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ABSTRACT

We tackle the problem of recovering a complex signal x ∈ Cn from
quadratic measurements of the form yi = x∗Aix, where {Ai}mi=1

is a set of complex iid standard Gaussian matrices. This non-convex
problem is related to the well understood phase retrieval problem
where Ai is a rank-1 positive semidefinite matrix. Here we study
a general full-rank case which models a number of key applications
such as molecular geometry recovery from distance distributions and
compound measurements in phaseless diffractive imaging. Most
prior work either addresses the rank-1 case or focuses on real mea-
surements. The several papers that address the full-rank complex
case adopt the semidefinite relaxation approach and are thus com-
putationally demanding. In this paper we propose a method based
on the standard framework comprising a spectral initialization fol-
lowed by iterative gradient descent updates. We prove that when
the number of measurements exceeds the signal’s length by some
constant factor, a globally optimal solution can be recovered from
complex quadratic measurements with high probability. Numerical
experiments on simulated data corroborate our theoretical analysis.

Index Terms— Complex quadratic equations, random Gaussian
matrices, spectral initialization, phase retrieval, low rank matrix re-
covery.

1. INTRODUCTION

Systems of quadratic equations model many problems in applied sci-
ence, including phase retrieval [1, 2, 3], unlabeled distance geometry
problem (uDGP) [4, 5], blind channel estimation [6, 7]. Phase re-
trieval, in particular, has motivated considerable recent research on
systems of quadratic equations. In phase retrieval, the measurement
we work with is yi = |a∗ix|2 = x∗aia

∗
ix, where the measurement

matrix aa∗ is a rank-1 positive semidefinite matrix.
We are interested in a different measurement model with high-

rank measurement matrices. This measurement model arises in a
number of applications such as uDGP [5] and the turnpike problem
[8], as well as phaseless diffractive imaging where, either because
of experimental or algorithmic design, we work with linear combi-
nations of pixel values on the detector: yi =

∑
r wr|a

∗
rx|2. In this

case, the measurement matrices are neither rank-1 nor real.
More concretely, in this paper, we address the related problem

of recovering a complex signal x ∈ Cn from its complex quadratic
measurements yi ∈ C of the following form:

yi = x∗Aix, i = 1, . . . ,m , (1)

∗ Equal contribution. The authors would like to acknowledge the support
from National Science Foundation under Grant CIF-1817577.

where Ai ∈ Cn×n is the i-th complex measurement matrix with
entries whose real and imaginary coefficients are iidN (0, 1).

1.1. Prior art

Similar quadratic equation problems have been studied in other con-
texts. Candès et al. [9] cast the phase retrieval problem as a system of
structured quadratic equations and solve it via gradient descent. As
this is a non-convex problem, they use a suitably constructed spectral
initializer [10] which can be shown to be close to a global optimum
when sufficient measurements are available. To accelerate the phase
retrieval process for large-scale problems, [11] computes an opti-
mal step size for the gradient descent method at every iteration, and
[12] proposes several coordinate descent algorithms with faster con-
vergence speeds. The works of Wang, Xu, and Huang [13, 14, 15]
study a generalized phase retrieval problem where Ai is a Hermi-
tian matrix. They use algebraic methods [16] to find the number of
measurements needed for a successful recovery.

Solving the systems of quadratic equations given by (1) is
closely related to low-rank matrix recovery—it is equivalent to
recovering a rank-1 positive semidefinite matrix X = xx∗ with
yi = 〈Ai,X〉 [17]. Previous works [18, 19, 20] on low-rank ma-
trix recovery focus on relaxing the non-convex low rank constraint
to the convex minimum nuclear norm constraint, and then estab-
lishing sufficient conditions that warrant such a convex relaxation.
However, recovering the relaxed X is computationally demanding
even for moderate sized problems. To address this issue, [21, 22]
took the low-rank matrix decomposition approach X̂ = UV T ,
where U ,V ∈ Rn×r and X̂ ∈ Rn×n are all real matrices, and
the optimization is performed directly over U and V . In this work
we aim to recover a complex signal x from its complex quadratic
measurements.

1.2. Our contribution and paper outline

We extend the framework introduced in [9] to the case of full-rank
complex random Gaussian measurement matrices. To the best of our
knowledge, using this approach to solve (1) has not been addressed
in the literature. In Section 2, we extend the derivations from [10] to
the complex measurement case. We show that the spectral initializa-
tion concentrates around a global optimum and compute the associ-
ated concentration bounds. In Section 3, we analyze the regularity
condition and derive new results for the complex measurement case.
The two results are combined to give the main result. In Section
4 we show the phase transition plot via simulated experiments and
demonstrate our method through an image recovery example. The
detailed derivations and proofs are presented in an extended version
of this paper [23].
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1.3. Problem formulation

We minimize the following objective function f(z) to obtain the
recovered signal z:

f(z) =
1

m

m∑
i=1

|z∗Aiz − yi|2 . (2)

Suppose we are given a good initialization point z(0) (finding such
a point is discussed in Section 2), the solution is updated iteratively
via gradient descent:

z(t+1) = z(t) − η∇f(z) , (3)

where η > 0 is some suitable step size. The gradient ∇f(z) can be
computed as follows:

∇f(z) = 1

m

m∑
i=1

(z∗A∗i z − x∗A∗ix)Aiz

+ (z∗Aiz − x∗Aix)A
∗
i z .

(4)

If x is a global minimum of f(z), then xejφ is also a global min-
imum for all φ ∈ [0, 2π). Consequently, it is standard to define
the squared distance between the recovered solution z and the true
solution x as

dist2 (z,x) = min
φz∈[0,2π]

∥∥∥z − xejφz

∥∥∥2
2

= ‖z‖22 + ‖x‖22 − 2|z∗x| ,
(5)

where z∗x = |z∗x|ejφ(z
∗x) and φz = −φ(z∗x).

2. SPECTRAL INITIALIZATION

Spectral initialization is widely used to obtain an initialization that
is close to a global optimum, x. Similar to [10, 9], we show that the
spectral initializer concentrates around x and can be used to solve
the general complex quadratic equations in (1) under the random
complex Gaussian measurement model.

2.1. Initialization for signals with known norms

We first consider the case where the norm of x is known and fixed.
Without loss of generality, we assume ‖x‖ = 1. Unlike in the phase
retrieval problem, which uses the leading eigenvector of the Hermi-
tian matrix Ŝ = 1

m

∑m
i=1 yiaia

∗
i as the initializer, we have two

possible choices here: the leading left or right singular vector v0 of
the following matrix

S =
1

m

m∑
i=1

yiAi . (6)

can both be chosen as the spectral initializer z(0) = v0. To see why,
note that the expectation of S is

E [S] = 2xx∗ . (7)

We prove that for sufficiently large m, the matrix S concentrates
around E [S] in the spectral norm: ‖S − E [S] ‖ ≤ δ. Therefore the
leading singular vectors of S are both sufficiently correlated with a
global optimizer x [24].

The concentration proof for the matrix S hinges on the rotation
invariance of iid complex standard Gaussian matrices [10]. Rotation
invariance means that if we define B = RA, where R ∈ Cn×n is
a complex unitary matrix, the real and imaginary coefficients of the
entries Bij are still iid standard Gaussian random variables.

2.2. Initialization for signals with unknown norms

When the norm of the signal is unknown, we can estimate it from
the quadratic measurements. Using (7), we can compute:

E

[
1

2m

m∑
i=1

yiyi

]
= E

[
1

2
x∗Sx

]
=

1

2
x∗E[S]x = ‖x‖42. (8)

When m is sufficiently large, we can prove that 1
2m

∑m
i=1 yiyi is

close to its expectation ‖x‖42 with high probability. Based on this
result, we can scale one of the leading singular vectors v0 of S to

get our spectral initializer z(0) =
(

1
2m

∑m
i=1 yiyi

) 1
4 · v0.

We have the following lemma stating that the distance between
the spectral initializer z(0) and a global optimizer x is small with
high probability when m is sufficiently large.

Lemma 1. Under the complex Gaussian measurement model, when
the number of complex quadratic measurements satisfies m > Cn
for some universal constant C, the distance between the spectral
initializer z(0) and a global optimizer x is upper-bounded

dist2
(
z(0),x

)
≤ 11

4
δ‖x‖22 , (9)

with probability at least 1− 6 exp (−Cn · C′1(δ)), where δ > 0 is a
pre-specified constant, and C′1(δ) is a constant depending on δ.

3. CONVERGENCE ANALYSIS

For the objective function f(z) introduced in (2), there is a special
neighborhood E(ε) around every global optimizer x:

E(ε) = {z | dist(z,x) ≤ ε‖x‖2 } .

The objective function f(z) is said to satisfy the regularity condition
RC(α, β, ε) if the following holds for all z ∈ E(ε) [9]:

Re
(〈
∇f(z), z − xejφz

〉)
≥ 1

α
dist2(z,x) +

1

β
‖∇f(z)‖2 ,

(10)

where α > 0, β > 0, ε > 0 are some carefully chosen constants.
The regularity condition RC(α, β, ε) ensures that the gradient

descent updates (3) with a step size η ∈ (0, 2
β
) converge linearly to

a global optimizer x when initialized within the neighborhood E(ε)
[9, Lemma 7.10]:

dist2
(
z(t),x

)
≤
(
1− 2η

α

)t
dist2

(
z(0),x

)
. (11)

For the system of complex quadratic equations given by (1), we
show that the objective function (2) satisfies (10) and give a set of
(α, β, ε)-values such that spectral initialization followed by gradient
descent succeeds with high probability. We shall make use of the
following lemma.

Lemma 2. Under the complex Gaussian measurement model, when
the number of complex quadratic measurements satisfies m > Cn
for some universal constant C, the following two inequalities hold
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with probability at least 1− 20 exp (−Cn · C′2(ν)):∣∣∣∣∣ 1m
m∑
i=1

p∗A∗i qu
∗Aiv − 2u∗qp∗v

∣∣∣∣∣ ≤ ν‖p‖2‖q‖2‖u‖2‖v‖2
(12)∣∣∣∣∣ 1m

m∑
i=1

Re (p∗A∗i qu
∗Aiv)− 2Re (u∗qp∗v)

∣∣∣∣∣
≤ ν‖p‖2‖q‖2‖u‖2‖v‖2 ,

(13)

where ν > 0 is a pre-specified constant, and C′2(ν) is some constant
depending on ν.

Let h = ze−iφz − x. It is easy to verify that:

Re(h∗∇f(x)) = Re
(〈
∇f(z), z − xejφz

〉)
. (14)

Our proofs for the regularity condition consist of three steps.

1. Finding a lower bound on Re (〈h,∇f(z)〉).
First we find a lower bound on Re (〈h,∇f(z)〉) for all h
satisfying ‖h‖2 ≤ ε‖x‖2. We proceed by showing that
E [Re (〈h,∇f(z)〉)] > 0, and that Re (〈h,∇f(z)〉) is close
to E [Re (〈h,∇f(z)〉)]. Thus a positive lower bound can be
established with high probability when m is sufficiently large.
We break this problem down by lower-bounding every term in
Re (〈h,∇f(z)〉).
Using (13) and the Cauchy-Schwartz inequality, we have:

Re (〈h,∇f(z)〉)

≥ 4
[(
‖h‖22 + Re (h∗x)

)2
+ ‖h‖22

(
‖x‖22 + Re(x∗h)

)]
− 2‖h‖22ν

(
‖h‖22 + 3‖h‖2‖x‖2 + 2‖x‖22

)
≥ 4

[
‖h‖22

(
‖x‖22 + Re(x∗h)

)]
− 2‖h‖22ν

(
‖h‖22 + 3‖h‖2‖x‖2 + 2‖x‖22

)
≥ 4‖h‖22‖x‖22

(
1− ε− ν

2

(
2 + 3ε+ ε2

))
,

(15)

where ε = ‖h‖2
‖x‖2

, and ν is some pre-specified constant.

2. Finding an upper bound on ‖∇f(z)‖22.
We next compute an upper bound on ‖∇f(z)‖22. This is equiv-
alent to finding the supremum of |u∗∇f(z)|2 over all u ∈ CN
with ‖u‖2 = 1. We can then use (12) to obtain an upper bound
on |u∗∇f(z)| for all u ∈ Cn satisfying ‖u‖2 = 1:

|u∗∇f(z)| ≤ 2(2 + ν)‖h‖2‖x‖22
(
ε2 + 3ε+ 2

)
. (16)

We then have:

‖∇f(z)‖22 = sup
‖u‖2=1

|u∗∇f(z)|2

≤ 4(2 + ν)2‖h‖22‖x‖42
(
ε2 + 3ε+ 2

)2
.

(17)

3. Choosing {α, β, ε}-values for the regularity condition.
We can now combine the theory we have developed so far to de-
termine the values of {α, β, ε}. The are multiple choices for their
values to make sure the initializer z(0) stays in the neighborhood

of x and the objective function f(x) satisfies the regularity con-
dition (10). For example, if we choose δ = 0.01, using lemma 1,
with high probability we can get that:

ε =
‖h‖2
‖x‖2

≤
√

11

400
≤ 0.2 . (18)

If we choose ε ≤ 0.2 and ν = 0.01, it is easy to verify that

Re (〈h,∇f(z)〉) > 3|h‖22‖x‖22 (19)

‖∇f(z)‖22 < 120‖h‖22‖x‖42 . (20)

We can choose α = 2
3
· 1
‖x‖22

and β = 2
3
· 120‖x‖22 to obtain:

Re (〈h,∇f(z)〉) > 3

2
‖h‖22‖x‖22 +

3

2
‖h‖22‖x‖22

>
1

α
‖h‖22 +

1

β
‖∇f(z)‖22 .

(21)

Whenm is sufficiently large, the regularity condition holds for all
h satisfying ε = ‖h‖2

‖x‖2
≤ 0.2 with high probability. We can show

that the following update converges linearly to a global optimizer:

z(t+1) = z(t) − η∇f(z) , (3 revisited)

where 0 < η < 2
β

.

Combining the spectral initialization analysis and convergence
analysis, we can finally state our main results as follows:

Theorem 1. Under the complex Gaussian measurement model given
by (1), when the number of complex quadratic measurements m >
Cn for some universal constant C, and the step size 0 < η ≤ 2

β
, the

gradient descent update (3) initialized with the spectral initializer
z(0) obeying (9) converges linearly to a global optimizer x:

dist2
(
z(t),x

)
≤
(
1− 2η

α

)t
· 11
4
δ‖x‖22 , (22)

with probability at least

1− 26 exp
(
−Cn · C′3(δ, ν)

)
,

where δ > 0, ν > 0 are some pre-specified constants chosen to
ensure Re (〈h,∇f(z)〉) > 0, {α, β} are constants depending on
{δ, ν} and C′3(δ, ν) is some constant depending on {δ, ν}.

4. EXPERIMENTAL RESULTS

We perform numerical experiments to empirically evaluate the per-
formance of our approach. In all experiments, the iterative gradient
descent reconstruction is terminated if the distance between succes-
sive iterations is less than 10−6 or if 2500 iterations are completed.1

Theorem 1 states that the step size is upper-bounded by 2
β

where
β is one of the regularity condition parameters in (10). To show
(21), β is proportional to the squared norm of the signal. Hence, in
all experiments the step size is chosen to be 0.1

‖x‖22
where the signal

norm, ‖x‖22, is estimated using (8).

1Code available at https://github.com/swing-research/
random_quadratic_equations under the MIT License.
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Fig. 1: (a) Closeness of spectral initialization with varying number of measurements; (b) Phase transition plot showing the empirical proba-
bility of success based on 100 trials with varying number of measurements; (c) Reconstruction performance of the image from Fig. 2 with
varying number of measurements.

4.1. Closeness of spectral initializer

In this experiment we monitor how the distance between the ini-
tialization and the true solution varies with the number of measure-
ments. We fix n = 100 and try different values of m with m

n
uni-

formly sampled between 1 and 10. We run 100 random trials for
each m

n
value and calculate the average distance between the initial-

ization and a global optimizer. In each trial we generate a random
signal x ∈ Cn with ‖x‖ = 1, and m complex random Gaussian
matrices, producing m complex quadratic measurements. In Fig. 1a
we can see that the spectral initializer becomes increasingly closer
to a global optimizer as m

n
increases.

4.2. Phase transition behavior

In this experiment we evaluate how the proposed approach transits
from a failure phase to a success phase as we increase the number
of measurements. We fix n = 100 and try different values of m
with m

n
sampled uniformly sampled between 1 and 5. We again run

100 random trials for each m
n

value and calculate the success rate. A
success is declared if the distance (5) between the recovered and true
signal is less than 10−5. Again, in each trial a random signal x ∈ Cn
with ‖x‖ = 1 is generated and reconstructed. Fig. 1b shows that
approximately 4n measurements are needed to successfully recover
the signal.2

4.3. Reconstruction of an image

In this experiment we reconstruct an image via its complex quadratic
measurements given by (1). We reconstruct the three color channels
of an image separately. We choose m

n
= 4. Fig. 2 shows the abso-

lute value of the spectral initialization and the corresponding recon-
struction. We define the relative error as ‖|x̂|−x‖

‖x‖ , where |x̂| is the
absolute value of the recovered image and x is the original image.
As the channels can have non-unit norm, we define relative distance
as dist(x,x̂)

‖x‖ .
The spectral initialization relative error is 0.34. The relative

distances between the three channels of the original and their spec-
tral initializations are 0.53, 0.49 and 0.51. The reconstruction rela-
tive error is 4.78 × 10−7. The relative distances between the three
channels of the original and their reconstructions are 5.45 × 10−7,
7.73×10−7 and 8.66×10−7. Additionally, we also reconstruct the

2We note that changing the minimum distance required for success or the
algorithm stopping criteria can shift the curve.

Original Reconstruction
Spectral
initialization

Fig. 2: Spectral initialization and reconstruction of the University
of Illinois at Urbana-Champaign logo from its complex random
quadratic Gaussian measurements.

same image with varying number of measurements. Fig. 1c shows
the relative distances of the recovered images for each channel.

5. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of recovering a signal
x ∈ Cn in a system of random complex quadratic equations
yi = x∗Aix, where {Ai}mi=1 are iid complex standard Gaussian
matrices. When the number of complex measurements m > Cn for
some universal constant C, we can prove that with high probability:
1) the spectral initializer z(0) is close to a global optimizer, 2) the
gradient descent update initialized with z(0) converges linearly to
a global optimizer. Numerical experiments corroborate the theoret-
ical analysis and show that a global optimum can be successfully
recovered when m is sufficiently large. Additionally, our analysis
complements the existing results for real measurements and rank-1
positive semidefinite measurement matrices.

Recent phase retrieval works show that a regularized spectral
initialization and gradient descent update can improve the robust-
ness and performance of the recovery algorithm [25, 26]. Chen, et
al., [27] further proved that vanilla gradient descent with random
initialization enjoys favorable convergence guarantees in solving the
phase retrieval problem. Our future work involves analyzing similar
algorithmic enhancements for the random complex Gaussian mea-
surement model as well as extending our approach to recovering
structured high-rank complex matrices that arise in key applications.
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