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P er m ut ati o ns  U nl a b el e d  B e y o n d S a m pli n g  U n k n o w n
I v a n  D o k m a ni ć ,  M e m b er, I E E E

A bstr a ct — A r e c e nt u nl a b el e d s a m pli n g r es ult b y  U n ni k ris h n a n,
H a g hi g h ats h o a r, a n d  Vett e rli st at es t h at  wit h p r o b a bilit y o n e o v e r
G a ussi a n r a n d o m  m at ri c es  A  wit h ii d e nt ri es, a n y x c a n b e u ni q u el y
r e c o v e r e d f r o m a n u n k n o w n p e r m ut ati o n of y = A x as s o o n as
A h as at l e ast t wi c e as  m a n y r o ws as c ol u m ns.  We s h o w t h at t his
c o n diti o n o n A i m pli es s o m et hi n g  m u c h st r o n g e r: t h at a n u n k n o w n
v e ct o r x c a n b e r e c o v e r e d f r o m  m e as u r e m e nts y = T  A x ,  w h e n t h e
u n k n o w n T b el o n gs t o a n a r bit r a r y s et of i n v e rti bl e, di a g o n ali z a bl e
li n e a r t r a nsf o r m ati o ns T .  T h e s et T c a n b e fi nit e o r c o u nt a bl y
i n fi nit e.  W h e n it is t h e s et of m × m p e r m ut ati o n  m at ri c es,  w e
h a v e t h e cl assi c al u nl a b el e d s a m pli n g p r o bl e m.  We s h o w t h at f o r
al m ost all A wit h at l e ast t wi c e as  m a n y r o ws as c ol u m ns, all x
c a n b e r e c o v e r e d eit h e r u ni q u el y, o r u p t o a s c al e d e p e n di n g o n T ,
a n d t h at t h e c o n diti o n o n t h e si z e of A is n e c ess a r y.  O u r p r o of is
b as e d o n v e ct o r s p a c e g e o m et r y. S p e ci ali zi n g t o p e r m ut ati o ns,  w e
o bt ai n a si m pli fi e d p r o of of t h e u ni q u e n ess r es ult of  U n ni k ris h n a n,
H a g hi g h ats h o a r, a n d  Vett e rli. I n t his l ett e r,  w e a r e o nl y c o n c e r n e d
wit h u ni q u e n ess; st a bilit y a n d al g o rit h ms a r e l eft f o r f ut u r e  w o r k.

I n d e x  Ter ms — S a m pli n g, s h uf fl e d r e g r essi o n, u nl a b el e d s a m-
pli n g, u n k n o w n p e r m ut ati o n, u n k n o w n t r a nsf o r m ati o n.

I. IN T R O D U C TI O N

W E “ S T E A L” a  m oti v ati n g e x a m pl e fr o m [ 1]: I m a gi n e t h at
y o u ar e r e c or di n g a s o u n d fi el d  wit h a l ar g e n u m b er of

mi cr o p h o n es c o n n e ct e d t o a r e c or di n g i nt erf a c e.  Al as, y o u f or g ot
t o l a b el t h e c a bl es s o y o u e n d u p  wit h a pil e of r e c or di n gs  wit h o ut
k n o wi n g  w hi c h o n e c orr es p o n ds t o  w hi c h s p ati al p ositi o n. Is
t h er e a  w a y t o r e c o nstr u ct t h e  w a v e fi el d e v e n  wit h o ut pr o p er
l a b els ?

We c a n  m o d el t his sit u ati o n b y t h e f oll o wi n g u nl a b el e d s a m-
pli n g pr o bl e m:

y = Π A x, ( U L S)

w h er e A ∈ C m × n , x ∈ C n , a n d i nst e a d of  m e as uri n g t h e us u al
A x w e g et t o  m e as ur e its u n k n o w n p er m ut ati o n. If t h e p er m ut a-
ti o n Π is k n o w n (t h e c a bl es ar e n e atl y l a b el e d), ( U L S) is si m pl y
a li n e ar s yst e m.

M a n y si g n al pr o c essi n g pr o bl e ms ar e  m o d el e d b y ( U L S) a n d
r el at e d c o nstr u cti o ns. If t h e c ol u m ns of A ar e s a m pl es of h ar-
m o ni c si n us oi ds, t h e pr o bl e m is t h at of s a m pli n g at u n k n o w n
l o c ati o ns [ 2], [ 3]. I n si m ult a n e o us l o c ali z ati o n a n d  m a p pi n g
( S L A M), a r o b ot is s e nsi n g a n u n k n o w n e n vir o n m e nt,  wit h o ut

M a n us cri pt r e c ei v e d J a n u ar y 1 7, 2 0 1 9; r e vis e d  M ar c h 1 8, 2 0 1 9; a c c e pt e d
M ar c h 2 2, 2 0 1 9.  D at e of p u bli c ati o n  A pril 1, 2 0 1 9; d at e of c urr e nt v ersi o n  A pril
1 9, 2 0 1 9.  T h e  w or k of I.  D o k m a ni ć  w as s u p p ort e d b y t h e  N ati o n al S ci e n c e F o u n-
d ati o n  A w ar d 1 8 1 7 5 7 7, “ C o m bi n at ori al i n v ers e pr o bl e ms i n dist a n c e g e o m etr y. ”
T h e ass o ci at e e dit or c o or di n ati n g t h e r e vi e w of t his  m a n us cri pt a n d a p pr o vi n g
it f or p u bli c ati o n  w as  Dr.  Mi c h a el  A.  L e x a.

T h e a ut h or is  wit h t h e  C o or di n at e d S ci e n c e  L a b or at or y,  D e p art m e nt of  El e ctri-
c al  E n gi n e eri n g,  U ni v ersit y of Illi n ois at  Ur b a n a- C h a m p ai g n,  Ur b a n a, I L 6 1 8 0 1
U S A ( e- m ail: ,d o k m a ni c @illi n ois. e d u).
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“ k n o wi n g ” its o w n s p ati al l o c ati o n [ 4]. If t h er e ar e a fi nit e n u m-
b er of p ossi bl e l o c ati o ns a n d A c o nt ai ns a  m o d el of t h e  w orl d as
s e e n t hr o u g h t h e  m o bil e s e ns ors, t h e n ( U L S)  m o d els a S L A M
s c e n ari o.  A s yst e m si mil ar t o ( U L S) a p p e ars i n r o o m g e o m etr y
r e c o nstr u cti o n a n d  mi cr o p h o n e p ositi o ni ni n g b y e c h o es [ 5] –[ 7].
A n o nli n e ar i nst a n c e of s e nsi n g  wit h u n k n o w n p er m ut ati o ns is
t h e u nl a b el e d dist a n c e g e o m etr y pr o bl e m  w h er e t h e t as k is t o r e-
c o v er a p oi nt s et fr o m p oi nt-t o- p oi nt dist a n c es,  wit h o ut k n o wi n g
w hi c h dist a n c e c orr es p o n ds t o  w hi c h p air of p oi nts [ 8].

I n t h e c o nt e xt of t h e I nt er n et of t hi n gs a n d fift h- g e n er ati o n
c o m m u ni c ati o n s yst e ms, ( U L S)  m o d els h e a d er-fr e e c o m m u ni-
c ati o n  wit h v er y s h ort p a c k ets [ 9], [ 1 0].  H e a d ers t h at i d e ntif y i n-
di vi d u al n o d es ar e t o o l ar g e c o m p ar e d  wit h t h e a ct u al p a yl o a ds,
b ut i n  m a n y s e nsi n g t as ks t h e c orr e ct l a b eli n g c a n b e i nf err e d
fr o m t h e p a yl o a d its elf.  W h e n t h e n o d es ar e s e ns ors s e nsi n g a
s p ati al fi el d  w hi c h h as a s u bs p a c e r e pr es e nt ati o n (f or e x a m pl e,
a n a d v e cti o n- diff usi o n fi el d [ 1 1], [ 1 2] or a  w a v e fi el d [ 1 3]), t h e n
t h e pr o bl e m c a n b e  m o d el e d as  m e as uri n g A x u p t o a p er m u-
t ati o n.  R e c e nt  w or k s h o ws t h at t h e r e c o v er y c a n b e a d dr ess e d
usi n g s y m m etri c p ol y n o mi als [ 1 0], [ 1 4].

F urt h er c o n n e cti o ns e xist  wit h t o m o gr a p h y  wit h u n k n o w n
pr oj e cti o n a n gl es, a n es p e ci all y r el e v a nt t o pi c  wit h t h e e m er-
g e n c e of cr y o g e ni c el e ctr o n  mi cr os c o p y ( Cr y o- E M) i n  w hi c h
w e g et li n e ar t o m o gr a p hi c  m e as ur e m e nts  wit h u n k n o w n a n gl es
[ 1 5], [ 1 6]. Si n c e t h e  R a d o n tr a nsf or m h as a r estri ct e d r a n g e, t h e
pr o bl e m c a n b e  m o d el e d as ( U L S).

Pr o bl e ms of t y p e ( U L S) c a n b e s plit i nt o u n d er d et er mi n e d,
m < n , a n d ( o v er) d et er mi n e d (m n ). I n t h e u n d er d et er mi n e d
c as e,  w e n e e d a  m o d el f or x .  W h e n x is s p ars e,  E mi y a et al.
[ 1] a d a pt t h e br a n c h- a n d- b o u n d t e c h ni q u e t o ef fi ci e ntl y s e ar c h
t hr o u g h all p er m ut ati o ns.

We l et x b e a n y c o m pl e x v e ct or a n d t h us st u d y t h e o v er d e-
t er mi n e d c as e. I n t his s etti n g,  U n ni kris h n a n,  H a g hi g h ats h o ar,
a n d  Vett erli [ 1 7], [ 1 8] pr o v e d t h at if A is ii d  G a ussi a n, it is
p ossi bl e t o r e c o v er e v er y x u ni q u el y  wit h pr o b a bilit y 1 o v er r e-
ali z ati o ns of A if a n d o nl y if m 2 n .  T h eir pr o of i n v ol v es s o-
p histi c at e d ar g u m e nts fr o m c o di n g t h e or y.  H a g hi g h ats h o ar a n d
C air e als o dis c uss r e c o v er y fr o m a n u n k n o w n b ut or d er e d s u b-
s et of  m e as ur e m e nts [ 1 9]. P a n a nj a d y,  Wai n wri g ht, a n d  C o urt a d e
dis c uss st atisti c al a n d c o m p ut ati o n al as p e cts of u nl a b el e d li n e ar
r e gr essi o n [ 2 0].

I n t his l ett er,  w e pr o v e t h e f oll o wi n g si g ni fi c a nt g e n er ali z a-
ti o n of t h e a b o v e r es ults: I m a gi n e t h at y w as o bt ai n e d as T  A x
f or s o m e u n k n o w n i n v erti bl e tr a nsf or m ati o n T ∈ T ,  w h er e T is
s o m e s et of i n v erti bl e di a g o n ali z a bl e tr a nsf or m ati o ns, a n d A is
a k n o w n  m atri x.  T h e s et T c a n b e fi nit e or c o u nt a bl y i n fi nit e. It
c a n  m o d el u n k n o w n tr a nsf er f u n cti o ns, pr o p a g ati o n p ar a m et ers,
a n d s e nsi n g p ar a m et ers b e y o n d p er m ut ati o ns.  We s h o w t h at
w h e n m 2 n , f or al m ost all m atri c es A all x c a n b e r e c o v er e d
u ni q u el y or u p t o a s c al e.  Ta ki n g T t o b e t h e s et of m × m
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Fig. 1. Illustration of subspace intersections. Two 1D subspaces (lines through
the origin) in 2D generically intersect only at the origin (1 + 1 � 2); the same
holds for two 1D subspaces in 3D (1 + 1 � 3). Two 2D subspaces (planes
through the origin) in 3D generically intersect along a line—a 1D subspace
(2 + 2 > 3).

permutationmatrices (of cardinalitym!), we recover the unique-
ness result of Unnikrishnan, Haghighatshoar and Vetterli.
Our proof is simple and based on geometric arguments. The

gist of it is that random n-dimensional subspaces of C2n only
intersect at the zero vector. On the other hand, if the ambient
dimension is smaller than 2n, then any two n-dimensional sub-
spaces intersect non-trivially; we illustrate this in Fig. 1. The
subtleties of the argument depend on the eigenvalues of trans-
formations T ; that it can be applied to permutation then follows
by studying the eigenvalues of permutation matrices.
In this letterwe are only concernedwith the question of unique

recovery. The important questions of recovery algorithms and
their stability are left to future work.
Finally, after our work appeared online, Tsakiris [21] posted

a preprint that addresses the phenomenon we describe. Though
[21] only deals with finite transformation classes, it extends
our results to more general non-invertible transformations via
algebraic-geometric arguments.

II. MAIN RESULT

Ourmain lemma concerns the case of only two transformation
matrices T = {I, T}, where I is them × m identity matrix.We
show thatx can be recovered from ywhen y is eitherAx orTAx,
but we do not know which. The proof relies on studying the size
of the intersection of the range of A and the range of TA.
We assume that T �= I and that T ∈ Cm×m has an eigen-

value decomposition T = ΦΛΦ−1. We will denote by λ̄(T ) an
eigenvalue of T with the largest multiplicity, and denote its
multiplicity by p(T ). If there are multiple such eigenvalues,
and one of them is λ = 1, we set λ̄ = 1; otherwise we break
the tie arbitrarily. Note that the eigenvalues can be complex.
Without loss of generality, we order the eigenvalues so that
λ1 = λ2 = · · · = λp = λ̄. Since we assume that T is diagonal-
izable, algebraic and geometric multiplicities coincide.
We denote the Lebesgue measure onCm×n by µ and say that

a property holds for almost all A when it holds µ-almost every-
where in Cm×n, that is, when it does not hold on B ⊆ Cm×n

with µ(B) = 0. Since all the subsequent “almost all” claims in
Cm×n also hold almost everywhere inRm×n with respect to the
Lebesgue measure on Rm×n, we extend the meaning of almost
all to include both cases. We can then state the following:

Lemma 1: Let T ∈ Cm×m be an invertible, diagonalizable
matrix with an eigenvalue decomposition T = ΦΛΦ−1, Λ =
diag(λ1, . . . , λm) and A ∈ Cm×n, m � 2n. Then for almost
all matrices A, for all y such that y = Ax = TAz, we have
� If p(T ) � m − n, then x = z;
� If p(T ) > m − n and λ̄(T ) = 1, then x = z;

� If p(T ) > m − n and λ̄(T ) �= 1, then x = λ̄(T )z.
Proof: We want to identify conditions on A such that if

y = Ax (1)

and y = TAz = ΦΛΦ−1Az, (2)

we must have x = z. If (1) and (2) hold simultaneously, then

TAz ∈ R(A).

Thus, there exists a vector y ∈ R(A) such that also Ty ∈ R(A).
Our proof hinges on the fact that this situation is very special.
Write Az = Φd for some d (this is possible because the

columns of Φ form a basis for Cm). Then from (2) we have
y = ΦΛd. Since y ∈ R(A), it must be that

Λd = Φ−1y ∈ R( ˜A),

where we defined the shortcut ˜A = Φ−1A. From the definition
of d we have d = Φ−1Az, so d should also be in the range of ˜A.
Another way to write this is as:

d ∈ R( ˜A)

Λd ∈ R( ˜A)

}

⇐⇒
{

Qd = 0

QΛd = 0
, (3)

whereQ∗ is the Hermitian transpose ofQ, the columns ofQ∗ ∈
Cm×(m−n) form a basis for the orthocomplement of the range
of ˜A and we used the fact that R( ˜A) = N ( ˜A∗)⊥.

Note that (3) is a homogeneous system of 2(m − n) equations
inm unknowns, so as soon as 2(m − n) < m, orm < 2n, there
are inevitably infinitely many solutions regardless of Λ. (Here
we assumeQ andΛ to be known.) This case is further developed
in Proposition 1.
Let rref denote the reduced row echelon form. ForAwith full

column rank (that is, for almost all A), ˜A also has full column
rank, which implies

rref( ˜A∗) =
[

In×n | [S∗]n×(m−n)

]

,

with S ∈ C(m−n)×n (for convenience we indicate the block
sizes in subscripts). From here we can read out a basis for
N ( ˜A∗) as

Q∗ =

[

[S∗]n×(m−n)

−I(m−n)×(m−n)

]

,

with S having full column rank. Setting Λ1 = diag(λ1, . . . ,
λn) ∈ Cn×n, Λ2 = diag(λn+1, . . . , λm), and partitioning d as
d = [d	1 , d

	
2 ]

	 we rewrite (3) as

Sd1 − d2 = 0, (4)

SΛ1d1 − Λ2d2 = 0. (5)

From the first equation we have d2 = Sd1, so that SΛ1d1 −
Λ2Sd1 = 0, or

(SΛ1 − Λ2S)d1 = 0. (6)

Let us focus on the top n rows of this equation, with notation
illustrated in Fig. 2. In particular, let ˜S ∈ Cn×n denote the top
n rows of S, and ˜Λ2 ∈ Cn×n the upper-left n × n block of Λ2.
From (6) we have that

(˜SΛ1 − ˜Λ2
˜S)d1 = 0. (7)
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Fig. 2. Dimensions of matrices in (6) and (7).

In order for a nonzero solution d1 to exist, the system matrix
must be singular:

q(˜S) := det(˜SΛ1 − ˜Λ2
˜S) = 0. (8)

The determinant in (8) is a homogeneous multivariate polyno-
mial in the entries of ˜S. This polynomial is either identically
zero, or it is zero on a subset of Cn×n of Lebesgue measure
zero. (Similarly, the set of real zeros has measure zero inRn×n.)
Consequently, it is either identically zero or nonzero for almost
all A.
We now find sufficient conditions for q(˜S) not to van-

ish identically. In particular, we find conditions so that
q(In) �= 0. Setting ˜S = In, we get det(Λ1 − ˜Λ2) = 0. Recall
that Λ1 = diag(λ1, . . . , λn), Λ2 = diag(λn+1, . . . , λm), and
that the eigenvalue with the largest multiplicity is listed first.
Writing p := p(T ) for brevity, we have:
1. If p � n, clearly the determinant in (8) cannot be zero.

Since the determinant is not identically zero, it is zero only for a
set ofA ofmeasure zero, hence for almost allA the only solution
to (7) is d1 = 0 which implies y = 0. Since almost all A have
full column rank, x = z = 0.

2. If n < p � m − n we can write (6) as

(SΛ1 − Λ2S)d1 = (λ̄I − Λ2)Sd1 = 0. (9)

The top p − n rows of (λ̄I − Λ2) are zero which implies the
same for (λ̄I − Λ2)S, leaving us with (m − n) − (p − n) =
m − p � n independent nonzero equations “at the bottom”. Us-
ing an analogous argument as above for the bottom n equations,
we again get that d1 = 0 and x = z for almost all A.

3. Ifm − n < p, then (λ̄I − Λ2)S has a nontrivial nullspace
(we have fewer than n nonzero equations for d1), and (9) has a
nonzero solution.
In the last case, any solution d1 must be in the nullspace of

the bottom m − p rows of S (this can be seen from (9) which
also holds for p > m − n), so it must be that d2 = Sd1 is sup-
ported only on the top p − n entries (since (m − p) + (p − n) =
m − n). As a consequence, the vector d = [d	1 , d	2 ]

	 is sup-
ported on the top n+ (p − n) = p entries.
Since y = ΦΛd, this implies that y lives in the eigenspace

spanned by the first p eigenvectors corresponding to λ̄. In sum-
mary, if p > m − n, then for all A, R(A) and R(TA) intersect
on the largest eigenspace corresponding to λ̄(T ); for almost all
A they do not intersect anywhere else.
Thus for almost all A, all s ∈ R(A) ∩ R(TA) are such that

Ts = λ̄s. If λ̄ = 1, we can recover the corresponding x uniquely
since the equations s = Ax and s = TAz both have at most
one solution, and the solution to the latter is z = A†T−1s, but
T−1s = s and A†s = x. Otherwise, if λ̄ �= 1, we can recover
up to a scaling since from s = TAz we have z = A†T−1s =
λ̄−1A†s = λ̄−1x. �

We now show how Lemma 1 implies a similar result for any
number of unknown transformations in Theorem 1.

Theorem 1: Let T = {Tk ∈ Cm×m}k∈K be a finite or count-
ably infinite set of invertible diagonalizable transforms, and
A ∈ Cm×n, where m � 2n. Let further y = TAx, where A ∈
Cm×n, x ∈ Cn, T ∈ T , and neither x nor T are known. Then

1. If for all T1, T2 ∈ T we have that p(T−1
1 T2) � m − n or

λ̄(T−1
1 T2) = 1 then x is uniquely determined by y.

2. If there exist T1, T2 ∈ T such that λ̄(T−1
1 T2) �= 1 and

p(T−1
1 T2) > m − n, then x is determined up to a scale α ∈ A,

where A is at most a countable set.
Proof:Denote by Ty the set of T ∈ T for which y ∈ R(TA),

and by |Ty| its cardinality. We only need to consider T ∈ Ty . If
|Ty| = 1 we are done.

Suppose |Ty| > 1 and let T1, T2 ∈ Ty . That is, y = T1Ax =
T2Az for some x and z. Putting ỹ = T−1

1 y we can write

y = T1Ax

y = T2Az

}

⇐⇒
{

ỹ = Ax

ỹ = T−1
1 T2Az

. (10)

1. By Lemma 1, we have that for almost all matrices A, this
implies x = z, for all y. In other words, the set BT1,T2

of “bad”
matrices A where it does not hold is of Lebesgue measure zero,
µ(BT1,T2

) = 0. The set of matrices for which it might fail for
any choice of T1 and T2 is

B =
 

T1,T2∈Ty

T1 �=T2

BT1,T2
,

but by the subadditivity of measure (and noting that the set of
all pairs in T is countable),

µ(B) �
∑

T1,T2∈Ty

T1 �=T2

µ(BT1,T2
) = 0.

2. Again using Lemma 1 and reasoning as in 1., for a fixed
T1, T2 and almost all A, we can uniquely recover any x up to a
scaling by λ̄(T−1

1 T2). Thus the claim of the theorem holds with
A =

{

λ̄(T−1
1 T2) : T1, T2 ∈ Ty, T1 �= T2

 
. �

Theorem 1 establishes that under suitable conditions onA, for
a rather general class of possible transformations T , x can be
recovered from y = TAx, where T ∈ T is unknown. We now
specialize these results to classical unlabeled sensing. We begin
with a fact about eigenvalues of permutations.

Lemma 2: For any permutation matrix Π, λ̄(Π) = 1.
Proof: Everym × m permutationΠ can bewritten as a prod-

uct of r disjoint cycles Π = C1C2 · · ·Cr. Since the cycles are
disjoint, the sum of the lengths is exactlym.
Denote by Wi the set of �i-th roots of unity,

where �i is the length of the ith cycle Ci, Wi =
{

ei2πp/�i : p ∈ {0, 1, . . . , �i − 1}
 
. Then the set of all

eigenvalues of Π is [22]

W = W1 ∪ W2 ∪ · · · ∪ Wr,

and the geometric multiplicity of each eigenvalue is the number
of times it appears in sets Wi, i ∈ {1, 2, . . . , r}. Note that every
Wi contains a 1, since 1 = ei2π·0. Therefore, the eigenvalue ofΠ
with the largestmultiplicity is 1 (there could be other eigenvalues
with the same maximal multiplicity). �
We will also use a partial converse to Lemma 1 to show that

m � 2n is necessary for permutations.
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Proposition 1 (Partial converse): Let n � m < 2n, and as-
sume that there exist T1, T2 ∈ T such that T−1

1 T2 has no
eigenspace of dimension larger than m − n. Then for almost
all matrices A, there exist x, z ∈ Cn such that x �= z and
T1Ax = T2Az.

Proof: For almost all A the ranges of T1A and T2A have
dimension n. Since the sum of the dimensions of the two range
spaces exceeds the dimension of the ambient space,n+ n > m,
they must have a non-trivial intersection:

dimR(A) ∩ R(TA) � 2n − m � 1. (11)

Let s ∈ S := R(T1A) ∩ R(T2A). Then there exist x and z such
that s = T1Ax and s = T2Az.

The unknown x can be recovered only if x = z, in which case
Ax is an eigenvector ofT−1

1 T2with an eigenvalue 1 (recall (10)).
This can happen only ifR(A) and the corresponding eigenspace
of T−1

1 T2 have a nontrivial intersection. But if every eigenspace
Eλ of T−1

1 T2 has dimension at most m − n, then dimR(A) +
dim(Eλ) � m and the two intersect only for a set of matricesA
of measure zero. Since from (11) a nonzero s does exist, it must
be that x �= z. �
We can now easily prove the following:
Corollary 1 (Unnikrishnan et al., 2015): If P ⊂ Rm×m is

the set of allm! permutation matrices ofm elements, then any x
can be uniquely recovered frommeasurements y = ΠAx,where
both Π ∈ P and x ∈ Cn are unknown, for almost all matrices
A ∈ Cm×n with m � 2n. Conversely, if m < 2n then for al-
most all A there exist x �= z and permutations Π1 �= Π2 such
that Π1Ax = Π2Az.

Proof: Recoverability when m � 2n is a straightforward
consequence of Theorem 1 and Lemma 2, by noting that
for any two permutations Π1 and Π2, Π−1

1 Π2 is also a
permutation. To prove the converse, note that cyclic shift
by 1 (which is a permutation) has m distinct eigenvalues
{

ei2kΠ/m : k ∈ {0, 1, . . . ,m − 1}
 
, so that all its eigenspaces

have dimension 1. Wheneverm < 2n, this implies p(T ) = 1 �
m − n, and the claim follows from Proposition 1. Namely, de-
noting the cyclic shift by Πc, for all Π1,Π2 such that Π	

1Π2 =
Πc and almost all A, there exist x, z such that Π1Ax = Π2Az
and x �= z. �

III. EXTENSION TO ROW-SELECTION MATRICES

In [18] the authors state a more general result that allows row-
selection matrices. They prove that instead of a permutation of
Ax, one can measure any permuted subset of k entries of Ax
and still get unique recovery as long as k � 2n. Although this
case is beyond the scope of this letter, we outline an intuition for
how our arguments might apply.
The measurement can be written as y = RΠA, where R is

the top k rows of anm × m identity matrix and Π an unknown
permutation. Same as before, it is sufficient to show that for
almost all A and two fixed permutations Π1 and Π2

RΠ1Ax = RΠ2Az (12)

implies x = z. The same R can be used on both sides since
different row selections can be absorbed into Π1 and Π2. Once
that is established an argument parallel to Theorem 1 proves the
result.

Suppose that (12) holds. Both RΠ1A and RΠ2A consist of
k rows of A in some permuted order. Some rows of A, denote
them byAC , might be present in bothRΠ1A andRΠ2A, while
some, denote them by V,W , appear in only one of them.We can
thus rewrite (12) as

Π 
1

[

V
AC

]

x = Π 
2

[

W
AC

]

z =⇒
[

V
AC

]

x = Π

[

W
AC

]

z, (13)

for some permutationsΠ 
1 andΠ

 
2, whereΠ = Π′	

1 Π 
2.We allow

any of the blocks to be empty.
At one extremewhereAC is empty,we can absorbΠ inW and

ask when it can be that V x = Wz? But R(V ) ∩ R(W ) = {0}
for almost all V,W and hence almost all A (see Fig. 1). The
detailed discussion of Lemma 1 is not needed because now W
varies independently ofV (the number of the degrees of freedom
doubles).
At the other extreme where V and W are empty, AC has

at least 2n rows. Lemma 1 and Corollary 1 guarantee that for
almost allAC (and hence almost allA), the range ofAC does not
intersect the range of ΠAC unless Π has a large eigenspace, in
which case this eigenspace corresponds to λ = 1. Interpolating
between empty V andW and emptyAC , we are adding degrees
of freedom and making the two matrices less dependent, which
makes range intersections less likely.

IV. CONCLUSION AND FUTURE WORK

We presented a generalization of the classical unlabeled sam-
pling canon. Instead of recovering x from an unknown permuta-
tion of y = Ax, we showed that it can be recovered from rather
general linear transformations of y as long as the set of trans-
formations is at most countably infinite and A has sufficiently
many rows. As a byproduct, we get a simple, geometric proof of
the uniqueness result for classical permutation-based unlabeled
sensing.
The set of transformations T could model unknown room

transfer functions where A takes bandlimited spatial samples
of speech. It could model different cameras and projections, or
the variety of available sensors in any modality. In the classi-
cal unlabeled setting, we can expect the permutation ambiguity
to be compounded by other uncertainties which can be mod-
eled by T —unknown filters, offsets, spatially-varying gains,
etc.
An interesting line of future work is to relax assumptions

on T . The fact that T is diagonalizable or invertible does
not seem essential, as long as its nullspace is not too large
compared to the range space of A. It also seems plausi-
ble that nonlinear T should work. The main practical ques-
tion is that of stability and polynomial-time recovery algo-
rithms. For the case of permutations, results are beginning to
emerge; these will point the way to algorithms for more general
transformations.
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