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Abstract—Low-density parity check (LDPC) codes have been
extensively applied in mobile communication systems due to
their excellent error correcting capabilities. However, their broad
adoption has been hindered by the high complexity of the LDPC
decoder. Although to date, dedicated hardware has been used
to implement low latency LDPC decoders, recent advancements
in the architecture of mobile processors have made it possible
to develop software solutions. In this paper, we propose a multi-
stream LDPC decoder designed for a mobile device. The proposed
decoder uses graphics processing unit (GPU) of a mobile device
to achieve efficient real-time decoding. The proposed solution is
implemented on an NVIDIA Tegra board as a system on a chip
(SoC), where our results indicate that we can control the load on
the central processing units through the multi-stream structure.

Index Terms—Parallel and Distributed Algorithms, Multipro-
cessor Architectures, LDPC Decoder, GPU Processing.

I. INTRODUCTION

Low-density parity check (LDPC) codes were originally
proposed by Robert Gallager in 1962 [1] and rediscovered
by MacKay and Neal in 1996 [2]. LDPC codes have been
adopted by a wide range of communication standards such
as IEEE 802.11n, 10 Gigabit Ethernet (IEEE 802.3an), Long
Term Evolution (LTE), and DVB-S2. Chung and Richard-
son [3] showed that a class of LDPC codes could approach
the Shannon limit to within 0.0045 dB. However, the error
correcting strength of LDPC codes comes at the cost of very
high decoding complexity [4]. Moreover, to date, there are
no closed-form solutions to determine the performance of
LDPC codes in various wireless channels and systems. Thus,
performance evaluation is typically carried out via simulations
on computers or dedicated hardwares [5].

Since LDPC decoders are computationally-intensive and
need powerful computer architectures to result in low latency
and high throughput, to date, most LDPC decoders are imple-
mented using application-specific integrated circuits (ASIC) or
field-programmable gate array (FPGA) circuits [6]. However,
their high speed often comes at a price of high development
cost and low programming flexibility [7]. Further, it is very
challenging to design decoder hardware that supports various
standards and multiple data rates [8]. Decoding of LDPC codes
is implemented via belief propagation also known as sum-
product algorithm (SPA). One advantage of iterative schemes
based on the SPA is that it could be parallelized based on
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the architecture of the code graph [3]. In recent years, re-
searchers have used multi-core architectures such as CPUs [9],
[10], graphics processing units (GPUs) [5], [11], [12], and
advanced RISC machines (ARMs) [10], [13] to develop high
throughput and low latency software-defined radio (SDR)
applications. Therefore, designers have recently focused on
software implementations of LDPC decoders on multi/many-
core devices [11] to meet the performance requirements of
current communication systems.

In microarchitectures, increasing clock frequencies to obtain
faster processing performance has reached the limits of silicon-
based architectures. Hence, to achieve gains in processing
performance, other techniques based on parallel processing
is being investigated [4]. Todays’ multi-core architectures
support single instruction multiple data (SIMD), single pro-
gram multiple data (SPMD), and single instruction multiple
threads (SIMT). The general purpose multi-core processors
homogeneously replicate a single core, typically with an x86
instruction set, and provide shared memory hardware mecha-
nisms [11]. Such multi-core structures can be programmed at a
high level by using different software technologies [14] such
as Open Multi-Processing (OpenMP) [15] which provides a
practical and relatively straightforward approach for general-
purpose programming. On the other hand, newer microarchi-
tectures are trying to provide larger SIMD units for vector pro-
cessing like streaming SIMD extensions (SSE), advanced vec-
tor extensions (AVX), and AVX2 [16] on Intel Architectures.
In [4], the authors have used Intel SSE/AVX2 SIMD units
to implement a high throughput LDPC decoder efficiently.
Meanwhile, the power consumption of x86 implementations
is incompatible with most of the embedded mobile systems,
which makes them useful for simulation purposes only.

Over the last decade, the performance of GPUs has signifi-
cantly improved mainly due to the demands for visualization
technology in the gaming industry. Recent GPUs are composed
of many cores which are driven by considerable memory
bandwidth. Therefore, they are also being targeted for solv-
ing computationally intensive algorithms in a multithreaded
and highly parallel fashion. Hence, researchers in the high-
performance computing field are applying GPUs to general-
purpose applications (GPGPU). Pertaining to the field of com-
munication, researchers have used Compute Unified Device
Architecture (CUDA) from NVIDIA [5], [8], [12], [17], [18]
and Open Computing Language (OpenCL) [19] platforms
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to develop LDPC decoders on GPUs. As an example, the
authors in [17] have achieved almost 1 Gbps of decoding
throughput for LDPC codes on GPU devices. Although these
works can achieve extremely high throughputs, their latency
beyond seconds, their high power consumption, and their cost
make them incompatible with embedded mobile devices. The
devices of the end users usually have limited access to a large
power source. As such, these devices must operate on limited
resources as small processors, tiny memory, and low power
budget. In other words, the limited available resources must
be used most effectively and efficiently.

ARM-based SDR systems have been proposed in recent
years [10], [13] with the goal of developing an SDR based
LDPC decoder that provides high throughput and low latency
on a low-power embedded system. The authors in [13] have
used the ARM processor’s SIMD and SIMT programming
models to implement an LDPC decoder. This approach al-
lows reaching high throughput while maintaining low-latency.
However, the proposed ARM-based solution in [13] is based
on the assumption that the ARM processor is solely used for
LDPC decoding. However, mobile devices need to support
multiple applications simultaneously, and the processing re-
sources cannot be extensively dedicated to the LDPC decoder.
Moreover, recent works in SDR LDPC embedded systems are
missing the fact that today’s mobile devices have powerful
CUDA enabled GPUs which can play a significant role as a
computing resource in an embedded system.

This paper proposes a GPU-based LDPC decoder for an
embedded device. The structure of the proposed decoder is
based on multiple data streams which first makes it scalable
to other architectures, and second, the process imposed by
the decoding can be controlled by choosing the appropriate
number of data streams that are sent to the GPU device.
Moreover, since the ARM and GPU of an embedded device
are collocated on the same die, the latency issues associated
with a GPU implementation is limited.

The remainder of the paper is structured as follows. Sec-
tion II briefly introduces the LDPC error correcting codes
and their decoding algorithms. Then the proposed heteroge-
neous algorithm on embedded mobile targets is described in
Section III. Section IV gives experimental results and finally,
Section V concludes the paper.

II. LDPC CODES AND THEIR DECODING PROCESSES

LDPC codes are a class of linear block codes with a sparse
parity check matrix called H-matrix. Their main advantage is
that they provide a performance which is close to that of the
channel capacity for various wireless channels. Furthermore,
the decoding process of LDPC codes is suited for implementa-
tions that make heavy use of parallelism [20]. Here, we present
a brief background on LDPC codes!. There are two ways
to represent LDPC codes. Like all linear block codes, they
can be described by their H-matrix, while they can also be
represented by a Tanner graph which is a bipartite graph. An

I'The reader is referred to [21] for more information.

LDPC graph consists of a set of variable nodes, a set of check
nodes, and a set of edges E. Each edge connects a variable
node to a check node. For example, when the (7, j) element of
an H-matrix is ’1°, the ith check node is connected to the jth
variable node of the equivalent Tanner graph. Fig. 1 illustrates
the equivalent Tanner graph for a 10 variable nodes and 5
check nodes, (10,5), LDPC code with H-matrix in (1) [20].
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Fig. 1: Tanner graph of the H-matrix in (1)

The general decoding algorithm of LDPC codes is based
on the standard two-phase message passing (TPMP) principle
described in [11]. This algorithm works in two phases. In
the first phase, all the variable nodes send messages to their
neighboring parity check nodes, and in the second phase, the
parity check nodes send messages to their neighboring variable
nodes. One practical variant of message passing algorithms is
Min-Sum algorithm which is preferred by designers [13]. The
general steps taken in the Min-Sum algorithm are provided in
Algorithm 1. In Algorithm 1, LLR stands for log-likelihood
ratio, CN,,, and VN,, denote the mth check node and the nth
variable node, respectively.
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Algorithm 1 Min-Sum algorithm

: Loop 1: Initialization

: for all ¢ =1 — (Max Iterations) do
Loop 2: LLR of message CN,, to VN,
Loop 3: LLR of message VN,, to CN,,
Loop 4: Hard decision from soft-values

end for

AN A

One major drawback of Algorithm 1 is that Loops 2 and
3 are updated by separate processing and passed to each
other iteratively. It means that the update loop of the variable
nodes does not start until all check nodes are updated. This
characteristic affects the efficiency of parallel implementation
of such an algorithm.

Due to the poor parallel mapping of the Min-Sum algo-
rithm, more efficient schedules, such as horizontal layered-
based decoding algorithm, are proposed which allow updated
information to be utilized more quickly in the algorithm, thus,
speeding up decoding [18], [22]. In fact, the H-matrix can be
viewed as a layered graph that is decoded sequentially. The
work in [17] has applied a form of layered belief propagation
to irregular LDPC codes to reach 2 times faster convergence
for a given error rate. By using this method, the memory
bits usage is reduced by 45% to 50%. The layered decoding
algorithm is denoted as Algorithm 2 and can be summarized
as follows:

1) All values for the check node computations are com-

puted using variable node messages linked to them.

2) Once, a check node is calculated, the corresponding
variable nodes are updated immediately after receiving
messages.

3) This process is repeated to the maximum number of
iterations.

In this paper, we propose a multi-stream structure for im-
plementing the layered decoding of LDPC codes on the GPU
device of a mobile processor with high throughput and low
latency performance. By using GPU device as the processing
unit, significantly fewer resources of the ARM processor is
used for decoding compared to similar work in [13]. Thus,
the ARM processor gains more processing power for other
applications running on the device. On the other hand, since
the GPU and ARM of a mobile device are sitting on the same
die, the latency issues in [17] are improved.

III. ALGORITHM MAPPING

An efficient implementation of the layered decoding al-
gorithm is a challenging task. The concerning programming
drawbacks of this algorithm are as follows:

1) The number of computations for the number of memory

access is low.

2) The data reuse between consecutive computations is low.

3) It requires a large set of random memory access due to

the sparse nature of the H-matrix [4].
Therefore, a software-based decoder should take advantage of
different parallelism levels offered by the target architecture to

achieve high throughput efficiency. In this section, we detail
the different parallelism levels, target architecture and the
structure of the proposed algorithm.

A. Parallelism Levels in the Proposed Algorithm

To achieve high throughput performance, a software-based
LDPC decoder has to exploit computational parallelism for
taking advantage of multi-core architectures. Different par-
allelism levels are present in a layered decoding algorithm,
which include:

1) First parallelism level is located inside the check node
computations. Executing such computations in parallel is
possible. However, this atomic parallelism level is hard
to exploit due to the low complexity of computations.
On the other hand, two check node computations can be
done in parallel if there is no data dependency. Since this
is rarely true, this level is hard to exploit and inefficient.

2) Second parallelism level is located at the frame level
(complete execution of Algorithm 2). The same com-
putation sequence is executed over consecutive frames.
This approach provides an efficient parallel processing
algorithm.

Hence, here, we use the SIMD programming model to decode
F frames in parallel. In subsection III-C the parallel decoding
of F frames is referred to as kernel 2 for the sake of simplicity.

B. Data Interleaving/Deinterleaving

Recall that the implementation of the parallel frame pro-
cessing is subject to massive irregular memory access due to
the structure of H-matrix. To process the same VN,, element
of the F' frames at the same time, non-contiguous memory
access would affect performance. To solve this issue, a data
interleaving process has to be performed before and after
the decoding stage to ensure that each set of F' frames
are reordered to achieve an aligned memory data structure.
We use the same procedure as in [4] and the reordering is
shown in Fig. 2. In the proposed structure, interleaving and
deinterleaving of frames are called kernel 1 and kernel 3.

Frame 2 frame F

frame x

frame 1

lafz)alfn] [2]2]2]_[n]
Interismarg [ L__ L=
Q —— e

femine ¥

Fig. 2: Data interleaving/deinterleaving process [4]

C. Multi Stream Parallelism

The SIMT programming model is used to decode W sets
of F' frames concurrently, with W denoting the number of
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concurrent streams on the GPU device. This multi-core pro-
gramming is specified by the CUDA API. Each GPU stream
is controlled by a pthread called worker on the host machine
(which is an ARM in this case). Each worker is responsible
for its own sets of frames. By using stream-based processing,
the system can decode W x F' frames at the same time. The
whole LDPC decoder system model is shown in Fig. 3.
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Fig. 3: LDCP decoder data flow

IV. EXPERIMENTAL RESULTS

The experiments were carried out by decoding LDPC codes
using NVIDIA Tegra K1 SoCs and various other structures to
show scalability. The programs were compiled via GCC-4.8
and CUDA 6.5. The TK1 is composed of 4 Cortex-A15 ARM
processors and one NVIDIA Kepler "GK20a” GPU with 192
SM3.2 CUDA cores. The host platform uses a GNU/Linux
kernel 3.10.40.

A. Performance Evaluation of the Proposed Algorithm

The first set of experiments evaluates the decoding through-
put of different LDPC codes. The codes have different frame
lengths: 576 to 9972. The results are provided in Fig. 5 when
one or three threads are used to handle one or three GPU

Fig. 4: Tegra-TK1 development board

streams. Measurements are performed for LDPC decoders that
execute 10 layered-base decoding iterations.

One stream decoding achieves 25 Mbps, while with three
streams it can be as high as 35 Mbps. For a (4000, 2000)
LDPC code and one thread, data transfer takes about 2 x 2.4
ms, interleaving steps need about 2 x 5 ms and decoding
takes about 150 ms. For the same code with 3 threads, data
transfer takes approximately 2x 2.4 ms, interleaving steps need
about 2 x 5 ms and decoding takes about 150 ms. Therefore,
by introducing more streams to GPU device, its performance
does not degrade. In comparison, the latency, i.e., the time
for data transfer between the host and GPU device in [17] is
about 20 ms, is reduced to 4.8 ms because of the architecture
of the embedded mobile device. On the other hand, with
introducing three streams to GPU, its processing capacity is
used more effectively which results to about 30% throughput
improvement in most of our experiments.

35

—l—1-Thread
—l— 3-Threads

N w
a o
T

n
o

Throughput (Mbps)

LDPC codes

Fig. 5: Measured throughputs for 10 layered decoding iter-
ations (1 — 7 LDPC codes: 576 x 288,1024 x 512,1200 x
600, 1944 x 722,4000 x 2000, 8000 x 4000,9972 x 4086)

B. Performance Comparison with Related Works

To demonstrate the efficiency of the proposed ARM de-
coder, its throughput was compared to the ARM related work
in [13]. In [13], ARM SIMD units are used to perform vector
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data processing in parallel frame decoding. In the experiment,
the throughput of the proposed decoder is compared to that
of [13] while using 1 thread for the work in [13] and 3 threads
in the proposed algorithm. This selection is motivated by the
fact that the 1 thread from [13] uses a 100% of a core while
the 3 threads for the proposed algorithm only uses 8% of each
core resulting in an overall utilization of 24%. 10-iteration
decoding performed on Tegra-K1 board gives us the results as
shown in Table I. The work in [13] can achieve much higher
throughputs by using more threads on the ARM processor, but
by introducing each thread, the whole capacity of one more
ARM core is used for decoding. In Table I, it is shown that
the proposed algorithm can achieve the similar throughput to
that of [13] when using 24% of ARM processing power and
using its GPU device. Although, by using more powerful GPU
device, the algorithm can achieve much higher throughputs
which has been shown in next subsection. This shows that the
proposed algorithm is scalable across platforms.

TABLE I: Throughput (Mbps) Comparison With Related Work

| | ARM decoder [13], 1 thread | Proposed decoder, 3 thread

| code | (Mbps) | Processes used | (Mbps) | Processes used

| (400020000 | 35 | 100% | 345 | 24%

| (8000,4000) | 34 | 100% | 33 | 24%

C. Performance Comparison on Different GPU Devices

GPU devices have different characteristics such as the
number of stream multiprocessors, CUDA cores, and working
frequencies. A GPU based algorithm should have the scala-
bility to use all the processing capability of a GPU device.
The proposed algorithm has been executed on multiple GPU
devices. GT540M and K620 are considered as mid-range and
GTX680, and TeslaK20 are considered as high power GPU
devices. The algorithm is executed for three code lengths as
(576,288), (2304, 1152) and (4000, 2000). The performance
is shown for 10 and 5 iterations in two sets of figures in Fig. 6
and Fig. 7. These figures show that the proposed algorithm can
achieve up to 230 Mbps performance across devices. In these
set of experiments, an Xx86 CPU processor is the host.

V. CONCLUSION

A stream-based approach for GPU-based LDPC decoding
on embedded devices was introduced in this paper. This
algorithm is based on running multiple concurrent kernels on
GPU devices to utilize their processing capacity and freeing up
resources on the ARM processor of mobile devices. Our results
show that this approach helps to achieve higher throughputs on
embedded mobile devices. Experimental results demonstrate
that the proposed algorithm is scalable and can achieve high
throughputs on multiple GPU devices. Moreover, the proposed
algorithm structure provides a trade-off for the operating sys-
tem to choose between performance and resource management
by selecting various values for the number of streams that are
used for decoding.
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Fig. 6: 10 iteration experiment
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