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Abstract—Most of the traditional state estimation algorithms
are provided false alarm when there is attack. This paper pro-
poses an attack-resilient algorithm where attack is automatically
ignored, and the state estimation process is continuing which acts
a grid-eye for monitoring whole power systems. After modeling
the smart grid incorporating distributed energy resources, the
smart sensors are deployed to gather measurement information
where sensors are prone to attacks. Based on the noisy and cyber
attack measurement information, the optimal state estimation
algorithm is designed. When the attack is happened, the mea-
surement residual error dynamic goes high and it can ignore
using proposed saturation function. Moreover, the proposed
saturation function is automatically computed in a dynamic way
considering residual error and deigned parameters. Combing
the aforementioned approaches, the Kalman filter algorithm is
modified which is applied to the smart grid state estimation. The
simulation results show that the proposed algorithm provides
high estimation accuracy.

Index Terms—Cyber attacks, dynamic state estimation, dis-
tributed energy resources, Kalman filter, state-space power net-
work, residual saturation.

I. INTRODUCTION

Designing a smart energy management system is a signif-

icant contribution to realize a reliable and efficient operation

of smart grid [1]. Basically, the grid distribution systems are

integrated with distributed energy resources (DERs) which are

easy to attacks as the distribution systems or microgrid users

are less aware of threats [2], [3], [4]. A number of techniques

for state estimation of cyber physical systems (CPS) such as

smart grid and water treatment plant have been demonstrated

[5], [6], [7]. A Kalman filter (KF) algorithm is developed

for CPS such as water treatment plant in [8], [9]. Basically,

the performance of this algorithm is demonstrated consider-

ing different attacks where attackers can provide misleading

information to the utility operator.

Moreover, the attack detection and state estimation problem

is formulated for random set theory in [10]. Several kinds

of cyber-attacks such as sensor/actuator data corruption, extra

packet injection and packet substitution are investigated. The

different form of KF algorithms and their potential applica-

tions are described in [11], [12], [13], [14], [15], [16]. In order

to handle reply attacks, the secure estimation scheme is in-

vestigated in [17]. Furthermore, the nonlinear state estimation

considering cyber attacks is presented in [18], [19]. The evet-

based minimum mean square error scheme for smart grid state

estimation is proposed in [20]. Additionally, the forecast aided

KF algorithm considering cyber attack is explored in [21]. The

state-space based observer considering attack is described in

[22], [23], [24], [25].

Hackers that destroy information privacy have been studied

in the literature. In those researches, hacker normally has

whole or incomplete knowledge of grid topology. Based on

incomplete grid topology due to limited resources, a false

data protection scheme for smart grid is proposed in [26].

For instance, the cyber physical system measurement outputs

are coded and encrypted for detecting injection attacks [27].

Considering the coloured Gaussian noise, the generalized

likelihood ratio test detector is presented in [28]. An alter-

nating direction method of multipliers scheme is proposed for

compensating the cyber attacks [29]. Different optimization

algorithms for cyber attack protection are described in [30].

From machine learning point of view, researchers are trying

to develop robust estimation algorithms ignoring so much

mathematical difficulties or considering unrealistic power sys-

tem information. In [31], a deep learning algorithm for grid

state estimation is proposed, and it provides better results

compared with the artificial neural network and support vector

machine. It uses a deep belief network to efficiently describe

the temporal behavior of the cyber attacks. Moreover, the

recurrent neural network to recognize cyber attack in the grid

is designed in [32]. The Long Short Term Memory (LSTM)

network for anomaly detection scheme is presented in [33],

[34], [35]. Basically, LSTM based prediction model is deigned

to detect intrusion [36]. The reinforcement learning scheme for

smart grid considering cyber attack is described in [37], [38].

A data-driven online attack detection method is presented in

[39], [40]. However, all these methods cannot directly reflect

the power system operation in real-time. In this paper, we

develop a centralised state estimation algorithm for smart grid

incorporating multiple DERs. The simulation results show that

the proposed algorithm provides high estimation accuracy.

II. STATE-SPACE REPRESENTATION OF POWER

NETWORKS

The smart grid provides higher efficiency, reliability, and

consumer-centricity in an environment of growing power

demand [31]. The state state-space representation of power

networks is obtained on the basis of a set of differential

equations of DERs, power networks and uncertainties. Using

Kirchhoff’s laws, a set of differential equations are written
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and after simplifying them, the state-space compact form is

obtained.

Generally speaking, the distributed energy resources (DERs)

such as solar cells and wind turbines are connected to the

power network. The connecting point are point common

coupling (PCC) voltages. The PCC voltages and DER volt-

ages are denoted by Vb = [Vb1, Vb2, · · · , Vbn]
′ and Vs =

[Vs1, Vs2, · · · , Vsn]
′, where Vbi and Vsi are the i-th PCC

voltages and DER voltages, respectively [41] [42].
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Fig. 1: The n-bus system connected to DERs [41] [42].

Let’s applying Kirchhoff’s voltage law at bus-1 for s-domain

as follows [41] [42]:

Vb1 − Vs1

sLs1

+
Vb1 − Vb2

R1 + sL1

= 0

(
L1
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+ 1)sVb1 − sVb2 +
R1

Ls1

Vb1 −
R1

Ls1

Vs1 −
L1

Ls1
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(1)

It can be written as a time domain expression as follows:

(
L1

Ls1

+ 1)V̇b1 − V̇b2 +
R1

Ls1
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R1
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Ls1
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(2)

Here, (•̇) is the first order derivative with respect to time.

Similarly, all other bus voltages and their corresponding time-

domain expressions are obtained.

WV̇b = W1Vb + W2Vs + W3V̇s. (3)
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The system is linearised around the operating points as

follows:

W∆V̇b = W1∆Vb + W2∆Vs + W3∆V̇s.

∆V̇b = Ac∆Vb + Bc∆Vs + L∆V̇s. (4)

Here, ∆Vb = Vb −Vref , ∆Vs represents the change in DER

voltages required for bus voltages to approach Vref , simplified

terms Ac = W−1W1, Bc = W−1W2, and L = W−1W3.

∆V̇b − L∆V̇s = Ac∆Vb − AcL∆Vs + AcL∆Vs + Bc∆Vs

∆V̇b − L∆V̇s = Ac[∆Vb − L∆Vs] + [AcL + Bc]∆Vs

ṡ = Acs + Bcu. (5)

Here, s = ∆Vb − L∆Vs is the PCC volatge deviation from

the reference value, Ac = Ac for notional consistency, Bc =
AcL + Bc and u = ∆Vs is the DER input voltage. Based

on the step size parameter µ, the continuous-time system is

discretise to A = I + µAc and B = µBc.

The power network and measurement are obtained as fol-

lows:

st+1 = Ast + But + wt.

zt = Cst + Ddt + vt.

Here, st ∈ R
n and zt ∈ R

p are the state and measurement,

vt ∽ N(0,Q) and wt ∽ N(0,R), C is the sensing matrix,

D is the attacker matrix (D 6= 0 with attack and D = 0

without attack), and dk ∈ R
p is the cyber attack. Based on this

noisy and corrupted version of measurement, the cyber attack

protection algorithm is designed in the following section.

III. PROPOSED ATTACK-RESILIENT STATE ESTIMATION

ALGORITHM FOR SMART GRID

The saturation function is used in different applications and

systems as illustrated in [22], [23], [24], [43], [25]. When the

attack is happened, the measurement residual error dynamic

goes high, and it can ignore using the proposed saturation

function. Basically, the Kalman filter operates recursively on

streams of noisy input data to produce a statistically optimal

estimate of the underlying system state. It has two steps:

• Prediction Step: Produces estimates of the current state

variables, along with their uncertainties [44], [45].

• Correction Step: Updated the estimate of the current

state variables using a weighted average, with more

weight being given to estimates with higher certainty

[46], [47].
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The prediction step is given by [48], [47]:

ŝt|t−1 = Aŝt−1|t−1 + But. (6)

Pt|t−1 = APt−1|t−1A′ + Q. (7)

Here, ŝt|t−1 and Pt|t−1 are the prediction state and error co-

variance while ŝt−1|t−1 and Pt−1|t−1 are their corresponding

initial values.

Inspired by different application domain papers in [22], [23],

[24], [43], the modified correction step for smart grid state

estimation is given by:

ŝt|t = ŝt|t−1 + Kt[satσ(zt − Cx̂t|t−1)]. (8)

Kt = Pt|t−1C′(CPt|t−1C′ + R)−1. (9)

Pt|t = Pt|t−1 −KtCPt|t−1. (10)

Here, ŝt|t and Pt|t are the updated state and error covariance,

Kt is the estimation gain, and satσ(zt−Cx̂t|t−1) is the residual

saturation. The saturation function is define as follows:

satσ(zt − Cx̂t|t−1) =







satσ1
(zj,t − Cj x̂t|t−1)

...

satσp
(zp,t − Cpx̂t|t−1)






. (11)

Here, Cj is the j-th row of the original sensing matrix and

satσj
(zj,t − Cj x̂t|t−1) = max[−σj , min{σj , (zj,t −

Cj x̂t|t−1)}] is the standard scalar saturation function [22],

[23], [24], [43]. The dynamic adaptation of this saturation

function is necessary. It can be computed in an iterative way

as follows:

σj,t+1 = αjσj,t + βj(zj,t − Cj x̂t|t−1)
2, j = 1, · · · p.

Here, σj,t > 0 is the initial saturation value, and αj , βj > 0 ∀j.

Basically, σj,t+1 is changed according to the measurement

residual error dynamics. The first term pushes (related to α) the

saturation level to almost zero while the last term minimises

the estimation error. Combining these two terms, the algorithm

can automatically tolerance the cyber attack.

IV. PERFORMANCE ASSESSMENT

We conduct a performance evaluation of the proposed

algorithm for smart grid state estimation. All software sim-

ulations are conducted in the Matlab 2018a environment. The

simulation results are compared with the benchmark results

found by a centralised KF method. The cyber attacks happen

in 2.6, 4, 5, 5.5, 7 and 8 sec. The considered process and

measurements noise covariances are Gaussian distribution and

the covariances are shown in Table I. The sampling period is

0.0001 sec.

TABLE I: Simulation parameters with Matlab.

Symbols Values Symbols Values

R1 0.175 Ω R2 0.1667Ω
R3 0.2187Ω R4 0.001 Ω

L1 0.0005 H L2 0.0004 H

L3 0.0006 H L4 0.0148 H

Q 0.001*I R 0.04*I

µ 0.0001 sec Lsn 0.001 H
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Fig. 2: PCC of DER 1 deviation (x1) and it estimation.
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Fig. 3: PCC of DER 4 deviation (x4) and it estimation.

Figures 2-3 show the dynamic state responses of the system

states and estimation results. Figure 2 shows the PCC voltage

of DER 1 and it estimation result. It can be seen that the

proposed algorithm can able to tolerate the cyber attack

while existing method cannot perform well. This is due to

the fact that the proposed attack-resilient algorithm can be

automatically ignored the cyber attack, and the state estimation

process is continuing which acts a grid-eye for monitoring

whole power systems. The proposed saturation function is

automatically computed in a dynamic way considering residual

error and deigned parameters. Similarly other estimated states

have similar accuracy.

V. CONCLUSION AND FUTURE WORK

The cyber attack is not only create financial problem but

also make our life difficulty to survive. In order to protect grid

information, this paper proposes an cyber attack protection

algorithm. First, the mathematical model of the power system
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is described, and measurements are obtained by a set of

sensors. The sensing information is polluted by noise and

cyber attacks. Based on the received information, the proposed

algorithm is developed. The correction step of the Kalman

filter is modified using proposed saturation function of the

residual error. Moreover, the saturation function is obtained

considering weighting factor and residual error dynamics.

Numerical results show that developed algorithm can perform

well compared with existing method. In the future, we will

develop a hieratical estimation algorithm for smart grid state

estimation. A potential avenue for further research is to detect

the cyber attack in smart grid and to develop a forecast based

offline/online protection strategy.

ACKNOWLEDGEMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 1837472. Moreover,

this research was supported under the NRF, Korea (NRF-

2019R1C1C1007277) funded by the MSIT, Korea.

REFERENCES

[1] C. Zhao, J. He, P. Cheng, and J. Chen, “Analysis of consensus-based
distributed economic dispatch under stealthy attacks,” IEEE Transactions

on Industrial Electronics, vol. 64, no. 6, pp. 5107–5117, 2017.

[2] M. M. Rana and L. Li, “Renewable microgrid state estimation using
the Internet of Things communication network,” ICACT Transactions

on Advanced Communications Technology, vol. 5, no. 3, pp. 823–829,
2016.

[3] J. Pan, R. Jain, S. Paul, T. Vu, A. Saifullah, and M. Sha, “An Internet
of things framework for smart energy in buildings: Designs, prototype,
and experiments,” IEEE Internet of Things Journal, vol. 2, no. 6, pp.
527–537, 2015.

[4] M. M. Rana, L. Li, and S. Su, “Internet of things (IoT) in 5G mobile
technologies,” in Microgrid State Estimation Using the IoT with 5G

Technology. Springer, 2016, pp. 175–195.

[5] M. M. Rana and L. Li, “Kalman filter based microgrid state estimation
using the internet of things communication network,” in Proc. of the

International Conference on Information Technology-New Generations,
2015, pp. 501–505.

[6] ——, “Distributed generation monitoring of smart grid using accuracy
dependent Kalman filter with communication systems,” in Proc. of the

International Conference on Information Technology-New Generations,
2015, pp. 496–500.

[7] ——, “An overview of distributed microgrid state estimation and control
for smart grids,” Sensors, vol. 15, no. 2, pp. 4302–4325, 2015.

[8] C. M. Ahmed, S. Adepu, and A. Mathur, “Limitations of state estimation
based cyber attack detection schemes in industrial control systems,” in
Proc. of the Smart City Security and Privacy Workshop, 2016, pp. 1–5.

[9] Y. He, S. Li, and Y. Zheng, “Distributed state estimation for leak
detection in water supply networks,” IEEE/CAA Journal of Automatica

Sinica, to apper in 2019.

[10] N. Forti, G. Battistelli, L. Chisci, S. Li, B. Wang, and B. Sinopoli,
“Distributed joint attack detection and secure state estimation,” IEEE

Transactions on Signal and Information Processing over Networks,
vol. 4, no. 1, pp. 96–110, 2018.

[11] C.-Y. Chong, “Forty years of distributed estimation: A review of
noteworthy developments,” in Proc. of the Sensor Data Fusion: Trends,

Solutions, Applications, 2017, pp. 1–10.

[12] C.-Y. Chong, K.-C. Chang, and S. Mori, “A review of forty years of
distributed estimation,” in Proc. of the International Conference on

Information Fusion, 2018, pp. 1–8.

[13] M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, “Satellite
communications supporting internet of remote things,” IEEE Internet of

Things Journal, vol. 3, no. 1, pp. 113–123, 2016.

[14] M. M. Rana, W. Xiang, and X. Li, “Position and velocity estimations
of mobile device incorporate GNSS,” IEEE Access, vol. 6, pp. 31 141–
31 147, 2018.

[15] L. Lyu, C. Chen, S. Zhu, and X. Guan, “5G enabled codesign of energy-
efficient transmission and estimation for industrial IoT systems,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 6, pp. 2690–2704,
2018.

[16] M. Rana, W. Xiang, and B. J. Choi, “Grid state estimation over
unreliable channel using IoT networks,” in Proc. of the International

Conference on Control, Automation, Robotics and Vision, 2018, pp. 945–
948.

[17] B. Chen, D. W. Ho, G. Hu, and L. Yu, “Secure fusion estimation for
bandwidth constrained cyber-physical systems under replay attacks,”
IEEE transactions on cybernetics, vol. 48, no. 6, pp. 1862–1876, 2018.

[18] M. A. Rahman and H. Mohsenian-Rad, “False data injection attacks
against nonlinear state estimation in smart power grids,” in Proc. of the

Power & Energy Society General Meeting, 2013, pp. 1–5.

[19] H. Karimipour and V. Dinavahi, “On false data injection attack against
dynamic state estimation on smart power grids,” in Proc. of the In-

ternational Conference on Smart Energy Grid Engineering, 2017, pp.
388–393.

[20] Y. Qi, P. Cheng, L. Shi, and J. Chen, “Event-based attack against remote
state estimation,” in Proc. of the Conference on Decision and Control,
2015, pp. 6844–6849.

[21] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and
attacks including false data injection attack in smart grid using Kalman
filter,” IEEE Transactions on Control of Network Systems, vol. 1, no. 4,
pp. 370–379, 2014.

[22] A. Alessandri and L. Zaccarian, “Results on stubborn luenberger ob-
servers for linear time-invariant plants,” in Proc. of the European Control

Conference, 2015, pp. 2920–2925.

[23] ——, “Stubborn state observers for linear time-invariant systems,”
Automatica, vol. 88, pp. 1–9, 2018.

[24] T. Hu, Z. Lin, and B. M. Chen, “An analysis and design method for linear
systems subject to actuator saturation and disturbance,” Automatica,
vol. 38, no. 2, pp. 351–359, 2002.

[25] S. Tarbouriech, G. Garcia, J. M. G. da Silva Jr, and I. Queinnec, Stability

and stabilization of linear systems with saturating actuators. Springer
Science & Business Media, 2011.

[26] Y. Li and Y. Wang, “False data injection attacks with incomplete network
topology information in smart grid,” IEEE Access, vol. 7, pp. 3656–3664,
2019.

[27] F. Miao, Q. Zhu, M. Pajic, and G. J. Pappas, “Coding schemes for
securing cyber-physical systems against stealthy data injection attacks,”
IEEE Transactions on Control of Network Systems, vol. 4, no. 1, pp.
106–117, 2017.

[28] B. Tang, J. Yan, S. Kay, and H. He, “Detection of false data injection
attacks in smart grid under colored Gaussian noise,” in Proc. of the

Conference on Communications and Network Security, 2016, pp. 172–
179.

[29] D. Du, X. Li, W. Li, R. Chen, M. Fei, and L. Wu, “ADMM-based
distributed state estimation of smart grid under data deception and
denial of service attacks,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, to appear in 2019.

[30] K. Pan, A. Teixeira, M. Cvetkovic, and P. Palensky, “Cyber risk analysis
of combined data attacks against power system state estimation,” IEEE

Transactions on Smart Grid, to appear in 2019.

[31] Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false data
injection attacks in smart grid: A deep learning-based intelligent mech-
anism,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2505–2516,
2017.

[32] Q. Deng and J. Sun, “False data injection attack detection in a power grid
using RNN,” in Proc. of the Annual Conference of the IEEE Industrial

Electronics Society, 2018, pp. 5983–5988.

[33] R. Vinayakumar, K. Soman, and P. Poornachandran, “Long short-
term memory based operation log anomaly detection,” in Proc. of the

International Conference on Advances in Computing, Communications

and Informatics, 2017, pp. 236–242.

[34] Y. Cheng, H. Zhu, J. Wu, and X. Shao, “Machine health monitoring
using adaptive kernel spectral clustering and deep long short-term
memory recurrent neural networks,” IEEE Transactions on Industrial

Informatics, vol. 15, no. 2, pp. 987–997, 2019.

[35] W. Lu, Y. Li, Y. Cheng, D. Meng, B. Liang, and P. Zhou, “Early
fault detection approach with deep architectures,” IEEE Transactions

on Instrumentation and Measurement, vol. 67, no. 7, pp. 1679–1689,
2018.

1462



[36] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly de-
tection,” arXiv preprint arXiv:1607.00148, 2016.

[37] Z. Ni, S. Paul, X. Zhong, and Q. Wei, “A reinforcement learning
approach for sequential decision-making process of attacks in smart
grid,” in Proc. of the Symposium Series on Computational Intelligence,
2017, pp. 1–8.

[38] Z. Ni and S. Paul, “A multistage game in smart grid security: A
reinforcement learning solution,” IEEE Transactions on Neural Networks

and Learning Systems, to appera in 2019.
[39] X. Wang, D. Shi, J. Wang, Z. Yu, and Z. Wang, “Online identification

and data recovery for pmu data manipulation attack,” IEEE Transactions

on Smart Grid, to appear in 2019.
[40] L. K. Mestha, O. M. Anubi, and M. Abbaszadeh, “Cyber-attack detection

and accommodation algorithm for energy delivery systems,” in Proc.

of the Conference on Control Technology and Applications, 2017, pp.
1326–1331.

[41] S. R. Mishra, M. P. Korukonda, L. Behera, and A. Shukla, “Enabling
cyber physical demand response in smart grids via conjoint communi-
cation and controller design,” IET Cyber-Physical Systems: Theory &

Applications, to apper in 2019.
[42] H. Li, L. Lai, and H. V. Poor, “Multicast routing for decentralized

control of cyber physical systems with an application in smart grid,”
IEEE Journal on Selected Areas in Communications, vol. 30, no. 6, pp.
1097–1107, 2012.

[43] H. Fang, M. A. Haile, and Y. Wang, “Robustifying the kalman filter
against measurement outliers: An innovation saturation mechanism,” in
2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018,
pp. 6390–6395.

[44] M. M. Rana and W. Xiang, “IoT communications network for wireless
power transfer system state estimation and stabilization,” IEEE Internet

of Things Journal, vol. 5, no. 5, pp. 4142–4150, 2018.
[45] M. M. Rana, “Modelling the microgrid and its parameter estimations

considering fading channels,” IEEE Access, vol. 5, pp. 10 953–10 958,
2017.

[46] M. M. Rana, W. Xiang, and E. Wang, “Smart grid state estimation
and stabilisation,” International Journal of Electrical Power & Energy

Systems, vol. 102, pp. 152–159, 2018.
[47] M. M. Rana, W. Xiang, E. Wang, and X. Li, “Monitoring the smart grid

incorporating turbines and vehicles,” IEEE access, vol. 6, pp. 45 485–
45 492, 2018.

[48] M. M. Rana, L. Li, and S. W. Su, “Controlling the renewable microgrid
using semidefinite programming technique,” International Journal of

Electrical Power and Energy Systems, vol. 84, pp. 225–231, 2017.

1463


