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Abstract— Self-organizing networks (SONs) can help to
manage the severe interference in dense heterogeneous net-
works (HetNets). Given their need to automatically config-
ure power and other settings, machine learning is a promising
tool for data-driven decision making in SONs. In this paper,
a HetNet is modeled as a dense two-tier network with conven-
tional macrocells overlaid with denser small cells (e.g. femto
or pico cells). First, a distributed framework based on the
multi-agent Markov decision process is proposed that models the
power optimization problem in the network. Second, we present
a systematic approach for designing a reward function based
on the optimization problem. Third, we introduce Q-learning-
based distributed power allocation algorithm (Q-DPA) as a
self-organizing mechanism that enables the ongoing transmit
power adaptation as new small cells are added to the net-
work. Furthermore, the sample complexity of the Q-DPA algo-
rithm to achieve ǫ-optimality with high probability is provided.
We demonstrate, at the density of several thousands femtocells
per km2, the required quality of service of a macrocell user
can be maintained via the proper selection of independent or
cooperative learning and appropriate Markov state models.

Index Terms— Self-organizing networks, HetNets, reinforce-
ment learning, Markov decision process.

I. INTRODUCTION

S
ELF-ORGANIZATION is a key feature as cellular

networks densify and become more heterogeneous,

through the additional small cells such as pico and

femtocells [2]–[6]. Self-organizing networks (SONs) can per-

form self-configuration, self-optimization and self-healing.

These operations can cover basic tasks such as configuration

of a newly installed base station (BS), resource management,

and fault management in the network [7]. In other words,
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SONs attempt to minimize human intervention where they

use measurements from the network to minimize the cost of

installation, configuration and maintenance of the network.

In fact SONs bring two main factors in play: intelligence and

autonomous adaptability [2], [3]. Therefore, machine learning

techniques can play a major role in processing underutilized

sensory data to enhance the performance of SONs [8], [9].

One of the main responsibilities of SONs is to configure the

transmit power at various small BSs to manage interference.

In fact, a small BS needs to configure its transmit power

before joining the network (as self-configuration). Subse-

quently, it needs to dynamically control its transmit power

during its operation in the network (as self-optimization).

To address these two issues, we consider a macrocell network

overlaid with small cells and focus on autonomous distributed

power control, which is a key element of self-organization

since it improves network throughput [10]–[14] and minimizes

energy usage [15]–[17]. We rely on local measurements, such

as signal-to-interference-plus-noise ratio (SINR), and the use

of machine learning to develop a SON framework that can

continually improve the above performance metrics.

A. Related Work

In wireless communications, dynamic power control with

the use of machine learning has been implemented via rein-

forcement learning (RL). In this context, RL is an area of

machine learning that attempts to optimize a BS’s transmit

power to achieve a certain goal such as throughput maxi-

mization. One of the main advantages of RL with respect to

supervised learning methods is its training phase, in which

there is no need for correct input/output data. In fact, RL oper-

ates by applying the experience that it has gained through

interacting with the network [18]. RL methods have been

applied in the field of wireless communications in areas such

as resource management [19]–[24], energy harvesting [25],

and opportunistic spectrum access [26], [27]. A comprehensive

review of RL applications in wireless communications can be

found in [28].

Q-learning is a model-free RL method [29]. The model-free

feature of Q-learning makes it a proper method for scenarios

in which the statistics of the network continuously change.

Further, Q-learning has low computational complexity and

can be implemented by BSs in a distributed manner [1].
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Therefore, Q-learning can bring scalability, robustness, and

computational efficiency to large networks. However, design-

ing a proper reward function which accelerates the learning

process and avoids false learning or unlearning phenom-

ena [30] is not trivial. Therefore, to solve an optimization

problem, an appropriate reward function for Q-learning needs

to be determined.

In this regard, the works in [19]–[24] have proposed dif-

ferent reward functions to optimize power allocation between

femtocell base stations (FBSs). The method in [19] uses

independent Q-learning in a cognitive radio system to set the

transmit power of secondary BSs in a digital television system.

The solution in [19] ensures that the minimum quality of ser-

vice (QoS) for the primary user is met by applying Q-learning

and using the SINR as a metric. However, the approach

in [19] does not take the QoS of the secondary users into

considerations. The work in [20] uses cooperative Q-learning

to maximize the sum transmission rate of the femtocell users

while keeping the transmission rate of macrocell users near

a certain threshold. Further, the authors in [21] have used

the proximity of FBSs to a macrocell user as a factor in

the reward function. This results in a fair power allocation

scheme in the network. Their proposed reward function keeps

the transmission rate of the macrocell user above a certain

threshold while maximizing the sum transmission rate of

FBSs. However, by not considering a minimum threshold for

the FBSs’ rates, the approach in [21] fails to support some

FBSs as the density of the network (and consequently inter-

ference) increases. The authors in [22] model the cross-tier

interference management problem as a non-cooperative game

between femtocells and the macrocell. In [22], femtocells use

the average SINR measurement to enhance their individual

performances while maintaining the QoS of the macrocell

user. In [23], the authors attempt to improve the transmission

rate of cell-edge users while keeping the fairness between the

macrocell and the femtocell users by applying a round robin

approach. The work in [24] minimizes power usage in a Long

Term Evolution (LTE) enterprise femtocell network by apply-

ing an exponential reward function without the requirement to

achieve fairness amongst the femtocells in the network.

In the above works, the reward functions do not apply to

dense networks. That is to say, first, there is no minimum

threshold for the achievable rate of the femtocells. Second,

the reward functions are designed to limit the macrocell user

rate to its required QoS and not more than that. This property

encourages an FBS to use more power to increase its own

rate by assuming that the caused interference just affects the

macrocell user. However, the neighbor femtocells suffer from

this decision and overall the sum rate of the network decreases.

Further, they do not provide a generalized framework for

modeling a HetNet as a multi-agent RL network or a procedure

to design a reward function which meets the QoS requirements

of the network. In this paper, we focus on dense networks and

try to provide a general solution to the above challenges.

B. Contributions

We propose a learning framework based on multi-agent

Markov decision process (MDP). By considering an FBS as

an agent, the proposed framework enables FBSs to join and

adapt to a dense network autonomously. Due to unplanned and

dense deployment of femtocells, providing the required QoS

to all the users in the network becomes an important issue.

Therefore, we design a reward function that trains the FBSs

to achieve this goal. Furthermore, we introduce a Q-learning

based distributed power allocation approach (Q-DPA) as an

application of the proposed framework. Q-DPA uses the

proposed reward function to maximize the transmission rate

of femtocells while prioritizing the QoS of the macrocell

user. More specifically the contributions of the paper can be

summarized as:
1) We propose a framework that is agnostic to the choice

of learning method but also connects the required RL

analogies to wireless communications. The proposed

framework models a multi-agent network with a single

MDP that contains the joint action of the all the agents

as its action set. Next, we introduce MDP factorization

methods to provide a distributed and scalable architec-

ture for the proposed framework. The proposed frame-

work is used to benchmark the performance of different

learning rates, Markov state models, or reward functions

in two-tier wireless networks.

2) We present a systematic approach for designing a reward

function based on the optimization problem and the

nature of RL. In fact, due to scarcity of resources in

a dense network, we propose some properties for a

reward function to maximize sum transmission rate of

the network while considering minimum requirements of

all users. The procedure is simple and general and the

designed reward function is in the shape of low complex-

ity polynomials. Further, the designed reward function

results in increasing the achievable sum transmission

rate of the network while consuming considerably less

power compared to greedy based algorithms.

3) We propose Q-DPA as an application of the proposed

framework to perform distributed power allocation in a

dense femtocell network. Q-DPA uses the factorization

method to derive independent and cooperative learning

from the optimal solution. Q-DPA uses local signal mea-

surements at the femtocells to train the FBSs in order

to: (i) maximize the transmission rate of femtocells,

(ii) achieve minimum required QoS for all femtocell

users with a high probability, and (iii) maintain the QoS

of macrocell user in a densely deployed femtocell net-

work. In addition, we determine the minimum number

of samples that is required to achieve an ǫ-optimal policy

in Q-DPA as its sample complexity.

4) We introduce four different learning configurations

based on different combinations of indepen-

dent/cooperative learning and Markov state models.

We conduct extensive simulations to quantify the effect

of different learning configurations on the performance

of the network. Simulations show that the proposed

Q-DPA algorithm can decrease power usage and as a

result reduce the interference to the macrocell user.

The paper is organized as follows. In Section II, the system

model is presented. Section III introduces the optimization
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Fig. 1. Macrocell and femtocells operating over the same frequency band.

problem and presents the existing challenges in solving this

problem. Section IV presents the proposed learning framework

which models a two-tier femtocell network with a multi-agent

MDP. Section V-A presents the Q-DPA algorithm as an

application of the proposed framework. Section VI presents

the simulation results while Section VII concludes the paper.

Notation: Lower case, boldface lower case, and calligraphic

symbols represent scalars, vectors, and sets, respectively. For

a real-valued function Q : Z → R, ‖Q‖ denotes the max

norm, i.e., ‖Q‖ = max
z∈Z

|Q (z)|. Ex [·], Ex [·|·], and ∂f
∂x

denote

the expectation, the conditional expectation, and the partial

derivation with respect to x, respectively. Further, Pr (·|·) and

| · | denote the conditional probability and absolute value

operators, respectively.

II. DOWNLINK SYSTEM MODEL

Consider the downlink of a single cell of a HetNet operating

over a set S = {1, . . . , S} of S orthogonal subbands. In the

cell a single macro base station (MBS) is deployed. The

MBS serves one macrocell user equipment (MUE) over each

subband while guaranteeing this user a minimum average

SINR over each subband which is denoted by Γ0. A set of

FBSs are deployed in area of coverage of the macrocell. Each

FBS selects a random subband and serves one femtocell user

equipment (FUE). We assume that overall, on each subband

s ∈ S, a set K = {1, . . . , K} of K FBSs are operating. Each

FBS guarantees a minimum average SINR denoted by Γk to its

related FUE. We consider a dense network in which the density

results in both cross-tier and co-tier interference. Therefore,

in order to control the interference-level and provide the

users with their required minimum SINR, we focus on power

allocation in the downlink of the femtocell network. Uplink

results can be obtained in a similar fashion but are not included

for brevity. The overall network configuration is presented

in Fig. 1. We focus on one subband, meanwhile the proposed

solution can be extended to a case in which each FBS supports

multiple users on different subbands.

We denote the MBS-MUE pair by the index 0 and the

FBS-FUE pairs by the index k from the set K. In the

downlink, the received signal at the MUE operating over

subband s includes interference from the femtocells and

thermal noise. Hence, the SINR at the MUE operating over

subband s ∈ S, γ0, is calculated as

γ0 =
p0|h0,0|

2

∑

k∈K

pk|hk,0|
2

︸ ︷︷ ︸

femtocells’ interference

+N0

, (1)

where p0 denotes the power transmitted by the MBS and h0,0

denotes the channel gain from the MBS to the MUE. Further,

the power transmitted by the kth FBS is denoted by pk and

the channel gain from the kth FBS to the MUE is denoted

by hk,0. Finally, N0 denotes the variance of the additive white

Gaussian noise. Similarly, the SINR at the kth FUE operating

over subband s ∈ S, γk, is obtained as

γk =
pk|hk,k|

2

p0|h0,k|
2

︸ ︷︷ ︸

macrocell’s interference

+
∑

j∈K\{k}

pj |hj,k|
2

︸ ︷︷ ︸

femtocells’ interference

+Nk

, (2)

where hk,k denotes the channel gain between the kth FBS and

the kth FUE, h0,k denotes the channel gain between the MBS

and the kth FUE, pj denotes the transmit power of the jth FBS,

hj,k is the channel gain between the jth FBS and the kth FUE,

and Nk is the variance of the additive white Gaussian noise.

Finally, the transmission rates, normalized by the transmission

bandwidth, at the MUE and the FUE operating over subband

s ∈ S, i.e., r0 and rk, respectively, are expressed as r0 =
log2 (1 + γ0) and rk = log2 (1 + γk) , k ∈ K.

III. PROBLEM FORMULATION

Each FBS has the objective of maximizing its transmission

rate while ensuring that the SINR of the MUE is above the

required threshold, i.e., Γ0. Denoting p = {p1, . . . , pK} as the

vector of the transmit powers of the K FBSs operating over

the subband s ∈ S, the power allocation problem is presented

as follow

maximize
p

∑

k∈K

log2 (1 + γk) (3a)

subject to 0 ≤ pk ≤ pmax, k ∈ K (3b)

γ0 ≥ Γ0 (3c)

γk ≥ Γk, k ∈ K (3d)

where pmax defines the maximum available transmit power

at each FBS. The objective 3(a) is to maximize the sum

transmission rate of the FUEs. Constraint 3(b) refers to the

power limitation of every FBS. Constraints 3(c) and 3(d)

ensure that the minimum SINR requirement is satisfied for

the MUE and the FUEs. The addition of constraint 3(d) to the

optimization problem is one of the differences between the

proposed approach in this paper and that of [19]–[24].

Considering (2), it can be concluded that the optimization

in (3) is a non-convex problem for dense networks. This

follows from the SINR expression in (2) and the objective

function 3(a). More specifically, the interference term due to

the neighboring femtocells in the denominator of (2) ensures

that the optimization problem in 3 is not convex [31]. This

interference term may be ignored in low density networks
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but cannot be ignored in dense networks consisting of a

large number of femtocells [32]. However, non-convextiy is

not the only challenge of the above problem. In fact, many

iterative algorithms are developed to solve the above opti-

mization problem with excellent performance. However, their

algorithms contains expensive computations such as matrix

inversion and bisection or singular value decomposition in

each iteration which makes their real-time implementation

challenging [33]. Besides, the kth FBS is only aware of its own

transmit power, pk, and does not know the transmit powers of

the remaining FBSs. Therefore, the idea here is to treat the

given problem as a black-box and try to learn the relation

between the transmit power and the resulting transmission

rate gradually by interacting with the network and simple

computations.

To realize self-organization, each FBS should be able to

operate autonomously. This means an FBS should be able to

connect to the network at anytime and to continuously adapt

its transmit power to achieve its objectives. Therefore, our

optimization problem requires a self-adaptive solution. The

steps for achieving self-adaptation can be summarized as:

(i) the FBS measures the interference level at its related

FUEs, (ii) determines the maximum transmit power to support

its FUEs while not greatly degrading the performance of

other users in the network. In the next section, the required

framework to solve this problem will be presented.

IV. THE PROPOSED LEARNING FRAMEWORK

Here, first we model a multi-agent network as an MDP. Then

the required definitions, evaluation methods, and factorization

of the MDP to develop a distributed learning framework are

explained. Subsequently, the femtocell network is modeled as

a multi-agent MDP and the proposed learning framework is

developed.

A. Multi-Agent MDP and Policy Evaluation

A single-agent MDP comprises an agent, an environment,

an action set, and a state set. The agent can transition

between different states by choosing different actions. The

trace of actions that is taken by the agent is called its policy.

With each transition, the agent will receive a reward from

the environment, as a consequence of its action, and will

save the discounted summation of rewards as a cumulative

reward. The agent will continue its behavior with the goal of

maximizing the cumulative reward and the value of cumulative

reward evaluates the chosen policy. The discount property

increases the impact of recent rewards and decreases the effect

of later ones. If the number of transitions is limited, the non-

discounted summation of rewards can be used as well.

A multi-agent MDP consists of a set, K, of K
agents. The agents select actions to move between differ-

ent states of the model to maximize the cumulative reward

received by all the agents. Here, we again formulate the

network of agents as one MDP, e.g., we define the action set as

the joint action set of all the agents. Therefore, the multi-agent

MDP framework is defined with a tuple as (A,X , P r,R) with

the following definitions.

• A is the joint set of all the agents’ actions. An agent k
selects its action a from its action set Ak, i.e., ak ∈ Ak.

The joint action set is represented as A = A1×· · ·×AK ,

with a ∈ A as a single joint action.

• The state of the system is defined with a set of random

variables. Each random variable is represented by Xi with

i = 1, . . . , n, and the state set is represented as X =
{X1, X2, . . . , Xn}, where x ∈ X denotes a single state

of the system. Each random variable reflects a specific

feature of the network.

• The transition probability function, Pr (x,a,x′), repre-

sents the probability of taking joint action a at state x

and ending in state x′. In other words, the transition

probability function defines the environment which agents

are interacting with.

• R (x,a) is the reward function such that its value is the

received reward by the agents for taking joint action a at

state x.
We define π : X → A as the policy function, where π (x) is

the joint action that is taken at the state x. In order to evaluate

the policy π (x), a value function Vπ (x) and an action-value

function Qπ (x,a) are defined. The value of the policy π in

state x′ ∈ X is defined as [18]

Vπ (x′) = Eπ

[
∞∑

t=0

βtR(t+1)
∣
∣
∣x

(0) = x′

]

, (4)

in which β ∈ (0, 1] is a discount factor, R(t+1) is the received

reward at time step t + 1, and x(0) is the initial state. The

action-value function, Qπ (x, a), represents the value of the

policy π for taking joint action a at state x and then fol-

lowing policy π for subsequent iterations. According to [18],

the relation between the value function and the action-value

function is given by

Qπ (x, a) = R (x,a) + β
∑

x′∈X

Pr (x′|x,a)Vπ (x′) . (5)

For the ease of notation, we will use V and Q for the

value function and the action-value function of policy π,

respectively. Further, we use the term Q-function to refer to

the action-value function. The optimal value of state x is the

maximum value that can be reached by following any policy

and starting at this state. An optimal value function V ∗, which

gives an optimal policy π∗, satisfies the Bellman optimality

equation as [18]

V ∗ (x) = max
a

Q∗ (x,a) , (6)

where Q∗ (x,a) is an optimal Q-function under policy π∗.

The general solution for (6) is to start from an arbitrary

policy and using the generalized policy iteration (GPI) [18]

method to iteratively evaluate and improve the chosen policy

to achieve an optimal policy. If the agents have a priori infor-

mation of the environment, i.e., Pr (x, a,x′) is known to the

agents, dynamic programming is the solution for (6). However,

the environment is unknown in most practical applications.

Hence, we rely on reinforcement learning (RL) to derive an

optimal Q-function. RL uses temporal-difference to provide

a real-time solution for the GPI method [18]. As a result,
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in Section V-A, we use Q-learning, as a specific method of RL,

to solve (6).

B. Factored MDP

To this point, we defined the Q-function over the joint

state-action space of all the agents, i.e., X × A. We refer to

this Q-function as the global Q-function. According to [29],

Q-learning finds the optimal solution to a single MDP with

probability one. However, in large MDPs, due to exponential

increase in the size of the joint state-action space with respect

to the number of agents, the solution to the problem becomes

intractable. To resolve this issue, we use factored MDPs as a

decomposition technique for large MDPs. The idea in factored

MDPs is that many large MDPs are generated by systems

with many parts that are weakly interconnected. Each part

has its associated state variables and the state space can be

factored into subsets accordingly. The definition of the subsets

affects the optimality of the solution [34], and investigating

the optimal factorization method helps with understanding the

optimality of multi-agent RL solutions [35]. In [36] power

control of a multi-hop network is modeled as an MDP and

the state set is factorized into multiple subsets each referring

to a single hop. The authors in [37] show that the subsets

can be defined based on the local knowledge of the agents

from the environment. Meanwhile, we aim to distribute the

power control to the nodes of the network. Therefore, due

to the definition of the problem in Section III and the fact

that each FBS is only aware of its own power, we use the

assumption in [37] and define the individual action set of

the agents, i.e., Ak, as the subsets of the joint action set.

Consequently, the resultant Q-function for the kth agent is

defined as Qk (xk, ak), in which ak ∈ Ak, xk ∈ Xk is the

state vector of the kth agent, and Xk, k ∈ K, are the subsets

of the global state set of the system, i.e., X .

In factored MDPs, We assume that the reward function is

factored based on the subsets, i.e.,

R (x,a) =
∑

k∈K

Rk (xk, ak) , (7)

where, Rk (xk, ak) is the local reward function of the

kth agent. Moreover, we also assume that the transition

probabilities are factored, i.e., for the kth subsystem we have

Pr (x′
k|x, a) = Pr (x′

k|xk, ak) , (x,a) ∈ X ×A,

(xk, ak) ∈ Xk ×Ak, x′
k ∈ Xk. (8)

The value function for the global MDP is given by

V (x) = E

[
∞∑

t=0

βtR(t+1) (x, a)

]

= E

[
∞∑

t=0

βt
∑

k∈K

R
(t+1)
k (xk, ak)

]

=
∑

k∈K

Vk (xk) , (9)

where, Vk (xk) is the value function of the kth agent. There-

fore, the derived policy has the value function equal to the

Fig. 2. The proposed learning framework: the environment from the point
of view of an agent (FBS), and its interaction with the environment in the
learning procedure. Context defines the data needed to derive the state of
the agent. Measurement refers to calculations needed to derive the reward of
the agent.

linear combination of local value functions. Further, according

to (5), for each agent k ∈ K

Qk (xk, ak) = Rk (xk, ak)+β
∑

x
′

k

Pr (x′
k|xk, ak)Vk (x′

k) ,

(10)

and for the global Q-function

Q (x,a)

= R (x,a) + β
∑

x′∈X

Pr (x′|x,a)V (x′)

=
∑

k∈K

Rk (xk, ak) + β
∑

x′∈X

Pr (x′|x,a)
∑

k∈K

Vk (xk)

=
∑

k∈K

Rk (xk, ak) + β
∑

k∈K

∑

x
′

k
∈Xk

Pr (x′
k|x,a) Vk (xk)

=
∑

k∈K

Rk (xk, ak) + β
∑

k∈K

∑

x′∈Xk

Pr (x′
k|xk, ak) Vk (xk)

=
∑

k∈K

Qk (xk, ak) . (11)

Therefore, based on the assumptions in (7) and (8), the global

Q-function can be approximated with the linear combination

of local Q-functions. Further, (11) results in a distributed and

scalable architecture for the framework.

C. Femtocell Network as Multi-Agent MDP

In a wireless communication system, the resource manage-

ment policy is equivalent to the policy function in an MDP.

To integrate the femtocell network in a multi-agent MDP,

we define the followings according to Fig. 2.
• Environment: From the view point of an FBS, the envi-

ronment is comprised of the macrocell and all other

femtocells.
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• Agent: Each FBS is an independent agent in the MDP.

In this paper, the terms of agent and FBS are used inter-

changeably. An agent has three objectives: (i) improving

its sum transmission rate, (ii) guaranteeing the required

SINR for its user (i.e., Γk), and (iii) meeting the required

SINR for the MUE.

• Action set (Ak): The transmit power level is the action

of an FBS. The kth FBS chooses its transmit power from

the set Ak which covers the space between pmin and pmax.

pmin and pmax denote the minimum and maximum trans-

mit power of the FBS, respectively. In general, the FBS

has no knowledge of the environment and it chooses its

actions with the same probability in the training mode.

Therefore, equal step sizes of ∆p are chosen between

pmin and pmax to construct the set Ak.

• State set (Xk): State set directly affects the performance

of the MUE and the FUEs. To this end, we define four

variables to represent the state of the network. The state

set variables are defined based on the constraints of

the optimization problem in 3. We define the variables

X1 and X2 as indicators of the performance of the FUE

and the MUE. On the other hand, the relative location of

an FBS with respect to the MUE and the MBS is impor-

tant and affects the interference power at the MUE caused

by the FBS, and the interference power at the FBS causes

by the MBS. Therefore, we define X3 as an indicator of

the interference imposed on the MUE by the FBS, and X4

as an indicator of interference imposed on the femtocell

by the MBS. The state variables are defined as

– X1 ∈ {0, 1}: The value of X1 indicates whether the

FBS is supporting its FUE with the required

minimum SINR or not. X1 is defined as

X1 = �{γk≥Γk}.

– X2 ∈ {0, 1}: The value of X2 indicates whether the

MUE is being supported with its required minimum

SINR or not. X2 is defined as X2 = �{γ0≥Γ0}.

– X3 ∈ {0, 1, 2, . . . , N1}: The value of X3 defines

the location of the FBS compared to N1 concentric

rings around the MUE. The radius of rings are d1,

d2, …, dN1
.

– X4 ∈ {0, 1, 2, . . . , N2}: The value of X4 defines

the location of the FBS compared to N2 concentric

rings around the MBS. The radius of rings are d′1,

d′2, …, d′N2
.

The kth FBS calculates γk based on the channel

equality indicator (CQI) received from its related FUE

to assess X1. The MBS is aware of the SINR of the

MUE user, i.e., γ0, and the relative location of the FBS

concerning itself and the MUE. Therefore, the FBS

obtains the required information to asses the X2, X3, and

X4 variables via backhaul and feedback from the MBS.

Here, we defined the state variables as a function of

each FBS’s SINR and location. Therefore, in high

SINR regime, the state of FBSs can be assumed to be

independent of each other.

In Section VI, we will examine different possible state

sets to investigate the effect of the above state variables

on the performance of the network.

V. Q-DPA, REWARD FUNCTION,

AND SAMPLE COMPLEXITY

In this section, we present Q-DPA, which is an applica-

tion of the proposed framework. Q-DPA details the learning

method, the learning rate, and the training procedure. Then,

the proposed reward function is defined. Finally, the required

sample complexity for the training is derived.

A. Q-Learning Based Distributed Power Allocation (Q-DPA)

To solve the Bellman equation in (6), we use Q-learning.

The reasoning for choosing the RL method and advantages of

Q-learning are explained in Sections IV-A and I-A, respec-

tively. The Q-learning update rule to evaluate a policy for

the global Q-function can be represented as (12), shown at

the bottom of this page, where a′ ∈ A, α(t) (x,a) denotes

the learning rate at time step t, and x(t+1) is the new state

of the network [29]. The term M is the maximum value

of the global Q-function that is available at the new state

x(t+1). After each iteration, the FBSs will receive the delayed

reward R(t+1)
(
x(t),a(t)

)
and then the global Q-function will

be updated according to (12).

In the prior works [19]–[21], [23], [24], a constant learning

rate was used for Q-learning to solve the required optimization

problems. However, according to [38], in finite number of

iterations, the performance of Q-learning can be improved

by applying a decaying learning rate. Therefore, we use the

following learning rate

α(t) (x,a) =
1

[1 + t (x,a)]
, (13)

in which t (x,a) refers to the number of times, until time

step t, that the state-action pair (x, a) is visited. It is worth

mentioning that, by using the above learning rate, we need to

keep track of the number of times each state-action pair has

been visited during training, which requires more memory.

Therefore, at the cost of more memory, a better performance

can be achieved.

There are two alternatives available for the training of new

FBSs as they join the network, they can use independent

learning or cooperative learning. In independent learning, each

FBS tries to maximize its own Q-function. In other words,

Q(x(t),a(t)) ← Q(x(t), a(t)) + α(t) (x, a)

⎛

⎜
⎜
⎝

R(t+1)
(

x(t),a(t)
)

+ β max
a′

Q(x(t+1),a′)
︸ ︷︷ ︸

(M)

−Q(x(t), a(t))

⎞

⎟
⎟
⎠

, (12)
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using the factorization method in Section IV-B, the term M
in (12) is approximated as

M = max
a′

∑

k∈K

Qk(x
(t+1)
k , a′

k) ≈
∑

k∈K

max
a′

k

Qk

(

x
(t+1)
k , a′

k

)

.

(14)

In cooperative learning, the FBSs share their local Q-functions

and will assume that the FBSs with the same state make the

same decision. Hence, term M is approximated as

M = max
a′

∑

k∈K

Qk(x
(t+1)
k , a′

k) ≈ max
a′

k

∑

k∈K′

Qk

(

x
(t+1)
k , a′

k

)

,

(15)

where K′ is the set of FBSs with the same state x
(t+1)
k .

Cooperative Q-learning may result in a higher cumulative

reward [39]. However, cooperation will result in the same

policy for FBSs with the same state and additional overhead

since the Q-functions between FBSs need to be shared over the

backhaul network. The local update rule for the kth FBS can

be derived from (12) as in (16), shown at the bottom of this

page, where, R(t+1)
(

x
(t)
k , a

(t)
k

)

is the reward of the kth FBS,

and a∗
k is defined as

argmax
a′

k

Qk

(

x
(t+1)
k , a′

k

)

, (17)

and

arg max
a′

k

∑

k∈K′

Qk

(

x
(t+1)
k , a′

k

)

, (18)

for independent and cooperative learning, respectively.

In this paper, a tabular representation is used for the

Q-function in which the rows of the table refer to the states

and the columns refer to the actions of an agent. Generally, for

large state spaces, neural networks are more efficient to use as

Q-functions, however, part of this work is focused on the effect

of state space variables. Therefore, we avoid large number

of state variables. On the other hand, we provide exhaustive

search solution to investigate the optimality of our solution

which is not possible for large state spaces.

The training for an FBS happens over L frames. In the

beginning of each frame, the FBS chooses an action, i.e., trans-

mit power. Then, the FBS sends a frame to the intended FUE.

The FUE feeds back the required measurements such as CQI

so the FBS can estimate the SINR at the FUE, and calculate

the reward based on (24). Finally, the FBS updates its Q-table

according to (16).

Due to limited number of training frames, each FBS needs

to select its actions in a way that covers most of the action

space and improves the policy at the same time. Therefore,

the FBS chooses the actions with a combination of exploration

and exploitation, known as an e-greedy exploration. In the

e-greedy method, the FBS acts greedily with probability

1 − e (i.e., exploiting) and randomly with probability e

(i.e., exploring). In exploitation, the FBS selects an action

that has the maximum value in the current state in its own

Q-table (independent learning) or in the summation of Q-tables

(cooperative learning). In exploring, the FBS selects an action

randomly to cover action space and avoid biasing to a local

maximum. In [18], it is shown that for a limited number of

iterations the e-greedy policy results in a closer final value to

the optimal value compared to only exploiting or exploring.

It is worth mentioning that the overhead of sharing Q-tables

depends on the definition of the state model Xk according to

Section IV-C. For instance, assuming the largest possible state

model as Xk = {X1, X2, X3, X4}. The variables X3 and X4

depend on the location of the FBS and are fixed during

training. Therefore, one training FBS uses four rows of its

Q-table and just needs the same rows from other FBSs. Hence,

if the number of active FBSs is |K|, the number of messages

to the FBS in each training frame is 4 × (|K| − 1), each of

size |Ak|.

B. Proposed Reward Function

The design of the reward function is essential because it

directly impacts the objectives of the FBS. Generally, there

has not existed a quantitative approach to designing the reward

function. Here, we present a systematic approach for deriving

the reward function based on the nature of the optimization

problem under consideration. Then, we compare the behavior

of the designed reward function to the ones in [19]–[21].

The reward function for the kth FBS is represented as Rk.

According to the Section IV-C, the kth FBS has knowledge

of the minimum required SINR for the MUE, i.e. Γ0, and

minimum required SINR for its related FUE, i.e. Γk. Also,

after taking an action in each step, the kth FBS has access to

the rate of the MUE, i.e. r0 and the rate of its related FUE,

i.e. rk . Therefore, Rk is considered as a function of the above

four variables as Rk : (r0, rk, Γ0, Γk) → R.

In order to design the appropriate reward function, we need

to estimate the progress of the kth FBS toward the goals of

the optimization problem. Based on the input arguments to

the reward function, we define two progress estimators, one

for the MUE as (r0 − log2 (1 + Γ0)) and one for the kth FUE

as (rk − log2 (1 + Γk)). To reduce computational complexity,

we define the reward function as a polynomial function of the

defined progress estimators as

Rk = (r0−log2 (1+Γ0))
k1 +(rk−log2 (1+Γk))

k2 +C, (19)

where, k1 and k2 are integers and C ∈ R is a constant referred

to as the bias of the reward function.

The constant bias, C, in the reward function has two effects

on the learning algorithm: (i) The final value of the states for

a given policy π, and (ii) the behavior of the agent in the

beginning of the learning process as follows:

1) Effect of bias on the final value of the states: Assume

the reward function, R1 = f (·), and the reward function

Qk(x
(t)
k , a

(t)
k ) ← Qk(x

(t)
k , a

(t)
k ) + α(t)

(

R(t+1)
(

x
(t)
k , a

(t)
k

)

+ βQk

(

x
(t+1)
k , a∗

k

)

− Qk(x
(t)
k , a

(t)
k )

)

, (16)
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R2 = f (·) + C, C ∈ R. We define the value of state x

for a given policy π using R1 as V1 (x) and the value

of the state x for the same policy using R2 as V2 (x).
According to (4), we have

V2 (x) = Eπ

[
∞∑

t=0

βt
(

f (t+1) (·) + C
)
]

= Eπ

[
∞∑

t=0

βtf (t+1) (·)

]

+ C

∞∑

t=0

βt

= V1 (x) +
C

1 − β
. (20)

Therefore, bias of the reward function adds the constant

value C
1−β

to the value of the states. However, all the

states are affected the same after the convergence of the

algorithm.

2) Effect of bias in the beginning of the learning process:

This effect is studied using the action-value function

of an agent, i.e., the Q-function. Assume that the

Q-function of the agent is initialized with zero values

and the reward function is defined as R = f (·) + C.

Further let us consider the first transition of the agent

from state x′ to state x′′ happens by taking action a at

time step t, i.e., x(t) = x′ and x(t+1) = x′′. The update

rule at time step t is given by (16) as in (21), shown at

the bottom of this page, According to the above, after

the first transition from the state x′ to the state x′′,

the Q-value for the state x′ is biased by the term (A).

If (A > 0), the value of the state x′ increases and if

(A < 0), the value of the state x′ decreases. Therefore,

the already visited states will be more or less attractive

to the agent in the beginning of the learning process

as long as the agent has not explored the state-space

enough.
The change of behavior of the agent in the learning process can

be used to bias the agent towards the desired actions or states.

However, in basic Q-learning the agent has no knowledge in

prior about the environment. Therefore, we select the bias

equal to zero, C = 0, and define the reward function as

follows.

Definition 1: The reward function for the kth FBS, Rk :
(r0, rk, Γ0, Γk) → R, is a continuous and differentiable

function on R
2 defined as (22), shown at the bottom of this

page, where k1 and k2 are integers.

The objective of the FBS is to maximize its transmission

rate. On the other hand, high transmission rate for the MUE

is a priority for the FBS. Therefore, Rk should have the

following property

∂Rk

∂ri

≥ 0, i = 0, k. (23)

The above property implies that higher transmission rate

for the FBS or the MUE results in higher reward. Hence,

considering Definition 1, we design a reward function that

motivates the FBSs to increase rk and r0 as much as possible

even more than the required rate as follow

Rk =(r0−log2 (1+Γ0))
2m−1

+(rk−log2 (1+Γk))
2m−1

, (24)

where m is an integer. The above reward function considers the

minimum rate requirements of the FUE and the MUE, while

encourages the FBS to increase transmission rate of both.

To further understand the proposed reward function, we dis-

cuss reward functions that are used by [19]–[21]. We refer to

the designed reward function in [19] as quadratic, in [20] as

exponential, and in [21] as proximity reward functions. The

quadratic reward function is designed based on a conservative

approach. In fact, the FBS is enforced to select actions that

result in transmission rate close to the minimum requirement.

Therefore, higher or lower rate than the minimum requirement

results in a same amount of reward. The behavior of the

quadratic reward function can be explained as follow

∂Rk

∂ri

× (ri − log2 (1 + Γi)) ≤ 0, i = 0, k. (25)

The above property implies that if the rate of the FBS or the

MUE is higher than the minimum requirement, the actions that

increase the rate will decrease the reward. Hence, this property

is against increasing sum transmission rate of the network. The

exponential and proximity reward functions have the property

in (23) for the rate of the FBS, and the property in (25) for the

rate of the MUE. In another words, they satisfy the following

properties

∂Rk

∂r0
× (r0 − log2 (1 + Γ0)) ≤ 0,

∂Rk

∂rk

≥ 0. (26)

As the density of the FBSs increases, the above properties

result in increasing transmit power to achieve higher individual

rate for a FUE while introducing higher interference for the

MUE and other neighbor FUEs. In fact, as increasing the FUE

rate is rewarded, taking actions that result in increasing the

MUE rate decreases the reward. However, the FBS should have

the option of decreasing its transmit power to increase the rate

of the MUE. This behavior is important since it causes an FBS

to produce less interference for its neighboring femtocells.

Q(x′, a) ← Q(x′, a) + α(t) (x′, a )
(

R (x′, a ) + β max
a′

Q (x′′, a′) − Q(x′, a)
)

(21)

← α(t) (x′, a )
(

f (·) + β max
a′

Q (x′′, a′)
)

+ α(t) (x′, a)C
︸ ︷︷ ︸

(A)

.

Rk (r0, rk, Γ0, Γk) = (r0 − log2 (1 + Γ0))
k1 + (rk − log2 (1 + Γk))

k2 , (22)
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Fig. 3. Reward functions: (a) proposed reward function with m = 2, (b) quadratic reward function with zero maximum at (4.0, 0.5), (c) exponential reward
function, (d) proximity reward function.

Therefore, we give equal opportunity for increasing the rate

of the MUE or the FUE.

The value of reward functions for different FBSs is different,

however they have the same behavior. Here, we plot the value

of the four reward functions that are discussed above. The plots

refers to the proposed (Fig. 3(a), quadratic (Fig. 3(b), expo-

nential (Fig. 3(c), and proximity (Fig. 3(d) reward functions.

The important information that can be obtained from these

plots are the maximal points of the reward functions, behavior

of the reward functions around minimum requirements, and

behavior of the reward functions by increasing rk or r0. The

proposed reward function in Fig. 3(a) shows pushing the FBS

to select transmit power levels that increase both rk and r0,

while other reward functions have their maximum around the

minimum rate requirements.

C. Sample Complexity

In each training frame, Q-DPA collects one sample from

the environment represented as the state-action pair in the

Q-function. Sample complexity is defined as the minimum

number of samples that is required to train the Q-function

to achieve an ǫ-optimal policy. For ǫ > 0 and δ ∈ (0, 1], π is

an ǫ-optimal policy if [40]

Pr (‖Q∗ − Qπ‖ < ǫ) ≥ 1 − δ. (27)

The sample complexity depends on the exploration policy that

is generating the samples. In Q-DPA, e-greedy policy is used

as the exploration policy. However, e-greedy policy depends

on the Q-function of the agent which is being updated.

In fact, the distribution of e-greedy policy is unknown. Here,

we provide a general bound on the sample complexity of

Q-learning.

Proposition 1: Assume Rmax is the maximum of the

reward function for an agent and Q(T ) is the action-value

for state-action pair (x, a) after T iterations. Then, with

probability at least 1 − δ, we have

‖Q∗ − Q(T )‖ ≤
2 Rmax

(1 − β)

[

β

T (1 − β)
+

√

2

T
ln

2|X |.|A|

δ

]

.

(28)

Proof: See Appendix A. �

This proposition proves the stability of Q-learning and helps

us to provide a minimum number of iterations to achieve

Fig. 4. Dense urban scenario with a dual strip apartment block located
at distance of 350 m of the MBS; FUEs are randomly located inside each
apartment.

ǫ > 0 error with respect to Q∗ with probability 1 − δ for

each state-action pair. By assuming the right term of the above

inequality as ǫ, the following Corollary is concluded.

Corollary 1: For any ǫ > 0, after

T = Ω

(

8R2
max

ǫ2 (1 − β)
2 ln

2|X |.|Ak|

δ

)

(29)

number of iterations, Q(T ) reaches ǫ-optimality with probabil-

ity at least 1 − δ.

VI. SIMULATION RESULTS

The objective of this section is to validate the performance

of the Q-DPA algorithm with different learning configurations

in a dense urban scenario. We first introduce the simulation

setup and parameters. Then, we introduce four different learn-

ing configurations and we analyze the trade-offs between them.

Finally, we investigate the performance of the Q-DPA with

different reward functions introduced in Section V-B. For the

sake of simplicity, we use the notation IL as independent

learning and CL as cooperative learning.

A. Simulation Setup

We use a dense urban scenario as the setup of the simulation

as illustrated in Fig. 4. We consider one macrocell with radius

350 m which supports multiple MUEs. The MBS assigns a

subband to each MUE. Each MUE is located within a block

of apartments and each block contains two strip of apartments.

Each strip has five apartments of size 10 m×10 m. There

is one FBS located in the middle of each apartment which
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TABLE I

URBAN DUAL STRIP PATHLOSS MODEL

TABLE II

SIMULATION PARAMETERS

supports an FUE within a 5 m distance. We assume that the

FUEs are always inside the apartments. The FBSs are closed-

access, therefore, the MUE is not able to connect to any FBS,

however, it receives interference from the FBSs working on

the same subband as itself.

Here, we assume that the MUE and all the FBSs work

on the same sub-carriers to consider the worst case scenario

(high interference scenario). However, the extension of the

simulation to the multi-carrier scenario is straight forward but

does not affect our investigations. We assume the block of

apartments is located on the edge of the macrocell, i.e., 350 m

distance from the MBS, and the MUE is assumed to be in

between the two strip of apartments.

In these simulations, in order to initiate the state variables

X3 and X4 in Section IV-C, the number of rings around the

MBS and the MUE are assumed to be three (N1 = N2 = 3).

Although, as the density increases, more rings with smaller

diameters can be used to more clearly distinguish between

the FBSs.

It is assumed that the FBSs and the MBS operate at

f = 2.0 GHz. The MBS allocates 33 dBm as its transmit

power, and the FBSs choose their transmit power from a range

of 5 dBm to 15 dBm with power steps of 1 dB. In order

to model the pathloss, we use the urban dual strip model

from 3GPP TR 36.814 [41]. The pathloss model of different

links are provided in Table I. In Table I, R is the distance

between a transmitter and a receiver in meters, Low is the

wall penetration loss which is set to 20 dB [41]. d2D,indoor

is the 2-dimensional distance. We assume that the apartments

are single floor, therefore, d2D,indoor ≈ R. The fourth row of

the pathloss models is used for the links between the FBSs

and the MUE.

The minimum SINR requirements for the MUE and the

FUEs are defined based on the required rate needed to support

their corresponding user. In our simulations, the minimum

required transmission rate to meet the QoS of the MUE is

assumed to be 4 (b/s/Hz), i.e., log2(1 + Γ0) = 4 (b/s/Hz).

Moreover, for the FUEs the minimum required rate is set

to 0.5 (b/s/Hz), i.e, log2(1 + Γk) = 0.5 (b/s/Hz), k ∈ K.

It is worth mentioning that by knowing the media access

control (MAC) layer parameters, the values of the required

rates can be calculated using [42, Eqs. (20) and (21)].

To perform Q-learning, the minimum number of required

frames, i.e., L, is calculated based on achieving 90% opti-

mality, with probability of at least 0.9, i.e., δ = 0.1. The

simulation parameters are given in Table II. The value of the

Q-learning parameters are selected according to our simula-

tions and references [19]–[24].

The simulation starts with one femtocell. The FBS starts

running Q-DPA in Section V-A using IL. After convergence,

the next FBS is added to the network. The new FBS runs

Q-DPA, while the other FBS is already trained, and will just

act greedy to choose its transmit power. After convergence

of the second FBS, the next one is added to the network,

and so on. We represent all the results versus the number of

active femtocells in the system, from one to ten. Considering

the size of the apartment block, and the assumption that all

femtocells operate on the same frequency range, the density

of deployment varies approximately from 600 FBS/km2 to

6000 FBS/km2.

B. Performance of Q-DPA

Here, we show the simulation results of distributed power

allocation with Q-DPA. First, we define two different state

sets. The sets are defined as X1 = {X1, X3, X4} and X2 =
{X2, X3, X4}. In both sets, FBSs are aware of their relative

location to the MUE and the MBS due to the presence of
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Fig. 5. Performance of different learning configurations: (a) transmission rate of the MUE, (b) sum transmission rate of the FUEs, (c) sum transmit power
of the FBSs.

X3 and X4, respectively. The state set X1 gives knowledge of

the status of the FUE to the FBS, and the state set X2 provides

knowledge of the status of the MUE to the FBS.

In order to understand the effect of independent and coop-

erative learning, and the effect of different state sets, we use

four different learning configurations as: independent learning

with each of the two state sets as IL+X1 and IL+X2, and

cooperative learning with each of the two state sets as CL+X1

and CL+X2. The results are compared with greedy approach

in which each FBS chooses maximum transmit power. The

simulation results are shown in three figures as: transmission

rate of the MUE (Fig. 5a), sum transmission rate of the FUEs

(Fig. 5b), and sum transmit power of the FBSs (Fig. 5c).

According to Fig. 5c, in the greedy algorithm, each FBS

uses the maximum available power for transmission. There-

fore, the greedy method introduces maximum interference for

the MUE and has the lowest MUE transmission rate in Fig. 5a.

On the other hand, despite using maximum power, the greedy

algorithm does not achieve highest transmission rate for the

FUEs either (Fig. 5b). This is again due to the high level of

interference.

The state set X2 provides knowledge of MUE’s QoS status

to the learning FBSs. Therefore, as we see in Fig. 5a, the per-

formance of IL with X2 is higher than the ones with X1. This

statement is true for CL too. We can see the reverse of this

conclusion in the FUEs’ sum transmission rate in Fig. 5b.

The performance of IL with X1 is higher than IL with X2.

This is because the FBSs are aware of the status of the FUE,

therefore, they consider actions that result in the state variable

X1 = �{γk≥Γk} to be 1. This is true in comparison of the

states in CL too. In conclusion, the state set X1 works in

favor of femtocells and the state set X2 benefits the MUE.

We conclude from the simulation results that IL and CL

present different trade-offs. More specifically, IL supports

a higher sum transmission rate for the FBSs and a lower

transmission rate for the MUE, while CL can support a higher

transmission rate for the MUE at the cost of an overall lower

sum transmission rate for the FBSs. From a power consump-

tion point of view, IL results in a higher power consumption

when compared to that of CL. In general, IL trains an FBS to

be selfish compared to CL. IL can be very useful when there

is no means of communication between the agents. On the
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Fig. 6. Performance of the proposed reward function compared to quadratic, exponential and proximity reward functions: (a) transmission rate of the MUE,
(b) sum transmission rate of the FUEs, (c) sum transmit power of the FBSs.

TABLE III

PERFORMANCE OF DIFFERENT LEARNING CONFIGURATIONS.
1 IS THE BEST, AND 4 IS THE WORST

other hand, CL trains an FBS to be more considerate about

other FBSs at the cost of communication overhead.

In Table III, we have compared the performance of the four

learning configurations. In each column, number 1 is used

as a metric to refer to the highest performance achieved and

number 4 is used to refer to the lowest performance observed.

The first column represents the summation of transmit powers

of FBSs, the second column indicates the summation of

transmission rates of the FUEs, and the third column denotes

the transmission rate of the MUE.

C. Reward Function Performance

Here, we compare the performance of the four reward

functions discussed in Section V-B. Since the objective is to

maximize the sum transmission rate of the FUEs, according

to Table III, we choose the combination IL+X1 as the learn-

ing configuration. The performance of the reward functions

are provided as the MUE transmission rate Fig. 6(a), sum

transmission rate of the FUEs Fig. 6(b), and sum transmission

power of the FBSs Fig. 6(c). In each figure, the solution

of the optimization problem with exhaustive search and the

performance of greedy method are provided. The exhaustive

search provides us with the highest achievable sum transmis-

sion rate for the network. The quadratic, exponential, and

proximity reward functions result in fast decaying of MUE

transmission rate, while the proposed reward function results

in a much slower decrease of the rate for the MUE. The

proposed reward function manages to achieve a higher sum

transmission rate compared to that of the other three reward

functions as well. Fig. 6(c) indicates that the proposed reward

function reduces the sum transmitted power at the FBSs which

in turn could result in lower levels of interference at the

FUEs. In comparison with the exhaustive search solution as the
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optimal solution, there is a gap of performance. For instance

according to Fig. 6(c), for eight number of FBSs, the proposed

reward function uses an average of 50 mWatt less sum transmit

power than the optimal solution. However, as we see in Fig.

6(b) and Fig. 6(a), by using more power, the sum transmission

rate can be improved and the transmission rate of the MUE

can be decreased to the level of exhaustive solution without

violating its minimum required rate. In our future works,

we wish to cover this gap by using neural networks as the

function approximator of the learning method.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a learning framework for a two-tier

femtocell network. The framework enables addition of a new

femtocell to the network, while the femtocell trains itself to

adapt its transmit power to support its serving user while

protecting the macrocell user. On the other hand, the pro-

posed method as a distributed approach can solve the power

optimization problem in dense HetNets, while significantly

reducing power usage. The proposed framework is generic

and motivates the design of machine learning based SONs

for management schemes in femtocell networks. Besides,

the framework can be used as a bench test for evaluating

the performance of different learning configurations such as

Markov state models, reward functions and learning rates.

Further, the proposed framework can be applied to other

interference-limited networks such as cognitive radio networks

as well.

In future work, it would be interesting to consider

mmWave-enabled femtocells in the present setup. In fact,

the high pathloss and shadowing along with the vulnerability

of mmWave directional signals to the blockages impacts

the learning outcome [43]. This will in turn affect the

subsequent power optimization problem. In addition, as we

discussed in simulation section in details, there is a perfor-

mance gap between the proposed approach and the exhaustive

search. Although, the proposed approach results in less compu-

tational complexity; we wish to improve and cover this gap by

utilizing neural networks as the function approximator of the

learning method. In fact, neural networks can handle the large

state-action spaces more efficiently. Moreover, another future

complementary work to achieve a higher sum data rate and fill

the performance gap would be to feed the interference model

of the network to the factorization process. This way, a better

factorization can be provided for the global Q-function.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: Assume an MDP represented as (X ,A,
Pr (y|x, a) , r (x, a)), a policy π with value-function Vπ : X →
R and Q-function Qπ : Z → R, Z = X×A. Here, A refers to

action space of one agent and k is the iteration index. Accord-

ing to (4), the maximum of the value-function can be fined as

Vmax = Rmax

1−β
. The Bellman optimality operator is defined as

(TQ) (x, a) � r (x, a)+β
∑

y∈X Pr (y|x, a)max
b∈A

Q (y, b). TQ

is a contraction operator with factor β, i.e., ‖TQ − TQ′‖ ≤
β‖Q − Q′‖ and Q∗ is a unique fixed-point of (TQ) (x, a),

∀ (x, a) ∈ Z . Further, for the ease of notation and readability

the time step notation is slightly changed as Qk refers to the

action-value function after k iterations.

Assume that the state-action pair (x, a) is visited k times

and Fk = {y1, y2, . . . , yk} are the visiting next states. At time

step k + 1, the update rule of Q-learning is

Qk+1 (x, a) = (1 − αk) Qk (x, a) + αkTkQk (x, a) , (30)

where, TkQk is the empirical Bellman operator defined as

TkQk (x, a) � r (x, a) + βmax
b∈A

Q (yk, b). (From this point,

for simplicity, we remove the dependency on (x, a)). It is

easy to show that E [TkQk] = TQk, therefore, we define ek

as the estimation error of each iteration as ek = TkQk −TQk.

By using αk = 1
k+1 , the update rule of Q-learning can be

written as

Qk+1 =
1

k + 1
(kQk + TQk + ek) . (31)

Now, in order to prove Proposition 1, we need to state the

following lemmas.

Lemma 1: For any k ≥ 1, we have

Qk =
1

k

k−1∑

i=0

TiQi =
1

k

(
k−1∑

i=0

TQi +
k−1∑

i=0

ei

)

. (32)

Proof: We prove this lemma by induction. The lemma

holds for k = 1 as Q1 = T0Q0 = TQ0 + e0. We now show

that if the result holds for k, then it also holds for k + 1.

From (31) we have

Qk+1 =
k

k + 1
Qk +

1

k + 1
(TQk + ek)

=
k

k + 1

1

k

(
k−1∑

i=0

TQi +

k−1∑

i=0

ei

)

+
1

k + 1
(TQk + ek)

=
1

k + 1

(
k∑

i=0

TQi +

k∑

i=0

ei

)

.

Thus (32) holds for k ≥ 1 by induction. �

Lemma 2: Assume that initial action-value function,

Q0, is uniformly bounded by Vmax. Then, for all k ≥ 1 we

have ‖Qk‖ ≤ Vmax and ‖Q∗ − Qk‖ ≤ 2 Vmax.

Proof: We first prove that ‖Qk‖ ≤ Vmax by induction.

The inequality holds for k = 1 as

‖Q1‖ = ‖T0 Q0‖

= ‖r + β maxQ0‖ ≤ ‖r‖ + β‖Q0‖ ≤ Rmax + βVmax

= Vmax.

Now, we assume that for 1 ≤ i ≤ k, ‖Qk‖ ≤ Vmax holds.

First, ‖TkQk‖ = ‖r + β maxQk‖ ≤ ‖r‖ + β‖maxQk‖ ≤
Rmax + βVmax = Vmax. Second, from Lemma 1 we have

‖Qk+1‖ =
1

k + 1

∥
∥
∥
∥
∥

k∑

i=0

TiQi

∥
∥
∥
∥
∥
≤

1

k + 1

k∑

i=0

‖TiQi‖ ≤ Vmax.

Therefore, the inequality holds for k ≥ 1 by induction. Now

the bound on ‖Q∗−Qk‖ follows ‖Q∗−Qk‖ ≤ ‖Q∗‖+‖Qk‖ ≤
2Vmax. �
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Lemma 3: Assume that initial action-value function,

Q0, is uniformly bounded by Vmax, then, for any k ≥ 1

‖Q∗ − Qk‖ ≤
2βVmax

k (1 − β)
+

1

k

∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥

. (33)

Proof: From Lemma 1, we have

Q∗ − Qk = Q∗ −
1

k

(
k−1∑

i=0

TQi +
k−1∑

i=0

ei

)

=
1

k

k−1∑

i=0

(TQ∗ − TQi) −
1

k

k−1∑

i=0

ei.

Therefore, we can write

‖Q∗ − Qk‖ ≤
1

k

∥
∥
∥
∥
∥

k−1∑

i=0

(TQ∗ − TQi)

∥
∥
∥
∥
∥

+
1

k

∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥

≤
1

k

k−1∑

i=0

‖TQ∗ − TQi‖ +
1

k

∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥

≤
β

k

k−1∑

i=0

‖Q∗ − Qi‖ +
1

k

∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥

.

and according to [44], ‖Q∗ − Qi‖ ≤ βi‖Q∗ − Q0‖. Hence,

using Lemma 2, we can write

‖Q∗ − Qk‖ ≤
β

k

k−1∑

i=0

2βiVmax +
1

k

∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥

≤
2βVmax

k (1 − β)
+

1

k

∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥

.

�

Now, we prove Proposition 1 by using the above result in

Lemma 3. To this aim, we need to provide a bound on the norm

of the summation of errors in the inequality of Lemma 3. First,

we can write

1

k

∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥

= 1
k

max
(x,a)∈Z

∣
∣
∣
∑k−1

i=0 ei

∣
∣
∣ .

For the estimation error sequence {e0, e1, · · · , ek}, we have

the property that E [ek|Fk−1] = 0 which means that the

error sequence is a martingale difference sequence with

respect to Fk. Therefore, according to Hoeffding-Azuma

inequality [45] for a martingale difference sequence of

{e0, e1, · · · , ek−1} which is bounded by 2Vmax, for any t > 0,

we can write

Pr

(∣
∣
∣
∣
∣

k−1∑

i=0

ei

∣
∣
∣
∣
∣
> t

)

≤ 2 exp

(
−t2

8kV 2
max

)

.

Therefore, by a union bound over the state-action space,

we have

Pr

(∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥

> t

)

≤ 2|X |.|A| exp

(
−t2

8kV 2
max

)

= δ,

and then,

Pr

(

1

k

∥
∥
∥
∥
∥

k−1∑

i=0

ei

∥
∥
∥
∥
∥
≤ Vmax

√

8

k
ln

2|X |.|A|

δ

)

≥ 1 − δ.

Hence, with probability at least 1 − δ we can say

‖Q∗ − Qk‖ ≤
2 Rmax

(1 − β)

[

β

k (1 − β)
+

√

2

k
ln

2|X |.|A|

δ

]

.

Consequently, the result in Proposition 1 is proved. �
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