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Permutations Unlabeled Beyond Sampling Unknown

Ivan Dokmanié

Abstract—A recent unlabeled sampling result by Unnikrishnan,
Haghighatshoar, and Vetterli states that with probability one over
Gaussian random matrices A with iid entries, any = can be uniquely
recovered from an unknown permutation of y = Ax as soon as
A has at least twice as many rows as columns. We show that this
condition on A implies something much stronger: that an unknown
vector = can be recovered from measurements y = T' Az, when the
unknown T" belongs to an arbitrary set of invertible, diagonalizable
linear transformations 7. The set 7 can be finite or countably
infinite. When it is the set of m X m permutation matrices, we
have the classical unlabeled sampling problem. We show that for
almost all A with at least twice as many rows as columns, all x
can be recovered either uniquely, or up to a scale depending on T,
and that the condition on the size of A is necessary. Our proof is
based on vector space geometry. Specializing to permutations, we
obtain a simplified proof of the uniqueness result of Unnikrishnan,
Haghighatshoar, and Vetterli. In this letter, we are only concerned
with uniqueness; stability and algorithms are left for future work.

Index Terms—Sampling, shuffled regression, unlabeled sam-
pling, unknown permutation, unknown transformation.

1. INTRODUCTION

E“STEAL” amotivating example from [1]: Imagine that
you are recording a sound field with a large number of
microphones connected to arecording interface. Alas, you forgot
to label the cables so you end up with a pile of recordings without
knowing which one corresponds to which spatial position. Is
there a way to reconstruct the wavefield even without proper
labels?
We can model this situation by the following unlabeled sam-
pling problem:

y=1IAx,

where A € C™*", x € C", and instead of measuring the usual
Ax we get to measure its unknown permutation. If the permuta-
tion IT is known (the cables are neatly labeled), (ULS) is simply
a linear system.

Many signal processing problems are modeled by (ULS) and
related constructions. If the columns of A are samples of har-
monic sinusoids, the problem is that of sampling at unknown
locations [2], [3]. In simultaneous localization and mapping
(SLAM), a robot is sensing an unknown environment, without
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“knowing” its own spatial location [4]. If there are a finite num-
ber of possible locations and A contains a model of the world as
seen through the mobile sensors, then (ULS) models a SLAM
scenario. A system similar to (ULS) appears in room geometry
reconstruction and microphone positionining by echoes [5]-[7].
A nonlinear instance of sensing with unknown permutations is
the unlabeled distance geometry problem where the task is to re-
cover a point set from point-to-point distances, without knowing
which distance corresponds to which pair of points [8].

In the context of the Internet of things and fifth-generation
communication systems, (ULS) models header-free communi-
cation with very short packets [9], [10]. Headers that identify in-
dividual nodes are too large compared with the actual payloads,
but in many sensing tasks the correct labeling can be inferred
from the payload itself. When the nodes are sensors sensing a
spatial field which has a subspace representation (for example,
an advection-diffusion field [11], [12] or a wavefield [13]), then
the problem can be modeled as measuring Ax up to a permu-
tation. Recent work shows that the recovery can be addressed
using symmetric polynomials [10], [14].

Further connections exist with tomography with unknown
projection angles, an especially relevant topic with the emer-
gence of cryogenic electron microscopy (Cryo-EM) in which
we get linear tomographic measurements with unknown angles
[15], [16]. Since the Radon transform has a restricted range, the
problem can be modeled as (ULS).

Problems of type (ULS) can be split into underdetermined,
m < n, and (over) determined (m = n). In the underdetermined
case, we need a model for z. When z is sparse, Emiya et al.
[1] adapt the branch-and-bound technique to efficiently search
through all permutations.

We let = be any complex vector and thus study the overde-
termined case. In this setting, Unnikrishnan, Haghighatshoar,
and Vetterli [17], [18] proved that if A is iid Gaussian, it is
possible to recover every = uniquely with probability 1 over re-
alizations of A if and only if m > 2n. Their proof involves so-
phisticated arguments from coding theory. Haghighatshoar and
Caire also discuss recovery from an unknown but ordered sub-
set of measurements [19]. Pananjady, Wainwright, and Courtade
discuss statistical and computational aspects of unlabeled linear
regression [20].

In this letter, we prove the following significant generaliza-
tion of the above results: Imagine that y was obtained as T Ax
for some unknown invertible transformation T" € 7, where T is
some set of invertible diagonalizable transformations, and A is
a known matrix. The set 7 can be finite or countably infinite. It
can model unknown transfer functions, propagation parameters,
and sensing parameters beyond permutations. We show that
when m = 2n, for almost all matrices A all = can be recovered
uniquely or up to a scale. Taking 7 to be the set of m x m

1070-9908 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



824

Fig. 1.  Illustration of subspace intersections. Two 1D subspaces (lines through
the origin) in 2D generically intersect only at the origin (1 + 1 < 2); the same
holds for two 1D subspaces in 3D (1 4+ 1 < 3). Two 2D subspaces (planes
through the origin) in 3D generically intersect along a line—a 1D subspace
242> 3).

permutation matrices (of cardinality m!), we recover the unique-
ness result of Unnikrishnan, Haghighatshoar and Vetterli.

Our proof is simple and based on geometric arguments. The
gist of it is that random n-dimensional subspaces of C2" only
intersect at the zero vector. On the other hand, if the ambient
dimension is smaller than 2n, then any two n-dimensional sub-
spaces intersect non-trivially; we illustrate this in Fig. 1. The
subtleties of the argument depend on the eigenvalues of trans-
formations 77; that it can be applied to permutation then follows
by studying the eigenvalues of permutation matrices.

In this letter we are only concerned with the question of unique
recovery. The important questions of recovery algorithms and
their stability are left to future work.

Finally, after our work appeared online, Tsakiris [21] posted
a preprint that addresses the phenomenon we describe. Though
[21] only deals with finite transformation classes, it extends
our results to more general non-invertible transformations via
algebraic-geometric arguments.

II. MAIN RESULT

Our main lemma concerns the case of only two transformation
matrices 7 = {I, T}, where I is the m x m identity matrix. We
show that x can be recovered from y when y is either Az or T'Ax,
but we do not know which. The proof relies on studying the size
of the intersection of the range of A and the range of T'A.

We assume that 1" # [ and that 7" € C™*™ has an eigen-
value decomposition 7' = ®AP 1. We will denote by A(T') an
eigenvalue of 7' with the largest multiplicity, and denote its
multiplicity by p(T'). If there are multiple such eigenvalues,
and one of them is A = 1, we set A = 1; otherwise we break
the tie arbitrarily. Note that the eigenvalues can be complex.
Without loss of generality, we order the eigenvalues so that
A =Ay=--=Ap= A. Since we assume that 7" is diagonal-
izable, algebraic and geometric multiplicities coincide.

We denote the Lebesgue measure on C™*" by u and say that
a property holds for almost all A when it holds p-almost every-
where in C™*™, that is, when it does not hold on B C C™*"
with p4(B) = 0. Since all the subsequent “almost all” claims in
C™*™ also hold almost everywhere in R”*™ with respect to the
Lebesgue measure on R”*™, we extend the meaning of almost
all to include both cases. We can then state the following:

Lemma 1: Let T' € C™*™ be an invertible, diagonalizable
matrix with an eigenvalue decomposition 7= ®PAP L, A =
diag(A1, ..., Am) and A € C"™ ", m > 2n. Then for almost
all matrices A, for all y such that y = Az = T' Az, we have

e Ifp(T) < m—mn,thenx = z;

e Ifp(T) >m —nand A(T) = 1, then x = 2;
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e Ifp(T) >m —nand A(T) # 1, then z = A(T)z.
Proof: We want to identify conditions on A such that if

y=Ax (1)
and y=TAz=PAD Az, )
we must have z = z. If (1) and (2) hold simultaneously, then
TAz € R(A).

Thus, there exists a vector y € R(A) such thatalso T'y € R(A).
Our proof hinges on the fact that this situation is very special.

Write Az = ®d for some d (this is possible because the
columns of ® form a basis for C"). Then from (2) we have
y = ®Ad. Since y € R(A), it must be that

Ad = d 'y e R(A),

where we defined the shortcut A = &~ A. From the definition
of d we have d = ® ' Az, so d should also be in the range of A.
Another way to write this is as:

d e R(Z)}

{ Qd =0 )
Ad € R(A) QAd=0"

where Q" is the Hermitian transpose of ), the columns of Q* €
C™*(m=n) form a basis for the orthocomplement of the range
of A and we used the fact that R(A) = N(A*)*.

Note that (3) is a homogeneous system of 2(m — n) equations
in m unknowns, so as soon as 2(m — n) < m, orm < 2n, there
are inevitably infinitely many solutions regardless of A. (Here
we assume () and A to be known.) This case is further developed
in Proposition 1.

Let rref denote the reduced row echelon form. For A with full
column rank (that is, for almost all A), A also has full column
rank, which implies

rref(g*) = [Inxn ‘ [S*]nx(mfn) ] ’

with S € C(™=)*" (for convenience we indicate the block
sizes in subscripts). From here we can read out a basis for

N(A*) as
[S*]nx (m—n) :|

_I(nL—n) x(m—n)

o]

with S having full column rank. Setting Ay = diag(Aq, ...,
An) € C™*" Ay = diag(Ap+1,- - -, Am), and partitioning d as
d=[d], dj]" we rewrite (3) as

Sdy — dy = 0, “)
SA1d1 — Agdg =0. (5)

From the first equation we have dy = Sdy, so that SA1d; —
AQSdl = 0, or

(SA; — AsS)d; = 0. ©6)

Let us focus on the top n rows of this equation, with notation
illustrated in Fig. 2. In particular, let S € C™*" denote the top
n rows of S, and KQ € C™*™ the upper-left n x n block of As.
From (6) we have that

(SAy — AyS)dy = 0. (7)
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Fig.2. Dimensions of matrices in (6) and (7).

In order for a nonzero solution d; to exist, the system matrix
must be singular:

q(S) := det(SA; — AxS) = 0. (8)

The determinant in (8) is a homogeneous multivariate polyno-
mial in the entries of S. This polynomial is either identically
zero, or it is zero on a subset of C™*™ of Lebesgue measure
zero. (Similarly, the set of real zeros has measure zero in R™*™.)
Consequently, it is either identically zero or nonzero for almost
all A. _

We now find sufficient conditions for ¢(S) not to van-
ish identically. In particular, we find conditions so that
q(I,) # 0. Setting S = I,,, we get det(A; — Ay) = 0. Recall
that A = diag(r1,...,An), Ao = diag(Apg1,...,Am), and
that the eigenvalue with the largest multiplicity is listed first.
Writing p := p(T) for brevity, we have:

1. If p < n, clearly the determinant in (8) cannot be zero.
Since the determinant is not identically zero, it is zero only for a
set of A of measure zero, hence for almost all A the only solution
to (7) is d; = 0 which implies y = 0. Since almost all A have
full column rank, z = z = 0.

2. If n < p < m — n we can write (6) as

(SA1 — AsS)dy = (A — A2)Sdy = 0. )

The top p — n rows of (Al — A3) are zero which implies the
same for (LI — A3)S, leaving us with (m —n) — (p —n) =
m — p = nindependent nonzero equations ‘“‘at the bottom”. Us-
ing an analogous argument as above for the bottom n equations,
we again get that d; = 0 and = = z for almost all A.

3.1f m —n < p, then (Al — A3)S has a nontrivial nullspace
(we have fewer than n nonzero equations for d;), and (9) has a
nonzero solution.

In the last case, any solution d; must be in the nullspace of
the bottom m — p rows of .S (this can be seen from (9) which
also holds for p > m — n), so it must be that do = Sd; is sup-
ported only on the top p — n entries (since (m — p) + (p —n) =
m —n). As a consequence, the vector d = [d{, dg]" is sup-
ported on the top n + (p — n) = p entries.

Since y = ®Ad, this implies that y lives in the eigenspace
spanned by the first p eigenvectors corresponding to A. In sum-
mary, if p > m — n, then for all A, R(A) and R(T'A) intersect
on the largest eigenspace corresponding to A(7T'); for almost all
A they do not intersect anywhere else.

Thus for almost all A4, all s € R(A) N R(T'A) are such that
Ts = As.If . = 1, we can recover the corresponding z uniquely
since the equations s = Az and s = T'Az both have at most
one solution, and the solution to the latter is z = ATT1s, but
T 1s = s and Afs = 2. Otherwise, if A = 1, we can recover
up to a scaling since from s = T'Az we have z = AIT 15 =
A lAts = a1 |
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We now show how Lemma 1 implies a similar result for any
number of unknown transformations in Theorem 1.

Theorem 1: LetT = {T}, € C™*™}, _ beafinite or count-
ably infinite set of invertible diagonalizable transforms, and
A e C™ " where m > 2n. Let further y = T Ax, where A €
Cm*n 2 e C™, T € T, and neither « nor T" are known. Then

1. If for all 71,75 € T we have that p(TflTQ) <m-—nor
AM(T;*Ty) = 1 then z is uniquely determined by .

2. If there exist T}, Ty € T such that A(T, 'T) # 1 and
p(T;*Ty) > m — n, then x is determined up to a scale a € A,
where A is at most a countable set.

Proof: Denote by T, the set of ' € T for whichy € R(T'A),
and by |7,] its cardinality. We only need to consider T" € 7,,. If
|7,] = 1 we are done.

Suppose |7,| > 1 and let Ty, T, € 7,. That is, y = Ty Az =
Ty Az for some x and 2. Putting y = T} 'y we can write

y:Tle} {ﬂz Ax

: 10
y= ThAz = Ty 'ThAz (10)

1. By Lemma 1, we have that for almost all matrices A, this
implies z = z, for all y. In other words, the set Bz, 1, of “bad”
matrices A where it does not hold is of Lebesgue measure zero,
w(Br, 1,) = 0. The set of matrices for which it might fail for
any choice of 77 and 75 is

B= By 15,
T1,T2€T,
T #T>
but by the subadditivity of measure (and noting that the set of
all pairs in 7 is countable),

M(B) < Z ILL(BTI,T2> =0.
T1,T2€T,
T1#Ts

2. Again using Lemma | and reasoning as in 1., for a fixed
Ty, T5 and almost all A, we can uniquely recover any x up to a
scaling by A(T 'T3). Thus the claim of the theorem holds with
A={MT'Th) : T, T2 €Ty, Ty # T . [ |

Theorem 1 establishes that under suitable conditions on A, for
a rather general class of possible transformations 7, x can be
recovered from y = T'Az, where T € T is unknown. We now
specialize these results to classical unlabeled sensing. We begin
with a fact about eigenvalues of permutations.

Lemma 2: For any permutation matrix IT, A(IT) = 1.

Proof: Every m x m permutation II can be written as a prod-
uct of r disjoint cycles II = C;1C5 - - - C.. Since the cycles are
disjoint, the sum of the lengths is exactly m.

Denote by W, the set of /¢;-th roots of unity,
where ¢; is the length of the ith cycle C;, W, =
{e?m/t . pe{0,1,...,4;—1} . Then the set of all
eigenvalues of 11 is [22]

W=WiUWrU---UW,,

and the geometric multiplicity of each eigenvalue is the number
of times it appears in sets W;, ¢ € {1,2,...,r}. Note that every
Wi; contains a 1, since 1 = €129, Therefore, the eigenvalue of IT
with the largest multiplicity is 1 (there could be other eigenvalues
with the same maximal multiplicity). |

We will also use a partial converse to Lemma 1 to show that
m > 2n is necessary for permutations.
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Proposition 1 (Partial converse): Let n < m < 2n, and as-
sume that there exist 77,75 € 7 such that 7} T, has no
eigenspace of dimension larger than m — n. Then for almost
all matrices A, there exist x,z € C™ such that x # z and
T1 Ax = TQAZ

Proof: For almost all A the ranges of 77 A and T5 A have
dimension n. Since the sum of the dimensions of the two range
spaces exceeds the dimension of the ambient space, n + n > m,
they must have a non-trivial intersection:

dimR(A) N R(TA) > 2n—m > 1. (11)

Lets € S :=R(T1A) N R(T2A). Then there exist = and z such
that s = T1 Ax and s = Th Az.

The unknown x can be recovered only if z = z, in which case
Axzis aneigenvector of T LT, withan eigenvalue 1 (recall (10)).
This can happen only if R (A) and the corresponding eigenspace
of T\ 1T, have a nontrivial intersection. But if every eigenspace
E), of T, ' T, has dimension at most 7 — 7, then dim R(A) +
dim(E;) < m and the two intersect only for a set of matrices A
of measure zero. Since from (11) a nonzero s does exist, it must
be that x # z. [ |

We can now easily prove the following:

Corollary 1 (Unnikrishnan et al., 2015): If P C R™*™ is
the set of all m! permutation matrices of m elements, then any z
can be uniquely recovered from measurements y = ITAx, where
both IT € P and x € C" are unknown, for almost all matrices
A € C"™" with m > 2n. Conversely, if m < 2n then for al-
most all A there exist  # z and permutations IT; # Il such
that IT; Az = 11, Az.

Proof: Recoverability when m > 2n is a straightforward
consequence of Theorem 1 and Lemma 2, by noting that
for any two permutations II; and Il, 1'[1’11'[2 is also a
permutation. To prove the converse, note that cyclic shift
by 1 (which is a permutation) has m distinct eigenvalues
{ei2kll/m + k€ {0,1,...,m — 1} ,so thatall its eigenspaces
have dimension 1. Whenever m < 2n, this implies p(7') = 1 <
m — n, and the claim follows from Proposition 1. Namely, de-
noting the cyclic shift by II., for all IT;, IT, such that IT| ITy =
II. and almost all A, there exist x, z such that IT; Ax = 1I; Az
and = # z. [ |

III. EXTENSION TO ROW-SELECTION MATRICES

In [18] the authors state a more general result that allows row-
selection matrices. They prove that instead of a permutation of
Ax, one can measure any permuted subset of & entries of Ax
and still get unique recovery as long as k£ > 2n. Although this
case is beyond the scope of this letter, we outline an intuition for
how our arguments might apply.

The measurement can be written as y = RITA, where R is
the top k rows of an m x m identity matrix and II an unknown
permutation. Same as before, it is sufficient to show that for
almost all A and two fixed permutations IT; and II5

implies x = z. The same R can be used on both sides since
different row selections can be absorbed into II; and II5. Once
that is established an argument parallel to Theorem 1 proves the
result.
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Suppose that (12) holds. Both RII; A and RII; A consist of
k rows of A in some permuted order. Some rows of A, denote
them by A, might be present in both RIT; A and RII; A, while
some, denote them by V, W, appear in only one of them. We can
thus rewrite (12) as

IT, |:IX;:|{L‘:H2 {X‘;}Z: [j{c]xzﬂ[zflz, (13)

for some permutations I1; and IT,, where IT = 11} IT,. We allow
any of the blocks to be empty.

Atone extreme where A is empty, we can absorb ITin 1/ and
ask when it can be that Vo = Wz? But R(V) N R(W) = {0}
for almost all V, W and hence almost all A (see Fig. 1). The
detailed discussion of Lemma 1 is not needed because now W
varies independently of V' (the number of the degrees of freedom
doubles).

At the other extreme where V' and W are empty, Ac has
at least 2n rows. Lemma 1 and Corollary 1 guarantee that for
almost all A (and hence almost all A), the range of A does not
intersect the range of IIA¢ unless II has a large eigenspace, in
which case this eigenspace corresponds to A = 1. Interpolating
between empty V' and W and empty A, we are adding degrees
of freedom and making the two matrices less dependent, which
makes range intersections less likely.

IV. CONCLUSION AND FUTURE WORK

We presented a generalization of the classical unlabeled sam-
pling canon. Instead of recovering  from an unknown permuta-
tion of y = Ax, we showed that it can be recovered from rather
general linear transformations of y as long as the set of trans-
formations is at most countably infinite and A has sufficiently
many rows. As a byproduct, we get a simple, geometric proof of
the uniqueness result for classical permutation-based unlabeled
sensing.

The set of transformations 7 could model unknown room
transfer functions where A takes bandlimited spatial samples
of speech. It could model different cameras and projections, or
the variety of available sensors in any modality. In the classi-
cal unlabeled setting, we can expect the permutation ambiguity
to be compounded by other uncertainties which can be mod-
eled by 7—unknown filters, offsets, spatially-varying gains,
etc.

An interesting line of future work is to relax assumptions
on T'. The fact that T" is diagonalizable or invertible does
not seem essential, as long as its nullspace is not too large
compared to the range space of A. It also seems plausi-
ble that nonlinear 7" should work. The main practical ques-
tion is that of stability and polynomial-time recovery algo-
rithms. For the case of permutations, results are beginning to
emerge; these will point the way to algorithms for more general
transformations.
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