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ABSTRACT

Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical
investigations. Feature-based multi-block methods are used to develop anatomically accurate
personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks
for large number of geometries on an individual basis to develop personalized FE models. Mesh-
morphing method mitigates the aforementioned tediousness in meshing personalized geometries
every time, but leads to element warping and loss of geometrical data. Such issues increase in
magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The
only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing
is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each
individual, which is time intensive. A method to semi-automate the construction of multi-blocks
on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is
demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis
vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to
construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to
construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by
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morphing existing multi-blocks.

1. Introduction

Spine deformity patterns in cases like scoliosis varies within
individuals. This has necessitated the need for personalized
finite element (FE) models of the thoracolumbar spine to
design personalized intervention for deformity correction.
Existing personalized FE models of the scoliosis-affected
thoracolumbar spine vary in their levels of complexity
from simple beam element models to more complex vox-
el-based, tetrahedral or hexahedral element models and
limited by anatomical inaccuracies (Hadagali 2014; Wang
et al. 2014). While beam element and voxel-based models
are incapable of accurately representing the anatomical
surface contours, tetrahedral element-based models are
proven to exhibit inaccuracies in silico. Consequently, hex-
ahedral element-based models have been preferred over
other types for their superior element quality, as well as
their ability to more accurately simulate biomechanical
phenomena (Tadepalli et al. 2011; Mao et al. 2013).
Developing personalized FE models using hexahedral
elements for anatomical structures without compromising

the anatomical details is a time intensive process (Mao
et al. 2013). This process usually involves segmentation
of the subject’s skeletal geometry from radiographic data
followed by manual mesh generation. The complex ana-
tomical geometries of the spine and associated structures
present additional challenges to the personalized FE mod-
eling procedures using hexahedral elements. Different
studies have used feature-based multi-block hexahedral
meshing method for personalized FE modeling purposes
(Grosland et al. 2009; Kallemeyn et al. 2009; Shivanna
et al. 2010; Jiang et al. 2012; Dong et al. 2013; Mao et al.
2013). Such a method would enable the development of
high-quality hexahedral meshes and provides the advan-
tage of adjusting the mesh density and quality of the hexa-
hedral elements after they have been developed (Grosland
et al. 2009; Shivanna et al. 2010; Mao et al. 2013). In spite
of the attractive features that feature-based multi-block
(also called hex-box, hex-block) hex-meshing method
offers, usage of the technique to generate hex-mesh for
geometry of every normative or scoliotic subject on an
individual basis is tedious.
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Alternatively, in order to reduce the time taken to
develop FE models for each subject, various interpola-
tion-based techniques have been used to morph baseline
FE mesh to subject-specific geometries (Stytz and Parrott
1993; Trochu 1993; Carr et al. 1997; Bennink et al. 2007).
Morphing methods to generate personalized FE models
have been previously reported for the brain (Li et al. 2011),
spine (O’Reilly and Whyne 2008; Sigal and Whyne 2010;
Lalonde et al. 2013), pelvis (Salo et al. 2013), femur (Bah
et al. 2009; Grassi et al. 2011) and knee (Baldwin et al.
2010). Morphing methods can be surface-matching-based
(laplace smoothing, deformable registration algorithm,
mesh-matching algorithm, elastic-volumetric algorithm)
or landmark-based (Kriging, radial basis functions, land-
mark based parametric meshing, dual-kriging) (Jingwen
et al. 2012). Morphing approaches have limitations asso-
ciated with element distortion leading to degradation of
element quality (more prevalent with hex-elements) and
simulation results (Couteau et al. 2000; Tada et al. 2005;
Ji et al. 2011; Mao et al. 2013), as well as computational
errors stemming from alterations in source geometry. In
a recent study, dual kriging, which is a landmark-based
method, was used to develop FE models of a pediatric
and age-old normative thoraco-lumbar-sacrum (TLS)
complex from an average-sized adult’s baseline FE model
of TLS complex. Although this method was shown to
effectively retain the geometrical details of complex ana-
tomical structures, the study dealt with usage of tetra-
hedral elements, the disadvantage of which was already
discussed above (Lalonde et al. 2013). In the aforemen-
tioned studies pertaining to FE morphing, baseline and
target geometries had relatively minimal variations in the
anatomical features (Example: geometry of a 6-month old
brain to a 3-month old, adult TLS to pediatric or age-old
TLS) compared to the discrepancies between features of
a healthy (baseline) and scoliosis-affected (target) spine.
While relatively minimal variations in geometry could
cause quality of elements to degrade after morphing as
reported in literature, it can be predicted that these issues
would increase in magnitude when an FE model of healthy
spine is morphed to geometry of scoliosis spine (Figure 1).

The problem of mesh-distortion on hexahedral and
tetrahedral elements as a result of morphing cannot be
circumvented. However, replacing the entire distorted
morphed mesh with new tetrahedral elements using
robust re-meshing algorithms in commercially available
tools seem to be an alternate option to rapidly generate
personalized FE models for scoliosis spine. Several meth-
ods have been developed and incorporated in commercial
tools to automatically generate tetrahedral elements on
arbitrary geometries like vertebra. Although replacing
distorted hexahedral elements with automatically gener-
ated tetrahedral elements is a viable option, the choice of

elements for wide-range of biomechanical applications is
hexahedral. This is due to the established fact that appli-
cation of tetrahedral elements for nearly incompressible
materials tend to lock and become overly stift, producing
inaccurate stress results (Fougeron et al. 2017). Creating
new hexahedral mesh for every scoliosis spine is the
only solution for the aforementioned problem at present,
although the process demands significant time in manu-
ally constructing the multi-blocks. The goal of this study
is to arrive at a possible solution to eliminate the need for
manual construction of multi-blocks for spinal geometry
of scoliosis-affected patients individually, thereby mini-
mizing time and labor while maintaining the quality of
hexahedral elements. The possible solution is to semi-au-
tomate the process of constructing multi-blocks on per-
sonalized geometries of scoliosis spine from the existing
multi-blocks of normative spine (Appendix 1).

2. Materials and methods

Institutional Review Board (IRB) approvals from Drexel
University and the Children’s Hospital of Philadelphia
(CHOP) were obtained to scan the chest regions using
computed-tomography (CT). The retrospectively obtained
(CT) scans of a skeletally normal 10 year old (YO) male
subject (source geometry) and a 12 YO scoliosis affected
subject (target geometry) were manually segmented and
digitally reconstructed using Mimics (Materialise Inc.,
Belgium) to extract the 3D surface geometry of the entire
bony thoracic spine (T1-T12). The spine of the 12 YO
subject was deformed with a cobb angle of 90 degrees in
the coronal plane.

Using the feature-based multi-block hexahedral
meshing algorithm in ANSYS ICEM CFD 14.5 (ANSYS,
Canonsburg, PA), blocks consisting 8 vertices, 12 edges
and 6 faces were created for each vertebra of the 10 YO
normative thoracic spine (Figure 2). Vertices, similar to
nodes of an element, have coordinates in three dimen-
sions (x, y and z) and flexible to be adjusted. Shape of a
block structure relies on the positions of 8 vertices. Surface
geometry (in .stl format) of each healthy thoracic verte-
bra was cross-sectioned in the mid-sagittal plane in order
to simplify the process of multi-block development. The
development process was initiated from the spinous pro-
cess, and ended up in anterior region (vertebral body).
Unlike a top-down approach where a single block is cre-
ated around the geometry and later broken to accommo-
date the geometry (Mao et al. 2013), bottom-up approach
was followed in the current attempt. A single block was
created covering the tip of the spinous-process (vertebral
tail). Another block was created from the existing block
via face-extrusion method and their vertices were man-
ually adjusted to fit the surface contour. Similar process
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(A)

Baseline mesh of T11
(10 Year old, Normal Spine)

(B)

Baseline mesh of T11
(10 Year old, Normal Spine)

Target geometry of T11
(16 Year old, Scoliosis Spine)

Distorted elements when
baseline mesh is morphed to
target geometry

Target geometry of T11
(16 Year old, Scoliosis Spine)

Loss of geometry when
baseline mesh is morphed to
target geometry

Figure 1. Existing problem while morphing mesh of healthy vertebra to scoliosis affected vertebra: (A)-Mesh distortion and (B)-Geometry
loss. Green: Baseline mesh, Red: Target geometry, Grey: Baseline mesh morphed to target geometry.

was followed for all the sectioned thoracic vertebrae of
the healthy subject. The multi-blocks and surface of each
segment were mirrored and hexahedral elements with size
ranging from 2 to 4 mm were generated. The multi-blocks
of each thoracic vertebra of the 10 YO normative thoracic
spine will henceforth be termed as ‘multi-block template’

The baseline FE model met the established standards
for acceptable mesh quality (Li et al. 2011; Dong et al.
2013). Considering all the elements from T1 to T12,

99.86% had Jacobian >0.5, 99.72% had warpage <40,
99.26% had skewness <60, 99.82% had aspect ratio <5,
98.86% had minimum angle >30° and 97.76% had a max-
imum angle <150°. Material property descriptions are not
provided, since these details are beyond the scope of our
objective.

The next step was to create an FE model for the tar-
get geometry of 12 YO deformed thoracic spine using
the existing baseline mesh developed using multi-block
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Figure 2. (A) Multi-blocks on the medially sectioned geometry of the T3 vertebra of the 10 YO thoracic spine. (B) Hexahedral mesh of the

medially sectioned T3 of the 10 YO thoracic spine.

hex-meshing method. Before exploring ways to achieve
the intended objective, it is necessary to understand the
geometrical features of scoliosis-affected spines. The
deformity is not only in the coronal plane, but also in
sagittal (hyper- or hypo-kyphosis depending upon the
individual) and transverse (vertebral rotation around the
vertical axis) planes. Further observations into intra-ver-
tebral morphology reveal wedged-vertebral bodies, une-
ven facet angles, increased angulation of pedicles in the
concave side of apical region, decreasing width of pedicles
in the concave side, increasing width of pedicles in convex,
intra-vertebral rotation along transverse plane resulting
in angulation of pedicles on concave side, shortening of
the intervertebral disc, left or right bending of vertebral
tail, etc. (Liljenqvist et al. 2002; Hu et al. 2014). Substantial
differences between the normative and the scoliotic ver-
tebral geometry leads to unevenness in the mesh density
in the scoliosis FE model, in the process when baseline
mesh is trying to accommodate to the changing surface
contours (Figure 3). The mesh-morphing process could
eventually warp the elements especially in the narrower
and curved regions.

Previous methods have suggested constructing the
multi-block (which would be tedious process consider-
ing the complexity of our problem) and obtain new hex-
ahedral mesh for each patient. It is also possible to use
the existing multi-block of the source mesh and manually
move its vertices to the surface of the target. Presence of
numerous vertices in the multi-blocks makes the process
more complicated. One of the features in ANSYS ICEM
CFD 14.5 enables the user to manually script a function
for creating a node, creating a block, etc. using the Tool
Command Language (TCL). It also enables saving the
multi-blocks as a separate file containing details of verti-
ces, edges and faces (.blk file). Command for transforming

vertices was identified (Figure 4). Goal was to automati-
cally ‘snap’ (transform) the vertices of existing multi-block
template to the target surface with the help of vertex-trans-
forming command, thereby accommodating the already
created blocks to another contour surface and generating
anew set of hexahedral elements. Automatic vertex-trans-
forming operation to the target surface was executed with
the help of dual-kriging, a global statistical interpolation
method (Figure 4). Dual-kriging method finds detailed
explanation in Lalonde et al. 2013 who used it to morph
a baseline FE model of mid-sized adult’s TLS complex
to the geometry of 10 YO and 82 YO TLS successfully
(Lalonde et al. 2013).

The technique used in this study relies on mapping
the vertices of multi-block associated with the source
geometry to that of the target. This requires both, the
target geometry and point correspondences (landmarks)
between the source and target. These sets of correspond-
ing points are used to derive a mapping from the source to
the target. In the current study, we used 30 surface land-
mark points identified on the vertebral bodies, pedicles,
facets, and major processes of each vertebra of both the
source (10 YO) and target (12 year old) geometries. These
landmark points are consistent with those reported in the
literature for geometry quantification and stereographic
reconstruction of the vertebrae (Figure 5(a)) (Peters et
al. 2015).

Initially, surface (.stl format), coordinates of the ver-
tices pertaining to the multi-block (.blk file) and the
corresponding landmark points of 10 YO T1 along with
the target geometry (12 YO scoliosis T1 vertebrae) were
imported to Matlab (Mathworks, Natick, MA). The 10 YO
T1 surface, its vertices, and 12 YO T1 surface geometry
were superimposed using the centroids of their associated
landmark points (Figure 4(b)). The densities of the source
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Normative/healthy spine

Scoliosis spine (44 degree)

Scoliosis spine (90 degree)

Figure 3. Vertebral geometries of T6-T8 for normal spine and different curves of scoliosis (Top). Geometry of T10 of a normative thoracic

spine (green) and scoliosis deformed T10 (grey) in lateral view (bottom-left) and top view (bottom-right).
Notes: Figure 3 highlights the significant geometrical variation between normative and scoliotic vertebrae and the complexity of mesh morphing for such

applications.
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Figure 4. Operation of automatic transform of Multi-block vertices on the geometry of a source vertebra to the surface of target geometry

using Dual-kriging.

and target surface mesh (.stl file) were increased after it
was imported to Matlab. It is to be noted that in this case,
the centroid of 12 YO target T1 geometry along with its
surface and landmark points were translated for superim-
posing it on the unmoved centroids and surface of 10 YO
source T1 geometry. A dual-kriging interpolation system

was then used to map the displacements between source
and target landmark points on to the multi-block template
vertices and source geometries effectively distorting their
original shapes to match the target (Figure 5) (Equations
1 and 2) (Trochu 1993; Lalonde et al. 2013). This was the
first-pass in the morphing procedure.
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Land-mark points of source (blue)

A Source Geometry +
Multi-block vertices

Imposing Centroid of target
on centroid of source

Source Geometry +
Multi-block vertices
Target Geometry

Corresponding landmark
points, along with the surface
and vertices interpolated

- Dual Kriging

Land-mark points of target (Green)

Figure 5. (a) Source geometry, vertices of multi-blocks and the landmark points. (b)lmposing centroids of source and target. (c)

Interpolating the land-marks using dual-kriging.
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(1)

(Dual-Kriging System)
K=x-x,... (2)

In the equation, K,, is an entry in pseudo covariance
matrix, p,  is the nth data point in the mth dimension, bn
is the coefficient of the dual-kriging system corresponding
to K, , a,, is the coeflicient of the linear mth dimension
equation and u_ is the target data. To further improve
the fit between the matched surfaces (second-pass) a sec-
ond dual-kriging system was created using 20 coincident,
1 mm thick, radial cross sections. Each cross section was
subdivided using a 4 by 5, evenly spaced, rectangular grid
and semi-landmark points were created using the cen-
troid of the surface vertices in each grid. This new set of
400 control points was then utilized to perform a second
interpolation of the source geometry to improve the sur-
face-to-surface fit (Figure 6). Vertices-transforming com-
mands were finally exported from Matlab as a text file that
could be fed into ICEM CFD.

Target T1 geometry of deformed spine and the
multi-block template of the healthy T1 vertebra were

imported in a newly created project file in ICEM CFD.
Vertex-transforming commands for all the vertices in T'1
Multi-block were produced detailing the new x, y and z
coordinates in the form of text file. Customized codes for
each of the aforementioned processes have been furnished
in the appendix section with appropriate comments
(Appendix 1).

To the same project, text file containing the verti-
ces-transforming commands was uploaded to the script-
ing window in user-interface of ANSYS ICEM CFD 14.5
to ‘snap’ the vertices of the source T1 surface to the target
T1. Vertices the blocks were visually inspected and manu-
ally adjusted if needed and volumetric hexahedral meshes
of the 12 YO target T1 thoracic vertebrae were created.
Similar procedure was followed for T2 to T12 vertebrae
(Figure 7).

3. Results

More than 98% of the hexahedral elements jacobian >0.5,
6.23% of elements had warpage >20 and only 4.6% of ele-
ments had aspect ratio >4. The internal angles in more
than 95% of elements had maximum angle <140°, mini-
mum angle >30° and skew <50°. These values satisfied the
criteria required for a high-quality FE model with very lit-
tle manual effort required to refine the quality of the mesh
(Figure 8). The first-pass morphing resulted in an average
root-mean-square error (RMSE) between the morphed
source and target surface geometries of 0.9 + 0.6 mm with
a maximum error of 3.75 mm across vertebral levels. The
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/ Geometrical difference

Control points of the Mid-
sagittal section: source and

Control points on radial cross-
sections: source and target

target » e

Refined
geometrical
difference

Figure 6. Interpolated source geometry and vertices of the multi-blocks to target geometry (red) and further refinement to accurately

match the target geometry.

second-pass morphing using the resulting 400 semi-land-
marks reduced the average RMSE to 0.6 + 0.3 mm with a
maximum error of 2.21 mm between the morphed source
and target surface geometries.

4. Discussion

This paper echoes the views put forth by (Mao et al. 2013)
regarding the advantages of multi-block technique over
mesh-morphing for development of personalized FE
meshes. Although advantageous, there is tediousness
involved in multi-block meshing procedure; specifically
in the development of FE models for numerous scoliosis
affect spinal geometries. The alternative method reported
in the current study eliminates the need to create mul-
ti-block for all the geometries from the beginning, thereby
semi-automating the multi-block construction process
on each personalized geometries. The process of rapidly
‘snapping’ the vertices of baseline multi-block to the tar-
get geometry is equivalent to creating new multi-block.
Blocks do not carry the same set of elements; rather, gen-
erate new meshes that are uniform and comply with the
new geometry. This implies that even when the vertices
are ‘translated’ from source to the target, meshes created
in the source are not carried to the target geometry.

The multi-block template of the baseline geometry (10
YO thoracic spine) was developed within a span of three
months. However, it only required less than a day to trans-
form the multi-blocks to fit to the geometry of scoliosis
affected vertebra, using dual-kriging interpolation algo-
rithm on the vertices of existing multi-block. Although
applying dual-kriging morphing to the multi-blocks

enabled development of personalized model in a relatively
shorter time period, more time-efficient methods have
been reported in previous studies (O’Reilly and Whyne
2008; Bah et al. 2009; Sigal and Whyne 2010; Grassi et al.
2011; Li et al. 2011; Lalonde et al. 2013; Salo et al. 2013).
But a majority of those studies were limited by their use
of tetrahedral elements, reduced geometrical congruence
and negative volume issues.

The choice of element (tetrahedral or hexahedral) in
previously reported studies can be attributed to anatom-
ical complexity of the structures being modeled. While
tetrahedral elements, typically used to model complex
geometries like the pelvis (Salo et al. 2013), spine (Sigal
et al. 2008; Sigal and Whyne 2010; Lalonde et al. 2013),
and femur (Bah et al. 2009; Grassi et al. 2011) are compu-
tationally less expensive, they could have been preferred
due to the sophisticated geometry of the deformed spine.
Due to issues such as element locking and uneven stress
distribution in models with tetrahedral elements and also
due to the reason that many researchers prefer hexahe-
dral elements over other types of elements, hexahedral
elements were used in the present study (Tadepalli et al.
2011; Fougeron et al. 2017). This method improved the
overall efforts needed to develop high-quality hexahedral
element-based models of scoliosis vertebrae from a base-
line model of normative/healthy vertebrae.

Surface errors and loss of geometrical accuracy have
been observed in a majority of existing volumetric FE
morphing approaches, albeit minimal variation of features
between source and target geometries (Barratt et al. 2008;
Sigal and Whyne 2010; Grassi et al. 2011; Lalonde et al.
2013; Salo et al. 2013). However, more recent studies have
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(A)

L,
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Figure 7. A1- T3 vertebral Template blocks, A2- Resulting mesh from the template blocks, A3- Template blocks of T3 morphed to T3
vertebral geometry of scoliotic 12 YO, A4- Resulting mesh from morphed template blocks. B- Resulting meshes of 12 YO scoliosis thoracic

vertebrae from morphed multi-blocks of 10 YO T1-T12.

shown significant improvements in surface variations.
Salo et al. (2013) created a personalized FE model of the
pelvis and reported an average node-to-surface deviation
0f 0.9 + 0.8 mm, and a maximum error of 6 mm (Salo et
al. 2013). Another recent study observed average deviation
of 2 mm on more than 90% of the surface geometry of
the adult and pediatric models of the TL spine (Lalonde
et al. 2013). Such errors in the prior mentioned models

are justifiable considering the geometrical complexity of
the pelvis and spine respectively. In the current study,
errors were least significant as the final surface-fit error
was approximately 0.6 £ 0.3 mm despite significant varia-
tions between the geometries of normative spine (source)
and scoliosis-affected spine (target). Vertices that were not
‘snapped’ close to the target surface as a result of surface-fit
error were manually adjusted to ensure the mapping of
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Figure 8. Quality of hexahedral elements in the morphed 12 YO thoracic vertebrae.

the vertices to the target surface. Convenient adjustments
of the vertices in ICEM-CFD consequently improved the
mesh quality with ease.

Prior studies using conventional surface- or land-
mark-based morphing to create volumetric subject-spe-
cific models have reported adverse warping and negative
volume element issues (Couteau et al. 2000; Tada et al.
2005; O’Reilly and Whyne 2008; Grosland et al. 2009; Salo
et al. 2013). Algorithmically complicated and time con-
suming mesh repair codes (Bucki et al. 2010) are prom-
inently used to refine the distorted elements. However,
mesh smoothing algorithms had no effect on morphed
FE models of pelvis (Salo et al. 2013) and vertebral
body (O'Reilly and Whyne 2008). The reasons for such

inconsistencies have not been detailed and could be due
to the complex geometry of pelvis and use of hexahedral
elements in baseline model of vertebral body, respectively.
On the contrary, personalized FE models of the brain that
were obtained using RBF interpolation methods did not
report degradation of element quality although hexahe-
dral elements were used (Li et al. 2011). Any negative
volume elements in the FE model of deformed vertebrae
created using automatic vertices-transforming method
could be conveniently overcome using the automatic mesh
smoothing algorithm in ICEM CFD.

The current study is limited to the development of
personalized FE models for the vertebrae of the thoracic
spine. This method can be further extended to complete
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spinal and ribcage structures of scoliosis spine geometries.
This procedure can also be incorporated into publicly and
commercially available multi-block meshing tools like
IA-FEMESH (University of Iowa) and Truegrid (XYZ
Scientific Applications Inc., Livermore, CA) respectively,
as an additional feature.

5. Conclusion

The goal of this study was not to critique various mor-
phing methods, but to highlight the limitations of apply-
ing such techniques to morph a normative spine FE model
to scoliosis spine geometry. However, morphing technique
can still be used on the blocks that are used to create the
baseline mesh, instead of directly morphing the mesh.
With the reported method, extensive warping of the vol-
umetric elements can be avoided as old elements will be
replaced. Efforts taken to create multi-blocks on person-
alized spinal geometries is significantly reduced due to
dual-kriging morphing.
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PICTORIAL REPRESENTATION OF PROBLEM AND ARRIVAL OF SOLUTION

Step 1 (Hex-meshing using multi-block method):

Multi-blocks created on T6
healthy vertebra

Hexahedral mesh of T6 healthy
vertebra

Step 2 (Issues with morphing-Refer to Figure 1 in Introduction):

o-c

Hexahedral mesh of T6 healthy
vertebra

Geometry of T6 scoliosis
vertebra (44 degree Cobb
Angle)

Resulting morphed
model
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Available solutions to the existing problems:

Target geometry of T11
(16 Year old, Scoliosis Spine)

Baseline mesh of T11
(10 Year old, Normal Spine)

Loss of geometry when
baseline mesh is morphed to
target geometry

« Manually adjust distorted elements (impractical and time intensive)
o Redo meshing using tetra-elements (not preferred by many)
« Avoid morphing and create multi-blocks from scratch (time intensive procedure)

Proposed solution:

« Apply morphing algorithm on existing multi-blocks, generate new hexa-elements

o Morphing procedure will save time from creating new blocks on vertebrae

« Hexa-elements can be generated

« Density can be adjusted at will due to availability of blocks

« Unavoidable distortion in vertices of blocks due to morphing can be easily countered
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Step 3 (Implementing proposed solution for existing problem):

Multi-blocks created on T6
healthy vertebra

Multi-blocks of T6 healthy
vertebra morphed to target
geometry

Target geometry of T6 scoliosis
vertebra (90 degree cobb angle)

New mesh created on targe
scoliosis vertebra from
morphed multi-blocks
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TRANSFORMING VERTICES OF T5 MULTI-BLOCK (443 VERTICES)
% James R. Peters 8/12/2014
% Morphing vertebrae

clear all
close all
cle

VertebralLevel = 5;

% Extracting block vertices from .blk file
BlkFileIDs = dir(“*.blk”); % look for block file names
BlkFileIDs = {BlkFileIDs.name}; % convert the structure to a cell array

FileID = fopen(BlkFileIDs{1}, ‘r’); % open the first block file

% Finding the start of text describing node locations and numbers =========
Count = 0;
Stop = false;

TextMatch = 3print(‘NODES new_numbering\r\n{‘); % \r is a hard return and \n is a new line
TextMatch = TextMatch’;

while ~Stop
Text = fread(FileID, 22, “*char’); % “*char’ reads the text in as a string column vector
if stremp(Text, TextMatch)
StartPosition = Count + 24;
Stop = true;
else
Count = Count + 1;
fseek(FileID, Count, -1);
end
end

fseek(FilelD, StartPosition, -1); % set starting read position to beginning of vertex data
Data = textscan(FileID, %f %f %f %d %d %f %*[*\n]’); % %*["\n] skips everything up to a

new line
% Data = fscanf{FilelD, ‘%f %f %f %d %d %d %*["\n]’); % textscan works much faster here
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BlkVertices = [Data{l, 1}, Data{l, 2}, Data{1, 3}];
BlkNodeNumber = Data{l, 6};

Figl = figure;

Ax1 = axes(‘Parent’, Figl, ‘NextPlot’, ‘add’, ‘DataAspectRatioMode’, ‘manual’,...
‘PlotBoxAspectRatioMode’, ‘manual’, ‘DataAspectRatio’, [1, 1, 1], ‘PlotBoxAspectRatio’,...
[4, 4, 4]);

% Import the matching surface mesh
[TemplateVertices, TemplateFaces, ~] = import_stl fast(‘T5.stl’, 1);

% Offsetting and rotating the mesh
Offset3D = mean(TemplateVertices);

TemplateVertices = bsxfun(@minus, TemplateVertices, Offset3D);
BlkVertices = bsxfun(@minus, BlkVertices, Offset3D);

% Initial rotation to orient mesh in same direction as target surface =====
RotationMatrix = makehgtform(‘zrotate’, pi/2);

RotationMatrix = RotationMatrix(1 : 3, 1 : 3)’;

% TemplateVertices = TemplateVertices * RotationMatrix;

% BlkVertices = BlkVertices * RotationMatrix;

TemplatePlot = trimesh(TemplateFaces, TemplateVertices(:, 1), TemplateVertices(:, 2),...
TemplateVertices(:, 3), ‘Parent’, Ax1, ‘EdgeColor’, [0, 0, 0], ‘FaceColor’, [0, 1, 0]);

BlkPlot = line(‘Parent’, Ax1, ‘Xdata’, BlkVertices(:, 1), ‘Ydata’, BlkVertices(:, 2),...
‘Zdata’, BlkVertices(:, 3), ‘LineStyle’, ‘none’, ‘Marker’, .”, ‘MarkerSize’, 15,...
‘Color’, [0, 0, 0]);

% Find the average and max lengths of edges of each surface triangle ======
NumPFaces = length(TemplateFaces(:, 1));

EdgeLengths = zeros(NumFaces, 1);

for i=1: NumFaces
Face = TemplateFaces(i, ©;
Temp = TemplateVertices([Face’; Face(1)], ©;
Temp = sqrt(sum(diff( Temp, 1, 1) .* 2, 2));
EdgeLengths(i) = max(Temp);
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end
AveragelLength = 1;

NumVertices = length(TemplateVertices(:, 1));

% Increasing surface mesh density

forj=1:2
NewFaces = cell(NumFaces, 1);
NewVertices = cell(NumFaces, 1);

for i=1: NumFaces
if EdgeLengths(i) > AverageLength

Face = TemplateFaces(i, ©;

%  TemplateFaces(1, © =[]; % delete old face to conserve memory

NumVertices = NumVertices + 3; % update current number of vertices

NewVertices{i, 1} = [mean(TemplateVertices(Face(1 : 2)’, ©);...
mean(TemplateVertices(Face(2 : 3)’, ©);...
mean(TemplateVertices([Face(3); Face(1)], ©)];

NewFaces{i, 1} = [Face(1), NumVertices — 2, NumVertices;...
NumVertices — 2, Face(2), NumVertices — 1;...
NumVertices — 1, Face(3), NumVertices;...

NumVertices — 2, NumVertices — 1, NumVertices];
else

NewFaces{i, 1} = TemplateFaces(i, ©;

end
end

TemplateVertices = cat(1, TemplateVertices, NewVertices{:});
TemplateFaces = cat(1, NewFaces{:});

NumPFaces = length(TemplateFaces(:, 1));
NumVertices = length(TemplateVertices(:, 1));

EdgeLengths = zeros(NumFaces, 1);
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for i=1: NumFaces
Face = TemplateFaces(i, ©;
Temp = TemplateVertices([Face’; Face(1)], ©;
Temp = sqrt(sum(diff(Temp, 1, 1) .* 2, 2));
EdgeLengths(i) = max(Temp);

end

set(TemplatePlot, ‘Vertices’, TemplateVertices, ‘Faces’, TemplateFaces)
end

% Import the target geometry
[TargetVertices, TargetFaces, ~] = import_stl fast(‘L5.stl’, 1);

TargetOffset3D = mean(TargetVertices);
TargetVertices = bsxfun(@minus, TargetVertices, TargetOffset3D);

TargetPlot = trimesh(TargetFaces, TargetVertices(:, 1), TargetVertices(:, 2),...
TargetVertices(:, 3), ‘Parent’, Ax1, ‘EdgeColor’, [0, 0, 0], ‘FaceColor’, [1, 0, 0]);

NumFaces = length(TargetFaces(:, 1));
EdgeLengths = zeros(NumFaces, 1);

for i=1: NumFaces
Face = TargetFaces(i, ©;
Temp = TargetVertices([Face’; Face(1)], ©;
Temp = sqrt(sum(diff(Temp, 1, 1) .* 2, 2));
EdgeLengths(i) = max(Temp);

end

NumVertices = length(TargetVertices(:, 1));

% Increasing surface mesh density
forj=1:2
NewFaces = cell(NumFaces, 1);
NewVertices = cell(NumFaces, 1);

for i=1: NumFaces
if EdgeLengths(i) > AverageLength
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Face = TargetFaces(i, ©,

%  TemplateFaces(1, © =[]; % delete old face to conserve memory

NumVertices = NumVertices + 3; % update current number of vertices

NewVertices{i, 1} = [mean(TargetVertices(Face(1 : 2)’, ©);...
mean(TargetVertices(Face(2 : 3)’, ©);...
mean(TargetVertices([Face(3); Face(1)], ©)];

NewFaces{i, 1} = [Face(1), NumVertices — 2, NumVertices;...
NumVertices — 2, Face(2), NumVertices — 1;...
NumVertices — 1, Face(3), NumVertices;...

NumVertices — 2, NumVertices — 1, NumVertices];
else

NewFaces{i, 1} = TargetFaces(i, ©;

end
end

TargetVertices = cat(1, TargetVertices, NewVertices{:});
TargetFaces = cat(1, NewFaces{:});

NumFaces = length(TargetFaces(:, 1));
NumVertices = length(TargetVertices(:, 1));

EdgeLengths = zeros(NumFaces, 1);

fori=1: NumFaces
Face = TargetFaces(i, ©;
Temp = TargetVertices([Face’; Face(1)], ©;
Temp = sqrt(sum(diff(Temp, 1, 1) .* 2, 2));
EdgeLengths(i) = max(Temp);

end

set(TargetPlot, ‘Vertices’, TargetVertices, ‘Faces’, TargetFaces)
end

CovarianceMatrix = TargetVertices’ * TargetVertices;
[U, ~, ~] = svd(CovarianceMatrix);

CovarianceMatrix =[1, 0, 0; 0, 1, 0; 0, 0, 1] * U’;

[U, ~, V] = svd(CovarianceMatrix);
SVDRotation=V * U’;
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TemplateVertices = TemplateVertices * SVDRotation;
BlkVertices = BlkVertices * SVDRotation;
TargetVertices = TargetVertices * SVDRotation;

% Making fine alignments between Template and Target
% Creating subsets of points for rotation

TemplatePoints = randperm(length(TemplateVertices(:, 1)), 2000)’;
TargetPoints = randperm(length(TargetVertices(:, 1)), 2000)’;

TemplatePoints = TemplateVertices(TemplatePoints, ©;
TargetPoints = TargetVertices(TargetPoints, ©;

% Scaling Template to target size
Scale = mean(sqrt(sum(TargetPoints .* 2, 2))) / mean(sqrt(sum(TemplatePoints .* 2, 2)));

TemplateVertices = TemplateVertices * Scale;
TemplatePoints = TemplatePoints * Scale;

BlkVertices = BlkVertices * Scale;

% Update plot

set(TemplatePlot, “Vertices’, TemplateVertices, ‘Faces’, TemplateFaces);

set(BlkPlot, ‘Xdata’, BlkVertices(:, 1), “Ydata’, BlkVertices(:, 2),...
‘Zdata’, BlkVertices(:, 3))

set(TargetPlot, ‘Vertices’, TargetVertices, ‘Faces’, TargetFaces)

ErrorDiff = inf;
Error = inf;
Count = 0;

while ErrorDiff > le-5 && Count < 1000
IDX = knnsearch(TemplatePoints, TargetPoints);
Temp = TemplatePoints(IDX, ©;

CovarianceMatrix = TargetPoints’ * Temp;
[U, ~, V] = svd(CovarianceMatrix);
RotationMatrix =V * U’;

TemplateVertices = TemplateVertices * RotationMatrix;
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TemplatePoints = TemplatePoints * RotationMatrix;
BlkVertices = BlkVertices * RotationMatrix;

ErrorDiff = abs(sum(sqrt(sum((TemplatePoints(IDX, © — Temp) .» 2, 2))) — Error);
Error = sum(sqrt(sum((TemplatePoints(IDX, © — Temp) . 2, 2)));

set(TemplatePlot, ‘Vertices’, TemplateVertices, ‘Faces’, TemplateFaces);
set(BlkPlot, ‘Xdata’, BlkVertices(:, 1), “Ydata’, BlkVertices(:, 2),...
‘Zdata’, BlkVertices(:, 3))

drawnow
end
% fork=1:3

DistanceModifier = 0.5;

% Finding Cross sections and boundary points for morphing
NumPts = 20;

PointStorage = zeros(NumPts, 2);

Tolerance = 0.75;

% Angles = linspace(-pi, pi, NumPts + 1)’;
Angles = linspace(2 * pi/ (NumPts + 1), 2 * pi, NumPts)’;
Vects = [cos(Angles), sin(Angles)];

NumSections = 150;
TemplatePoints = cell(NumSections, 1);
TargetPoints = cell(NumSections, 1);

SectionAngles = linspace(2 * pi/ (NumSections + 1), 2 * pi, NumSections)’;

% Fig2 = figure;

% Ax2 = axes(‘Parent’, Fig2, ‘NextPlot’, ‘add’, ‘DataAspectRatioMode’, ‘manual’,...

% ‘PlotBoxAspectRatioMode’, ‘manual’, ‘DataAspectRatio’, [1, 1,
‘PlotBoxAspectRatio’,...

% [4,4,4]);

% OutlinePlot = line(‘Parent’, Ax2, ‘Xdata’, nan, ‘Ydata’, nan, ‘Zdata’, nan,...

%  ‘Color’, [0, 0, 1]);

% SectionPlot = line(‘Parent’, Ax2, ‘Xdata’, nan, ‘Ydata’, nan, ‘Zdata’, nan,...

%  ‘Color’, [0, 0, 0], ‘LineStyle’, ‘none’, ‘Marker’, ©.”, ‘MarkerSize’, 15);
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% Centering the bodies
IDX = TemplateVertices(:, 2) <= Tolerance & TemplateVertices(:, 2) >= -Tolerance;
TemplateSection = TemplateVertices(IDX, ©;

[~, IDX] = sort(TemplateSection(:, 1), 1, ‘descend’);
TemplateSection = TemplateSection(IDX, ©;
[~, IDX] = max(abs(diff(TemplateSection(:, 1), 1, 1)));

Section] = TemplateSection(1 : IDX, ©;
Section2 = TemplateSection(IDX + 1 : end, ©;

Offset3D = [mean(|min(Sectionl(:, 1)); max(Section2(:, 1))]), 0, 0];

TemplateVertices = bsxfun(@minus, TemplateVertices, Offset3D);
BlkVertices = bsxfun(@minus, BlkVertices, Oftset3D);

IDX = TargetVertices(:, 2) <= Tolerance & TargetVertices(:, 2) >= -Tolerance;
TargetSection = TargetVertices(IDX, ©;

[~, IDX] = sort(TargetSection(:, 1), 1, ‘descend’);
TargetSection = TargetSection(IDX, ©;
[~, IDX] = max(abs(diff( TargetSection(:, 1), 1, 1)));

Sectionl = TargetSection(1 : IDX, ©;
Section2 = TargetSection(IDX + 1 : end, ©;

Offset3D = [mean([min(Sectionl(:, 1)); max(Section2(:, 1))]), 0, 0];
TargetVertices = bsxfun(@minus, TargetVertices, Offset3D);

set(TemplatePlot, ‘Vertices’, TemplateVertices, ‘Faces’, TemplateFaces);

set(BlkPlot, ‘Xdata’, BlkVertices(:, 1), ‘Ydata’, BlkVertices(:, 2),...
‘Zdata’, BlkVertices(:, 3))

set(TargetPlot, ‘Vertices’, TargetVertices, ‘Faces’, TargetFaces)

%

for 1= 1 : NumSections
RotationMatrix = makehgtform(‘zrotate’, SectionAngles(1));
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RotationMatrix = RotationMatrix(1 : 3, 1 : 3);

TemplateVertices = TemplateVertices * RotationMatrix;
TargetVertices = TargetVertices * RotationMatrix;

IDX = TemplateVertices(:, 2) <= Tolerance & TemplateVertices(:, 2) >= -Tolerance;
TemplateSection = TemplateVertices(IDX, ©;

% Template Cross Sections
[~, IDX] = sort(TemplateSection(:, 1), 1, ‘descend’);
TemplateSection = TemplateSection(IDX, ©;

[~, IDX] = max(abs(diff( TemplateSection(:, 1), 1, 1)));
TemplateSection = TemplateSection(1 : IDX, ©;

% Use alpha shapes to find the boundary
[~, S] = alphavol([ TemplateSection(:, 1), TemplateSection(:, 3)], 10, 0);
IDX = [S.bnd(:, 1); S.bnd(1, 1)];

Outline = [TemplateSection(IDX, 1), TemplateSection(IDX, 3)];

% Dual Krigging to increase line density
ChordLength = [0; cumsum(sqrt(sum(diff(Outline, 1, 1) .* 2, 2)))];
ChordNew = linspace(0, ChordLength(end), 200)’;

Kmatrix = [bsxfun(@power, abs(bsxfun(@minus, ChordLength, ChordLength’)), 3),...
ones(length(ChordLength), 1), ChordLength;...
[ones(1, length(ChordLength)); ChordLength’], zeros(2)];

Coeffs = Kmatrix \ [Outline; zeros(2)];

Kmatrix = [bsxfun(@power, abs(bsxfun(@minus, ChordNew, ChordLength’)), 3),...
ones(200, 1), ChordNew];

Outline = Kmatrix * Coeffs;

%

% Find the centroid of the new outline
Temp = [[Outline; Outline(1, ©], circshift([Outline; Outline(1, ©], -1, 1)];

PolygonArea = 0.5 * sum((Temp(:, 1) .* Temp(:, 4)) — (Temp(:, 3) .* Temp(:, 2)));
Cx = (1/6/PolygonArea) * sum((Temp(:, 1) + Temp(:, 3)) .* ((Temp(:, 1) .* Temp(:, 4))...
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- (Temp(:, 3) .* Temp(:, 2))));
Cy=(1/6/PolygonArea) * sum((Temp(:, 2) + Temp(:, 4)) .* (Temp(:, 1) .* Temp(:, 4))...
- (Temp(:, 3) .* Temp(:, 2))));

Offset2D = [Cx, Cy];
Outline = bsxfun(@minus, Outline, Offset2D);

%  TemplateSection = bsxfun(@minus, TemplateSection(:, 2 : 3), Offset2D);
%  CrossAngles = atan2(TemplateSection(:, 2), TemplateSection(:, 1));

% Finding radial pseudo landmark ponts from the centroid
for j=1: NumPts
IDX = sum(bsxfun(@times, Outline, Vects(j, ©), 2) > 0;
Temp = Outline(IDX, ©;
NormalVect = [-Vects(], 2), Vects(j, 1)];
Distances = abs(sum(bsxfun(@times, Temp, NormalVect), 2));
[~, IDX] = min(Distances);
Distances = sum(Temp(IDX, © .* Vects(j, ©, 2);
Distances = Distances + DistanceModifier;
PointStorage(j, © = Vects(j, © * Distances;
% IDX = CrossAngles >= Angles(j) & CrossAngles <= Angles(j + 1);
% Temp = TemplateSection(IDX, ©;
% PointStorage(j, © = median(Temp);
end

Temp = [PointStorage(:, 1) + Cx, zeros(NumPts, 1), PointStorage(:, 2) + Cy] *
RotationMatrix’;

TemplatePoints{i, 1} = Temp;

IDX = TargetVertices(:, 2) <= Tolerance & TargetVertices(:, 2) >= -Tolerance;
TargetSection = TargetVertices(IDX, ©;

% Target Cross Sections
[~, IDX] = sort(TargetSection(:, 1), 1, ‘descend’);
TargetSection = TargetSection(IDX, ©;

[~, IDX] = max(abs(diff( TargetSection(:, 1), 1, 1)));
TargetSection = TargetSection(1 : IDX, ©;

% Use alpha shapes to find the boundary
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[~, S] = alphavol([ TargetSection(:, 1), TargetSection(:, 3)], 10, 0);
IDX = [S.bnd(:, 1); S.bnd(1, 1)];
Outline = [TargetSection(IDX, 1), TargetSection(IDX, 3)];

% Dual Krigging to increase line density
ChordLength = [0; cumsum(sqrt(sum(diff(Outline, 1, 1) .* 2, 2)))];
ChordNew = linspace(0, ChordLength(end), 200)’;

Kmatrix = [bsxfun(@power, abs(bsxfun(@minus, ChordLength, ChordLength”)), 3),...
ones(length(ChordLength), 1), ChordLength;...
[ones(1, length(ChordLength)); ChordLength’], zeros(2)];

Coeffs = Kmatrix \ [Outline; zeros(2)];

Kmatrix = [bsxfun(@power, abs(bsxfun(@minus, ChordNew, ChordLength’)), 3),...
ones(200, 1), ChordNew];
Outline = Kmatrix * Coeffs;

%  set(OutlinePlot, ‘Xdata’, Outline(:, 1), “Ydata’, Outline(:, 2),...
% ‘Zdata’, zeros(200, 1))
%  set(SectionPlot, ‘Xdata’, TargetSection(:, 2), “Ydata’, TargetSection(:, 3),...
% ‘Zdata’, TargetSection(:, 1))
%  drawnow
% pause
%

% Find the centroid of the new outline
Temp = [[Outline; Outline(1, ©], circshift([Outline; Outline(1, ©], -1, 1)];

PolygonArea = 0.5 * sum((Temp(:, 1) .* Temp(:, 4)) — (Temp(:, 3) .* Temp(:, 2)));

Cx = (1/6/PolygonArea) * sum((Temp(:, 1) + Temp(:, 3)) .* ((Temp(:, 1) .* Temp(:, 4))...
- (Temp(:, 3) .* Temp(:, 2))));

Cy=(1/6/PolygonArea) * sum((Temp(:, 2) + Temp(:, 4)) .* ((Temp(:, 1) .* Temp(:, 4))...
- (Temp(:, 3) .* Temp(:, 2))));

Offset2D = [Cx, Cy];

Outline = bsxfun(@minus, Outline, Offset2D);
%  TargetSection = bsxfun(@minus, TargetSection(:, 2 : 3), Offset2D);
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%  CrossAngles = atan2(TargetSection(:, 2), TargetSection(:, 1));

% Finding radial pseudo landmark ponts from the centroid
for j=1: NumPts
IDX = sum(bsxfun(@times, Outline, Vects(j, ©), 2) > 0;
Temp = Outline(IDX, ©;
NormalVect = [-Vects(j, 2), Vects(j, 1)];
Distances = abs(sum(bsxfun(@times, Temp, NormalVect), 2));
[~, IDX] = min(Distances);
Distances = sum(Temp(IDX, © .* Vects(j, ©, 2);
Distances = Distances + DistanceModifier;
PointStorage(j, © = Vects(j, © * Distances;
% IDX = CrossAngles >= Angles(j) & CrossAngles <= Angles(j + 1);
% Temp = TargetSection(IDX, ©;
% PointStorage(j, © = median(Temp);
end

Temp = [PointStorage(:, 1) + Cx, zeros(NumPts, 1), PointStorage(:, 2) + Cy] *
RotationMatrix’;

TargetPoints{i, 1} = Temp;

TemplateVertices = TemplateVertices * RotationMatrix’; % rotate vertebrae back to starting
position

TargetVertices = TargetVertices * RotationMatrix’;

end

TemplatePoints = cat(1, TemplatePoints{:});
TargetPoints = cat(1, TargetPoints{:});

% Eliminate nans

SumNans = 0;

IDX = ~isnan(TargetPoints(:, 1));
SumNans = SumNans + sum(IDX == 0);
TemplatePoints = TemplatePoints(IDX, ©;
TargetPoints = TargetPoints(IDX, ©;

IDX = ~isnan(TemplatePoints(:, 1));
SumNans = SumNans + sum(IDX == 0);
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TemplatePoints = TemplatePoints(IDX, ©;
TargetPoints = TargetPoints(IDX, ©;

Fig3 = figure;

Ax3 = axes(‘Parent’, Fig3, ‘NextPlot’, ‘add’, ‘DataAspectRatioMode’, ‘manual’,...
‘PlotBoxAspectRatioMode’, ‘manual’, ‘DataAspectRatio’, [1, 1, 1], ‘PlotBoxAspectRatio’,...
[4, 4, 4]);

TemplatePointPlot = line(‘Parent’, Ax3, ‘Xdata’, TemplatePoints(:, 1), ‘Ydata’,

TemplatePoints(:, 2),...

‘Zdata’, TemplatePoints(:, 3), ‘LineStyle’, ‘none’, ‘Marker’, “.’, ‘MarkerSize’, 15,...
‘Color’, [0, 0, 0]);

TargetPointPlot = line(‘Parent’, Ax3, ‘Xdata’, TargetPoints(:, 1), “Ydata’, TargetPoints(:, 2),...
‘Zdata’, TargetPoints(:, 3), ‘LineStyle’, ‘none’, ‘Marker’, ., ‘MarkerSize’, 15,...

‘Color’, [1, 0, 0]);

% Morphing the Mesh

Kmatrix = [bsxfun(@power, bsxfun(@power, bsxfun(@minus, TemplatePoints(:, 1),...
TemplatePoints(:, 1)), 2) + bsxfun(@power, bsxfun(@minus, TemplatePoints(:, 2),...
TemplatePoints(:, 2)’), 2) + bsxfun(@power, bsxfun(@minus, TemplatePoints(:, 3),...
TemplatePoints(:, 3)’), 2), 0.5), ones(NumSections * NumPts — SumNans, 1),

TemplatePoints;...

[ones(1, NumSections * NumPts — SumNans); TemplatePoints’], zeros(4)];

Coeffs = Kmatrix \ [TargetPoints; zeros(4, 3)];
% There are too many vertices to morph at once so they need to be broken up
% Will do the morphing in 2000 point blocks
NumPts = length(TemplateVertices(:, 1));
NumBIlks = floor(NumPts / 2000) + 1;
MorphedPoints = cell(NumBlks, 1);
Count = 0;
for i=1: NumBlks
Count = Count + 2000;

if Count < NumPts

Temp = TemplateVertices(((i — 1) * 2000) + 1 : i * 2000, ©;
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Kmatrix = [bsxfun(@power, bsxfun(@power, bsxfun(@minus, Temp(:, 1),...
TemplatePoints(:, 1)”), 2) + bsxfun(@power, bsxfun(@minus, Temp(:, 2),...
TemplatePoints(:, 2)’), 2) + bsxfun(@power, bsxfun(@minus, Temp(:, 3),...
TemplatePoints(:, 3)’), 2), 0.5), ones(2000, 1), Temp];

Temp = Kmatrix * Coeffs;

MorphedPoints{i, 1} = Temp;

else

Temp = TemplateVertices(((i— 1) * 2000) + 1 : end, ©;

Kmatrix = [bsxfun(@power, bsxfun(@power, bsxfun(@minus, Temp(:, 1),...
TemplatePoints(:, 1)), 2) + bsxfun(@power, bsxfun(@minus, Temp(:, 2),...
TemplatePoints(:, 2)’), 2) + bsxfun(@power, bsxfun(@minus, Temp(:, 3),...
TemplatePoints(:, 3)’), 2), 0.5), ones(length(Temp(:, 1)), 1), Temp];

Temp = Kmatrix * Coeffs;

MorphedPoints{i, 1} = Temp;

end
end

TemplateVertices = cat(1, MorphedPoints{:});
set(TemplatePlot, ‘Vertices’, TemplateVertices)
% end

set(TargetPlot, ‘FaceAlpha’, 0.3)

% delete(TargetPlot)

% Morphing the blocks

Kmatrix = [bsxfun(@power, bsxfun(@power, bsxfun(@minus, BlkVertices(:, 1),...
TemplatePoints(:, 1)’), 2) + bsxfun(@power, bsxfun(@minus, BlkVertices(:, 2),...
TemplatePoints(:, 2)’), 2) + bsxfun(@power, bsxfun(@minus, BlkVertices(:, 3),...
TemplatePoints(:, 3)’), 2), 0.5), ones(length(BlkVertices(:, 1)), 1), BlkVertices];

BlkVertices = Kmatrix * Coeffs;

set(BlkPlot, ‘Xdata’, BlkVertices(:, 1), ‘Ydata’, BlkVertices(:, 2), ‘Zdata’, BlkVertices(:, 3))

% Placing everything back in anatomical orientation
BlkVertices = bsxfun(@plus, bsxfun(@plus, BlkVertices, Offset3D) * SVDRotation’,
TargetOffset3D);

TemplateVertices =  bsxfun(@plus, bsxfun(@plus, TemplateVertices, Offset3D) *
SVDRotation’, TargetOffset3D);
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TargetVertices = bsxfun(@plus, bsxfun(@plus, TargetVertices, Offset3D) * SVDRotation’,
TargetOffset3D);

set(TemplatePlot, ‘Vertices’, TemplateVertices)
set(TargetPlot, ‘Vertices’, TargetVertices);
set(BlkPlot, ‘Xdata’, BlkVertices(:, 1), ‘Ydata’, BlkVertices(:, 2), ‘Zdata’, BlkVertices(:, 3))

% save morphed surface mesh
% SaveFileName = cat(2, BlkFileIDs{1}(1 : end —4), ¢ Morphed.stl’);
% stlwrite(SaveFileName, TemplateFaces, TemplateVertices)

GENERATION OF ICEM CFD CODES TO TRANSFORM 10 YO-T5 MULTI-BLOCK
VERTICES TO 12 YO-T5 SCOLIOSIS VERTEBRAL GEOMETRY

% write [CEM CFD block morphing file

SaveFileName = cat(2, BlkFileIDs{1}(1 : end - 4),' Morphed.txt');

TxtFileID = fopen(SaveFileName, 'w', 'n', 'US-ASCII'");

fprintf(TxtFileID, 'ic_hex place node %d %10.5f %10.5f %10.5f\r\n’,...
[BlkNodeNumber, BlkVertices(:, 1), BlkVertices(:, 2), BlkVertices(:, 3)]";

fclose(TxtFileID);

ic_hex place node 2635 -45.573118 -114.519687 -103.486571 (Line#1)
ic_hex place node 2631 -38.429045 -115.546334 -110.712057

ic_hex place node 819 -35.571354 -121.552333 -98.292424

ic_hex place node 821 -32.285162 -124.092035 -96.953244

ic_hex place node 827 -37.468805 -119.744165 -100.631823

ic_hex place node 2637 -38.101172 -122.044484 -93.954670

ic_hex place node 2639 -30.245523 -126.166414 -91.092496

ic_hex place node 2857 -32.121088 -92.304033 -137.414340 (Line#443)
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