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Reinforcement Learning for Self Organization
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Abstract— Self-organizing networks (SONs) can help to
manage the severe interference in dense heterogeneous net-
works (HetNets). Given their need to automatically config-
ure power and other settings, machine learning is a promising
tool for data-driven decision making in SONs. In this paper,
a HetNet is modeled as a dense two-tier network with conven-
tional macrocells overlaid with denser small cells (e.g. femto
or pico cells). First, a distributed framework based on the
multi-agent Markov decision process is proposed that models the
power optimization problem in the network. Second, we present
a systematic approach for designing a reward function based
on the optimization problem. Third, we introduce Q-learning-
based distributed power allocation algorithm (Q-DPA) as a
self-organizing mechanism that enables the ongoing transmit
power adaptation as new small cells are added to the net-
work. Furthermore, the sample complexity of the Q-DPA algo-
rithm to achieve e-optimality with high probability is provided.
We demonstrate, at the density of several thousands femtocells
per km?, the required quality of service of a macrocell user
can be maintained via the proper selection of independent or
cooperative learning and appropriate Markov state models.

Index Terms—Self-organizing networks, HetNets, reinforce-
ment learning, Markov decision process.

I. INTRODUCTION
ELF-ORGANIZATION is a key feature as cellular
networks densify and become more heterogeneous,

through the additional small cells such as pico and
femtocells [2]-[6]. Self-organizing networks (SONs) can per-
form self-configuration, self-optimization and self-healing.
These operations can cover basic tasks such as configuration
of a newly installed base station (BS), resource management,
and fault management in the network [7]. In other words,
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SONs attempt to minimize human intervention where they
use measurements from the network to minimize the cost of
installation, configuration and maintenance of the network.
In fact SONs bring two main factors in play: intelligence and
autonomous adaptability [2], [3]. Therefore, machine learning
techniques can play a major role in processing underutilized
sensory data to enhance the performance of SONs [8], [9].
One of the main responsibilities of SONS is to configure the
transmit power at various small BSs to manage interference.
In fact, a small BS needs to configure its transmit power
before joining the network (as self-configuration). Subse-
quently, it needs to dynamically control its transmit power
during its operation in the network (as self-optimization).
To address these two issues, we consider a macrocell network
overlaid with small cells and focus on autonomous distributed
power control, which is a key element of self-organization
since it improves network throughput [10]-[14] and minimizes
energy usage [15]-[17]. We rely on local measurements, such
as signal-to-interference-plus-noise ratio (SINR), and the use
of machine learning to develop a SON framework that can
continually improve the above performance metrics.

A. Related Work

In wireless communications, dynamic power control with
the use of machine learning has been implemented via rein-
forcement learning (RL). In this context, RL is an area of
machine learning that attempts to optimize a BS’s transmit
power to achieve a certain goal such as throughput maxi-
mization. One of the main advantages of RL with respect to
supervised learning methods is its training phase, in which
there is no need for correct input/output data. In fact, RL oper-
ates by applying the experience that it has gained through
interacting with the network [18]. RL methods have been
applied in the field of wireless communications in areas such
as resource management [19]-[24], energy harvesting [25],
and opportunistic spectrum access [26], [27]. A comprehensive
review of RL applications in wireless communications can be
found in [28].

Q-learning is a model-free RL method [29]. The model-free
feature of Q-learning makes it a proper method for scenarios
in which the statistics of the network continuously change.
Further, Q-learning has low computational complexity and
can be implemented by BSs in a distributed manner [1].
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Therefore, Q-learning can bring scalability, robustness, and
computational efficiency to large networks. However, design-
ing a proper reward function which accelerates the learning
process and avoids false learning or unlearning phenom-
ena [30] is not trivial. Therefore, to solve an optimization
problem, an appropriate reward function for Q-learning needs
to be determined.

In this regard, the works in [19]-[24] have proposed dif-
ferent reward functions to optimize power allocation between
femtocell base stations (FBSs). The method in [19] uses
independent Q-learning in a cognitive radio system to set the
transmit power of secondary BSs in a digital television system.
The solution in [19] ensures that the minimum quality of ser-
vice (QoS) for the primary user is met by applying Q-learning
and using the SINR as a metric. However, the approach
in [19] does not take the QoS of the secondary users into
considerations. The work in [20] uses cooperative Q-learning
to maximize the sum transmission rate of the femtocell users
while keeping the transmission rate of macrocell users near
a certain threshold. Further, the authors in [21] have used
the proximity of FBSs to a macrocell user as a factor in
the reward function. This results in a fair power allocation
scheme in the network. Their proposed reward function keeps
the transmission rate of the macrocell user above a certain
threshold while maximizing the sum transmission rate of
FBSs. However, by not considering a minimum threshold for
the FBSs’ rates, the approach in [21] fails to support some
FBSs as the density of the network (and consequently inter-
ference) increases. The authors in [22] model the cross-tier
interference management problem as a non-cooperative game
between femtocells and the macrocell. In [22], femtocells use
the average SINR measurement to enhance their individual
performances while maintaining the QoS of the macrocell
user. In [23], the authors attempt to improve the transmission
rate of cell-edge users while keeping the fairness between the
macrocell and the femtocell users by applying a round robin
approach. The work in [24] minimizes power usage in a Long
Term Evolution (LTE) enterprise femtocell network by apply-
ing an exponential reward function without the requirement to
achieve fairness amongst the femtocells in the network.

In the above works, the reward functions do not apply to
dense networks. That is to say, first, there is no minimum
threshold for the achievable rate of the femtocells. Second,
the reward functions are designed to limit the macrocell user
rate to its required QoS and not more than that. This property
encourages an FBS to use more power to increase its own
rate by assuming that the caused interference just affects the
macrocell user. However, the neighbor femtocells suffer from
this decision and overall the sum rate of the network decreases.
Further, they do not provide a generalized framework for
modeling a HetNet as a multi-agent RL network or a procedure
to design a reward function which meets the QoS requirements
of the network. In this paper, we focus on dense networks and
try to provide a general solution to the above challenges.

B. Contributions

We propose a learning framework based on multi-agent
Markov decision process (MDP). By considering an FBS as
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an agent, the proposed framework enables FBSs to join and
adapt to a dense network autonomously. Due to unplanned and
dense deployment of femtocells, providing the required QoS
to all the users in the network becomes an important issue.
Therefore, we design a reward function that trains the FBSs
to achieve this goal. Furthermore, we introduce a Q-learning
based distributed power allocation approach (Q-DPA) as an
application of the proposed framework. Q-DPA uses the
proposed reward function to maximize the transmission rate
of femtocells while prioritizing the QoS of the macrocell
user. More specifically the contributions of the paper can be
summarized as:

1) We propose a framework that is agnostic to the choice
of learning method but also connects the required RL
analogies to wireless communications. The proposed
framework models a multi-agent network with a single
MDP that contains the joint action of the all the agents
as its action set. Next, we introduce MDP factorization
methods to provide a distributed and scalable architec-
ture for the proposed framework. The proposed frame-
work is used to benchmark the performance of different
learning rates, Markov state models, or reward functions
in two-tier wireless networks.

2) We present a systematic approach for designing a reward
function based on the optimization problem and the
nature of RL. In fact, due to scarcity of resources in
a dense network, we propose some properties for a
reward function to maximize sum transmission rate of
the network while considering minimum requirements of
all users. The procedure is simple and general and the
designed reward function is in the shape of low complex-
ity polynomials. Further, the designed reward function
results in increasing the achievable sum transmission
rate of the network while consuming considerably less
power compared to greedy based algorithms.

3) We propose Q-DPA as an application of the proposed
framework to perform distributed power allocation in a
dense femtocell network. Q-DPA uses the factorization
method to derive independent and cooperative learning
from the optimal solution. Q-DPA uses local signal mea-
surements at the femtocells to train the FBSs in order
to: (i) maximize the transmission rate of femtocells,
(i) achieve minimum required QoS for all femtocell
users with a high probability, and (iii) maintain the QoS
of macrocell user in a densely deployed femtocell net-
work. In addition, we determine the minimum number
of samples that is required to achieve an e-optimal policy
in Q-DPA as its sample complexity.

4) We introduce four different learning configurations
based on different combinations of indepen-
dent/cooperative learning and Markov state models.
We conduct extensive simulations to quantify the effect
of different learning configurations on the performance
of the network. Simulations show that the proposed
Q-DPA algorithm can decrease power usage and as a
result reduce the interference to the macrocell user.

The paper is organized as follows. In Section II, the system
model is presented. Section III introduces the optimization
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Macrocell and femtocells operating over the same frequency band.

problem and presents the existing challenges in solving this
problem. Section IV presents the proposed learning framework
which models a two-tier femtocell network with a multi-agent
MDP. Section V-A presents the Q-DPA algorithm as an
application of the proposed framework. Section VI presents
the simulation results while Section VII concludes the paper.

Notation: Lower case, boldface lower case, and calligraphic
symbols represent scalars, vectors, and sets, respectively. For
a real-valued function ) : Z — R, ||Q]| denotes the max
norm, i.e., |Q] = mag |Q (2)|- Ex [], Ex [-]-], and % denote
the expectation, thé conditional expectation, and the partial
derivation with respect to z, respectively. Further, Pr (-|-) and
| - | denote the conditional probability and absolute value
operators, respectively.

II. DOWNLINK SYSTEM MODEL

Consider the downlink of a single cell of a HetNet operating
over a set S = {1,...,S} of S orthogonal subbands. In the
cell a single macro base station (MBS) is deployed. The
MBS serves one macrocell user equipment (MUE) over each
subband while guaranteeing this user a minimum average
SINR over each subband which is denoted by I'g. A set of
FBSs are deployed in area of coverage of the macrocell. Each
FBS selects a random subband and serves one femtocell user
equipment (FUE). We assume that overall, on each subband
seS,aset C={1,...,K} of K FBSs are operating. Each
FBS guarantees a minimum average SINR denoted by I, to its
related FUE. We consider a dense network in which the density
results in both cross-tier and co-tier interference. Therefore,
in order to control the interference-level and provide the
users with their required minimum SINR, we focus on power
allocation in the downlink of the femtocell network. Uplink
results can be obtained in a similar fashion but are not included
for brevity. The overall network configuration is presented
in Fig. 1. We focus on one subband, meanwhile the proposed
solution can be extended to a case in which each FBS supports
multiple users on different subbands.

We denote the MBS-MUE pair by the index 0 and the
FBS-FUE pairs by the index k£ from the set K. In the
downlink, the received signal at the MUE operating over
subband s includes interference from the femtocells and
thermal noise. Hence, the SINR at the MUE operating over
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where pg denotes the power transmitted by the MBS and R o
denotes the channel gain from the MBS to the MUE. Further,
the power transmitted by the kth FBS is denoted by p; and
the channel gain from the kth FBS to the MUE is denoted
by hy,0. Finally, Ny denotes the variance of the additive white
Gaussian noise. Similarly, the SINR at the kth FUE operating
over subband s € S, 7y, is obtained as

il k|?

+ Z pj|hj,k|2 + Ny,
JER\{k}

femtocells’ interference

Ve = )

polho.k|?
——

macrocell’s interference

where hy, j, denotes the channel gain between the kth FBS and
the kth FUE, hg j denotes the channel gain between the MBS
and the kth FUE, p; denotes the transmit power of the jth FBS,
hj 1 is the channel gain between the jth FBS and the kth FUE,
and Vi, is the variance of the additive white Gaussian noise.
Finally, the transmission rates, normalized by the transmission
bandwidth, at the MUE and the FUE operating over subband
s € S, ie., ro and ry, respectively, are expressed as 1o =
logs (1 +70) and 7 = log, (1 +7%), k € K.

II1. PROBLEM FORMULATION

Each FBS has the objective of maximizing its transmission
rate while ensuring that the SINR of the MUE is above the
required threshold, i.e., I'g. Denoting p = {p1,...,px } as the
vector of the transmit powers of the K FBSs operating over
the subband s € S, the power allocation problem is presented
as follow

maximize Z logy (1 + k) (3a)
kex

subject to 0 < p < Prmax, kK € K (3b)

Yo = To (3¢)

=Ty, kek (3d)

where p,,q, defines the maximum available transmit power
at each FBS. The objective 3(a) is to maximize the sum
transmission rate of the FUEs. Constraint 3(b) refers to the
power limitation of every FBS. Constraints 3(c) and 3(d)
ensure that the minimum SINR requirement is satisfied for
the MUE and the FUEs. The addition of constraint 3(d) to the
optimization problem is one of the differences between the
proposed approach in this paper and that of [19]—[24].
Considering (2), it can be concluded that the optimization
in (3) is a non-convex problem for dense networks. This
follows from the SINR expression in (2) and the objective
function 3(a). More specifically, the interference term due to
the neighboring femtocells in the denominator of (2) ensures
that the optimization problem in 3 is not convex [31]. This
interference term may be ignored in low density networks
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but cannot be ignored in dense networks consisting of a
large number of femtocells [32]. However, non-convextiy is
not the only challenge of the above problem. In fact, many
iterative algorithms are developed to solve the above opti-
mization problem with excellent performance. However, their
algorithms contains expensive computations such as matrix
inversion and bisection or singular value decomposition in
each iteration which makes their real-time implementation
challenging [33]. Besides, the kth FBS is only aware of its own
transmit power, pg, and does not know the transmit powers of
the remaining FBSs. Therefore, the idea here is to treat the
given problem as a black-box and try to learn the relation
between the transmit power and the resulting transmission
rate gradually by interacting with the network and simple
computations.

To realize self-organization, each FBS should be able to
operate autonomously. This means an FBS should be able to
connect to the network at anytime and to continuously adapt
its transmit power to achieve its objectives. Therefore, our
optimization problem requires a self-adaptive solution. The
steps for achieving self-adaptation can be summarized as:
(i) the FBS measures the interference level at its related
FUEs, (ii) determines the maximum transmit power to support
its FUEs while not greatly degrading the performance of
other users in the network. In the next section, the required
framework to solve this problem will be presented.

IV. THE PROPOSED LEARNING FRAMEWORK

Here, first we model a multi-agent network as an MDP. Then
the required definitions, evaluation methods, and factorization
of the MDP to develop a distributed learning framework are
explained. Subsequently, the femtocell network is modeled as
a multi-agent MDP and the proposed learning framework is
developed.

A. Multi-Agent MDP and Policy Evaluation

A single-agent MDP comprises an agent, an environment,
an action set, and a state set. The agent can transition
between different states by choosing different actions. The
trace of actions that is taken by the agent is called its policy.
With each transition, the agent will receive a reward from
the environment, as a consequence of its action, and will
save the discounted summation of rewards as a cumulative
reward. The agent will continue its behavior with the goal of
maximizing the cumulative reward and the value of cumulative
reward evaluates the chosen policy. The discount property
increases the impact of recent rewards and decreases the effect
of later ones. If the number of transitions is limited, the non-
discounted summation of rewards can be used as well.

A multi-agent MDP consists of a set, K, of K
agents. The agents select actions to move between differ-
ent states of the model to maximize the cumulative reward
received by all the agents. Here, we again formulate the
network of agents as one MDP, e.g., we define the action set as
the joint action set of all the agents. Therefore, the multi-agent
MDP framework is defined with a tuple as (A, X', Pr, R) with
the following definitions.
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o A is the joint set of all the agents’ actions. An agent k
selects its action a from its action set Ay, i.e., ap € Ap.
The joint action set is represented as A = A; X - - - X A,
with a € A as a single joint action.

o The state of the system is defined with a set of random
variables. Each random variable is represented by X; with
1 = 1,...,n, and the state set is represented as X =
{X1,Xs,...,X,}, where x € X denotes a single state
of the system. Each random variable reflects a specific
feature of the network.

o The transition probability function, Pr(x,a,x’), repre-
sents the probability of taking joint action a at state x
and ending in state x’. In other words, the transition
probability function defines the environment which agents
are interacting with.

o R (x,a) is the reward function such that its value is the
received reward by the agents for taking joint action a at
state x.

We define 7 : X — A as the policy function, where 7 (x) is
the joint action that is taken at the state x. In order to evaluate
the policy 7 (x), a value function V;; (x) and an action-value
function Q, (x,a) are defined. The value of the policy 7 in
state x’ € X is defined as [18]

Va (x) = Br |30 8RO 5O = x| @)
t=0

in which 3 € (0, 1] is a discount factor, R(**+1) is the received
reward at time step ¢ + 1, and x(©) is the initial state. The
action-value function, Q, (x,a), represents the value of the
policy 7 for taking joint action a at state x and then fol-
lowing policy 7 for subsequent iterations. According to [18],
the relation between the value function and the action-value
function is given by

Q- (x,a) =R (x,a) + Z Pr(x'|x,a) V; (X). (5)
x'eX

For the ease of notation, we will use V' and Q for the
value function and the action-value function of policy ,
respectively. Further, we use the term Q-function to refer to
the action-value function. The optimal value of state x is the
maximum value that can be reached by following any policy
and starting at this state. An optimal value function V*, which
gives an optimal policy 7", satisfies the Bellman optimality
equation as [18]

V*(x) = max Q" (x,a), 6)

where Q* (x,a) is an optimal Q-function under policy 7*.
The general solution for (6) is to start from an arbitrary
policy and using the generalized policy iteration (GPI) [18]
method to iteratively evaluate and improve the chosen policy
to achieve an optimal policy. If the agents have a priori infor-
mation of the environment, i.e., Pr (x,a,x’) is known to the
agents, dynamic programming is the solution for (6). However,
the environment is unknown in most practical applications.
Hence, we rely on reinforcement learning (RL) to derive an
optimal Q-function. RL uses temporal-difference to provide
a real-time solution for the GPI method [18]. As a result,
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in Section V-A, we use Q-learning, as a specific method of RL,
to solve (6).

B. Factored MDP

To this point, we defined the Q-function over the joint
state-action space of all the agents, i.e., X x A. We refer to
this Q-function as the global Q-function. According to [29],
Q-learning finds the optimal solution to a single MDP with
probability one. However, in large MDPs, due to exponential
increase in the size of the joint state-action space with respect
to the number of agents, the solution to the problem becomes
intractable. To resolve this issue, we use factored MDPs as a
decomposition technique for large MDPs. The idea in factored
MDPs is that many large MDPs are generated by systems
with many parts that are weakly interconnected. Each part
has its associated state variables and the state space can be
factored into subsets accordingly. The definition of the subsets
affects the optimality of the solution [34], and investigating
the optimal factorization method helps with understanding the
optimality of multi-agent RL solutions [35]. In [36] power
control of a multi-hop network is modeled as an MDP and
the state set is factorized into multiple subsets each referring
to a single hop. The authors in [37] show that the subsets
can be defined based on the local knowledge of the agents
from the environment. Meanwhile, we aim to distribute the
power control to the nodes of the network. Therefore, due
to the definition of the problem in Section III and the fact
that each FBS is only aware of its own power, we use the
assumption in [37] and define the individual action set of
the agents, i.e., A, as the subsets of the joint action set.
Consequently, the resultant Q-function for the kth agent is
defined as Qy (x,ax), in which ap € Ay, xi € X is the
state vector of the kth agent, and X}, k € I, are the subsets
of the global state set of the system, i.e., X.

In factored MDPs, We assume that the reward function is
factored based on the subsets, i.e.,

R (x,a) = ZR’“ (XK, ak) , @)
ke

where, Ry (xj,ar) is the local reward function of the
kth agent. Moreover, we also assume that the transition
probabilities are factored, i.e., for the kth subsystem we have

Pr (x}|x,a) = Pr (x},|xx, ar) , (x,a) € X x A,
(xk,ak) e X x .Ak, X;C e X. (8)

The value function for the global MDP is given by

V(x) = E [fj BRI (x, a>]

t=0
=K [Z ﬂt Z RI(:JFI) (Xk, akx)‘|
t=0 ke
= Vi(xx), ©)
kex

where, Vj, (xy) is the value function of the kth agent. There-
fore, the derived policy has the value function equal to the
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Agent (FBS)
(§=D}

State Action(power level)

Transmission

Reward

Signal

Environment
(Macrocell + other Femtocells)

Fig. 2. The proposed learning framework: the environment from the point
of view of an agent (FBS), and its interaction with the environment in the
learning procedure. Context defines the data needed to derive the state of
the agent. Measurement refers to calculations needed to derive the reward of
the agent.

linear combination of local value functions. Further, according
to (5), for each agent k €

Qk (Xk, ar) = Ry (xx, ax)+8 Y Pr () |xx, ax) Vi (x},) ,

Xk

(10)
and for the global Q-function

Q(x,a)
=R(x,a)+4 ) Pr(x[x,a)V(x)
x'eX
=3 Ri(xkar)+ 8 Y Pr(x|x,a) Y Vi(xx)

kel x'eX kel

= ZRk (xk,ak)—i—ﬁz Z Pr(x}|x, a) Vi (xk)

ke ke x|, € X,

=Y Ri(xpar) +8) > Pr(xgfx,ar) Vi (xi)

ke keEK x' € Xy,

= > Qx (xk,ax).

ke

(1)

Therefore, based on the assumptions in (7) and (8), the global
Q-function can be approximated with the linear combination
of local Q-functions. Further, (11) results in a distributed and
scalable architecture for the framework.

C. Femtocell Network as Multi-Agent MDP

In a wireless communication system, the resource manage-
ment policy is equivalent to the policy function in an MDP.
To integrate the femtocell network in a multi-agent MDP,
we define the followings according to Fig. 2.

o Environment: From the view point of an FBS, the envi-

ronment is comprised of the macrocell and all other
femtocells.
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o Agent: Each FBS is an independent agent in the MDP.
In this paper, the terms of agent and FBS are used inter-
changeably. An agent has three objectives: (i) improving
its sum transmission rate, (ii) guaranteeing the required
SINR for its user (i.e., ['y,), and (iii) meeting the required
SINR for the MUE.

o Action set (Ay): The transmit power level is the action
of an FBS. The kth FBS chooses its transmit power from
the set .4;, which covers the space between p,;, and p,....
Pmin and p,.. denote the minimum and maximum trans-
mit power of the FBS, respectively. In general, the FBS
has no knowledge of the environment and it chooses its
actions with the same probability in the training mode.
Therefore, equal step sizes of Ap are chosen between
Pmin and pmaeq to construct the set Ay.

o State set (X};): State set directly affects the performance
of the MUE and the FUEs. To this end, we define four
variables to represent the state of the network. The state
set variables are defined based on the constraints of
the optimization problem in 3. We define the variables
X, and X5 as indicators of the performance of the FUE
and the MUE. On the other hand, the relative location of
an FBS with respect to the MUE and the MBS is impor-
tant and affects the interference power at the MUE caused
by the FBS, and the interference power at the FBS causes
by the MBS. Therefore, we define X3 as an indicator of
the interference imposed on the MUE by the FBS, and X
as an indicator of interference imposed on the femtocell
by the MBS. The state variables are defined as

- X; €{0,1}: The value of X; indicates whether the
FBS is supporting its FUE with the required
minimum SINR or not. X; 1is defined as
X1 = ]l{’YkZFk}'

- X5 €{0,1}: The value of X5 indicates whether the
MUE is being supported with its required minimum
SINR or not. X5 is defined as X5 = ]l{wzpo}.

- X3 € {0,1,2,...,Ny}: The value of X35 defines
the location of the FBS compared to N7 concentric
rings around the MUE. The radius of rings are d,
da, ..., dn,.

- Xy € {0,1,2,..., Na}: The value of X, defines
the location of the FBS compared to No concentric
rings around the MBS. The radius of rings are d},
dy, ...y dly,.

The kth FBS calculates 7, based on the channel
equality indicator (CQI) received from its related FUE
to assess X;. The MBS is aware of the SINR of the
MUE user, i.e., 7o, and the relative location of the FBS
concerning itself and the MUE. Therefore, the FBS
obtains the required information to asses the X5, X3, and
X, variables via backhaul and feedback from the MBS.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 8, AUGUST 2019

Here, we defined the state variables as a function of
each FBS’s SINR and location. Therefore, in high
SINR regime, the state of FBSs can be assumed to be
independent of each other.

In Section VI, we will examine different possible state
sets to investigate the effect of the above state variables
on the performance of the network.

V. Q-DPA, REWARD FUNCTION,
AND SAMPLE COMPLEXITY

In this section, we present Q-DPA, which is an applica-
tion of the proposed framework. Q-DPA details the learning
method, the learning rate, and the training procedure. Then,
the proposed reward function is defined. Finally, the required
sample complexity for the training is derived.

A. Q-Learning Based Distributed Power Allocation (Q-DPA)

To solve the Bellman equation in (6), we use Q-learning.
The reasoning for choosing the RL method and advantages of
Q-learning are explained in Sections IV-A and I-A, respec-
tively. The Q-learning update rule to evaluate a policy for
the global Q-function can be represented as (12), shown at
the bottom of this page, where a’ € A, a® (x,a) denotes
the learning rate at time step ¢, and x(*t1) is the new state
of the network [29]. The term M is the maximum value
of the global Q-function that is available at the new state
x(*+1) | After each iteration, the FBSs will receive the delayed
reward RUFD (x( a(®) and then the global Q-function will
be updated according to (12).

In the prior works [19]-[21], [23], [24], a constant learning
rate was used for Q-learning to solve the required optimization
problems. However, according to [38], in finite number of
iterations, the performance of Q-learning can be improved
by applying a decaying learning rate. Therefore, we use the
following learning rate

1

"= G

(13)
in which ¢ (x,a) refers to the number of times, until time
step t, that the state-action pair (x,a) is visited. It is worth
mentioning that, by using the above learning rate, we need to
keep track of the number of times each state-action pair has
been visited during training, which requires more memory.
Therefore, at the cost of more memory, a better performance
can be achieved.

There are two alternatives available for the training of new
FBSs as they join the network, they can use independent
learning or cooperative learning. In independent learning, each
FBS tries to maximize its own Q-function. In other words,

Q(x,a%) — Qi) +a (ea) | RO (x0,20) + fmax Qux,2) ~Q(x,a)

(12)

(M)
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using the factorization method in Section IV-B, the term M

in (12) is approximated as
M = maXZQk Zmax Qk( tHa %)
keic
(14)

t+1 /

ke

In cooperative learning, the FBSs share their local Q-functions
and will assume that the FBSs with the same state make the
same decision. Hence, term M is approximated as

M = maXZQ NmaXZQ((tJrl ,),

kex "k kek

t+1)

15)

where K’ is the set of FBSs with the same state x(tH).

Cooperative Q-learning may result in a higher cumulatwe
reward [39]. However, cooperation will result in the same
policy for FBSs with the same state and additional overhead
since the Q-functions between FBSs need to be shared over the
backhaul network. The local update rule for the kth FBS can
be derived from (12) as in (16), shown at the bottom of this
page, where, R(‘T1) (x,(;), a,(:)) is the reward of the kth FBS,
and aj; is defined as

Qi (i, ah) a7
argarknax k ( ak)
and
(t+1)
arg max E Qx ( ,ak) , (18)

aj, ke’

for independent and cooperative learning, respectively.

In this paper, a tabular representation is used for the
Q-function in which the rows of the table refer to the states
and the columns refer to the actions of an agent. Generally, for
large state spaces, neural networks are more efficient to use as
Q-functions, however, part of this work is focused on the effect
of state space variables. Therefore, we avoid large number
of state variables. On the other hand, we provide exhaustive
search solution to investigate the optimality of our solution
which is not possible for large state spaces.

The training for an FBS happens over L frames. In the
beginning of each frame, the FBS chooses an action, i.e., trans-
mit power. Then, the FBS sends a frame to the intended FUE.
The FUE feeds back the required measurements such as CQI
so the FBS can estimate the SINR at the FUE, and calculate
the reward based on (24). Finally, the FBS updates its Q-table
according to (16).

Due to limited number of training frames, each FBS needs
to select its actions in a way that covers most of the action
space and improves the policy at the same time. Therefore,
the FBS chooses the actions with a combination of exploration
and exploitation, known as an e-greedy exploration. In the
e-greedy method, the FBS acts greedily with probability
1 — e (i.e., exploiting) and randomly with probability e
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(i.e., exploring). In exploitation, the FBS selects an action
that has the maximum value in the current state in its own
Q-table (independent learning) or in the summation of Q-tables
(cooperative learning). In exploring, the FBS selects an action
randomly to cover action space and avoid biasing to a local
maximum. In [18], it is shown that for a limited number of
iterations the e-greedy policy results in a closer final value to
the optimal value compared to only exploiting or exploring.

It is worth mentioning that the overhead of sharing Q-tables
depends on the definition of the state model X}, according to
Section IV-C. For instance, assuming the largest possible state
model as X, = {X1, X2, X3, X4}. The variables X3 and X,
depend on the location of the FBS and are fixed during
training. Therefore, one training FBS uses four rows of its
Q-table and just needs the same rows from other FBSs. Hence,
if the number of active FBSs is
to the FBS in each training frame is 4 x (|[C| — 1), each of
size |Ag|.

B. Proposed Reward Function

The design of the reward function is essential because it
directly impacts the objectives of the FBS. Generally, there
has not existed a quantitative approach to designing the reward
function. Here, we present a systematic approach for deriving
the reward function based on the nature of the optimization
problem under consideration. Then, we compare the behavior
of the designed reward function to the ones in [19]-[21].

The reward function for the kth FBS is represented as Ry.
According to the Section IV-C, the kth FBS has knowledge
of the minimum required SINR for the MUE, i.e. I'y, and
minimum required SINR for its related FUE, i.e. I'y. Also,
after taking an action in each step, the kth FBS has access to
the rate of the MUE, i.e. rg and the rate of its related FUE,
i.e. 7. Therefore, R}, is considered as a function of the above
four variables as Ry, : (o, 7, Lo, k) — R.

In order to design the appropriate reward function, we need
to estimate the progress of the kth FBS toward the goals of
the optimization problem. Based on the input arguments to
the reward function, we define two progress estimators, one
for the MUE as (ro — log, (1 +T'g)) and one for the kth FUE
as (ry — logy (14 T'x)). To reduce computational complexity,
we define the reward function as a polynomial function of the
defined progress estimators as

Ry, = (ro—logy (14T0))" +(ri.—log, (14+T'%))"*+C, (19)

where, k1 and ko are integers and C' € R is a constant referred
to as the bias of the reward function.

The constant bias, C, in the reward function has two effects
on the learning algorithm: (i) The final value of the states for
a given policy 7, and (ii) the behavior of the agent in the
beginning of the learning process as follows:

1) Effect of bias on the final value of the states: Assume

the reward function, R; = f (-), and the reward function

Qux, ) = Qi o) +al (R (50"} + 5 (V.0 ) — Quxi, ).

(16)
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Ry = f(-)+ C, C € R. We define the value of state x
for a given policy 7 using Ry as Vj (x) and the value
of the state x for the same policy using Rs as Vs (x).
According to (4), we have

Vs (X) —E, Zﬁf (f(t-H) () + C)
t=0
=B, | Y BV +C) 8
t=0 t=0
=V (x)+ % (20)

Therefore, bias of the reward function adds the constant

value % to the value of the states. However, all the
states are affected the same after the convergence of the
algorithm.

2) Effect of bias in the beginning of the learning process:
This effect is studied using the action-value function
of an agent, i.e., the Q-function. Assume that the
Q-function of the agent is initialized with zero values
and the reward function is defined as R = f(-) + C.
Further let us consider the first transition of the agent
from state x’ to state x”/ happens by taking action a at
time step ¢, i.e., x(*) = x’ and x(**1) = x”. The update
rule at time step ¢ is given by (16) as in (21), shown at
the bottom of this page, According to the above, after
the first transition from the state x’ to the state x”,
the Q-value for the state x’ is biased by the term (A).
If (A > 0), the value of the state x’ increases and if
(A < 0), the value of the state x’ decreases. Therefore,
the already visited states will be more or less attractive
to the agent in the beginning of the learning process
as long as the agent has not explored the state-space

enough.
The change of behavior of the agent in the learning process can

be used to bias the agent towards the desired actions or states.
However, in basic Q-learning the agent has no knowledge in
prior about the environment. Therefore, we select the bias
equal to zero, C = 0, and define the reward function as
follows.

Definition 1: The reward function for the kth FBS, Ry :
(ro,7%,00,Tx) — R, is a continuous and differentiable
function on R? defined as (22), shown at the bottom of this
page, where ky and ko, are integers.

The objective of the FBS is to maximize its transmission
rate. On the other hand, high transmission rate for the MUE
is a priority for the FBS. Therefore, Rj should have the
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following property
ORy,

87‘1

>0, i=0,k.

(23)

The above property implies that higher transmission rate
for the FBS or the MUE results in higher reward. Hence,
considering Definition 1, we design a reward function that
motivates the FBSs to increase 7 and ro as much as possible
even more than the required rate as follow

Rie=(ro—logy (14T0))*" "+ (ri—log, (1+T:))*™ ", (24)

where m is an integer. The above reward function considers the
minimum rate requirements of the FUE and the MUE, while
encourages the FBS to increase transmission rate of both.

To further understand the proposed reward function, we dis-
cuss reward functions that are used by [19]-[21]. We refer to
the designed reward function in [19] as quadratic, in [20] as
exponential, and in [21] as proximity reward functions. The
quadratic reward function is designed based on a conservative
approach. In fact, the FBS is enforced to select actions that
result in transmission rate close to the minimum requirement.
Therefore, higher or lower rate than the minimum requirement
results in a same amount of reward. The behavior of the
quadratic reward function can be explained as follow

ORy,
87“1‘

The above property implies that if the rate of the FBS or the
MUE is higher than the minimum requirement, the actions that
increase the rate will decrease the reward. Hence, this property
is against increasing sum transmission rate of the network. The
exponential and proximity reward functions have the property
in (23) for the rate of the FBS, and the property in (25) for the
rate of the MUE. In another words, they satisfy the following
properties

X (r; —logy (1+1)) <0, i=0k  (25)

OR
kLI (ro —logy, (1 +T)) <0,
87“0
ORy
ks

o 0. (26)
As the density of the FBSs increases, the above properties
result in increasing transmit power to achieve higher individual
rate for a FUE while introducing higher interference for the
MUE and other neighbor FUEs. In fact, as increasing the FUE
rate is rewarded, taking actions that result in increasing the
MUE rate decreases the reward. However, the FBS should have
the option of decreasing its transmit power to increase the rate
of the MUE. This behavior is important since it causes an FBS
to produce less interference for its neighboring femtocells.

Q¥ a) = Q(x,a)+al (x,a) (R(x',a ) + 8 max Q (x",a') = Q') @
—a® (X' a) (f (-) + 6 max Q (x",a')) +a® (X' a)C.
’ (A)
Ry, (ro, 75, T0, ) = (1o — logy (1 + To))* + (r1, — logy (1 4+ Tx))* (22)
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Fig. 3. Reward functions: (a) proposed reward function with m = 2, (b) quadratic reward function with zero maximum at (4.0, 0.5), (c) exponential reward

function, (d) proximity reward function.

Therefore, we give equal opportunity for increasing the rate
of the MUE or the FUE.

The value of reward functions for different FBSs is different,
however they have the same behavior. Here, we plot the value
of the four reward functions that are discussed above. The plots
refers to the proposed (Fig. 3(a), quadratic (Fig. 3(b), expo-
nential (Fig. 3(c), and proximity (Fig. 3(d) reward functions.
The important information that can be obtained from these
plots are the maximal points of the reward functions, behavior
of the reward functions around minimum requirements, and
behavior of the reward functions by increasing 7, or rg. The
proposed reward function in Fig. 3(a) shows pushing the FBS
to select transmit power levels that increase both r; and g,
while other reward functions have their maximum around the
minimum rate requirements.

C. Sample Complexity

In each training frame, Q-DPA collects one sample from
the environment represented as the state-action pair in the
Q-function. Sample complexity is defined as the minimum
number of samples that is required to train the Q-function
to achieve an e-optimal policy. For ¢ > 0 and § € (0,1], 7 is
an e-optimal policy if [40]

Pr(|Q" - Q| <e)>1-4. 27)

The sample complexity depends on the exploration policy that
is generating the samples. In Q-DPA, e-greedy policy is used
as the exploration policy. However, e-greedy policy depends
on the Q-function of the agent which is being updated.
In fact, the distribution of e-greedy policy is unknown. Here,
we provide a general bound on the sample complexity of
Q-learning.

Proposition 1: Assume R,,,; is the maximum of the
reward function for an agent and Q™) is the action-value
for state-action pair (z,a) after T iterations. Then, with
probability at least 1 — §, we have

2 Riax I3 2 2|X||A

* _ oD 2 2
-etl= Ty ta-e VT T |
(28)
Proof: See Appendix A. U

This proposition proves the stability of Q-learning and helps
us to provide a minimum number of iterations to achieve

10m

b 8B 8|8

10m

FUE % L} 2 2 L}
£ [!j MUE
-

Uil

Fig. 4. Dense urban scenario with a dual strip apartment block located
at distance of 350 m of the MBS; FUEs are randomly located inside each
apartment.

10m

€ > 0 error with respect to Q* with probability 1 — § for

each state-action pair. By assuming the right term of the above

inequality as e, the following Corollary is concluded.
Corollary 1: For any e > 0, after

8R3na:c 1 2|X||Ak|
n

e (1-p)° s

(29)

number of iterations, Q) reaches e-optimality with probabil-
ity at least 1 — 4.

VI. SIMULATION RESULTS

The objective of this section is to validate the performance
of the Q-DPA algorithm with different learning configurations
in a dense urban scenario. We first introduce the simulation
setup and parameters. Then, we introduce four different learn-
ing configurations and we analyze the trade-offs between them.
Finally, we investigate the performance of the Q-DPA with
different reward functions introduced in Section V-B. For the
sake of simplicity, we use the notation IL as independent
learning and CL as cooperative learning.

A. Simulation Setup

We use a dense urban scenario as the setup of the simulation
as illustrated in Fig. 4. We consider one macrocell with radius
350 m which supports multiple MUEs. The MBS assigns a
subband to each MUE. Each MUE is located within a block
of apartments and each block contains two strip of apartments.
Each strip has five apartments of size 10 mx10 m. There
is one FBS located in the middle of each apartment which
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TABLE I
URBAN DUAL STRIP PATHLOSS MODEL

Link PL(dB)
MBS to MUE 15.3 + 37.61og,, R .
MBS to FUE 15.3 + 37.6l0g,o R + Low -

FBS to FUE (same apt strip)
FBS to FUE (different apt strip)

56.76 + 20 10g10 R+ 0.7d2D,indoor s
maz(15.3 + 37.6log;, R, 38.46 + 201og,, R) + 18.3 4+ 0.7d2D,indoor + Low-

TABLE II
SIMULATION PARAMETERS

Default parameters Value State parameters Value

Frame time 2 ms dy,dy, d 50, 150, 400 m

UE thermal noise -174 dBm/Hz d4,d>,d3 17.5, 22.5, 45 m
Traffic model Fullbuffer

FBS parameters Value Q-DPA parameters Value

Pimin 5 dBm Training period (iterations) L T x |X|.|.Ax| frames
Dinax 15 dBm Learning parameter /3 0.9

Ap 1 dBm Exploratory probability (e) 10%

supports an FUE within a 5 m distance. We assume that the
FUEs are always inside the apartments. The FBSs are closed-
access, therefore, the MUE is not able to connect to any FBS,
however, it receives interference from the FBSs working on
the same subband as itself.

Here, we assume that the MUE and all the FBSs work
on the same sub-carriers to consider the worst case scenario
(high interference scenario). However, the extension of the
simulation to the multi-carrier scenario is straight forward but
does not affect our investigations. We assume the block of
apartments is located on the edge of the macrocell, i.e., 350 m
distance from the MBS, and the MUE is assumed to be in
between the two strip of apartments.

In these simulations, in order to initiate the state variables
X3 and X4 in Section IV-C, the number of rings around the
MBS and the MUE are assumed to be three (N7 = Ny = 3).
Although, as the density increases, more rings with smaller
diameters can be used to more clearly distinguish between
the FBSs.

It is assumed that the FBSs and the MBS operate at
f =2.0 GHz. The MBS allocates 33 dBm as its transmit
power, and the FBSs choose their transmit power from a range
of 5 dBm to 15 dBm with power steps of 1 dB. In order
to model the pathloss, we use the urban dual strip model
from 3GPP TR 36.814 [41]. The pathloss model of different
links are provided in Table I. In Table I, R is the distance
between a transmitter and a receiver in meters, L, 1is the
wall penetration loss which is set to 20 dB [41]. d2p indoor
is the 2-dimensional distance. We assume that the apartments
are single floor, therefore, dap indoor ~ R. The fourth row of
the pathloss models is used for the links between the FBSs
and the MUE.

The minimum SINR requirements for the MUE and the
FUE:s are defined based on the required rate needed to support

their corresponding user. In our simulations, the minimum
required transmission rate to meet the QoS of the MUE is
assumed to be 4 (b/s/Hz), i.e., logy(1 4+ T'y) = 4 (b/s/Hz).
Moreover, for the FUEs the minimum required rate is set
to 0.5 (b/s/Hz), i.e, logy(1 + T'x) = 0.5 (b/s/Hz), k € K.
It is worth mentioning that by knowing the media access
control (MAC) layer parameters, the values of the required
rates can be calculated using [42, Egs. (20) and (21)].

To perform Q-learning, the minimum number of required
frames, i.e., L, is calculated based on achieving 90% opti-
mality, with probability of at least 0.9, i.e., § = 0.1. The
simulation parameters are given in Table II. The value of the
Q-learning parameters are selected according to our simula-
tions and references [19]-[24].

The simulation starts with one femtocell. The FBS starts
running Q-DPA in Section V-A using IL. After convergence,
the next FBS is added to the network. The new FBS runs
Q-DPA, while the other FBS is already trained, and will just
act greedy to choose its transmit power. After convergence
of the second FBS, the next one is added to the network,
and so on. We represent all the results versus the number of
active femtocells in the system, from one to ten. Considering
the size of the apartment block, and the assumption that all
femtocells operate on the same frequency range, the density
of deployment varies approximately from 600 FBS/km? to
6000 FBS/km?.

B. Performance of Q-DPA

Here, we show the simulation results of distributed power
allocation with Q-DPA. First, we define two different state
sets. The sets are defined as X3 = {X;, X3, X4} and Xy =
{X2, X3, X4}. In both sets, FBSs are aware of their relative
location to the MUE and the MBS due to the presence of
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X3 and Xy, respectively. The state set X; gives knowledge of
the status of the FUE to the FBS, and the state set X5 provides
knowledge of the status of the MUE to the FBS.

In order to understand the effect of independent and coop-
erative learning, and the effect of different state sets, we use
four different learning configurations as: independent learning
with each of the two state sets as IL+AX} and IL+X5, and
cooperative learning with each of the two state sets as CL+4
and CL+A&%5. The results are compared with greedy approach
in which each FBS chooses maximum transmit power. The
simulation results are shown in three figures as: transmission
rate of the MUE (Fig. 5a), sum transmission rate of the FUEs
(Fig. 5b), and sum transmit power of the FBSs (Fig. 5c).

According to Fig. 5Sc, in the greedy algorithm, each FBS
uses the maximum available power for transmission. There-
fore, the greedy method introduces maximum interference for
the MUE and has the lowest MUE transmission rate in Fig. 5a.
On the other hand, despite using maximum power, the greedy
algorithm does not achieve highest transmission rate for the
FUEs either (Fig. 5b). This is again due to the high level of
interference.

©

Performance of different learning configurations: (a) transmission rate of the MUE, (b) sum transmission rate of the FUEs, (c) sum transmit power

The state set X5 provides knowledge of MUE’s QoS status
to the learning FBSs. Therefore, as we see in Fig. 5a, the per-
formance of IL with X is higher than the ones with AX;. This
statement is true for CL too. We can see the reverse of this
conclusion in the FUEs’ sum transmission rate in Fig. Sb.
The performance of IL with A; is higher than IL with A%.
This is because the FBSs are aware of the status of the FUE,
therefore, they consider actions that result in the state variable
X1 = ¥y, >r,) to be 1. This is true in comparison of the
states in CL too. In conclusion, the state set X; works in
favor of femtocells and the state set X5 benefits the MUE.

We conclude from the simulation results that IL and CL
present different trade-offs. More specifically, IL supports
a higher sum transmission rate for the FBSs and a lower
transmission rate for the MUE, while CL can support a higher
transmission rate for the MUE at the cost of an overall lower
sum transmission rate for the FBSs. From a power consump-
tion point of view, IL results in a higher power consumption
when compared to that of CL. In general, IL trains an FBS to
be selfish compared to CL. IL can be very useful when there
is no means of communication between the agents. On the
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Fig. 6. Performance of the proposed reward function compared to quadratic, exponential and proximity reward functions: (a) transmission rate of the MUE,

(b) sum transmission rate of the FUEs, (c) sum transmit power of the FBSs.

TABLE III

PERFORMANCE OF DIFFERENT LEARNING CONFIGURATIONS.
1 IS THE BEST, AND 4 IS THE WORST

Learning configuration > . pr > 7% To
L+, 4 1 4
CL+A] 3 3 3
IL+AX, 2 2 2
CL+A, 1 4 1

other hand, CL trains an FBS to be more considerate about
other FBSs at the cost of communication overhead.

In Table III, we have compared the performance of the four
learning configurations. In each column, number 1 is used
as a metric to refer to the highest performance achieved and
number 4 is used to refer to the lowest performance observed.
The first column represents the summation of transmit powers
of FBSs, the second column indicates the summation of
transmission rates of the FUEs, and the third column denotes
the transmission rate of the MUE.

C. Reward Function Performance

Here, we compare the performance of the four reward
functions discussed in Section V-B. Since the objective is to
maximize the sum transmission rate of the FUEs, according
to Table III, we choose the combination IL+ X} as the learn-
ing configuration. The performance of the reward functions
are provided as the MUE transmission rate Fig. 6(a), sum
transmission rate of the FUEs Fig. 6(b), and sum transmission
power of the FBSs Fig. 6(c). In each figure, the solution
of the optimization problem with exhaustive search and the
performance of greedy method are provided. The exhaustive
search provides us with the highest achievable sum transmis-
sion rate for the network. The quadratic, exponential, and
proximity reward functions result in fast decaying of MUE
transmission rate, while the proposed reward function results
in a much slower decrease of the rate for the MUE. The
proposed reward function manages to achieve a higher sum
transmission rate compared to that of the other three reward
functions as well. Fig. 6(c) indicates that the proposed reward
function reduces the sum transmitted power at the FBSs which
in turn could result in lower levels of interference at the
FUE:s. In comparison with the exhaustive search solution as the
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optimal solution, there is a gap of performance. For instance
according to Fig. 6(c), for eight number of FBSs, the proposed
reward function uses an average of 50 mWatt less sum transmit
power than the optimal solution. However, as we see in Fig.
6(b) and Fig. 6(a), by using more power, the sum transmission
rate can be improved and the transmission rate of the MUE
can be decreased to the level of exhaustive solution without
violating its minimum required rate. In our future works,
we wish to cover this gap by using neural networks as the
function approximator of the learning method.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a learning framework for a two-tier
femtocell network. The framework enables addition of a new
femtocell to the network, while the femtocell trains itself to
adapt its transmit power to support its serving user while
protecting the macrocell user. On the other hand, the pro-
posed method as a distributed approach can solve the power
optimization problem in dense HetNets, while significantly
reducing power usage. The proposed framework is generic
and motivates the design of machine learning based SONs
for management schemes in femtocell networks. Besides,
the framework can be used as a bench test for evaluating
the performance of different learning configurations such as
Markov state models, reward functions and learning rates.
Further, the proposed framework can be applied to other
interference-limited networks such as cognitive radio networks
as well.

In future work, it would be interesting to consider
mmWave-enabled femtocells in the present setup. In fact,
the high pathloss and shadowing along with the vulnerability
of mmWave directional signals to the blockages impacts
the learning outcome [43]. This will in turn affect the
subsequent power optimization problem. In addition, as we
discussed in simulation section in details, there is a perfor-
mance gap between the proposed approach and the exhaustive
search. Although, the proposed approach results in less compu-
tational complexity; we wish to improve and cover this gap by
utilizing neural networks as the function approximator of the
learning method. In fact, neural networks can handle the large
state-action spaces more efficiently. Moreover, another future
complementary work to achieve a higher sum data rate and fill
the performance gap would be to feed the interference model
of the network to the factorization process. This way, a better
factorization can be provided for the global Q-function.

APPENDIX A
PROOF OF PROPOSITION 1
Proof: Assume an MDP represented as (X, A,
Pr (y|x,a),r (z,a)), a policy w with value-function V; : X —

R and Q-function @, : Z — R, Z = X x A. Here, A refers to
action space of one agent and k is the iteration index. Accord-
ing to (4), the maximum of the value-function can be fined as
Vinaw = 1?2‘; The Bellman optimality operator is defined as

(TQ) (,a) = 7 (w,a)+ B Y cx Pr (yle, ) max Q (y, b). TQ
is a contraction operator with factor 3, i.e., ||TQ — TQ'|| <
BlQ — Q|| and Q* is a unique fixed-point of (TQ) (z,a),
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V (x,a) € Z. Further, for the ease of notation and readability
the time step notation is slightly changed as @y, refers to the
action-value function after & iterations.

Assume that the state-action pair (z,a) is visited k times
and Fj, = {y1, Y2, ..., yr } are the visiting next states. At time
step k + 1, the update rule of Q-learning is

Qi1 (x,a) = (1 —ap) Qk (z,a) + T Qx (2, a),

where, T;Q is the empirical Bellman operator defined as
TvQx (z,a) = 7 (z,a) + ﬁr}flgf Q (yg,b). (From this point,
for simplicity, we remove the dependency on (z,a)). It is
easy to show that F [T;Qr] = TQy, therefore, we define e
as the estimation error of each iteration as e, = TpQr — TQk.
By using oy = k—}rl, the update rule of Q-learning can be
written as

(30)

Qry1 = (kQr + TQk + ex) . (3D

1
k+1
Now, in order to prove Proposition 1, we need to state the
following lemmas.

Lemma 1: For any k > 1, we have

1 1 k—1 k—1
,=%Z %<ZTQ¢+Z@>. 32)
1=0 1=0

Proof: We prove this lemma by induction. The lemma
holds for £k =1 as Q1 = ToQo = TQo + eg. We now show
that if the result holds for k, then it also holds for & -+ 1.
From (31) we have

1
+k+1(TQk+€k)

<Z TQi + Z €z> + k—+1 (TQk + ex)

=0

1

Thus (32) holds for £ > 1 by induction. ]
Lemma 2: Assume that initial action-value function,
Qo, is uniformly bounded by V.. Then, for all £ > 1 we
have || Qx| < Vinae and [|Q" — Qkll < 2 Vinga-
Proof: We first prove that ||Qk|| < Viuee by induction.
The inequality holds for £k =1 as

Q1] = [ITo Qoll

= ||r+ﬂmaXQ0H S H?“” +ﬂ”QOH S Rmam +ﬂvmax
= Vmam~

QkJrl = Qk

k+1
k
k+1

P?'I'—‘

Now, we assume that for 1 < i < k, ||Qk|| < Vinaz holds.
First, [TxQxll = [Ir + Bmax Qx| < ||I7]| + Bllmax Qx| <

Riaz + BVimaz = Vinaz. Second, from Lemma 1 we have

k k
1
TiQif| < —— T: Qi £ Vinaz-
>rai <y Inel

Therefore, the inequality holds for k¥ > 1 by induction. Now
the bound on [|Q* — Q|| follows [|Q" —Qx || < |Q[[+[| Qx| <
2Vimaz- O

1Qk+1ll = Pl
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Lemma 3: Assume that initial
Qo, is uniformly bounded by V4., then, for any k£ > 1

k—1

+% Zei

=0

25Vmax
k(1-0)

Proof: From Lemma 1, we have

1 k—1 k—1
i (Treexe
=0 =0
k— k—1

1 . 1
:EZ( Q —TQi)—Ezer

i=0 =0

Q" — Qull <

Q" — Qk

Therefore, we can write

k—1
lQ* QM\<— }j@
>

Zez

Qill < B'1Q*

TQ* ~1Q)| +

L ||tﬁw

IN

TQ™ — TQ;| +

(]

T
,_.o

IN
wlm e

HQ* Qill +

and according to [44], ||Q* —
using Lemma 2, we can write

10— Qull < 23 Z 2 Vi +

S
1 k—1
3

< Qﬁvmax
S k(1-7)

action-value function,

(33)

— Qol|- Hence,

O

Now, we prove Proposition 1 by using the above result in
Lemma 3. To this aim, we need to provide a bound on the norm
of the summation of errors in the inequality of Lemma 3. First,

we can write

HEe| -

For the estimation error sequence {eg,eq, - -
the property that E [ey|Fr_1] =

x |2 e

(gc a)EZ

, ek}, we have
0 which means that the

error sequence is a martingale difference sequence with

respect to Fp.

{eo, €1, -
we can write

k—1 2
P i t] <2 .
N ENE exp<8kv2 )

=0 max

Therefore, according to Hoeffding-Azuma
inequality [45] for a martingale difference sequence of
, €x—1} which is bounded by 2V/,,4., for any ¢ > 0,

Therefore, by a union bound over the state-action space,

we have

k—1 )
4
Pr E eil| >t ] <2|X|.| Al exp <8kVT3mm> =,

=0
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and then,

Zez < Vmaz “ k 2|X| |A| Z 1-6.

Hence, with probability at least 1 — & we can say

2 Rpax Ié] 2 2|X|.|A
Q" — Qxll < +4/ - In——
el =G ram VR
Consequently, the result in Proposition 1 is proved. g
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