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Abstract—Network communication between real-time control
systems raises system vulnerability to malware attacks over the
network. Such attacks not only result in alteration of system
behavior but also incur timing dilation due to executing injected
code or, in case of network attacks, to dropped, added, rerouted,
or modified packets.

This work proposes to detect intrusion based on time dilation
induced by time delays within the network potentially resulting in
system malfunctioning due to missed deadlines. A new method
of timed packet protection, T-Pack, analyzes end-to-end trans-
mission times of packets and detects a compromised system or
network based on deviation of observed time from the expected
time on end nodes, well in advance of a task’s deadline. First,
the Linux network stack is extended with timing information
maintained within the kernel and further embedded within
packets for TCP and UDP communication. Second, real-time
application scenarios are analyzed in terms of their susceptibility
to malware attacks. Results are evaluated on a distributed system
of embedded platforms running a Preempt RT Linux kernel to
demonstrate its real-time capabilities.

I. INTRODUCTION

Computer security is a critical requirement for any net-

worked application nowadays. Main components of computer

security include: (1) System level security, securing end sys-

tem’s code at different levels and layers from attacks lever-

aging memory (e.g., buffer overflow attacks including stack

smashing [28], heap overflows [10]) or non-memory related

attacks (e.g., value range overflows [17], shell shock [24],

port smashing); and (2) network security, securing systems

on the network from being attacked by malicious users. For

the latter, a wide range of attacks are common, including

relay, replay, phishing, spoofing, man-in-the-middle, denial

of service, eavesdropping etc. [7], [14], [15], [33]. One of

the common attacks in real-time systems is the delay attack.

The objective of this attack is to stall execution/packets of a

time-sensitive event (e.g., a code section within the system

or some client/server request) causing excessive delays and

resulting in performance degradation [23]. Real-time systems

are particularly susceptible to such attacks as system behavior

is compromised when deadlines are missed, i.e., time dilation

not only results in performance penalties or reduced network

throughput but may cause a control system to malfunction,

which can result in damage to the controlled environment

or even loss of life. Past work shows how delay attacks

have affected cyber-physical systems (CPS) [23] and network

control systems [31] subject to real-time constraints.

Significant work has been invested in analyzing and mitigat-

ing the impact of these attacks [23], [31]. Real-time systems

offer a unique opportunity for intrusion detection besides tra-

ditional, general-purpose cyber-security techniques: Their in-

herent knowledge of worst-case execution times (WCET) [35],

an upper bound on a task’s execution budget required for real-

time scheduling, opens up opportunities for additional mon-

itoring and protection. The same techniques for establishing

timing bounds on the execution of the real-time task may be

applied to bound execution of any code section within the

application [16], [36]. Past works have used this model for se-

curity in real-time systems for detecting memory attacks [37],

securing clock synchronizations over the network [27] and

protecting smart grid systems [29]. Timed analysis is not just

restricted to security, it can also be used to design attack

models, e.g., in the context of hardware security tokens such

as Smartcards [13], [19], [32], exported secret decryption

keys [19] and remote timing attacks [5]. The novelty of our

work is to utilize time-based security to detect delay attacks on

a network subject to communication with real-time constraints.

This complements methods monitoring execution times for

intrusion detection by providing a similar mechanism for

packet transmissions.

In safety-critical distributed real-time systems, missed dead-

lines due to slower or missing packets could result in signif-

icant environmental damage or even in loss of life. System

restarts often cannot be instantaneous due to an unstable

physical system state. This research focuses on detecting

intrusions due to such attacks at the packet level, i.e., before

malware in one subsystem can enter another subsystem or even

result in a deadline miss within the yet unharmed subsystems.

The earlier intrusion is detected, the easier it is to resort to

a safe operational mode with reduced or even without com-

munication to another subsystem that has been compromised,

e.g., using the Simplex design [3], [11], thereby avoiding

any significant damage. Our work focuses on early intrusion

detection on end nodes (as opposed to routers/switches as that

would incur additional time to notify nodes), and while it

relies on established methods to transition to a safe state (e.g.,

Simplex), the safe methods are beyond the scope of this paper.

Our work contributes:

• T-Pack is developed, a novel method for packet protection

combining simplicity in design and implementation with

integrity, negligible performance cost and no hardware mod-

ifications.

• T-Pack is compatible with other security protocols and

utilizes IPSEC to establish data integrity alongside early

detection of delay attacks.



• Malware intrusion is detected by monitoring end-to-end

packet deadlines at the time of packet reception instead of

conventional detection at a task’s deadline.

• Experiments with real-time applications under attack sce-

narios assess potential and limitations.

• Results indicate that T-Pack has low overhead per packet

round-trip time (≈ 0.09 milliseconds) and detected 95%-100%

of the delays during ping flooding and distributed denial of

service (DDOS) attacks in a number of experimental systems.

II. ATTACK MODEL

This work assumes a distributed environment with end

nodes connected by a network with end-to-end real-time guar-

antees of message transmission, e.g., via packet prioritization.

This can be accomplished by (expensive and proprietary) hard-

ware solutions like TTEthernet [20], protocol extensions for

time-based traffic shaping (e.g., 802.1Qbv [34], if supported),

or via enhancements on top of (less expensive) software-

defined network (SDN) equipment [30].

Each subsystem (node) within this CPS architecture is

assumed to provide its own execution environment (processor).

Inter-node communication is prioritized for real-time traffic

in a statically constructed schedule. By this design, a send-

ing subsystem puts a message on the wire via the network

stack such that it is received prior to an end-to-end message

deadline at the receiving subsystem, but the exact time of the

send/receive activity may vary within deterministic bounds as

they are determined by execution times of prior tasks.

An attacker may compromise a given subsystem and subse-

quently monitor network traffic and inject packets arbitrarily

to either execute replay attacks (injecting duplicate pack-

ets), use IP spoofing (injecting packets with an incorrectly

rewritten source address expecting lost reply packets from

the destination) or flooding (SYN or ICMP packet flooding).

Other subsystems remain unaffected in computation and their

ability to send/receive packets as packet communication is

assumed to use public key encryption, i.e., receiving nodes

can detect content modifications including packet headers.

(Even a replay attack with modified source can be detected

by encrypting all original headers in the message such that

a source mismatch between received header and decrypted

header in the message can be detected). Other subsystems

may, however, be affected by altered network behavior due to

packets originating from the compromised node (additional or

duplicated packets at any priority, modified packets, dropped

packets with respect to the original static schedule). Most

significantly, the compromised system neither has the ability

to alter packets sent by uncompromised systems, nor may

it change any router/switch functionality. A delayed packet

reception results in an intrusion notification, just as an omitted

packet, as a timeout will be raised at expected arrival time if

the packet has not arrived yet. The benefit of our method is an

early notification upon expected message arrival rather than a

late timeout upon deadline violation, which leaves more time

for exception handling / transitioning to a safe mode.

Fig. 1 illustrates T-Pack capabilities for both (a) TCP and

(b) UDP, for a packet sent at tS and received at tR under real-

time constraints with a task’s absolute deadline of tO (in line

1©), which will trigger a timeout and exception if the packet

has not been received by then. This deadline is present with or

without T-Pack. The figure further depicts the expected arrival

of the packet in range ∆tR. 2©, 3© & 4© illustrate the different

distributions of the real-time events at times tS , tR & tE for

the packet sent, packet received and worst case end-to-end

time (with time duration as ∆), respectively. For TCP, tE is

also the T-Pack timeout relative to the time when the packet

is sent allowing earlier exception irrespective of packet arrival

at tR. Thunderbolt and cross (X) show triggered and canceled

timers, respectively, plus exception (if triggered).

Fig. 1: T-Pack and global timeout scenarios for tasks with

real-time deadlines under (a) TCP (b) UDP

2© depicts a T-Pack scenario accepting an incoming packet

at tR followed by validation of the embedded timestamp. In

Fig.1(a) under TCP, the packet is received before timeout tE ,

i.e., the timeout at tE is canceled. In Fig.1(b) under UDP,

the duration for transmission, tR − tS , matches the expected

transmission costs so that (i) no T-Pack exception needs to be

raised as the duration is less than tE ; and (ii) timeout tO can

be canceled since the packet was received (both indicated by

an X).

3© depicts a lost packet or a long delay before the packet

is sent at tS — both triggering a timeout at tO resulting in an

exception. As the packet is received at tR, it will neither raise

another exception at tE (TCP Fig.1(a)), nor will it indicate a

delay at tR (UDP Fig.1(b)) as a late packet is simply ignored

in hard real-time systems. In (m, k)-firm or soft real-time

environments, where m − k deadlines may be missed, the

packet would not be ignored so that tE can raise an exception

if the transmission took too long, see next case.

4© depicts a packet sent early (tS) as the sending real-time

task takes less time than the budgeted WCET. A Timeout is

triggered by T-Pack at tE (TCP Fig.1(a)) as the packet has yet

to be received; or, upon packet reception, the receiver notices

that the transmission exceeded the expected duration (UDP

Fig.1(b)) based on the embedded timestamp (i.e., tR−tS > tE
is too long), indicating a delay at tR, which cancels timeout

tO due to the early exception. This indicates a possible

intrusion, which subsequentl triggers mitigation techniques.

This illustrates the benefit of T-Pack over the global timeout

as the prior exception due to timestamp validation leaves

more time (tO − tE under TCP and tO − tR under UDP)

for mitigation, i.e., to transition into a safe mode. Most of



all, this scenario would not result in any exception without

T-Pack, i.e., (a) the triggered timeout at tE or (b) reception at

time tR would cancel the timer at tO even though the packet

was delayed significantly.

III. DESIGN

T-Pack is a novel methodology to verify end-to-end timing

of each packet on the network of a real-time system during

message transfer between subsystems. Fig 2 depicts a high-

level timing model for message transfer between two sub-

systems for unidirectional UDP (left) and bidirectional TCP

transfers (right) using the notation established by Table I. A

message from sender S to receiver R is analyzed at packet

level, considering packet P being sent at time tS from S to

R, where it is received at time tR. The observed end-to-end

time, Tobs, is compared with the expected time, Texp, to detect

malware intrusion in the network. The work assumes loosely

synchronized clocks with a constant time difference, ∆trs,

between any two subsystems, which may be dynamically

updated due to clock drift, as in our later implementation.

Fig. 2: a. One-Way (UDP) b. Two-Way (TCP)

TABLE I. ABBREVIATIONS

tS Time recorded by T-Pack at which packet is sent from S

tR Time recorded by T-Pack at which packet is received at R

ACK Acknowledgment packet from R to S in a 2-way message

tAS Time at which ACK is received at S (At Network Layer)

RTT Round-trip time (TCP)

ETT End-to-end time (UDP)

∆trs Constant clock difference between S and R

Tobs Observed end-to-end or round-trip time

Texp Expected end-to-end or round-trip time

Td Mean internal delay on the uncompromised network

∆Td Deviation of internal delay from the mean internal delay

Tc Added delay due to a compromised network

∆Tc Deviation of added delay from the mean added delay

TWCET Expected worst-case end-to-end time of packet

One Way Message Transfer: The UDP transport proto-

col is a suitable protocol assuming point-to-point full-duplex

switch connectivity between network endpoints. Under UDP,

a message is transferred from S to R (Fig. 2a) without any

acknowledgment from R. In this scenario, the observed end-

to-end time (ETT) is the time it takes for the packet to reach

R having been sent by S.

ETT = tR − tS +∆trs (1)

So, the expected end-to-end time is:

Texp = ETT (2)

Two-Way Message Transfer: TCP is a two-way message

transfer transport protocol based on a handshaking protocol

that acknowledges packets sent from the sender, S, to achieve

reliable communication over the network (Figure 2b). In this

scenario, a transfer is said to be complete once the acknowl-

edgment (ACK packet) is received at S, again under point-

to-point full-duplex switch connectivity. Here, we assume a

constant clock difference between sender and receiver for the

duration of the packet communication. Clock drift requires this

difference to be updated from time to time, which is typical

for distributed systems and beyond the scope of the paper [25].

Round-trip-time in TCP can be monitored without embed-

ding time information within the packet. Instead, it suffices to

measure the round-trip time of the packet (from the send to

receipt of the acknowledgment at the sender).

RTT = tAS − tS (3)

So, the expected end-to-end time is:

Texp = RTT (4)

TCP optimizes network traffic by consolidating multiple

small bytes packet into one (reducing header overhead) at the

sender [1] and sending cumulative acknowledgments at the

receiver (reducing multiple ACK packets). This creates non-

deterministic execution behavior in real-time system due to

delays for sending and receiving. [6] shows how this affects

the performance of a client-server application using the same

communication pattern as distributed real-time systems. With

controlled flow of packets in distributed real-time systems,

additional data due to headers/trailers hardly reduce network

bandwidth; instead, timely delivery is more important. We

ensure timely delivery via socket options “TCP NODELAY“

(sender) and “TCP QUICKACK“ (receiver), which prevents

packet consolidation.

The impact is analyzed for our experimental model (Pa-

parazzi UAV, see Sec. V) by monitoring the average bandwidth

and number of packets flowing in and out of the interface

for a period of time with and without these socket options.

Without socket options, we observe an average rate of data

observed at the receiving (rx) end of 353.50 Kbps and at the

transmitting (tx) end of 779.67 Kbps over 60 seconds. With

socket options, this decreases only slightly to 347.98 Kbps

and 753.80 Kbps at receiver and sender, respectively. In and

out flows of packet also decreased slightly, i.e. from 486 to

473 packets/sec (receiver) and 742 to 713 packets/sec (sender).

More significantly, a packet sent with socket options was

instantly sent, whereas it was non-deterministically buffered

at times without options. Clearly, the latter is not acceptable

for real-time system, whereas a small decrease in bandwidth

is.

Relation to the Attack Model: Using our T-Pack model, we

aim to detect delay attacks within uncompromised subsystems.

Such an attack may originate from a compromised subsystem

that maliciously induces time overheads by injecting packets

arbitrarily. This may cause delays at the switch due to ingress

queue processing, even if packets are prioritized, in part

because the compromised subsystem can prioritize packets as

well. As a result, any (non-malicious) packet that is forwarded

through such a switch may be delayed before it can reach the

other uncompromised subsystem. For a message transfer (UDP

& TCP), we have:

Using Texp from Eq. 4,

Tobs = Texp + Tc ±∆Tc. (5)

The objective of T-Pack is not to prevent intrusion but



rather to detect it within uncompromised subsystems due to

incorrect timing on network behavior. This can prevent these

other subsystems from becoming compromised as well — by

a timely transitioning into a safe mode, e.g., via Simplex [3],

[11] or other mode transitions depending on the application

scenario, which is beyond the scope of the paper. Furthermore,

intelligent switches could assist in blocking high priority

packets that are non-compliant with a statically established

end-to-end real-time message schedule under our attack model,

but we do not expect such switches to actively notify end nodes

of a compromised subsystem. This would violate the existing

real-time schedule and induce sporadic messages, which may

dilate latencies to where deadlines could be missed. Instead,

T-Pack provides a means for uncompromised subsystems

to autonomously detect intrusions by monitoring their own

communication with other nodes.

Vulnerability Of T-Pack: Encryption prevents third party

packet modifications by attackers as the private key of the

receiver is unknown, even with access to the wire. This

includes timestamp values of T-Pack within packets.

The WCET bound of a packet is determined by the end-to-

end transfer in our model as follows. Texp in T-Pack includes

delays in an uncompromised system (expected delays on the

network or internal delays). Let this delay be of magnitude

Td ± ∆Td (Table I). Hence, the WCET bound includes a

maximum internal delay of Td + ∆Td, which signifies the

maximum positive deviation of the WCET.

TWCET = Texp (6)

For a compromised network, we obtain Tobs from Eq. 5.

For some values of Tc ±∆Tc, where the attacker delays the

packet transfer by a small value, we may find that Tobs ≤

TWCET , i.e., short delays may remain undetected. In other

words, our model is probabilistic and may result in missed

intrusion detection (false negatives), where our model does not

identify an attacker in the network. This illustrates two points:

(1) Our model complements existing cyber security measures

and (2) the objective of T-Pack is to make the attack window

that remains undetected as small (short) as possible, but only if

attack traffic affects control functionality (deadlines). As long

as packets are received in time, subsystems remain intact, i.e.,

additional background traffic may be tolerated.

Time Information: To support UDP, T-Pack embeds timing

information within each packet to verify that end-to-end times

of a packet are within given WCET bounds. A custom header

with timing information is added just above the packet payload

within the kernel comprising the lower level of the network

stack (instead of higher networking layers). This establishes

tighter and more deterministic bounds on the elapsed network

delay.

To support TCP, time information of a sent packet is

analyzed within the kernel with round-trip-time calculated

using the corresponding acknowledgment received without the

need to embed additional information within the packet. A

lookup table is maintained on each subsystem to store sent

time information of the packet to other subsystems.

Inclusion of TCP NODELAY and TCP QUICKACK en-

sures that only one outstanding packet from the same subsys-

tem exists before an ACK is sent for the respective packet at

any time.

Due to the static size of the table, the execution time of a

table lookup is constant, which makes bounds under T-Pack

highly predictable.

IV. IMPLEMENTATION

Linux: T-Pack is implemented in a PREEMPT-RT patched

Linux kernel that provides real time capabilities to the oper-

ating system. This provides the flexibility of utilizing Linux

network APIs such as socket buffers and netfilter to implement

T-Pack.

Netfilter: Netfilter is a framework provided by the Linux

kernel to implement customized handlers on events in the

network layer (for pre-routing, post-routing, etc.). T-Pack

utilizes this framework to implement callback functions to time

packets (Fig. 3).

Fig. 3: Framework 1: Netfilter Hooks to Record Time Infor-

mation for TCP (blue) and UDP (red) using T-Pack

Socket Buffers: Socket buffers are data structures provided

by Linux as a common reference to packets in all layers of the

network stack within the kernel. The T-Pack prototype utilizes

the data types and the helper functions in the socket buffer API

to record time (TCP) or manipulate packet memory in order

to create additional space for the custom header (UDP) as

depicted in Fig. 4.

Fig. 4: Framework 2: Custom Header Insertion/Removal using

Socket Buffers for T-Pack in UDP

Implementation Framework: 1) T-Pack for TCP (Fig. 3

with network path in blue):

1.1) At the sender, the netfilter post routing hook is utilized

to call a handler, where the socket buffer references the packet

as an argument.

1.1.1) The current time at the sender is recorded and

stored in a lookup table for the corresponding subsystem

(IP address, port) as a key. The expected acknowledgment

sequence number is also recorded for the same key, which

is the sequence number in the packet plus the data payload.



1.2) According to TCP (with socket options as indicated in

Section III), a packet is received at the receiver (1.2) and a

corresponding ACK is sent (1.3) immediately.

1.3) At the sender, the netfilter pre-routing hook is again

utilized to call a handler, where the socket buffer references

the ACK packet as an argument.

1.3.1) The received ACK is matched with the destination IP

address and port. If the expected sequence number matches the

number in the ACK packet, the stored time is subtracted from

the current time to determine the round-trip-time of the packet,

which is then compared with the worst case round-trip-time

to detect potential intrusions.

2) T-Pack for UDP (Fig. 3 with network path in red):

2.1) At the sender, the netfilter post routing hook is utilized

to call a handler, where the socket buffer references the packet

as an argument.

2.1.1) The skb pull(sizeof(network header)) and

skb push(sizeof(custom header)) function is used to

create additional space just before the packet payload to

attach the custom header (see Fig 4).

2.1.2) memcpy(ptr, custom trailer) encapsulates the cus-

tom header by copying it to the packet. The custom header

includes fields for ktime t timestamp and long sendtime, where

timestamp contains the current time (at header creation).

2.2) At the receiver, the netfilter pre-routing hook is utilized

to call a handler, where the socket buffer references the packet

as an argument.

2.2.1) Upon UDP reception, the difference of the current

time and the timestamp embedded within the packet represents

the end-to-end processing time of lower layer UDP activities,

subject to validation against an expected upper bound for the

exchange. If validation fails, an intrusion is signaled.

V. EXPERIMENTAL SETUP AND APPLICATIONS

Experiment 1: Client Server Model: A client sends pe-

riodic messages (interval of 10ms) to the server according

to the network activity of a time triggered real-time system.

TCP messages that fit in a single packet are sent with an

explicit reply packet from the server. Measuring this ping-

pong message transfer derives the round-trip time (RTT) at the

client. We measure RTT at both application and network layers

to assess the benefits of implementing T-PACK at the network

layer. We also measure the RTT at the application layer with

and without T-Pack to analyze T-Pack’s performance overhead.

Experiment 2: Paparazzi UAV Model: The Paparazzi

UAV [4], [38] models a real-time control system utilizing

shared memory, which we transformed into a peer-to-peer

network of 3 subsystems: an auto pilot (AP), a fly by wire

(FBW) control and a ground station communicator (GSC) to

relay information from subsystems to ground or vice-versa. We

prototyped a model constrained to only Paparazzi’s periodic

messages scheduled between the above three subsystems. Each

subsystem is connected via the (1) UDP and (2) TCP protocols

with a persistent connection. The subsystems communicate

with each other periodically transferring necessary information

for flying by wire autonomously with T-Pack integration.

The RTT is measured between AP and GSC communicator

to monitor T-Pack. A delay attack as a Distributed Denial

of Service (ICMP packet flooding / ping-of-death) [12] is

induced at the GSC using other nodes in the network as

attackers. This resembles code injection by the attacker on

the compromised subsystem to inject packets arbitrarily. We

implemented this Paparazzi model on a network of Raspberry

Pi systems with a Preempt RT patched Linux kernel to provide

real-time capabilities.

Experiment 3: Waters Workshop Challenge 2018, a Drone-

like Multi-System: A drone-like multi-system [22] within

a peer-to-peer network of seven subsystems is implemented

consisting of a Mission management system (MMS), Electrical

Propulsion System (EPS), Hydraulic Braking System(HBS),

Sensors (communicating with other sensors in the Waters

model), Ground Station and Maintenance System, connected

via a hub and spoke topology within the same subnet. We again

model functions and communication patterns in each subsys-

tem, including periodic calls to the functions. Each subsystem

is connected via TCP (persistently), sending messages to other

subsystems in parallel under random network congestion with

T-Pack support. The RTT is measured between EPS and MMS

to monitor T-Pack functionality with and without a delay attack

on Raspberry Pis with Preempt RT-patched Linux.

VI. RESULTS

Experiment 1: Results for different server client config-

urations (x-axis) are depicted in Fig. 5a with RTT (y-axis)

of messages shown as box plots indicating maximum, top

quartile, median, bottom quartile and minimum times as well

as outliers (dots). Min-max values or variability outside the

upper and lower quartiles are denoted by whiskers with a range

3.5 times that of the inter-quartile range (constant for all other

measurements within the paper). The outliers in this graph

are only 0.5% of the total data values. We report all values

from the experiments, even the first iteration of execution,

which may be subject to additional cache misses resulting in

an outlier.

We observe that the time measured for T-Pack (box plot 1

in Fig. 5a)for the reduced network stack is much lower than

the one measured by the application, both with and without

T-Pack (plots 2+3). By monitoring time within the kernel,

T-Pack eliminates the cost of upper kernel layers both for

sender and receiver resulting in an earlier intrusion detection

at the network layer than at the application layer (baseline).

Measuring RTT at the application layer would also require the

applications to have explicit replies to every sent request, i.e.,

up to twice the number of messages are required in contrast

to an implementation within the kernel. This could lead to

unnecessary saturation of the write buffer of the receiver,

which might be due to a send causing corresponding receivers

to delay their communication. This increase in traffic would

also result in higher RTTs for all the packets,in turn resulting

in delayed intrusion detection because of larger timeouts. False

negatives for timeouts at the network layer were measured

by introducing a DDOS attack in Experiment 1 using a



single attacker with 10 attack threads, each sending 100 bytes

of ICMP packets at an interval of 0.001 seconds. Over a

range of 300 packets sent, ∼170 detected in intrusion due

to timeouts at the kernel-level network layer of which 130

were false negatives (F1 score of 0.723) compared to ∼289

false negatives at the user-level application layer (F1 score

of 0.071). This illustrates the benefits of our approach with

T-pack within the kernel at the network layer. The attack

introduced above is of intensity between A5 and A6 5b.

The results also reveal the overhead without the T-Pack

module. Fig. 5a indicates that T-Pack incurs a modest perfor-

mance cost as the overall mean RTT of the client request-reply

increases by a marginal amount of approximately 0.09 msecs.

We analyze consistency, flexibility and integrity of T-

Pack over secure communication between the client and the

server by implementing the client-server model on top of a

communication channel protected by the IP-Security (IPSec)

protocol at the transport layer with RSA key authentication

and encryption.

Any data packet is encrypted by IPSec after T-Pack in UDP

adds its custom header. Should an attacker (who does not hold

the private key) modify the packet, this would be detected as

data then becomes corrupted after decryption, including T-

Pack’s timestamps.

IPSec provides security against session hijacking, man-in-

the-middle attacks etc. This cannot prevent attackers imposing

delays by transmitting unwanted packets, but T-Pack will

detect such delays. Of course, data integrity comes at the price

of increased RTT (TCP) and ETT (UDP), as assessed in the

next experiment.

Experiment 2a: UAV Paparazzi Subsystems under TCP:

We monitor the RTT under TCP from AP to GSC (i.e., send

and acknowledgment) under a delay attack. Each attacker

features a multi-threaded program to send large ICMP ping

packets in quick intervals to the GSC. This causes a buffer

overflow at the receiving interface, which is handled but results

in performance degradation. The sensitivity to attack intensity

is investigated dependent on a tuple, P (n, t, b, i), by varying

the number of attackers, n, the number of threads within

an attacker, t, the ping packet size, b (in bytes), and the

time interval, i (in seconds), between packets for the tuples

indicated in Figures 5b and 5c. By modifying parameters, the

intensity gradually increases to a level where the DDOS attack

results in a noticeable impact due to buffer overflows on the

network devices, which eventually causes deadline misses due

to excessive RTT (TCP)/ETT (UDP).

Fig. 5b depicts RTT as box plots again (y-axis) over

different intensities of DDOS attack (x-axis). The outliers in

this graph are only 0.5% of the total data values (eliminating

only 1% of the extreme outliers including the first iterations)

As attack intensity increases, the RTT increases slightly.

Compared to attack A1, A2 hardly effects the average RTT,

A6 increases the RTT on average by ≈ 0.65 msecs, and A7

by ≈ 2.6 msecs. For A7, all the measured RTTs exceed those

of A1 without any false negative (no overlapping values). In

other words, T-Pack accurately captures the “attack vector”,

since the WCET bound of RTT without intrusion is lower

than the minimum RTT on a compromised network. Recall

that to take over an entire kernel, millions of instructions are

typically required. We can limit an attack to 15k instructions

here assuming, e.g., a CPU clock of 1GHz at an instruction

per cycle rate of one, which restricts undetected intrusions

under T-Pack to a ≈ 0.2 msec window. Thus, a chain of 5

attack instances with 200K instructions each would be required

(adding up to 1M instructions) to take over the system without

being detected.

We also observe a sudden increase in RTT in Fig. 5b when

as attack intensity increases. DDOS prevents effective resource

utilization by consuming most of the resources (network and

receiver buffer here) within the attacker [26]. A low intensity

of such an attack does not affect the performance of a low

traffic network, which is typical for a number of distributed

real-time systems. However, intensifying the attack can cause

sudden spikes that instantly degrade the network latency

leading to packets arriving after a deadline, if at all. T-Pack

detects this, which allows a system to transition to a safe mode

while continuing to operate. Transitioning back online requires

the attack source to be removed in a DDOS attack, both for

real-time or commodity computing environments, i.e., counter

measurements addressing the root cause remain unchanged

and are beyond the scope of this paper.

We further analyze the results of frequency distributions

in Figures 6, 7 and 8, which depict the number times (y-

axis) a certain RTT (x-axis) was measured in experiments.

Figure 6 indicates the distribution for without intrusion (A1 in

blue) and with high-intensity intrusion (A7 in red). An empty

intersection between the distributions indicates that both the

cases can be discretely distinguished, i.e., the attach vector is

accurately identified by T-Pack.

Fig. 7 depicts distribution results without intrusion (A1) and

a relatively intense attack (A6). We observe a slight overlap

between the blue (no attack) and red (A6) curves ranging from

0.9-0.95 msecs, a data range covering less than 1% of the

samples, i.e., more than 99% of the attacks are detected (F1

score of 0.993).

Fig. 8 depicts distributions without intrusion (A1) and a mild

attack (A2). Results indicate a significant overlap between

the blue (no attack) and red (A2) curves ranging from ≈

0.65-0.85 msecs, a range with over 99% of the samples (F1

score of 0.014). This illustrates the limitations of T-Pack. Any

attack with similar delays does not cause deadline misses. This

illustrates why T-Pack complements, but does not substitute

other security methods. In fact, T-Pack functions as expected:

When deadlines are met, system functionality remains intact

as sufficient network bandwidth remains available, and no

intrusion is detected, but when attack intensity increases,

intrusion is flagged requiring, e.g., Simplex mode changes.

Results in Fig. 5c reinforce our qualitative analysis of

consistency, flexibility and integrity of T-Pack with IPSec from

Experiment 1. Just as in Fig. 5b, we observe a similar trend in

Fig. 5c in the distribution of RTT values when the Paparazzi

model is subjected to different intensities of DDOS attacks.





Fig. 9: T-Pack measured ETT in ms for

Paparazzi over UDP without IPSec under

different attack scenarios.

Fig. 10: T-Pack measured ETT in ms for

Paparazzi over UDP with IPSec under

different attack scenarios.

Fig. 11: T-Pack measured RTT in ms for

Drone under different attack scenarios.

the total data. As attack intensity increases, a slight increase in

RTT is seen — until a sudden and significant increase (A6 and

A7) under more intense attacks. Under increasing attack, all

RTT values eventually exceed those without attack, at which

point 100% of attacks are detected with T-Pack at A7.

In summary, we experimentally demonstrated consist behav-

ior of T-Pack for different real-time applications and varying

attack intensities for DDOS ping-of-death scenarios that affect

network delays, ranging from tolerated low intensity attacks

without missed deadlines to high intensity attacks resulting

in all deadlines being missed. Notably, deadline misses are

detected early, at packet reception time (or, if a packet is

omitted, at the latest scheduled reception time), which is well

before a task’s deadline — the earliest point of intrusion

detection in the absence of T-Pack.

VII. RELATED WORK

Prior work exploited timing bounds derived from timing

analysis of code to detect malware intrusion. Zimmer et

al. [37] developed techniques to provide micro-timings for

multiple granularity levels of application code. They imple-

mented a set of timed analysis methods, T-Rex, T-Prot and

T-Axt, which demonstrated an advantage of timed analysis of

code execution in constraining the window of vulnerability for

code injections, from usually tens of millions of cycles down

to tens, hundreds, or thousands of cycles, depending on the

respective protection technique. In contrast, our work focuses

on network protection.

Cyber-physical control systems subject to real-time con-

straints are vulnerable to malware intrusion over the network.

Prior work [8], [9], [21] demonstrated the viability of attacks

on the network of a real-time system and uncovered potential

damages. Our work proposes to mitigate damages by detecting

intrusion prior to such attacks using timed analysis of packets

on the network, which establishes end-to-end packet delivery

times allowing intrusions to be detected in a hard real-

time systems, where the size of messages and time of data

transmission can be bound a priori.

Time sensitive networking systems can be implemented by

scheduling and traffic shaping using the IEEE standards for

bridges (or switches), e.g., IEEE 802.1Qbv extensions, which

could detect any abnormal flow of packets due to attacks on

the network but lack any means to notify end nodes. T-Pack

fills this gap as intrusion is detected on end systems, which can

instantaneously transition into another mode using the Simplex

architecture.

Both [2] and [27] detect attacks by analyzing time delays

under secure clock synchronization. However, they propose to

embed time information in packets measured at the time of

transmission and received right at the end of the propagation

using hardware timestamping (see [2]), which requires such

support in switches/routers thereby raising cost. Instead, T-

Pack embeds time inside the packet within the kernel relying

on hardware support.

The IEEE 1588 standard for a precision time protocol [18]

calculates end-to-end time for clock synchronization by send-

ing prior transmission time as a message payload in follow-

up packets and sends burst of such packets, which — in

contrast to T-Pack — would increases the number of packets

and thereby reduce network bandwidth. The 1-step method

of the IEEE 1588 standard reduces the packet burst duration

on the network, however, unlike T-Pack, it utilizes hardware

timestamping, which raises implementation cost.

VIII. CONCLUSION

This work contributes the design and implementation of a

novel network timed security method, T-Pack, that monitors

end-to-end response times of packet delivery in the Linux

network stack for early detection of malware intrusion, before

a task’s deadline, if time delays of packets are discovered in

relative to a real-time schedule of expected packet reception

times. Results indicate successful detection of malware intru-

sion in 95%-100% of the cases during distributed denial of

service attacks that induce time delays under three application

scenarios. T-Pack was further shown to incur a small overhead

to the overall network performance of the system relative to the

range of delays for the attacks it protects against. T-Pack com-

bines efficiency and simplicity because of its implementation

with low performance overhead without relying on specialized

hardware.
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