 data sets/granularities, 5 TRBL techniques, and 26 thresholds
N. Strategies sorted by average HITS@N improvement (Improv). The total number of thresholds (i.e., E
+ N + I) is 5 (techniques) x 26 (thresholds) = 130. All strategies with positive improvement, excluding
OB+EB+CODE and OB+S2R+CODE, achieve a statistically-significant higher HITS@N, compared to no
reformulation (Mann-Whitney, p-value< 5%)

it leads to the retrieval of the buggy code artifacts within the top-N results (N={5, 6, ...,
30}) for 28.2% of the queries, on average, which is 31.4% more queries than when using no
reformulation at all, where only 22.3% of the queries return the buggy code on the top of the

Empirical Software Engineering

Table 24 Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP) achieved by all five TRBL
techniques using each one of the reformulation strategies (Ref) vs. no reformulation (No ref)

Reformulation MRR MAP

strategy No ref. Ref. Improv. No ref. Ref. Improv.

OB+EB+TITLE 8.4% 19.7% 196.1% 6.6% 14.6% 148.4%

OB+EB 8.4% 19.9% 201.1% 6.6% 14.5% 148.8%

OB+S2R+TITLE 7.3% 10.0% 48.9% 5.6% 8.2% 55.1%

EB+TITLE 8.0% 15.8% 173.5% 6.3% 12.2% 133.9%

OB+TITLE+CODE 8.2% 14.2% 101.0% 6.3% 11.3% 110.4%

OB+TITLE 7.3% 11.0% 58.6% 5.7% 8.7% 60.6%

S2R+TITLE 7.3% 10.2% 54.4% 5.7% 8.2% 57.3%

OB+S2R 7.3% 9.5% 42.3% 5.6% 7.8% 49.1%

TITLE 7.4% 11.9% 73.9% 5.7% 9.2% 69.8%

OB+CODE 8.2% 12.8% 88.0% 6.3% 10.1% 99.2%

OB 7.4% 10.2% 48.9% 5.7% 8.1% 51.6%

OB+EB+S2R 7.3% 8.3% 23.1% 5.6% 6.3% 21.9%

OB+EB+S2R+TITLE 7.3% 7.8% 13.3% 5.6% 6.0% 13.4%

TITLE+CODE 8.2% 13.0% 85.5% 6.3% 10.1% 90.9%

OB+EB+TITLE+CODE 11.2% 18.1% 97.7% 8.7% 15.5% 101.8%

OB+EB+CODE 11.2% 17.8% 95.3% 8.7% 15.3% 99.4%

OB+S2R+TITLE+CODE 8.8% 10.1% 16.2% 6.7% 7.7% 17.8%

OB+S2R+CODE 8.8% 9.3% 6.7% 6.7% 7.2% 9.3%

S2R+TITLE+CODE 8.8% 9.6% 10.3% 6.7% 7.3% 11.0%

EB+TITLE+CODE 10.7% 16.1% 80.0% 8.4% 14.1% 83.8%

EB+S2R+TITLE 7.3% 7.8% 45.9% 5.6% 5.7% 20.9%

OB+EB+S2R+TITLE+CODE 9.6% 9.4% 89.7% 7.1% 6.9% 29.0%

EB 8.1% 12.9% 130.2% 6.3% 10.2% 101.7%

OB+EB+S2R+CODE 9.6% 9.2% 86.6% 7.1% 6.8% 26.8%

S2R 7.4% 7.0% − 1.1% 5.7% 5.6% 0.4%

EB+S2R 7.3% 6.4% 25.8% 5.6% 4.7% 2.4%

S2R+CODE 8.8% 7.6% − 13.4% 6.7% 5.9% − 11.3%

EB+S2R+TITLE+CODE 9.7% 8.1% 68.7% 7.2% 5.9% 8.6%

CODE 8.4% 8.9% 33.8% 6.5% 6.7% 37.2%

EB+CODE 10.6% 13.9% 60.5% 8.3% 12.6% 66.0%

EB+S2R+CODE 9.7% 7.0% 56.1% 7.2% 5.0% − 3.5%

Average values across the 3 data sets, 5 TRBL techniques, and 26 thresholds N. Strategies sorted by avg.
HITS@N improvement (same order as in Table 23). All strategies with positive HITS@N improvement,
including S2R+TITLE+CODE, a statistically-significant higher MRR/MAP, compared to no reformulation
(Mann-Whitney, p-value< 5%)

result list. The OB+TITLE strategy achieves comparable (yet lower) results, as it retrieves
the buggy code for 25.6% more queries (on average) than without reformulation, while
being more applicable in an actual usage scenario - in fact, it is the best highly-applicable
strategy. Both strategies consistently retrieve the buggy code documents within top-N for
more queries (than when using no reformulation) across thresholds N.

Empirical Software Engineering

Table 25 Categorization of each reformulation strategy according to their Effectiveness and Applicability
when using all five TRBL techniques

In parenthesis, average HITS@N improvement across the 3 data sets, 5 TRBL techniques, and 26 thresholds
N. Strategies sorted by avg. HITS@N improvement for each Applicability-Effectiveness category. Appli-
cability categories: High (H), Moderate (M), Somewhat (S), and Low (L). Effectiveness categories: Very
Effective (VE), Somewhat Effective (SE), Somewhat Ineffective (SI), and Very Ineffective (VI). The strate-
gies in green belong to the effective category and the strategies in red to the ineffective category. Information
types: OB (O), EB (E), S2R (S), TITLE (T), and CODE (C)

We consider OB+TITLE as the best strategy across all TRBL techniques and code gran-
ularities, as it is very-effective, highly-applicable, and consistent across different thresholds.
Combining the TITLE and OB with the S2R from the bug report (if present) leads to higher
TRBL effectiveness and comparable consistency, yet it is less applicable in an actual usage
scenario. We conclude that among the five types of information from bug reports (i.e., the
TITLE, OB, EB, S2R, and CODE), the TITLE, OB, and S2R are the most effective and
practical for improving TRBL in the context of query reformulation. This means that devel-
opers should use the terms used in the TITLE, and the ones describing OB and S2R (when
present) to reformulate an initial query and expect to find the buggy code artifacts in the
top of the list for more cases (i.e., between 25.6% and 31.4%, on average) than without
reformulation.

4.8 Discussion

We observed that the summary provided in the bug report TITLE usually contains key terms
about the context of the software bug, which are helpful for retrieval (according to the
results). The OB usually describes details about the bug, which include specific terms that
help narrow down the search space of code documents. In several cases, we found that the
title is a succinct description of the observed behavior, which is later expanded in the bug
report description. Combining the TITLE and OB for reformulation increases the weight of
relevant terms, thus leading to higher retrieval performance. We also observed that the S2R
usually adds key terms related to the problem, i.e., it gives additional context for retrieval.
However, these terms may hinder TRBL if they are not specific enough to the problem or
contain extra terms that are present in many documents from the corpus.

To illustrate these observations, consider the bug report #102778 from Eclipse and its
respective buggy code file CodeSnippetParser.java (see Fig. 3). The title describes
a problem related to “enhanced for statements” in “scrapbook pages”. The S2R and the

Empirical Software Engineering

Fig. 3 Bug report #102778 from Eclipse and its corresponding buggy file. The boxed terms represent
the terms shared between the report and the file. Each sentence in the report is marked according to its
corresponding information type: [TITLE], [CODE], [OB], or [S2R]

Empirical Software Engineering

CODE snippet provide the information for triggering the problem. Note that they do not
state the problem, but provide additional context about it (i.e., “creating a java project” with
the given code snippet in a “scrapbook page”). Finally, in the last sentence of the report,
the problem is explicitly described (i.e., a “syntax error” thrown by the system – this is the
OB). Note that the steps to reproduce are not quite specific to the problem, i.e., creating
a java project that contains some source code is a common task in Eclipse. In this case,
S2R contain terms (e.g., “project” or “contain”) that are likely to be present in multiple
files within Eclipse, even though, some of them appear in the buggy file (i.e., “create” and
“source”).

Using the full bug report from Fig. 3, as input query to Lucene, would retrieve the buggy
file in the 179th position of the result list. Clearly, the query is low-quality12. Assume
the developer inspects the top-5 documents, then reformulates and executes the query, and
inspects the next top-5 documents.13 Using TITLE, OB, and S2R alone as reformulation
strategies lead to retrieving the file in positions 43, 74, and 2,888, respectively. Using the
CODE alone fails to retrieve the buggy file because the code snippet does not share any
terms with the file. Similar results are obtained for BugLocator, BRTracer, and Locus.
These results indicate that the TITLE and OB contain the most useful terms for retrieval
(i.e., “statement”, “syntax”, and “error”) and fewer noisy terms than the other parts of the
report. Conversely, the terms from the S2R hinder retrieval. We found that the shared S2R
terms with the buggy file (i.e., “create”, “contain”, and “source”) appear in more than 3,600
files, while the TITLE and OB terms appear in no more than 326 files. Also, the term
“project” appears in more than 1,600 documents. In this case, the S2R terms are not dis-
criminatory for TRBL (i.e., they are noisy). Using OB+TITLE, S2R+TITLE, OB+S2R, and
OB+S2R+TITLE as reformulation strategies lead to retrieving the buggy file in positions 4,
314, 633, and 60, respectively. These results confirm the usefulness of OB and TITLE for
TRBL (i.e., the buggy code is retrieved on position 4). Note that the S2R, when combined
with OB or TITLE, deteriorates the rank of the buggy file.

Consider the example in Fig. 4, regarding bug report #4330 from ArgoUML and its
respective buggy class TabToDo. In this case, the OB states that there is an “exception”
that produces the reported “stack (trace)”. The TITLE describes part of the OB (i.e., the
exception) and the feature being used (i.e., “send email to expert“), which is also described
in the S2R. The S2R provides additional information/context related to the feature (i.e.,
selecting an “active critic” in “ToDoPane”). When using the full bug report as initial query
to Lucene, the buggy class is retrieved in the 334th position. When the query is reformulated
by using the OB and TITLE, the class is retrieved in the 5th position (after removing the
first top-5 irrelevant documents). The significant improvement is because many terms from
other parts of the bug report (especially from the stack trace) appear in other documents of
the corpus. Also, the terms “email” and “expert”, present in the TITLE, appear frequently
in the buggy class, hence, they are highly relevant. When the S2R is also retained in the
reformulated query, the buggy class ranks in the 3rd position (after removing the first top-5
irrelevant documents). In this case, three terms are added to the query, namely “ToDoPane”,
“email” and “expert”. The first term is a new term in the query and is highly relevant. While
the other two are already present in the query, their frequency/weight gets increased, thus
improving the ranking. This case illustrates how the S2R contain specific terms about the
problem and are useful for TRBL.

12The query is low-quality for the other three file-level TRBL techniques as well.
13The position of the buggy file, after excluding the first top-5 documents would be 174.

Empirical Software Engineering

Fig. 4 Bug report #4330 from ArgoUML and its corresponding buggy class. The boxed terms represent
the terms shared between the report and the class. Each sentence in the report is marked according to its
corresponding information type: [TITLE], [OB], or [S2R]

Empirical Software Engineering

Although we consider combining OB and TITLE (as well as S2R, when present in the
bug report) as the most effective and practical strategy to reformulate queries, note that their
combination with EB is highly effective as well. For all TRBL techniques, except BugLo-
cator, the EB, when combined with OB, TITLE or S2R, achieves the best effectiveness,
and in many cases, it achieves comparable consistency across different thresholds. The only
shortcoming of combining the EB with other information is that it is not frequently found
in bug reports. In any case, we recommend developers to use the expected behavior (when
available) together with OB, TITLE, and/or S2R. According to the results, by using this
strategy, developers can expect to find the buggy code artifacts in the top of the list for more
cases than with no reformulation (e.g., 47.7% on average, when combined with OB and
TITLE, across different techniques, granularities, and thresholds). We observed that when
using the EB, the terms retained from the OB (as well as from other information types) get
weighted, thus leading to higher TRBL performance. This indicates how similar OB and
EB are.

It is important to note that S2R and CODE alone (i.e., when they are not combined with
any of the other information types) consistently deteriorate HITS@N with respect to no
reformulation. In many cases (e.g., the Eclipse case in Fig. 3), the S2R includes terms that
refer to several features of the system (i.e., it gives a broad problem context), which can
diverge the retrieval engine from the specific buggy code. In other cases, the S2R can refer
to higher layers of the systems’ architecture (e.g., the GUI layer) instead of referring to
lower layers, which are the buggy ones in many cases. In the future, we will combine the
reformulation strategies with code dependency analysis to trace the buggy code across lay-
ers. While in many cases, CODE snippets use few code artifacts, we observed that in many
others, they refer to many classes or methods. Usually, these latter cases correspond to large
code snippets, which help communicate the bug better to the developers. However, since
they contain many code references, their discriminatory power is low (for text retrieval),
which leads to retrieving many non-buggy documents. In addition, as seen in Fig. 3, the
CODE may not share any terms at all with the buggy documents.

We observed that in many cases, the relevant terms from the OB, S2R, and TITTLE are
present in other parts of the bug report. We believe that the weight of these terms can be
boosted according to how frequently they appear in the full bug report. In our future work,
we will investigate this method for improving the TRBL performance of the reformulation
strategies.

4.9 Trade-offs between Successful and Unsuccessful Queries

During query reformulation, there is always a trade-off, as some queries become successful
while others become unsuccessful with respect to no reformulation. A good reformulation
strategy would lead to more successful queries (i.e., retrieving buggy code artifacts in top-
N) than unsuccessful queries (i.e., not retrieving buggy code artifacts in top-N), compared
to the initial queries. We aim to better understand the trade-offs for the best reformulation
strategy, i.e., OB+TITLE. We also analyze the case when OB+TITLE is combined with the
S2R, i.e., OB+S2R+TITLE.

We refer to all the queries that retrieve code artifacts in top-N as successful queries, and
to those that do not retrieve code artifacts as unsuccessful queries. Ideally, a reformula-
tion strategy would preserve the successful queries (i.e., an initial successful query, which
reformulated remains successful, a.k.a. successful → successful), while converting all (or
at least some) of the initially-unsuccessful queries into successful ones (i.e., unsuccessful

Empirical Software Engineering

Table 26 Average proportion of Successful (S) and Unsuccessful (U) queries before reformulation that
turned Unsuccessful (U) and Successful (S) after reformulation, when using each reformulation strategy

TRBL technique |Q| U → S S → U S → S U → U

(a) OB+TITLE

Lucene 763.6 13.9% 7.3% 16.0% 62.7%

Lobster 34.6 17.3% 2.0% 17.0% 63.6%

BugLocator 552.4 5.3% 6.2% 10.5% 78.0%

BRTracer 458.3 7.7% 7.8% 14.6% 69.9%

Locus 190.7 11.7% 6.7% 25.4% 56.2%

Average 11.2% 6.0% 16.7% 66.1%

(b) OB+S2R+TITLE

Lucene 409.0 12.7% 6.6% 16.2% 64.4%

Lobster 19.9 20.0% 0.4% 19.3% 60.4%

BugLocator 309.1 4.1% 4.4% 11.0% 80.4%

BRTracer 255.5 7.6% 4.7% 15.8% 71.8%

Locus 124.4 7.6% 4.6% 25.8% 62.0%

Average 10.4% 4.2% 17.6% 67.8%

Average values across the 3 data sets and 26 thresholds N

→ successful). In other terms, we want to avoid a situation when successful queries turn
unsuccessful (i.e., successful → unsuccessful) via the reformulation.

Table 26 shows that OB+TITLE and OB+S2R+TITLE transform about the same pro-
portion of unsuccessful queries into successful ones (i.e., approx. 11% of the queries, on
average). However, OB+TITLE converts slightly more successful queries into unsuccess-
ful ones compared to OB+S2R+TITLE (i.e., 6% vs 4.2% on average, respectively), which
is less desirable. Both strategies preserve nearly the same proportion (i.e., approx. 17%) of
the successful queries, and OB+S2R+TITLE preserves slightly more unsuccessful queries
than OB+TITLE (i.e., 67.8% vs 66.1%, respectively), which is less desirable. The small
differences of successful and unsuccessful queries before and after reformulation supports
our conclusion in that both strategies achieve comparable TRBL performance. Finally,
approach-wise, note that for the case of OB+S2R+TITLE, Lucene and Lobster are the
approaches with the highest proportions of unsuccessful → successful, which are substan-
tially higher than the proportions for BugLocator and BRTracer. For the case of OB+TITLE,
Lucene, Lobster, and Locus are the approaches with the highest proportions of unsuccessful
→ successful queries, which are substantially higher than the proportions for BugLocator
and BRTracer. These results further show the robustness of BugLocator and BRTracer with
respect to noisy queries.

Figure 5 illustrates a successful → successful case when using Lucene. The full bug
report #727 (from Math), used as input query to Lucene, fails to return the buggy method
within the top-5 results (i.e., N=5), i.e., the method is ranked in the 7th position. Reformu-
lating the query with the TITLE and the OB from the bug report14 leads to retrieving the

14The reformulation results in the query: “too large first step ... (Dormand-Prince 8(5,3) ...) For embedded
Runge-Kutta type, this step size ... and fails to stop).”

Empirical Software Engineering

Fig. 5 Bug report #727 from Math and its corresponding buggy method. The boxed terms represent the
terms shared between the report and the method. Each sentence in the report is marked according to its
corresponding information type: [TITLE] or [OB]

Empirical Software Engineering

buggy method in the 13th position, i.e., 6 positions down the result list. Figure 5 reveals
that all the sentences in the bug report contain shared terms with the buggy method, and the
terms “step”, “size”, “integrat(or/tion)”, “Runge”, and “Kuttap” are the most relevant ones,
since they appear frequently in the buggy method. When the query is reformulated, the only
relevant term that is completely removed is “compute”. While the most relevant terms are
not removed by the reformulation, they appear less frequently in the reformulated query
(i.e., their term frequency decreases), thus reducing their weight and finally hindering the
retrieval of the buggy method. This is another example of how increasing the weight of the
terms appearing in the OB or TITLE, based how frequent they appear in other parts of the
bug report, may improve TRBL.

Another successful → successful example is the bug report #1152 from Tika,15 whose
buggy class is ChmLzxBlock. When the full bug report is used as input query to Lucene,
the buggy class is retrieved in the 6th position. When the query is reformulated, by using
the OB (i.e., “... Java process stuck”), the TITLE (i.e., “Process loops infinitely... ”), and
the S2R (i.e., “By parsing the attachment CHM file...”), the class is retrieved in the 11th
position. The reason for the deterioration is the removal of the terms corresponding to the
stack trace included in the report, which contains the terms of the buggy class name. The
reformulation strategy removes this content since it is not natural language written by the
users, hence does not correspond to OB. Note that the initial query is not low-quality when
using Lobster. This is because Lobster uses the stack traces within bug reports to boost the
classes that appear in the traces as well as their dependencies (i.e., related classes). As part
of our future work, we will investigate ways to incorporate (parts of the) stack traces into
the reformulation.

5 Threats to Validity

We discuss the threats that could affect the validity of our empirical evaluation.
The main threat to construct validity concerns the criteria used to determine if a query is

successful or unsuccessful within the proposed scenario for bug localization (see Section 2).
In our experimental setting, the buggy code artifacts are known for each query/bug report.
We determined the success of a query by measuring the rank of these artifacts in the list
produced by the TRBL techniques when using the query as input to them. A query is deemed
successful if any of the buggy code artifacts is found within the top-N results (i.e., their rank
is less than or equal to N), otherwise the query is considered unsuccessful. In a real case
scenario, the developer does not know the buggy code artifacts beforehand, and determining
the success of a query implies manually inspecting the returned code candidates, which may
be non-trivial. The metrics used in the evaluation, in particular HITS@N, which is based
on the rank of the first buggy document found in the result list, were used as a proxy to
measuring the effort spend by a developer when inspecting the code candidates. Although,
this is a widely-used experimental setting in TRBL research, it might not resemble a realistic
scenario for bug localization. In our future work, we will address this threat to validity by
conducting empirical studies with developers to determine the usefulness of reformulating
the initial queries via the proposed reformulation strategies.

Another threat to construct validity is the subjectivity introduced in the labeled set of
bug reports when manually identifying OB, EB, and S2R, as each bug report was coded by

15Found at https://issues.apache.org/jira/browse/TIKA-1152

https://issues.apache.org/jira/browse/TIKA-1152

Empirical Software Engineering

a single coder. We made this choice in order to maximize the number of queries used in our
evaluation. Also, our past experience when we had multiple coders per bug report revealed
high agreement between coders (Chaparro et al. 2017a, b). In order to reduce subjectivity,
we used the set of common coding criteria that we defined in our prior work (Chaparro et al.
2017a, b). We also conducted training sessions with the coders, which included examples
and discussion of ambiguous phrases in the bug reports. The impact of bug coding from
different coders on code retrieval will be investigated in our future work.

In order to mitigate threats to the conclusion validity, we compared the performance of
the initial and reduced queries using HITS@N, MRR, and MAP, metrics widely used in
TRBL research (Wang and Lo 2014; Zhou et al. 2012; Moreno et al. 2014; Wong et al.
2014). We focused our evaluation primarily on HITS@N. We argue that this metric is best
for assessing query reformulation for TRBL as, in practice, developers would likely inspect
the top N candidate code artifacts only, before switching to another bug localization method
(e.g., navigating code dependencies). Also, HITS@N is more intuitive and easy to interpret
than MRR and MAP. We categorized the strategies using three dimensions, namely effec-
tiveness, applicability, and consistency, which allowed us to determine the best strategies
across TRBL techniques and granularities. We also analyzed the trade-offs of our refor-
mulation strategies, to further strengthen our conclusions. We defined two categories of
queries (i.e., successful and unsuccessful) and analyzed the transition of the queries between
categories before and after reformulation. Similar analyses have been used in prior query
reformulation research (Chaparro et al. 2017a; Haiduc et al. 2013).

The internal validity of our evaluation is affected by our TRBL data sets and approaches.
Based on data previously used in TRBL studies (Zhou et al. 2012; Wong et al. 2014; Moreno
et al. 2014; Mills et al. 2017; Chaparro et al. 2017a; Lee et al. 2018), we built three data
sets at different granularity levels (i.e., method-, class-, and file-level). These data sets con-
tain bug reports/queries and code corpora that correspond to distinct Java software systems.
While we observed variation in results across data sets (i.e., code granularity) and TRBL
approaches, the common denominator in all treatments was our query reformulation strate-
gies, which we consider the main factor in the observed improvements. We also used five
state-of-the-art TRBL techniques proposed by prior research. As mentioned before, the dif-
ferences in performance we observed for the original implementation of Buglocator and
our implementationmay impact the results, butwe consider the impactminimal, and using the
other four approaches confirms that the successful reformulations work with different ap-
proaches. Finally, our query sample contains a small subset of duplicated queries across the
three code granularities and projects versions. The duplication stems from the independent
data collection process performed by the data owners of the original data sources. These queries
can be treated as different queries because they are likely to perform differently across gran-
ularities and project versions. In any case, given the small proportion of these queries in our
sample (i.e., 4.3% total), we consider that their impact in the results is minimal.

We addressed the external validity of our empirical evaluation by using 1,221 low-quality
queries from 248 versions of 30 different software systems that span different domains
and software types. We used nearly as three times more queries and nine more software
projects than in our prior work on OB-based query reformulation (Chaparro et al. 2017a) to
strengthen the generalizability of our conclusions. Finally, we used five TRBL techniques,
namely Lucene (Hatcher and Gospodnetic 2004), Lobster (Moreno et al. 2014), BugLocator
(Zhou et al. 2012), BRTracer (Wong et al. 2014), and Locus (Wen et al. 2016). Investigating
the effectiveness of our reformulation strategies with other TRBL techniques is part of our
future research agenda.

Empirical Software Engineering

6 RelatedWork

In this section, we describe the main TRBL approaches and discuss existing work on query
reformulation in the context of source code retrieval.

6.1 TR-based Bug Localization

TRBL is closely related to TR-based concept/feature location in source code (Marcus and
Haiduc 2013; Dit et al. 2012) and TR-based traceability link recovery (De Lucia et al.
2012). These are all formulated as document retrieval problems. A requirement (e.g., feature
description, bug report, etc.) is used as query to search a document space built from source
code artifacts of a software system and retrieve a list of code documents (e.g., files, classes,
functions, or methods) relevant to the query. The relevance of a source code document to a
query is determined by the textual similarity between them: the higher the textual similarity,
the more likely the document is to implement the requirement. The targeted (i.e., relevant)
code documents are the ones that contain the feature described in the requirement. Both
TRBL and concept/feature location can be considered instances of traceability link recovery,
but they differ in the types of artifacts they use as queries. What differentiates TR-based
bug localization from the more general code retrieval approaches is the use of bug reports
as queries.

TRBL techniques often use additional information related to the current bug report to
adjust the ranking of the relevant code documents. Additional information leveraged by
existing TRBL techniques includes: code structure (Wang and Lo 2014, 2016; Saha et al.
2013; Youm et al. 2017; Ali et al. 2012; Takahashi et al. 2018), part-of-speech tags (Zhou
et al. 2017), similar bug reports (Zhou et al. 2012; Wang and Lo 2014, 2016; Youm et al.
2017; Saha et al. 2013; Davies et al. 2012; Wong et al. 2014; Rath et al. 2018), code version
history (Sisman and Kak 2012; Wang and Lo 2014, 2016, Youm et al. 2017), stack traces
(Moreno et al. 2014; Wong et al. 2014; Wang and Lo 2016; Youm et al. 2017; Sisman et al.
2016; Wen et al. 2016), or combinations of the above (Wang and Lo 2014, 2016; Youm et al.
2017; Saha et al. 2013; Wong et al. 2014; Shi et al. 2018; Dao et al. 2017).

We focus the discussion in this section on approaches designed specifically for bug
retrieval (i.e., they use information from or related to bug reports), rather than more generic
concept/feature location and traceability link recovery approaches, which could also be used
for bug localization. All TRBL approaches follow a common process, consisting of:

1. Building a corpus using the source code of the software.
2. Indexing the corpus using a TR model.
3. Formulating an initial query based on the bug report.
4. Ranking the documents with respect to the query, based on the TR model used and

additional information related to the bug report.
5. Inspecting the retrieved documents. If the buggy code document is found, the process

ends.
6. Reformulating the query if the buggy code is not identified, and resuming the process

at step 4.

Our contributions focus on steps 5 and 6. For step 5, we assume that the user will examine
the first N results before deciding that a relevant code artifact was not retrieved by the query
formulated in step 3 (i.e., the initial query). Our work provides a set of strategies for the
reformulation of the initial query (step 6), which is commonly formulated using the full

Empirical Software Engineering

textual description of a bug report (Dit et al. 2012). We argue that the user should select
certain parts of the bug report if they are present (TITLE, OB, and S2R/EB) and then re-run
the newly created query with their TRBL approach of choice (step 4). In order to determine
whether this approach is effective for TRBL, we compare the first N results produced by
the reformulated query and the ones produced by the original query, excluding the previous
N results already inspected and deemed irrelevant by the developer. In other words, we
compare the results after reformulation with the case in which the user checks the following
N results of the original query without applying reformulation.

Previous research in concept/feature location and traceability link recovery focused on
improving all the six steps of this process and TRBL techniques utilize much of that
research. The main research efforts in TRBL focused primarily on step 4. While some
research has focused on improving/optimizing traditional TRBL techniques, for example,
via parameter tuning, advanced machine learning, or extending the mathematical models
behind them (Zhang et al. 2016; Ye et al. 2016a, b; Le et al. 2014; Eddy et al. 2018; Hoang
et al. 2018; Xiao et al. 2018), most of the research has focused on leveraging additional
information related to the bug reports, as mentioned above.

Software history information is used by TRBL approaches to boost code artifacts with
high defect/change probability based on code change records (e.g., version control records).
The code artifacts boosted are those found in change-sets that were intended to fix bugs. The
boost amount candependondifferent factors, e.g., the number of times a code artifact has been
fixed (Sisman and Kak 2012; Wang and Lo 2016; Wen et al. 2016; Youm et al. 2017) or
how long ago this happened (Sisman and Kak 2012; Wang and Lo 2014; Wen et al. 2016).

Bug fix history is also used to complement textual similarity. A set of previously fixed
bug reports is kept, each one with its corresponding fix-set: the set of code documents that
were modified in order to fix the bug. A query (i.e., the current bug report) is compared to each
previously-fixed bug report. The documents in each fix-set are boosted according to some
criteria, e.g., the textual similarity of the fixed bug with the query (Zhou et al. 2012; Wang and
Lo 2014, 2016; Youm et al. 2017; Saha et al. 2013; Davies et al. 2012; Wong et al. 2014).
Recently, feature requests have been leveraged in addition to bugs, in the same way
described before (Rath et al. 2018).

Bug reports sometimes contain stack traces, which are also used to alter the text-based
ranking. Some TRBL approaches work on the assumption that the buggy code artifacts
could be directly referenced by these traces, and use regular expressions to identify refer-
enced classes/files (Moreno et al. 2014; Wong et al. 2014; Wang and Lo 2016; Youm et al.
2017; Sisman et al. 2016). The set of suspicious classes/files is expanded by identifying
artifacts (in)directly referenced in the code of the ones found in the stack trace. These rela-
tionships can be found by using the system’s call graph (Moreno et al. 2014) or the files’
import statements (Wong et al. 2014; Youm et al. 2017).

Some approaches exploit query and document structure by simply splitting the query
into two parts (bug report title and description) and the document in four (classes, methods,
variables, and comments). Besides the score calculated from the full text of both the query
and the document, additional scores are calculated from the similarities between each of the
two query components and each of the document components (8 additional scores in total),
and then all scores are added together. This assigns a greater weight to terms appearing in
multiple fields of a document, increasing their discriminating power for retrieval (Wang and
Lo 2014, 2016; Saha et al. 2013; Youm et al. 2017; Ali et al. 2012). These approaches treat
the title as a separate part of the bug report (similar to our TITLE strategy), however, they
still use the full text of the bug report. We argue that some parts of the bug report text can
be removed to improve TRBL performance.

Empirical Software Engineering

It has also been proposed to use code smells as a separate source of information (Taka-
hashi et al. 2018). For this approach, code smells are detected along with their severity,
and this severity score is combined with the textual similarity while ranking code elements.
Finally, part-of-speech information has been explored as a possible source of improvement.
Yu et al. (2017) propose boosting the retrieval weight of bug report terms tagged as nouns
by an automatic part-of-speech tagger.

Despite this rich body of existing work in improving TRBL, our focus is on helping
developers reformulating a query when it fails to retrieve at least one relevant code artifact
(i.e., step 6 in the above process).

6.2 Query Reformulation in TRBL and Code Retrieval

Existing research highlighted the challenges that developers face when re-formulating
queries for code retrieval (Starke et al. 2009; Bajracharya and Lopes 2012; Damevski et al.
2016). On one hand, TRBL approaches mitigate the problems associated with formulating
an initial query by utilizing the bug report (Chaparro and Marcus 2016). On the other hand,
existing research provides little or no guidance on what parts of the bug reports to use when
reformulating a query when no relevant results are retrieved within the first few entries of
the ranked list (Kevic and Fritz 2014).

Three general query reformulation strategies are found in the literature, namely, query
expansion (Carpineto and Romano 2012), query replacement (Gibiec et al. 2010; Guo et al.
2017), and query reduction (Lu and Keefer 1995; Rahman and Roy 2017a; Kevic and Fritz
2014). Query expansion consists in adding alternative terms (or phrases) to a query; query
replacement changes (part of) a query with a new set of terms; and query reduction focuses
on removing query terms.

Most existing research on query reformulation in code retrieval (including TRBL) has
focused on query expansion. The methods to determine the alternative terms include rele-
vance feedback from developers (Gay et al. 2009); pseudo-relevance feedback (Haiduc et al.
2013; Sisman and Kak 2013), which leverages the lexicon of the previous top code docu-
ments retrieved; the use of English or software ontologies (e.g., WordNet or custom-built
models) (Shepherd et al. 2007; Rahman and Roy 2017b), which contain related terms to
the ones in a query (e.g., synonyms); or co-occurring term information from various soft-
ware sources, such as source code, Stack Overflow (SO) questions, or regulatory documents
(Rahman and Roy 2016; Marcus et al. 2004; Dietrich et al. 2013). Similar techniques have
been applied in the context of code search, where the initial queries are reformulated based
on thesauri (e.g., lexical databases from SO) (Li et al. 2016; Lemos et al. 2015; Ge et al.
2017), relevance feedback from users (Wang et al. 2014b), pseudo-relevance feedback from
SO results (Nie et al. 2016), co-occurrence and frequency of query terms with previous
results and source code (Hill et al. 2014; Roldan-Vega et al. 2013), and textual similarity
between the query and Application Programming Interfaces (Lv et al. 2015).

Query replacement has been utilized mostly for traceability link recovery, where the
terms from similar web and domain-specific documents to the query are leveraged to select
a set of candidate terms to replace the initial query (Gibiec et al. 2010). Another query
replacement method is learning frequent terms from existing requirement-regulation trace
corpora, and using them as the new query (Guo et al. 2017).

Regarding query reduction, our prior research showed that removing noisy terms from
the query (i.e., from bug reports) leads to substantial retrieval improvement in TR-based
bug localization (Chaparro and Marcus 2016). Similarly, Mills et al. (2018) found that near-
optimal (reduced) queries from bug report lead to high improvement on code retrieval. The

Empirical Software Engineering

few works that include some kind of query reduction rely on heuristics to remove the noisy
terms. Specifically, Rahman and Roy (2016) discarded the terms different from nouns or
those occurring in more than 25% of the code documents, since they are likely to be non-
discriminating. Haiduc et al. (2013) followed a similar strategy. Kevic and Fritz (2014)
recommended the top three terms in a change request that have the highest predictive power
to retrieve the relevant code documents (i.e., in top-10 of the list). Their findings suggest
that terms that appear in both the summary and description of change requests are good
candidates to be used as query (Kevic and Fritz 2014). In another work, Rahman and Roy
(2017a) leveraged term co-occurrences and syntactic dependencies to select the most impor-
tant terms in a change request as a query. Recently, the same authors proposed weighting
and selecting query terms based on how these relate to each and whether they reference
code entities and/or appear in particular parts of the bug reports, e.g., in stack traces (Rah-
man and Roy 2018b). Related to term selection, other research focused on weighing terms
(from the query) that occur in method names and calls (Bassett and Kraft 2013) or terms
corresponding to source code file names (Dilshener et al. 2016).

Our reformulation strategy is in line with query reduction, as we are selecting part of the
initial query and discarding the rest of the query terms. We do not argue that all the terms
we select are most relevant, but rather we claim that the terms we do not select are less
relevant. To the best of our knowledge, our original work (Chaparro et al. 2017a) was the
first to investigate how the type of textual content from bug descriptions used as queries can
improve TR-based bug localization via query reformulation (specifically, query reduction),
and it remains the only work in the subject until the time of writing this paper.

7 Conclusions and FutureWork

We proposed a set of reformulation strategies based on the structure of bug descriptions.
These strategies can be employed when using the full bug reports as initial queries fails to
retrieve the buggy code artifacts within the top retrieved results (i.e., these bug descriptions
result in low-quality queries). Our hypothesis was that the TITLE of the bug reports, the
observed behavior (OB), expected behavior (EB), and steps to reproduce (S2R), as well as
the code snippets (CODE) in the bug description contain relevant information with respect
to TRBL, while other parts of the description include irrelevant terms that act as noise for
code retrieval. From the combination of these five types of content, we defined 31 query
reformulation strategies that are based on the user selecting the TITLE, OB, EB, S2R, or
CODE parts of the bug description. We used the defined strategies to reformulate 1,221 low-
quality queries, which were executed using five state-of-the-art TRBL approaches on data
of three code granularity levels (i.e., file, class, and method). We assessed the ability of the
reformulation strategies to retrieve the buggy code artifact(s) within the top-N returned can-
didates for 26 different thresholds (N={5, 6, 7, ..., 30}) in comparison with no reformulation,
when excluding the first N irrelevant results produced by the initial queries.

The results indicate that combining the TITLE and the OB from the bug descriptions is
the best reformulation strategy across the five TRBL approaches and three code granulari-
ties, as it leads to retrieving the buggy code artifacts within the top-N results for 25.6%more
queries (on average) than without query reformulation. This strategy is highly-applicable
and highly-consistent across different thresholds N. In addition, combining the OB and
TITLE with the S2R, when provided in the bug reports, leads to better retrieval performance
(i.e., for 31.4% more queries with respect to no reformulation) and comparable consistency,
yet it is applicable in fewer cases. Likewise, using the EB (when available) along with the

Empirical Software Engineering

OB and TITLE leads to better performance (i.e., 41.7% more queries with respect to no
reformulation) and comparable consistency. However, the shortcoming of using this strategy
is its low applicability, given that the EB is not frequently found in bug reports.

We also found that three of the TRBL approaches we experimented with (i.e., BugLoca-
tor, BRTracer, and Locus) are less sensitive to noisy queries than the other two (i.e., Lucene
and Lobster), while all benefit from the best query reformulation strategies we defined. The
results bear evidence in support of our hypothesis about the effectiveness of the structure of
bug descriptions on TRBL. Our reformulation strategies are simple to use, do not depend on
any information outside the bug report, and demand minimal effort from the developer, i.e.,
simply select the TITLE and the sentences describing the OB and the S2R (when available).

As future work, we plan to evaluate the proposed reformulation strategies with additional
TRBL approaches. In addition, we will conduct a sensitivity analysis of the reformulation
strategies with respect to fuzzy selection of the OB, EB, and S2R by different users. While
we believe that the proposed reformulation strategies are easy to use, as they only require a
copy-paste operation from the user, we need empirical evidence to support this. Our future
research will be directed towards finding such evidence. In addition, we will focus on inves-
tigating combined reformulation strategies, that is, not only query reduction, which may
lead to even better results. Finally, expanding the evaluation on more TRBL data and queries
is also planned.

Acknowledgments This research was supported in part by the grants CCF-1848608 and CCF-1526118
from the US National Science Foundation.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Ali N, Sabane A, Gueheneuc Y-G, Antoniol G (2012) Improving bug location using binary class relation-
ships. In: Proceedings of the international working conference on source code analysis and manipulation
(SCAM’12), pp 174–183

Bajracharya SK, Lopes CV (2012) Analyzing and mining a code search engine usage log. Empir Softw Eng
17(4-5):424–466

Bassett BR, Kraft NA (2013) Structural information based term weighting in text retrieval for fea-
ture location. In: Proceedings of the international conference on program comprehension (ICPC’13),
pp 133–141

Carpineto C, Romano G (2012) A survey of automatic query expansion in information retrieval. Comput
Surv 44(1):1

Chaparro O, Marcus A (2016) On the reduction of verbose queries in text retrieval based software
maintenance. In: Proceedings of the international conference on software engineering (ICSE’16),
pp 716–718

Chaparro O, Florez JM, Marcus A (2017a) Using observed behavior to reformulate queries during text
retrieval-based bug localization. In: Proceedings of the 33rd international conference on software
maintenance and evolution (ICSME’17), pp 376–387

Chaparro O, Lu J, Zampetti F, Moreno L, Di Penta M, Marcus A, Bavota G, Ng V (2017b) Detecting miss-
ing information in bug descriptions. In: Proceedings of the joint meeting on foundations of software
engineering (ESEC/FSE’17), pp 396–407

Chaparro O, Florez JM, Marcus A (2018) Replication package. https://tinyurl.com/y7bzqnwc
Damevski K, Shepherd D, Pollock L (2016) A field study of how developers locate features in source code.

Empir Softw Eng 21(2):724–747

https://tinyurl.com/y7bzqnwc

Empirical Software Engineering

Dao T, Zhang L, Na M (2017) How does execution information help with information-retrieval based bug
localization? In: Proceedings of the international conference on program comprehension (ICPC’17),
pp 241–250

Davies S, Roper M, Wood M (2012) Using bug report similarity to enhance bug localisation. In: Proceedings
of the working conference on reverse engineering (WCRE’12), pp 125–134

Davies S, Roper M (2014) What’s in a bug report? In: Proceedings of the international, symposium on
empirical software engineering and measurement (ESEM’14), pp 26:1–26:10

De Lucia A, Marcus A, Oliveto R, Poshyvanyk D (2012) Information retrieval methods for automated
traceability recovery. In: Cleland-Huang J, Gotel O, Zisman A (eds) Software and systems traceability.
Springer, pp 71–98

Dietrich T, Cleland-Huang J, Shin Y (2013) Learning effective query transformations for enhanced require-
ments trace retrieval. In: Proceedings of the international conference on automated software engineering
(ASE’13), pp 586–591

Dilshener T, Wermelinger M, Yu Y (2016) Locating bugs without looking back. In: Proceedings of the
international conference on mining software repositories (MSR’16), pp 286–290

Dit B, Revelle M, Gethers M, Poshyvanyk D (2012) Feature location in source code A taxonomy and survey.
J Softw Evol Process 25(1):53–95

Eddy BP, Kraft NA, Gray J (2018) Impact of structural weighting on a latent dirichlet allocation–based
feature location technique. J Softw Evol Process 30(1):e1892

Gay G, Haiduc S, Marcus A, Menzies T (2009) On the use of relevance feedback in ir-based concept location.
In: Proceedings of the international conference on software maintenance (ICSM’09), pp 351–360

Ge X, Shepherd DC, Damevski K, Murphy-Hill E (2017) Design and evaluation of a multi-recommendation
system for local code search. J Vis Lang Comput 39:1–9

Gibiec M, Czauderna A, Cleland-Huang J (2010) Towards mining replacement queries for hard-to-retrieve
traces. In: Proceedings of the international conference on automated software engineering (ASE’10),
pp 245–254

Guo J, Gibiec M, Cleland-Huang J (2017) Tackling the term-mismatch problem in automated trace retrieval.
Empir Softw Eng 22(3):1103–1142

Haiduc S, Bavota G, Marcus A, Oliveto R, De Lucia A, Menzies Tim (2013) Automatic query reformulations
for text retrieval in software engineering. In: Proceedings of the international conference on software
engineering (ICSE’13), pp 842–851

Hatcher E, Gospodnetic O (2004) Lucene in action. Manning Publications
Hill E, Roldan-Vega M, Fails JA, Mallet G (2014) Nl-based query refinement and contextualized code search

results: A user study. In: Proceedings of the conference on software maintenance, reengineering, and
reverse engineering (CSMR-WCRE’14), pp 34–43

Hoang TV, Oentaryo RJ, Le TB, Lo D (2018) Network-clustered multi-modal bug localization. IEEE
Transactions on Software Engineering. (to appear)

Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, vol 751. Wiley, New York
Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies

for java programs. In: Proceedings of the international symposium on software testing and analysis
(ISSTA’14). ACM, pp 437–440

Kevic K, Fritz T (2014) Automatic search term identification for change tasks. In: Proceedings of the
international conference on software engineering (ICSE’14), pp 468–471

Lemos OAL, de Paula AC, Sajnani H, Lopes CV (2015) Can the use of types and query expansion help
improve large-scale code search? In: Proceedings of the international working conference on source code
analysis and manipulation (SCAM’15), pp 41–50

Le T-DB, Thung F, Lo D (2014) Predicting effectiveness of ir-based bug localization techniques. In:
Proceedings of the 25th international symposium on software reliability engineering (ISSRE’14),
pp 335–345

Le T-DB, Oentaryo RJ, Oentaryo RJ, Lo D (2015) Information retrieval and spectrum based bug local-
ization: better together. In: Proceedings of the joint meeting on foundations of software engineering
(ESEC/FSE’15), pp 579–590

Lee J, Kim D, Tegawendé F, Jung Bissyandé W, Le Traon Y (2018) Bench4bl: reproducibility study on
the performance of ir-based bug localization. In: Proceedings of the 27th international symposium on
software testing and analysis (ISSTA’18) ISSTA 2018, pp 61–72

Li Z, Wang T, Zhang Y, Zhan Y, Yin G (2016) Query reformulation by leveraging crowd wisdom
for scenario-based software search. In: Proceedings of the Asia-Pacific symposium on internetware
(Internetware’16), pp 36–44

Lu XA, Keefer RB (1995) Query expansion/reduction and its impact on retrieval effectiveness. NIST Special
Publication, pp 231–231

Lucene Apache (2017) https://lucene.apache.org/

https://lucene.apache.org/

Empirical Software Engineering

Lv F, Zhang H, Lou J-G, Wang S, Zhang D, Zhao J (2015) Codehow: effective code search based on
api understanding and extended boolean model. In: Proceedings of the international conference on
automated software engineering (ASE’15), pp 260–270

Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D (2014) The stanford corenlp natural
language processing toolkit. In: Proceedings of the annual meeting of the association for computational
linguistics (ACL’14), pp 55–60

Marcus A, Sergeyev A, Rajlich V, Maletic JI (2004) An information retrieval approach to concept loca-
tion in source code. In: Proceedings of the working conference on reverse engineering (WCRE’04),
pp 214–223

Marcus A, Haiduc S (2013) Text retrieval approaches for concept location in source code. In: Software Engi-
neering: International Summer Schools, ISSSE 2009-2011, Salerno, Italy. Revised Tutorial Lectures,
volume 7171 of Lecture Notes in Computer Science. Springer, pp 126–158

Mills C, Bavota G, Haiduc S, Oliveto R, Marcus A, De Lucia A (2017) Predicting query quality for
applications of text retrieval to software engineering tasks. Trans Softw Eng Methodol 26(1):3:1–3:45

Mills C, Pantiuchina J, Parra E, Bavota G, Haiduc S (2018) Are bug reports enough for text retrieval-based
bug localization? In: Proceedings of the 34th IEEE international conference on software maintenance
and evolution (ICSME’18), pp 410–421

Moreno L, Treadway JJ, Marcus A, Shen W (2014) On the use of stack traces to improve text retrieval-based
bug localization. In: Proceedings of the conference on software maintenance and evolution (ICSME’14),
pp 151–160

Nguyen AT, Nguyen TT, Al-Kofahi J, Nguyen HV, Nguyen TN (2011) A topic-based approach for narrowing
the search space of buggy files from a bug report. In: Proceedings of the international conference on
automated software engineering (ASE’11), pp 263–272

Nichols BD (2010) Augmented bug localization using past bug information. In: Proceedings of the annual
southeast regional conference (ACMSE’10), pp 1–6

Nie L, He J, Ren Z, Sun Z, Li X (2016) Query expansion based on crowd knowledge for code search. IEEE
Trans Serv Comput 9(5):771–783

Ponzanelli L, Mocci A, Lanza M (2015) Stormed: stack overflow ready made data. In: Proceedings of 12th
working conference on mining software repositories (MSR’15), pp 474–477

Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137
Rahman MM, Roy CK (2016) Quickar: automatic query reformulation for concept location using crowd-

sourced knowledge. In: Proceedings of the international conference on automated software engineering
(ASE’16), pp 220–225

Rahman MM, Roy CK (2017a) Strict: information retrieval based search term identification for concept loca-
tion. In: Proceeding of the conference on software analysis, evolution, and reengineering (SANER’17),
pp 79–90

Rahman MM, Roy CK (2017b) Improved query reformulation for concept location using coderank and doc-
ument structures. In: Proceedings of the international conference on automated software engineering
(ASE’17). IEEE Press, pp 428–439

Rahman MdM, Barson J, Paul S, Kayani J, Lois FA, Quezada SF, Parnin C, Stolee KT, Ray B (2018a)
Evaluating how developers use general-purpose web-search for code retrieval. In: Proceedings of the
15th international conference on mining software repositories (MSR’18), pp 465–475

Rahman MM, Roy CK (2018b) Improving ir-based bug localization with context-aware query reformulation.
In: Proceedings of the 26th joint meeting on foundations of software engineering (ESEC/FSE’18). (to
appear)

Rao S, Kak A (2011) Retrieval from software libraries for bug localization: a comparative study of generic
and composite text models. In: Proceedings of the working conference on mining software repositories
(MSR’11), pp 43–52

Rath M, Lo D, Mäder P (2018) Analyzing requirements and traceability information to improve bug
localization. In: Proceedings of the working conference on mining software repositories (MSR’18).
ACM

Roldan-Vega M, Mallet G, Hill E, Fails JA (2013) Conquer: a tool for nl-based query refinement and contex-
tualizing code search results. In: Proceedings of the international conference on software maintenance
(ICSM’13), pp 512–515

Saha RK, Lease M, Khurshid S, Perry DE (2013) Improving bug localization using structured information
retrieval. In: Proceedings of the international conference on automated software engineering (ASE’13),
pp 345–355

Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM
18(11):613–620

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng
25(4):557–572

Empirical Software Engineering

Shepherd D, Fry ZP, Hill E, Pollock L, Vijay-Shanker K (2007) Using natural language program analysis
to locate and understand action-oriented concerns. In: Proceedings of the international conference on
aspect-oriented software development (AOSD’07), pp 212–224

Shi Z, Keung J, Bennin KE, Zhang X (2018) Comparing learning to rank techniques in hybrid bug
localization. Appl Soft Comput 62:636–648

Sim SE, Umarji M, Ratanotayanon S, Lopes CV (2011) How well do search engines support code retrieval
on the web? ACM Trans Softw Eng Methodol 21(1):4

Sisman B, Kak AC (2012) Incorporating version histories in information retrieval based bug localization. In:
Proceedings of the working conference on mining software repositories (MSR’12), pp 50–59

Sisman B, Kak AC (2013) Assisting code search with automatic query reformulation for bug localization. In:
Proceedings of the working conference on mining software repositories (MSR’13), pp 309–318

Sisman B, Akbar SA, Kak AC (2016) Exploiting spatial code proximity and order for improved source code
retrieval for bug localization. J Softw Evol Process 29(1):e1805

Starke J, Luce C, Sillito J (2009) Searching and skimming: an exploratory study. In: Proceedings of the
international conference on software maintenance (ICSM’09), pp 157–166

Takahashi A, Sae-Lim N, Hayashi S, Motoshi S (2018) Preliminary study on using code smells to improve
bug localization. In: Proceedings of the international conference on program comprehension (ICPC’18).
ACM, p 4

Wang S, Lo D (2014) Version history, similar report, and structure: putting them together for improved
bug localization. In: Proceedings of the 22nd international conference on program comprehension
(ICPC’14), pp 53–63

Wang S, Lo D, Lawall J (2014a) Compositional vector space models for improved bug localization. In:
Proceedings of the conference on software maintenance and evolution (ICSME’14), pp 171–180

Wang S, Lo D, Jiang L (2014b) Active code search: incorporating user feedback to improve code search
relevance. In: Proceedings of the 29th ACM/IEEE international conference on automated software
engineering (ASE’14), pp 677–682

Wang S, Lo D (2016) Amalgam+: composing rich information sources for accurate bug localization. J Softw
Evol Process 28(10):921–942

Wen M, Wu R, Cheung S (2016) Locus: locating bugs from software changes. In: Proceedings of the 31st
international conference on automated software engineering (ASE’16), pp 262–273

Wong C-P, Xiong Y, Zhang H, Hao D, Lu Z, Mei H (2014) Boosting bug-report-oriented fault localization
with segmentation and stack-trace analysis. In: Proceedings of the conference on software maintenance
and evolution (ICSME’14), pp 181–190

Xiao Y, Keung J, Bennin KE, Mi Q (2018) Improving bug localization with word embedding and enhanced
convolutional neural networks. Information and Software Technology

Ye X, Bunescu R, Liu C (2016a) Mapping bug reports to relevant files: a ranking model, a fine-grained
benchmark, and feature evaluation. IEEE Trans Softw Eng 42(4):379–402

Ye X, Shen H, Ma X, Bunescu R, Liu C (2016b) From word embeddings to document similarities for
improved information retrieval in software engineering. In: Proceedings of the international conference
on software engineering (ICSE’16), pp 404–415

Youm KC, Ahn J, Lee E (2017) Improved bug localization based on code change histories and bug reports.
Inf Softw Technol 82:177–192

Zhang Y, Lo D, Xia X, Le TDB, Scanniello G, Sun J (2016) Inferring links between concerns and methods
with multi-abstraction vector space model. In: Proceedings of the international conference on software
maintenance and evolution (ICSME’16), pp 110–121

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? More accurate information retrieval-
based bug localization based on bug reports. In: Proceedings of the international conference on software
engineering (ICSE’12), pp 14–24

Yu Z, Tong Y, Chen T, Han J (2017) Augmenting bug localization with part-of-speech and invocation. Int J
Softw Eng Knowl Eng 27(6):925–949

Zimmermann T, Premraj R, Bettenburg N, Just S, Schröter A, Weiss C (2010) What makes a good bug
report? IEEE Trans Softw Eng 36(5):618–643

Empirical Software Engineering

Oscar Chaparro is a Ph.D. candidate at the University of Texas at
Dallas. He received his B.Eng. and M.Eng. degrees from Univer-
sidad Nacional de Colombia. His research interests lie in the area
of software maintenance and evolution. His current research aims at
improving the quality of bug report information and leveraging this
information for achieving better bug triage and resolution. He has
authored several publications in top software engineering venues. He
served on the organizing and program committee of the DySDoc3
workshop. He is a student member of IEEE and ACM.

Juan Manuel Florez is a Ph.D. candidate at the University of
Texas at Dallas. He received his bachelor’s degree from Universi-
dad Nacional de Colombia in 2016. His research interests lie mostly
in the area of software maintenance and evolution, with topics such
as bug localization, discourse analysis of software artifacts, and
requirements-to-code traceability. He is a student member of IEEE
and ACM.

AndrianMarcus received the Ph.D. degree in computer science from
Kent State University, OH. He is a professor at the University of
Texas at Dallas. His research interests include software maintenance
and evolution and program comprehension. He is best known for his
research on applying text retrieval and text analysis techniques to sup-
port software comprehension, analysis, and evolution. He has served
as general or program co-chair of several conferences, including,
ICSME, ICPC, SANER. He also served on the steering committee of
ICSME. He also served on the editorial board of the IEEE Transac-
tions on Software Engineering, the Empirical Software Engineering
Journal edited by Springer, and of the Journal of Software: Evolution
and Processes edited by Wiley.

	Using bug descriptions to reformulate queries during TR bug localization
	Abstract
	Introduction
	Query Reformulation Strategies
	Empirical Evaluation
	TRBL Techniques
	Implementation of the TRBL Techniques
	TRBL Data
	Low-quality Queries
	Structure Identification in Bug Descriptions
	Bug Report Sampling
	Identification of OB, EB, and S2R
	OB Coding Criteria
	EB Coding Criteria
	S2R Coding Criteria

	Identification of TITLE and CODE
	Structure Identification Results

	Evaluation Procedure and Measures
	HITS@N vs. MRR/MAP

	Analysis Framework

	Evaluation Results and Discussion
	Performance for Lucene
	Performance for Lobster
	Performance for BugLocator
	Performance for BRTracer
	Performance for Locus
	Analysis across Code Granularities
	Overall Reformulation Performance
	Discussion
	Trade-offs between Successful and Unsuccessful Queries

	Threats to Validity
	Related Work
	TR-based Bug Localization
	Query Reformulation in TRBL and Code Retrieval

	Conclusions and Future Work
	References

