
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019 1069

Boosting the Bitrate of Cross-Technology
Communication on Commodity IoT Devices

Wenchao Jiang , Zhimeng Yin, Ruofeng Liu, Zhijun Li , Member, IEEE, Song Min Kim ,

and Tian He , Fellow, IEEE, ACM

Abstract— The cross-technology communication (CTC) is a
promising technique proposed recently to bridge heterogeneous
wireless technologies in the ISM bands. Existing solutions use
only the coarse-grained packet-level information for CTC mod-
ulation, suffering from a low throughput (e.g., 10 b/s). Our
approach, called BlueBee, explores the dense PHY-layer infor-
mation for CTC by emulating legitimate ZigBee frames with
the Bluetooth radio. Uniquely, BlueBee achieves dual-standard
compliance and transparency for its only modifying the payload
of Bluetooth frames, requiring neither hardware nor firmware
changes at either the Bluetooth sender or the ZigBee receiver. Our
implementation on both USRP and commodity devices shows
that BlueBee can achieve standard ZigBee bit rate of 250 kb/s
at more than 99% accuracy, which is over 10 000x faster than
the state-of-the-art packet-level CTC technologies.

Index Terms— Cross-technology communication, signal emula-
tion, bluetooth low energy, ZigBee, Internet of Things.

I. INTRODUCTION

THE body of wireless devices has undergone an explosive
increase in the last decade, which, under the emerging

Internet of Things (IoT) era, is anticipated to grow as large
as 20 billion by 2020 [7]. The dense deployment of wire-
less devices introduces highly-coexisting wireless environment
which has long been perceived as a harsh habitat with severe
interference. However, recent studies reveal that coexistence
offers unique opportunities of collaboration – by taking advan-
tages of specialized features among heterogeneous wireless
technologies– that enable them to reach beyond independent
operation. For example, in ZiFi [38] energy expenditure of
power-hungry WiFi interfaces are significantly cut down with
the assistance from low-power ZigBee radio, where it turns
on the WiFi only when WiFi APs are found in the vicinity.

The traditional way of communicating among heteroge-
neous devices is to deploy multi-radio gateways, which suf-
fers from several drawbacks including additional hardware

Manuscript received April 26, 2018; revised November 18, 2018;
accepted March 27, 2019; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor T. Hou. Date of publication June 6, 2019; date
of current version June 14, 2019. This work was supported in part
by the NSF under Grant CNS-1525235, Grant CNS-1718456, Grant
CNS-1717059, and NSF China under Grant 61672196. A conference
paper [15] containing preliminary results of this paper appeared in ACM
Sensys 2017. (Corresponding authors: Tian He; Zhijun Li.)

W. Jiang, Z. Yin, R. Liu, and T. He are with the Department of
Computer Science and Engineering, University of Minnesota, Minneapo-
lis, MN 55455 USA (e-mail: jiang832@umn.edu; yinxx283@umn.edu;
liux4189@umn.edu; tianhe@umn.edu).

Z. Li was with the University of Minnesota, Minneapolis, MN 55455 USA.
He is now with the Harbin Institute of Technology, Harbin 150006, China
(e-mail: lizhijun.hit@gmail.com).

S. M. Kim is with the School of Electrical Engineering, KAIST,
Daejeon 34141, South Korea (e-mail: songmin@kaist.ac.kr).

Digital Object Identifier 10.1109/TNET.2019.2913980

cost, complicated network structure, and increased traffic
overhead due to traffic flowing into and out from the gate-
way. To address these issues, the latest literature introduces
the cross-technology communication (CTC) techniques which
achieve direct communication among heterogeneous wireless
devices with incompatible PHY layers. Existing solutions
commonly use packet-level modulations, where the combi-
nations of timing [18] and durations [5] of packets convey
the data. Despite their effectiveness, the bit rates are inher-
ently limited as they adopt coarse-grained ‘packets’ as the
basis for modulation (analogous to ‘pulse’ in typical digital
communication). For instance, the bit rate of BLE to ZigBee
communication in the state of the art is limited to 17bps [18],
four orders of magnitude slower compared with the 250kbps
and 1Mbps data rate for legacy ZigBee and Bluetooth. The
limited data rate greatly restricts real-time CTC applications,
such as network coordination.

This paper introduces BlueBee, which boosts the bit
rate of CTC via physical-layer emulation. More specifically,
by smartly selecting the payload bits in a Bluetooth packet,
BlueBee effectively encapsulates a ZigBee packet within the
payload of a Bluetooth packet. The Bluetooth packet follows
normal Bluetooth standard while the encapsulated ZigBee
packet is compliant with the ZigBee standard and reaches the
ZigBee bitrate cap of 250kbps at 99% accuracy. During the
process, BlueBee does not require any hardware or firmware
changes at either the Bluetooth transmitter or the ZigBee
receiver, but only application-level payload embedding at the
Bluetooth transmitter. In fact, the emulated ZigBee packet
from Bluetooth is indistinguishable by the ZigBee receivers
from normal ZigBee packets. These features make BlueBee
ready to be deployed on billions of existing commodity IoT
devices, smartphones, PCs, and peripherals.

Signal emulation is challenging, especially when the band-
width of Bluetooth (1MHz) is only half of that of ZigBee
(2MHz). The BlueBee design stems from two key technical
insights: (i) the bridge between the (de)modulation techniques
of Bluetooth and ZigBee and (ii) error tolerance of ZigBee
demodulation (OQPSK/DSSS). Specifically, the phase differ-
ences between samples, referred to as phase shifts, is the
bridge between the phase shift keying in ZigBee and the
frequency shift keying in Bluetooth, which makes emulation
possible. In addition, although the ZigBee signal cannot be
perfectly emulated due to a narrower bandwidth of Bluetooth,
BlueBee is optimally designed such that the inevitable error
is minimized and kept under the tolerance of (i.e., the error
is successfully corrected by) ZigBee’s DSSS demodulator.
As a result, BlueBee effortlessly runs on commodity Bluetooth
devices by simply putting specific bit patterns in the Blue-
tooth packet payload. Also, BlueBee effectively utilizes the
frequency hopping feature of Bluetooth to support concurrent

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6765-2466
https://orcid.org/0000-0001-9129-9957
https://orcid.org/0000-0001-5449-4008
https://orcid.org/0000-0001-6062-2619

1070 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

communication across devices operating on different channels.
Lastly, BlueBee offers reliable communication under dynamic
wireless channel conditions. The contribution of this work is
three-fold.

• We design BlueBee, the first CTC technique that emulates
a legitimate ZigBee frame within the payload of a legiti-
mate Bluetooth packet. No modification to the hardware
or the firmware, for either the transmitter (Bluetooth)
or the receiver (ZigBee), enabling full compatibility to
billions of commodity devices.

• We address several unique challenges of signal emulation,
including (i) optimized ZigBee phase shifts emulation
using Bluetooth signal, (ii) the support for concurrent
communication and low duty cycle operation under the
frequency hopping of Bluetooth, and (iii) link layer relia-
bility under dynamic channel conditions. These solutions
offer general insights for signal emulation between other
heterogeneous devices.

• We design and implement BlueBee on both the USRP
platform and commodity devices. Our extensive exper-
iments demonstrate that BlueBee establishes a high
throughput and reliable communication under various
environments and settings. Compared with a 17bps rate
achieved by the state-of-the-art CTC from Bluetooth to
ZigBee [18], BlueBee’s reliable throughput of 250kbps,
reaching that of the ZigBee standard, indicates perfor-
mance gain of more than 10,000 times!

II. MOTIVATION

With the rapid development of wireless technologies, such
as WiFi, Bluetooth, and ZigBee, the ISM band suffers
from the cross-technology interference (CTI) and channel
inefficiency [12], [21], [36]. That is because the wireless tech-
nologies coexisting in the ISM band have heterogeneous PHY
layer and cannot communicate directly with each other, thus
not able to effectively coordinate channel use. The traditional
approach to tackle the issue is to use a multi-channel gateway.
But recently, researchers propose cross-technology communi-
cation (CTC) techniques as a promising alternative. However,
both the traditional gateway approach and the existing CTC
technologies have some intrinsic limitations.
• Limitation of Gateway. Multi-radio gateway is a usual

and straightforward solution to bridge multi-technology com-
munication [8], [16], [22], [24]. However, a gateway intro-
duces not only additional hardware cost but also the labor
intensive deployment cost, which would be prohibitive for the
mobile and ad hoc environment. In addition, a dual-radio gate-
way increases the traffic overhead by doubling traffic volume
in the ISM band, which further intensifies the cross-technology
interference.
• Limitation of Packet-Level CTC. The recent

cross-technology communication aims at building explicit
channel coordination with the direct communication
among heterogeneous wireless technologies. For examples,
heterogeneous devices can allocate the channel in a way
similar to the RTS/CTS in the 802.11 protocol [1], thus
leading to a better channel efficiency. Unfortunately, to the
best of our knowledge, existing CTC designs [5], [18], [37]
rely on sparse packet level information such as the beacon
timing [18] and multi-packet sequence patterns [32],
introducing a delay of at least hundreds of milliseconds.
Such a delay is way too for effective channel coordination in
real-time.

Fig. 1. The system architecture of the BlueBee.

In contrast to the limitations of gateway approach and
existing CTC approaches, BlueBee is able to transmit a ZigBee
packet directly from a Bluetooth device as fast as a normal
ZigBee device, which is an enabler for real-time applica-
tions, such as the channel coordination between heteroge-
neous commodity devices in the dynamic environment. In the
paper, although our description will be based on one specific
Bluetooth standard, Bluetooth Low Energy (BLE), to ZigBee,
the idea can be generalized to other Bluetooth standards, such
as Bluetooth Classic (discussed in Section VII-A), as well as
other phase shift keying and frequency shift keying wireless
technologies.

III. BLUEBEE IN A NUTSHELL

A. Overview

BlueBee is a high data-rate CTC technique from BLE to
ZigBee compatible with both ZigBee and BLE standards.
The basic idea of BlueBee is illustrated in Fig. 1 – BlueBee
encapsulates a legitimate ZigBee frame within the payload of
a legitimate BLE frame, by carefully choosing the payload
bytes. At the PHY layer, the selected payload resembles (i.e.,
emulates) the signal of a legitimate ZigBee frame. When
the BlueBee packet reaches a ZigBee receiver, the emulated
ZigBee frame in the payload part is detected (via the compat-
ible ZigBee preamble) and demodulated, just like any other
ZigBee frame originated from a ZigBee sender. We note that
the header and trailer of the BLE packet are incompatible with
ZigBee and are naturally disregarded, or equivalently, treated
as noise. In fact, such a design makes BlueBee dual-standard
compliant. At the sender, a BlueBee packet is no more than
a normal BLE packet with a carefully chosen payload. At the
receiver side, the ZigBee device cannot tell whether the frame
is from a ZigBee device or is emulated by a BLE device, due
to the indistinguishable PHY layer waveform.

B. Unique Features

In Table I, we illustrate the technical advantages of BlueBee,
as the first PHY-layer CTC, compared to the gateway approach
and the state-of-the-art packet-level CTC approaches: 1) Com-
pared with the gateway approach, BlueBee provides direct
communication between heterogeneous devices, which saves
the gateway facility and deployment cost and incurs less inter-
ference to the wireless network, i.e., a gateway will double the
traffic in the air by the traffic going into and outside the gate-
way; 2) Compared with existing CTC solutions [5], [18], [32],
BlueBee boosts the CTC data rate, making it comparable with
normal wireless technology, i.e., ZigBee, so that real-time
applications, such as channel coordination through CTC,
is feasible; 3) BlueBee enables multi-channel concurrent CTC
by the inherent frequency hopping in the BLE communication
to best serve ZigBee devices on a wider ISM band.

JIANG et al.: BOOSTING THE BITRATE OF CTC ON COMMODITY IoT DEVICES 1071

TABLE I

COMPARISON OF BLUEBEE AND EXISTING CTC SOLUTIONS

Fig. 2. BLE as the transmitter with GFSK modulation.

IV. BLUEBEE DESIGN

This section briefly introduces some backgrounds about
ZigBee and BLE followed by the BlueBee design in detail.

A. Background

We first study how a BLE transmitter and a ZigBee receiver
work in relation to BlueBee.

B. BLE Transmitter

BLE uses Gaussian Frequency Shift Keying (GFSK) modu-
lation, where the frequency shift will introduce phase changes
over time .1 Fig. 2 illustrates the entire procedure from payload
bits to corresponding BLE waveform from steps (i) to (iv).
In (i) BLE bits first go through a non-return-to-zero (NRZ)
module that modulates a series of BLE bits to a square wave
of either −1 or 1, where each square pulse lasts 1μs long.
(ii) This wave passes through the Gaussian low pass filter,
which shapes the wave into a band-limited signal. The bit
change between −1 and 1 indicates negative and positive
frequency shift, which further results in the phase change or
phase shift of ±π/2 during one-bit time. (iii) By integrating
the phase shifts over time, we yield the instant phase with
respect to time. (iv) The In-phase and Quadrature (I/Q) signal
are calculated through the cosine and sine of the instant phase,
respectively, which are multiplied to the carrier and pushed
into the air through the BLE RF front-end.

The goal of BlueBee is to construct time-domain wave-
forms that can be demodulated by a commodity ZigBee
receiver. In other words, emulate ZigBee signal at BLE. To do
so, we imagine ZigBee signal containing the data of our choice
is emitted from the BLE RF front-end, and reverse engineer
steps (iv) to (i) accordingly. In step (iv), ZigBee signal in
the air is sampled at BLE sampling rate (1Msps). From the
sampled I/Q signals, the corresponding instant phases are
obtained. Reversing step (iii) yields the phase shifts between

1Note that frequency is the derivative of phase. A frequency shift keying
s(t) = Acos(2π(f ± Δf)t) is equivalent to a phase shift keying of s(t) =
Acos(2πft ± Φ(t)), where Φ(t) = 2πΔft.

Fig. 3. ZigBee as the receiver with OQPSK demodulation.

TABLE II

SYMBOL-TO-CHIP MAPPING IN ZIGBEE (802.15.4)

consecutive BLE samples, where the corresponding series of
square waves are found by reversing step (ii). Finally, these
waves are mapped to data bits at the BLE packet payload
which can be freely set, indicating that the targeted ZigBee
signal is emulated simply by setting the BLE packet payload
with the correct bits.

Such an approach enables the emulated waveform to be
seamlessly demodulated by commodity ZigBee radios as legit-
imate ZigBee packets, without any change incurred to BLE’s
GFSK modulator. However, such emulation is not trivial due
to various constraints, such as the narrower bandwidth of BLE
(1MHz) compared to ZigBee (2MHz), which will be discussed
in the later part of the section.

C. ZigBee Receiver

As Fig. 3 depicts, BlueBee enables BLE to transmit emu-
lated ZigBee packets which can be demodulated by any com-
modity ZigBee device through the standard Offset Quadrature
Phase Shift Keying (OQPSK) demodulation procedure. This
is initiated by step (a), where ZigBee captures the BLE
signal on the overlapping 2.4GHz ISM through the analog-
to-digital converter (ADC), to obtain I/Q samples. A pair of
I/Q samples are often referred to as a complex sample s(n) =
I(n)+jQ(n). In step (b), the phase shifts between consecutive
complex samples are computed from arctan(s(n)×s∗(n−1)),
where s∗(n − 1) is the conjugate of s(n − 1). In step
(c) positive and negative phase shifts are quantized to be
1 and −1, corresponding to ZigBee chips 1 and 0.

Finally, in (d), 32 ZigBee chips are mapped to a ZigBee
symbol, by looking up a symbol-to-chip mapping table
(Table II) predefined in DSSS. There are 16 different symbols

1072 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Fig. 4. Emulating ZigBee with BLE.

where each represents log216 = 4 bits. We note that in the
face of noise/interference the phases may suffer from errors
(+ ↔ −), which induce reversed chips (1 ↔ 0). In such a
case, the closest symbol with the smallest Hamming distance
is selected.

D. Opportunities and Challenges of Emulation

Conceptually, emulation of ZigBee signal via BLE is pos-
sible due to two key technical insights. First, the phase shift
is the bridge between ZigBee’s OQPSK and BLE’s GFSK
(de)modulation. Phase shifts are directly interpreted as bits in
BLE, while at the same time related to ZigBee chips. So in
BlueBee, we carefully choose BLE bits so that their output
phase shifts mimic consecutive ZigBee chips to achieve signal
emulation, as shown in Sec IV-E.

Second, ZigBee only considers sign (+ or −) of the
phase instead of the absolute phase value, which offers great
flexibility in emulation. It is really important in the emulation
because the bandwidth of BLE (1MHz) is only half of that of
ZigBee (2MHz), so that phase shifts in BLE are not sufficient
to express all ZigBee chips, leading to inevitable errors in
emulation. More specifically, the DSSS modulation in ZigBee
maps 32bit chip sequences to 4bit symbols, so that a ZigBee
symbol can be correctly decoded if the Hamming distance
between the received and ideal chip sequence is within a
threshold of 12 (may be adjusted up to 20 [21]). We will
see in Sec IV-F this margin is enough for ZigBee to correctly
demodulate the emulated signal.

E. OQPSK Emulation

Here we demonstrate emulating ZigBee’s OQPSK modu-
lation with BLE, which is a nontrivial problem due to the
narrower bandwidth of BLE compared to ZigBee (1MHz
vs 2MHz). Fig. 4 illustrates the emulation process with an
example of 8 ZigBee chips, where it starts by cutting the
sequence into two-chips pieces (one In-phase chip and one
Quadrature chip) with durations of 1μs. Since one BLE
symbol also lasts 1μs, each of the pieces is then emulated
by a BLE symbol.

Let us now look into how the emulation is performed on
a two-chip piece. Recall that OQPSK (i.e., ZigBee) observes
phase shifts between consecutive samples, whose signs are
translated to chips of −1 and 1 (steps (a) and (b) in Fig. 3).
The left in Fig. 5 depicts ZigBee signal (not emulated)
containing two chips of ‘11’, where T1−T3 are the timings of
three consecutive samples every 0.5μs, the ZigBee sampling
rate. On the right, the constellation of the samples at the

Fig. 5. (a) ZigBee signal indicating two chips, ‘11’, as phase shifts from T1

to T2, and from T2 to T3 are both positive (π/2). (b) is the emulated signal
of (a), by BLE (which is in fact BLE symbol ‘1’). When fed into ZigBee
receiver this signal is sampled at T1, T2, and T3 to give two consecutive
positive (π/4) phase shifts. This yields ZigBee chips of ‘11’, indicating
successful emulation.

corresponding timings are plotted with arrows. The phase shift
between the arrows of T1 and T2 is π/2. Since a positive value,
this is translated to a chip of ‘1’. The next chip is computed
similarly between samples T2 and T3, which also yields a chip
of ‘1’.

Now we show that the above mentioned ZigBee signal can
be successfully emulated by BLE, which is demonstrated in
the left in Fig. 5b. Although the signal appears to be distinct
from ZigBee signal (left in Fig. 5a), it still delivers the same
chips of ‘11’ to ZigBee receiver. The key point here is that
only the sign of phase shift is considered (not the amount).
To understand this, we first notice that the left in Fig. 5b
reflects the bandwidth of BLE being only half of ZigBee
– i.e., the sinusoidal curves indicating I/Q signals have half
the frequency, or equivalently, double the period. When this
signal is fed into the ZigBee receiver and sampled at T1−T3,
the resulting constellation is as the right in Fig. 5b. From the
plot, the phase shift between T1 and T2 is π/4 (i.e., positive),
which yields a chip of ‘1’. The same applies to the phase shift
between T2 and T3. This indicates that the BLE signal in the
left in Fig. 5b) indeed yields the same chip sequence of ‘11’ at
the ZigBee receiver, as the ZigBee signal in the left in Fig. 5a.
In other words, the ZigBee signal is successfully emulated by
the BLE.

In fact, from the BLE’s perspective, the signal at the left of
Fig. 5b is simply a BLE signal representing a phase shift of
π/2. This is because the sampling rate of BLE is half of the
ZigBee, due to the bandwidth difference and the corresponding
Nyquist sampling rate. Specifically, BLE samples T1 and T3

whose phase difference is π/2. Conversely speaking, by let-
ting BLE transmit bits corresponding to phase shift of π/2,
the BLE devices are able to deliver chip sequences of ‘11’ to
a ZigBee receiver. This is the key enabler to BlueBee, where
ZigBee packet is encapsulated within a BLE packet simply
through payload bit patterns.

From the example in Fig. 5b, we have found that a single
phase shift in BLE is interpreted as two phase shifts in ZigBee,
as per bandwidth difference. That is, BLE has lower degree
of freedom, where it can change phase shifts (− ↔ +) every
1μs whereas it is 0.5μs for ZigBee. Due to this, while ZigBee
chip sequences are of ‘11’ or ‘00’ (‘consistent phase’ hereafter,
since phase shifts are kept consistent at + or −) can be

JIANG et al.: BOOSTING THE BITRATE OF CTC ON COMMODITY IoT DEVICES 1073

Fig. 6. Impact of inconsistent ZigBee phase shifts. (a) Inconsistent phase
shifts at ZigBee. (b) Imperfect signal emulation at BLE.

Fig. 7. Comparison between BLE emulated signal and the desired ZigBee
signal. (a) Time domain emulated signal. (b) Constellation.

perfectly emulated, this is not the case for sequences ‘01’
or ‘10’. Fig. 6a demonstrates ZigBee chip sequence of ‘10’.
As shown in Fig. 6b BLE emulates this to be ‘11’ (in the
figure) or ‘00’, incurring 1 chip error in either case. While such
a chip error is inevitable due to the nature of BLE’s narrower
bandwidth, interestingly, its impact on decoded bits can be
significantly reduced depending on the BLE phase shift. That
is, by smartly emulating chip sequence ‘01’ to either ‘11’ or
‘00’ (same to ‘10’), we are able to maximize the probability
of DSSS to map the received chip sequences to the correct
symbol, and to output correct bits. We discuss this in detail in
the following section.

As a proof of concept example, we emulate a 32-chip
ZigBee symbol ‘0’ (i.e., ‘0000’ in Table II) from BLE.
In Fig. 7a, the time domain I/Q signals for both ZigBee
and BLE are compared, which are quite different due to the
disparate pulse shapes, i.e., Gaussian for BLE and half sine
for ZigBee. As discussed earlier, phase shifts depicted in the
upper part of Fig. 7b demonstrates that the shift per 0.5μs is
±π/4 for BLE, where it is ±π/2 for ZigBee. Moreover, some
errors are observed where the phase shifts are inconsistent at
ZigBee. This is also reflected in the chips (lower in Fig. 7b),
which we consider in emulating DSSS so as to minimize the
error in the decoded bits. This is explained in detail in the
following section.

F. Optimal DSSS Emulation

In this section, we discuss how BlueBee minimizes the
impact of the inevitable chip error introduced in OQPSK
emulation, via DSSS. To start, let us first go through a simpli-
fied walk-through example: Fig 8 illustrates an emulation in
the 4-bit hamming space (simplified from 32 bits in ZigBee
DSSS).

Fig. 8. An example of optimized DSSS emulation.

In this hamming space, there are three ZigBee symbols,
called ‘ideal symbols’, which need to be emulated using the
method introduced in Section IV-E. Due to the limited capa-
bility of BLE, BlueBee can only generate a limited number of
emulation symbols, which are marked with dashed rectangles
in this figure. Other symbols in this hamming space cannot be
represented by BlueBee. Let Si denote the ith ideal symbol
- the legitimate ZigBee symbol to be emulated, and Ei to
denote the ith emulated symbol which could be generated by
BlueBee’s emulation. Then, we define two symbol (Hamming)
distances as follows:

Definition 1: Dist(Ei, Si) is intra hamming distance from
the emulation symbol Ei to the ideal symbol Si.

Definition 2: Dist(Ei, Sj) is inter hamming distance from
the emulation symbol Ei to the ideal symbol Sj , where j �= i.

Take Fig. 8 for example. To emulate the ideal symbol
‘1110’, BlueBee can generate two possible emulation sym-
bols ‘1100’ and ‘1111’, which have the same intra-symbol
distances of 1 to the target ideal symbol ‘1110’. After this,
BlueBee considers the inter-symbol distance from these emu-
lation symbol to the other ideal symbols different from the
target symbol ‘1110’. For emulation symbol ‘1100’, it has the
inter-symbol distance of 1 and 3 to the ideal symbol ‘0100’ and
‘0010’ respectively. Similarly, for emulation symbol ‘1111’,
it has the inter-symbol distance of 3 and 3 respectively. As a
result, BlueBee chooses the ‘1111’ as the emulation choice,
since it has the maximum value of the minimum inter-symbol
distance (i.e., maximum margin), thus reducing the symbol
error possibility in the emulation.

The previous example illustrates the idea of optimizing
DSSS emulation in the 4-bit hamming space. Now we will
talk about how BlueBee optimizes the DSSS emulation in the
standard ZigBee symbol space, following the same principles.

G. Intra-Symbol Distance

Each 4-bit ZigBee symbol is mapped to 32 chips. Dividing
the 32 chips into 16 consecutive pairs of chips and count-
ing ‘01’ or ‘10’ yields the number of chip errors in the
ZigBee emulation by BLE, or equivalently, Dist(Ei, Si) (i.e.,
intra-symbol Hamming distance). This value is constant for a
given symbol, since emulation of ‘01’ or ‘10’ always induces
one chip error, regardless of being emulated to ‘00’ or ‘11’.
For example, in Fig. 9, we have plotted the intra hamming dis-
tances for all possible ZigBee symbols. We find the maximum
intra-symbol hamming distance is 8, such as the intra-symbol
hamming distance of ZigBee symbol ‘0000’. Note that the
intra-symbol hamming distance cannot be optimized, because
there will always be one chip error at whatever bits BLE
choose to emulate inconsistent ZigBee phase shifts.

1074 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Fig. 9. Intra-symbol Hamming distance between emulated and ideal ZigBee
symbols.

Fig. 10. BLE data whitening through LFSR.

H. Inter-Symbol Distance

Although the intra-symbol distance of each symbol is fixed,
BlueBee tries to increase the inter-symbol distance for improv-
ing the reliability. this is because the inter-symbol Hamming
distance Dist(Ei, Sj), i �= j, depends on how ‘01’ or ‘10’
are emulated. For example, ‘01’ can be emulated via either
‘00’ or ‘11’. Therefore, a ZigBee symbol can be emulated in
2Dist(Ei,Si) different sequences, where BlueBee chooses the
emulation symbol with the maximum minimum inter-symbol
hamming distance. This optimization can be described in the
following equation:

argmax
Ei

min{Dist(Ei, Sj), i �= j} (1)

We note that the computation is lightweight with the limited
search space of 0 ≤ i, j ≤ 15. Furthermore, this only needs to
be computed once, and thus can be precomputed and loaded
on the device prior to running BlueBee.

I. Dealing With the BLE Data Whitening

Due to security concerns, the symbol transmitted by BLE
is not the plain message of payload. Instead, a scramble
technique called data whitening is adopted on BLE payload
to randomize the matching between the payload bytes and
the bytes transmitted in the air. Therefore, it is crucial to
overcome the data whitening on BLE to control transmitted
signal through BLE payload.

In fact, recent literature has shown that BLE’s LFSR circuit
is reversible [13], [30]; Technically, BLE uses the 7-bit linear
feedback shift register (LFSR) circuit with the polynomial
x7+x4+1 as shown in Fig. 10. The circuit is used to generate
a sequence of bits to whiten the incoming data by XOR
operation. The initial state of the LFSR circuit is the current
channel number (i.e., from 0 to 39) in binary representation
defined in the BLE specification. BlueBee reverse engineers
the whitening process to generate the BLE payload according
to the carefully chosen bytes for emulation. This makes Blue-
Bee fully compatible with commodity BLE devices, validated
with extensive testbed implementations and evaluations on
commodity devices in Sec. VIII.

Fig. 11. BLE normal frequency hopping.

V. CONCURRENT COMMUNICATION

One specific feature of BLE is the frequency hopping, which
helps BLE devices to avoid busy channels occupied by other
ISM band radios. In BlueBee, this feature allows one BLE
device to hop among the 2.4GHz band and communicate with
multiple ZigBee devices at different channels. For the conve-
nience of discussion, we assume a static address configuration
where the ZigBee channels and IDs are known in advance
while leaving sophisticated addressing techniques for future
studies. Furthermore, we can control the BLE frequency hop-
ping sequence, while still following BLE frequency hopping
protocol. In this section, we will first briefly introduce BLE
frequency hopping protocol, followed by our design of two
BlueBee channel scheduling solutions.

A. BLE Frequency Hopping

BLE has 40 2MHz wide channels, labeled as channel 0
to channel 39. Among them, channel 37, 38, and 39 are
advertising channels and the others are data channels. Once a
connection is established on a advertising channel, two paired
devices will hop among the data channels to communicate.

In BLE, a simple yet effective frequency hopping protocol
is used to determine the next channel to hop. The first channel
is always ‘0’, and after a time duration of the hopping interval,
the BLE device will hop to the next channel with an increment
of hopping increment. In formula

Cnext = Ccurrent + hoppingInc (mod37), (2)

where Cnext and Ccurrent indicate next and current channel
respectively, 37 is the total number of BLE data channels, and
hoppingInc is the hopping increment. In Fig. 11 we illustrate
a frequency hopping sequence on 5 channels (i.e., channel ‘0’
to channel ‘4’) with a hopping increment of 2 and hopping
interval of t.

To avoid collision with other wireless radios on the same
ISM band, BLE adopts adaptive frequency hopping (AFH)
when packet accept ratio is low on certain channels. In BLE
AFH, a 37-bit channel map is used to maintain the channel
link quality where ‘0’ indicates a bad channel and ‘1’ indicates
a good channel. Let us use Sgood and Sbad to indicate the good
and bad channel sets respectively. Whenever the next channel
will be a bad channel, it will be replaced by another channel in
the Sgood. More specifically, a remapIndex will be calculated
through

remapIndex = Cnext mod |Sgood|, (3)

and Cnext will be replaced by Sgood(remapIndex). For
example, in Fig. 12, Sgood = {0, 3, 4}, while Sbad =
{1, 2}. So whenever a BLE device hops to a bad channel,
such as channel 1, its remapIndex will be calculated as
1 mod |Sgood| = 1, which indicates channel Sgood(1) = 3
following the Equ. 3.

JIANG et al.: BOOSTING THE BITRATE OF CTC ON COMMODITY IoT DEVICES 1075

Fig. 12. BLE adaptive frequency hopping.

B. BlueBee Channel Scheduling

AFH will change the frequency a BLE device visits the
channels. In Fig. 12, we illustrate the BLE channels visited
before and after AFH. In the example, the BLE device starts
from channel 0 and the hopping increment is 2, so that the
hopping sequence is {0 → 2 → 4 → 1 → 3}. If the
channel 1 and 2 are marked as ‘bad channels’, shown as
the striped box, all the visits to these two channels will be
remapped by AFH to channel 4 and 3 according to Equ. 3.
The hopping sequence after AFH is {0 → 4 → 4 → 3 → 3}.
AFH may affects two critical QoS criteria to the users:

i. Throughput. AFH changes the frequency of BLE to visit
each channel. In CTC, we want BLE to visit the BLE-ZigBee
overlapping channel, i.e., 2410, 2420,... 2470MHz more times
to maximize CTC throughput.

ii. Fairness. The visits to BLE channels may differ with
the AFH. We want the visits to the overlapping channels to
be even so that ZigBee devices on different channels will have
a chance to communicate with the BLE device.

To control BLE channel hopping in a non-disruptive
manner, we can take advantage of the 37-bit channel bit
map in BLE. Recall that the channel bit map records idle
BLE channels and decides the hopping sequence. We pro-
pose to change the BLE hopping sequence by updating
the channel bit map, which is a function available through
a BLE host-level (i.e., user-level) command such as the
HCI_set_AFH_Channel_Classification [29].

1) Maximum-Throughput Solution: By updating the channel
bit map, we can control the set of channels a BLE device can
hop on. To maximize the throughput of concurrent BlueBee,
we can leave the ZigBee-BLE overlapping channels in the
channel bit map if they are marked as idle in the original chan-
nel bit map (i.e., Sgood) while blacklisting the non-overlapping
channels. So that the throughput on overlapping channels is
maximized.

2) Load Balanced Solution: We can also achieve the fair
channel hopping by updating the channel bit map. Thanks to
the AFH, the output hopping sequence is almost uniformly
distributed, although there are some channels visited one
or two more times than the others in a run, i.e., 37 hops.
We propose a heuristic algorithm that helps change the visits
to a specific channel locally with minimum impact to other
parts of the hopping sequence. The idea is to remap the visits
to a candidate channel to the target channel by deliberately
marking the candidate channel as ‘bad’. So that the visits to
the target channel increase. However, to reduce the impact on
the whole hopping sequence, we maintain the size of Sgood,
which control the remap of other BLE devices. Specifically,
for each under-visited channel c (i.e., visited less than other
overlapping channels), we find another channel c� in Sgood

whose remapped channel will be c. Then we mark c� as a
bad channel in the channel bit map, so that whenever BLE
devices hop to c�, the channel will be remapped to c. Since
we do not want to disturb other remap index, we guarantee

Fig. 13. The steps of BlueBee channel scheduling. (a) Choose a channel in
Sgood whose remapped channel will be the target channel. (b) Add a channel
in Sbad to Sgood.

Fig. 14. Reliable CTC with repeated preamble.

the |Sgood| unchanged by marking one bad channel to be good
in the channel bit map, so that |Sgood| still keeps the same.

In Fig. 13a and Fig. 13b we demonstrate our scheduling
algorithm. In the example, we try to rebalance channel 0 and
channel 4. We find channel 0 are visited less than channel 4,
so we want to redirect frequency hopping to channel 0. We first
assume all the channels need remapping (marked as red),
except channel 0. Then we find the channel whose remapped
channel will be channel 0, which is channel 3, as shown
in Fig. 13a. We add channel 3 to Sbad to replace one channel
in Sbad, i.e., channel 1, so that |Sgood| doesn’t change as
shown in Fig. 13b. Finally we have rebalanced channel 0 and
channel 4. Admittedly, it is a best effort scheduling method,
because sometimes it is unable to balance all the overlapped
channels due to too many bad channels. In that case, we won’t
disrupt a lot of good channels to achieve the rebalance
goal.

VI. LINK LAYER PROTECTION

In the wireless communication, some predefined signal is
transmitted before the payload for receivers to detect and
synchronize to the on-air packet. For example, in the Zigbee a
sequence of ZigBee symbol ‘0’, known as the preamble and a
ZigBee symbol ‘a7’, known as the start frame delimiter (SFD)
are transmitted before the payload. In the ZigBee receiver,
the ZigBee frames are detected via preamble detection pro-
cedure, i.e., searching for the preamble sequence of ZigBee
symbol ‘0’s.

Preamble is critical for the success of BlueBee reception
because the failure in detecting preamble leads to the loss
of the complete emulated ZigBee frame. However, we notice
that due to the limitation of signal emulation in BlueBee,
the preamble symbols are also imperfectly emulated. Thus,
BlueBee further improves the reliability in the link layer
by protecting the preamble detection procedure. In specific,
we propose to repeat the emulated ZigBee preambles, i.e., the
sequence of symbol ‘0’, to improve the ZigBee preamble
detection. As shown in Fig. 14, BlueBee emulates multiple
repeated preambles which increase the probability of frame
detection and the quality of synchronization. The evaluation
demonstrates the repeated preamble improves frame reception
ratio effectively.

1076 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

VII. DISCUSSION

A. Generic Emulation

This section discusses the possible extensions of emulation
under other scenarios, e.g., Bluetooth classic and DBPSK
(differential binary phase shift keying).

Similar to BLE, Bluetooth classic is also a popular Blue-
tooth standard, which is defined in Bluetooth core speci-
fication 1.0. These two standards have several differences
in modulation and channels. First, although both standards
adopt GFSK, Bluetooth Classic’s modulation index is 0.35
while BLE’s modulation index is between 0.45 and 0.55. The
difference in modulation index affects the shape of the final
signal. However, since the phase shift error brought by pulse
shape can be well mediated through phase shift quantization
at ZigBee receiver, BlueBee can still be used in Bluetooth
Classic. Second, Bluetooth Classic has 79 channels distrib-
uted from 2402MHz to 2480MHz spaced 1MHz apart.
So it can cover all ZigBee channels. Third, on the frequency
hopping, Bluetooth Classic will hop among all 79 channels
following a frequency hopping pattern calculated through the
master device’s MAC address and clock. Its hopping interval
will always be 625μs. The hopping interval is long enough
to transmit a Bluetooth emulated ZigBee packets. Although
the channel scheduling methods will be different, the same
heuristic method can be used to find a channel scheduling
solution.

In addition, BlueBee is able to emulate the DBPSK signal.
By setting its payload in the transmitted BLE packets, BlueBee
controls the phase shift values in the wireless waveform. When
sampled at the receiver with DBPSK demodulation, the phase
shifts will be quantized to positive/negative phase changes, and
then demodulated to binary bits. As a result, BlueBee also suits
for the DBPSK emulation with its emulation technique.

B. Feasibility of Reverse Communication

Although in this paper, we focus on the communication
from BLE to ZigBee, in a real communication system,
the reverse direction (e.g., CTC from ZigBee to BLE) is also
needed to form bidirectional communication to support most
upper layer protocol designs. The relationship between ZigBee
chips and BLE bits in phase shift can be utilized in building the
reverse communication, i.e., from ZigBee to BLE. The main
idea is that a BLE receiver can listen to the ZigBee symbols
in the air. From the demodulated BLE bits, which indicate the
phase shift of ZigBee symbols in a lower sampling rate, the
BLE receiver can recover the ZigBee symbols in the air.
The reliability of the reverse communication, its compatibility
to the commodity devices, and upper layer protocol designs,
e.g., MAC layer coordination, are left as our future work.

C. Non-Disruptive to ZigBee and BLE Network

Due to the transparency of signal emulation technique to
the receiver side, a BlueBee transmitter is non-disruptive to
the ZigBee network. The normal ZigBee operations won’t be
disrupted by BlueBee. In Sec. VIII-E, we can see a ZigBee
receiver can effortlessly receive packets from both the normal
ZigBee transmitter and the BlueBee transmitter at the same
time, showcasing that a BlueBee transmitter is regarded no
more than another ZigBee device from the receiver’s point of
view.

Fig. 15. Experiment Setting for BlueBee.

At the BlueBee transmitter, basically we are able to deliber-
ately send BlueBee packets for CTC communication to achieve
the best performance, such as embedding BlueBee packets
in the BLE advertising packets. But we can further take
advantages of two opportunities in BLE to embed BlueBee
packets in a fully non-disruptive way: 1) The BLE data traffic
is designed to be quite sparse for energy saving purpose.
However, in idle time, the paired devices still need to exchange
zero-length empty packets to keep synchronized and maintain
the connection alive [11]. It provides the chance for us to send
BlueBee packets when the BLE channels are idle. We can
mark these packets to be CTC packets in the header so that
the receiver can ignore them. 2) The ‘zero-length’ empty
packets will be ignored by BLE devices without any impact
on the higher layer data [11]. So that we might be able to
deliberately mark the length of a BlueBee packet to be zero to
be non-disruptive to the BLE network, although some hacking
is needed at the sender.

VIII. EVALUATION

In this section, we evaluate the performance of Blue-
Bee across various domains, such as CTC performance
comparison, communication reliability, support in mobility
and low-duty cycle, and two demo applications of coex-
istence between ZigBee and BLE and smart light bulb
control.

A. Platform Setting and Implementation

Fig. 15 demonstrates the evaluation platform of BlueBee,
including (i) Software defined radio, i.e., the USRP-
N210 platform with GNU radio BLE implementation [2];
(ii) Commodity ZigBee and BLE development boards,
i.e, TI CC2650 (support both BLE and ZigBee),
TI CC2530(ZigBee) and MICAz (ZigBee); (iii) Commodity
smartphone, i.e., Nexus 5X. Note that the USRP is only used
for its convenience in adjusting parameters, and BlueBee can
be easily deployed on the aforementioned commodity devices.
In addition, our platforms cover the latest BLE 4.2 devices,
i.e., CC2650 and Nexus 5X, which support new features such
as longer BLE frame size up to 257 bytes.

On BLE development boards, we modify only the payloads
of the BLE packets to embed BlueBee bytes through the TI
SmartRF software, which opens only user-level interfaces and
guarantees the transmitted packets are fully BLE-compliant.
On the smartphone, we use the Android BluetoothLeAdvertiser
class to embed BlueBee bytes in the BLE advertising packets.
In all of our implementation, only user-level operations are
needed, so that BlueBee can be easily deployed on billions of
existing BLE devices.

JIANG et al.: BOOSTING THE BITRATE OF CTC ON COMMODITY IoT DEVICES 1077

Fig. 16. Comparison with the state of the arts.

B. CTC Data Rate

To evaluate the CTC data rate of BlueBee, we compare its
throughput with the state-of-the-art packet level CTC methods.

1) Compare With FreeBee: The only state-of-the-art CTC
work on BLE to ZigBee communication is FreeBee [18].
FreeBee’s throughput is 17bps with a single CTC transmitter,
while the data rate of BlueBee is 250kbps, 14, 000× the data
rate of FreeBee. Admittedly, FreeBee has its unique advantage
of a free channel design, which differentiates it from those
CTC designs that saturate the channel for high throughput.
BlueBee can also beat existing packet-level CTC technologies
that can saturate the channel for high data rate.

2) Compare With Other Packet-Level CTC: Here we com-
pare BlueBee with other state-of-the-art packet-level CTC
technologies, including Esense [5] (WiFi → ZigBee), and
B2W 2 [6] (BLE → WiFi) in data rate. Note that, these
CTC techniques have a high-bandwidth radio (i.e., 20MHz
WiFi radio) either at the sender or at the receiver. From
Fig. 16, we can see that BlueBee can surpass the state-of-the-
art packet-level CTC by 70×−100×. It indicates the intrinsic
advantage of PHY-layer CTC over packet-level CTC.

3) Compare With PHY-Layer CTC: WEBee [19] is the
latest PHY-layer CTC emulating ZigBee signal with a WiFi
radio. Although both WEBee and BlueBee adopt the concept
of signal emulation, there is a clear gap in each’s design
philosophy. With the power WiFi, WEBee simply manipulates
the WiFi signal to mimic the ZigBee waveform. However,
such emulation is not feasible for BLE due to its low data
rate and simpler waveform. In contrast, BlueBee proposes to
emulate signal that can be demodulated correctly, instead of
similarity in the waveform, which is especially suitable for
low-power devices in IoT scenario. The data rate of BlueBee
is comparable with WEBee by about 2x that of WEBee on a
single BLE channel, as shown in Fig. 16. However, it needs to
be clarified that the high data rate does not come from better
emulation, but rather from BLE’s simple waveform without
the uncontrollable cyclic prefix as in WiFi.

C. Emulation Reliability

Here we evaluate the emulation reliability of BlueBee,
including PHY-layer reliability (i.e., phase shift and hamming
distance) and link-layer reliability (i.e., frame reception ratio).
To provide the details, we test these experiments under various
situations, including different transmission power, distances,
scenarios, and different packet duration.

1) Performance of Emulated Signals: Since BlueBee’s BLE
sender emulates the phase shifts in legitimate ZigBee frames,
we first examine the performance of signal emulation.

Recall that in Section IV, ZigBee’s OQPSK demodulation
is based on the phase shifts, whose positive and negative

Fig. 17. Performance of phase shift emulation. (a) Phase shift of emulated
and standard symbols. (b) Hamming distance of all emulated symbols.

signs will be further decoded as BLE symbol ‘1’ and ‘0’.
To verify the emulation performance, we use a USRP to
dump the received chips and phase shifts of received ZigBee
symbols. In Fig. 17a, we plot the phase shift of a received
ZigBee symbol and an ideal ZigBee symbol. We find that
BLE can emulate consistent phase shifts (i.e., slowly changing
phase shifts) while failing to emulate inconsistent phase shifts
(i.e., fast-changing phase shifts) due to its limited bandwidth.
Note that the 64 samples for a ZigBee symbol are due to the
oversampling of commodity ZigBee devices. The 64 samples
will then be decimated to 32 chips for decoding. In Fig. 17b,
the distribution of the Hamming distances of decoded ZigBee
symbols is plotted. Due to the white Gaussian channel noise,
the Hamming distances of emulated ZigBee symbols distrib-
utes in the range of [6, 10] especially in [8, 9], but mostly
within the tolerance of the ZigBee demodulator (< 12), which
guarantees the effectiveness of BlueBee.

While the emulation error in the OQPSK emulation, i.e., the
intra-symbol distance, is fixed, the emulation error in the DSSS
emulation, i.e., the inter-symbol distance, can be optimized.
In other words, we choose the emulation Ei so that it is
farthest from other ZigBee symbols Sj , where j �= i so
that the emulation will not likely to be demodulated as other
ZigBee symbols, as denoted in Equ. 1. In Fig. 18, we plot
the minimum inter-symbol distance of each ZigBee symbol
emulation to other legitimate ZigBee symbols without the
DSSS emulation, denoted as the basic design, and with the
DSSS emulation, shown as the improvement. For example,
without the DSSS emulation, i.e., choosing the ZigBee emula-
tion according to the first coming phase shift, the inter-symbol
distance of the emulated ZigBee symbol ‘0’ is only 3. The
value will increase to 7 by adopting the DSSS emulation.
The increase in inter-symbol distance provides the emulated
ZigBee symbol ‘0’ larger margin to other legitimate ZigBee
symbols so that it can tolerate more noises and interference.
We find the DSSS emulation benefits all the emulated ZigBee
symbols except the symbol ‘2’, which already has a large
enough inter-symbol distance of 6, showing the effectiveness
of the DSSS emulation.

2) Compare BlueBee With Normal ZigBee: Due to the
transparency of signal emulation to the receiver, a BlueBee
device can be viewed as a virtual ZigBee device. In Fig. 19,
we compare the performance of a BlueBee device with a
commodity ZigBee device in the frame reception ratio (FRR)
under various Rx power. We choose two CC2650 development
boards, which can work on either the BLE mode or ZigBee
mode, for both the transmitter and the receiver to implement
BlueBee, i.e., one CC2650 board on BLE mode and another
on ZigBee mode and normal ZigBee communication, i.e., both

1078 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Fig. 18. H-distance improvement of DSSS emulation.

Fig. 19. Compare BlueBee with normal ZigBee.

Fig. 20. BlueBee dual-standard compliance.

boards on ZigBee mode. We adjust the Tx power, between
−21dBm to 5dBm, and the distance between the transmitter
and receiver, between 30cm to 1m, so that the Rx power
is stable, i.e., within ±0.5dBm. In Fig. 19, we find the
CC2650 chip can reach the FRR of normal ZigBee chip when
the Rx power is above −45dBm, and slightly worse (within
5%) when the Rx power is above −75dBm. In addition, when
the Rx power is above −75dBm, an FRR of above 90% is
always guaranteed.

3) Dual-Standard Compliance: In BlueBee, a legitimate
ZigBee packet is embedded in a legitimate BLE frame.
To verify and evaluate such embedding, we have implemented
BlueBee on various hardware devices, including 1) soft-
ware defined radio, i.e., USRP N210 and 2) commodity
BLE devices, i.e., CC2650 development kit. At the receiver
side, we use both commodity BLE receiver (i.e., CC2650)
and commodity ZigBee receiver (i.e., CC2530). As shown
in Fig. 20, BlueBee, either the USRP implementation or com-
modity device implementation, can achieve over 99% frame
reception ratio (FRR) at commodity BLE receiver, showing
that it is a BLE compliant design. In addition, BlueBee’s
USRP and commodity device implementations can achieve
an over 90% FRR and an over 99% FRR at the commodity
ZigBee receiver, showing that it is also a ZigBee compliant
design. Note that the FRR on commodity devices may vary
on different hardware devices. The best result of 99% FRR
comes from two CC2650 platforms with the sender running
in BLE mode and the receiver running in ZigBee mode,

Fig. 21. FRR with distance. (a) FRR with distance on the USRP platform
(lab). (b) FRR with distance on commodity devices (lab).

showing the effectiveness of the BlueBee design. The FRR
on other ZigBee platforms, such as CC2530 and MICAz,
is lower which we believe is due to vendor specific hardware
designs, such as the matched filter, which will not affect
homogeneous IoT network but only the heterogeneous net-
work. To make the evaluation results more representative, later
on we choose CC2530 ZigBee chip as the receiver without
further explanation except the low duty cycle and mobility
experiments, for MICAz motes provide the low duty cycle
programming interface and a larger memory to store data in
mobile applications.

The characteristic of dual-standard compliance indicates
BlueBee can achieve cross-technology broadcast. That means
we can construct a dual-standard frame where part of it is a
ZigBee frame and part of it is a BLE frame. Each technology
can identify their parts by detecting legitimate preamble and
header while regarding the rest as noise.

4) Impact of Distance: We also evaluate the frame reception
ratio (FRR) where the BLE sender sends out emulated ZigBee
frames on both USRP and commodity CC2530 development
kit. Fig. 21a depicts the FRR when USRP N210 emulates
the ZigBee frames with the transmission power of 0dBm,
the maximum energy level allowed in BLE standard [29]. In
all the experiments, the average FRR is within 92% to 86%,
demonstrating the reliability of BlueBee, at a transmission
distance of 10m (the usual communication range between two
BLE devices) Note that the FRR slightly decreases with the
increase of distance, due to the lower SNR. Even so, in all the
experiments, the FRRs are all above 85%. The experiments
on commodity CC2530 development kit have a similar trend.
During these experiments, the FRR is above 73% for all the
different transmission distances.

5) Impact of Frame Duration: In BLE specification
4.2 [29], the maximum payload for BLE has been extended
from 39bytes to 257bytes, which means the frame duration
will grow from around 0.3ms to over 2ms. So we here
study the impact of frame duration on BlueBee’s performance.
In Fig. 22, we study the FRR with frame duration ranging
from 0.3ms to 1.2ms, following the latest standard. We find
that the increase in frame duration will slightly decrease FRR
by about 2%. That is because a longer frame is usually more
vulnerable to environmental noise and interference [28]. Even
so, over 90% FRR shows BlueBee’s resistance to the impact
of the frame length.

6) Impact of Tx Power and Tx Distance: In Fig. 23 we
study the frame reception ratio (FRR) of BlueBee with the
impact of various Tx power and distance from a USRP to
a commodity CC2530 ZigBee device for its convenience to
control transmission power. We find that when Tx power

JIANG et al.: BOOSTING THE BITRATE OF CTC ON COMMODITY IoT DEVICES 1079

Fig. 22. FRR with frame duration.

Fig. 23. FRR with Tx power.

Fig. 24. FRR with preamble length.

increases from −2dBm to 2dBm, most FRR also increases
from 85% to 90%. Then we fix the Tx power and study the
FRR of BlueBee with different distances. We find that when
the distance is as far as 10m, the FRR is still over 80%.
Note that the transmission power of a typical BLE device is
0dBm and the typical transmission range is 10m. That means
BlueBee can work well with typical BLE setting.

7) Protection in the Link Layer With Multiple Headers:
In wireless communication, the preamble of a ZigBee packet
plays critical roles in helping the receiver identify and
synchronize to the packet in the air for further demodulation.
In Fig. 24 we study the impact of the length of ZigBee
preambles on the FRR and the proposed link layer preamble
protection by repeating the preamble. Typical preamble length
in ZigBee is 8 ZigBee symbols ‘0’.The number of ‘0’s can
be changed with at least four ‘0’s. We change the length of
ZigBee preamble from 4 symbols to 16 symbols which double
the length of the preamble. We can see from the figure, with
a typical preamble length of 8 symbols, FRR is about 84%.
When we increase the preamble length to 12 symbols, the FRR
jumps to about 95%, a 13% improvement. The experiments
prove the effectiveness of our multiple preamble technique.

Fig. 25. Concurrent BlueBee on three ZigBee channels.

Even when we reduce the preamble length to 4 symbols,
we find that the average FRR is still about 78%, which shows
the robustness of BlueBee.

D. BlueBee Channel Scheduling

Here we evaluate the impact of BLE frequency hopping
on the frame reception ratio. We implement the BlueBee
scheduling algorithm on USRP N210-platform aiming at
evenly distributing the BlueBee emulation frames on multiple
channels. In the experiment, we set three ZigBee nodes,
i.e., TelosB motes, working on ZigBee channel 22, 24, and
26, whose central frequencies are the same as BLE channel
27, 32, and 39. The USRP BLE transmitter runs BlueBee
scheduling algorithm and sends 999 emulated ZigBee frames
evenly on three channels and measures how many frames will
be received at each ZigBee receivers.

In Fig. 25 we depict the number of successful receptions at
each ZigBee channel. It is obvious that these ZigBee nodes
working at different ZigBee channels are able to receive the
similar number of frames (only 1% difference), demonstrating
the BLE channel hopping will not affect BlueBee’s FRR on the
overlapping channels. Of course, different channels do show
different wireless conditions. For example, the ratio of the
received packet is slightly lower on ZigBee channel 26 because
it overlaps with BLE advertising channel 39, which is crowded
with BLE advertising packets.

E. Non-Disruptive to ZigBee Network

BlueBee is non-disruptive to the ZigBee network. To verify
that, we compare the data rate of two scenarios: 1) a pure
ZigBee network consisting of [1, 4] ZigBee nodes and 2) a
hybrid network consisting one BlueBee node and [0, 3] ZigBee
nodes, as shown in Fig. 26. In the experiment, both the ZigBee
nodes and the BlueBee node will send 8bytes ZigBee frames
every 100ms. These nodes are turned on one after another and
the accumulated data rates are plotted. We find the data rate
of a single ZigBee/BlueBee device is about 640bps. When
the number of nodes increases, the data rate of each node
will slightly decrease due to the share of the channel, but
keep around 640bps. In addition, the data rate of the BlueBee
device shows no difference from and no much impact on other
ZigBee devices, indicating that BlueBee can seamlessly work
with other ZigBee devices.

F. Low Duty Cycle Support

In practical application scenarios, ZigBee devices may not
be always on. Instead, they usually work in low duty cycle
modes to save energy. Here we evaluate the performance

1080 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

Fig. 26. BlueBee data rate w/ multiple ZigBee nodes.

Fig. 27. Low duty cycle support.

of BlueBee with a ZigBee receiver working in low duty
cycle mode. In the experiment, we transmit BLE frames
from a USRP to some MICAz ZigBee receivers. The BLE
transmitter’s hopping interval is set to be 10ms, within the
range of available hopping interval in the standard. From
Sec. V-A we know that BLE will always return to the start
channel after 37 hops, which means the transmission interval
of BLE to a ZigBee node at a specific channel will be 370ms.
To make successful CTC from BLE to ZigBee in low duty
cycle mode, BLE will retransmit each frame 20 times, i.e., in
20 hops. As shown in Fig. 27, FRR increases when ZigBee’s
duty cycle becomes larger. When the duty cycle is larger than
10%, 100% FRR is reached. However, even when BLE’s duty
cycle is only 1.5%, an FRR of at least 88% still can be reached.
This experiment indicates that BlueBee has the potential to be
used in a low duty cycle as a long-lasting coordinator.

G. Mobility Support

BLE radios are widely used in the mobile scenario such
as in smart wristbands. In this part, we study the impact of
mobility on the performance of BlueBee. In the experiment,
a USRP with BlueBee sender is put on a table broadcasting
emulated ZigBee frames on a fixed channel. A person carrying
a commodity ZigBee node, i.e., a MICAz node, is moving at
different speeds, from about 0.5m/s to 8m/s, at about 10m
away. As shown in Fig. 28, there is only a slight decrease
in FRR when the speed increases. Even when the person is
running at speed 8m/s, we can still achieve about 90% FRR.
Both indoor and outdoor environment show similar results.

H. Application

1) Application I: Channel Coordination: One use case of
BlueBee is the channel coordination between one BLE device
and one ZigBee device. It is well known that BLE has a
scheduled hopping sequence and won’t avoid the ongoing
ZigBee traffic, which makes the coordination between these

Fig. 28. BluBee’s support for mobile scenario.

Fig. 29. BlueBee smart light bulb control.

Fig. 30. Channel coordination between ZigBee and BLE.

two technologies quite challenging. The only way to avoid
collisions based on existing MAC protocols is that ZigBee
devices detect BLE traffic in advance and clear the channel for
BLE through the CSMA protocol. Fortunately, with BlueBee,
we can achieve a new coordination paradigm, where a BLE
device can notify ZigBee of its channel hopping schedule to
avoid potential collisions. In the left part of Fig. 30, we com-
pare three ZigBee collision avoidance strategies with ongoing
BLE traffic: (i) No collision avoidance, i.e., ZigBee with
CSMA disabled; (ii) Normal collision avoidance, i.e., ZigBee
with CSMA; and (iii) ZigBee is notified the slot length by
BlueBee packets and schedule packet transmission before the
next BLE packet.

The right part of Fig. 30 shows the experimental results.
Compared with CSMA disabled, and normal CSMA coor-
dination, BlueBee successfully improves the frame reception
ratio to 98%, demonstrating that ZigBee can effectively avoid
collision with BLE with the knowledge of BLE hopping
schedule provided by BlueBee. It is a new paradigm in
wireless coordination that the receiver can have the knowledge
of the transmitter’s schedule through CTC and paves the way
for various cross-technology MAC designs in the future.

2) Application II: Smart Light Control: BlueBee can be
easily deployed on commodity smartphones with BLE support,
e.g., Nexus 5X smartphone, and benefit the smart home
devices in real life. In Fig. 29, we implement BlueBee on a
Nexus 5X smartphone to control ZigBee light bulbs at one of
the overlapped channels, i.e., 2.48GHz. Available commands
including the on/off status, the color, the intensity, and which
light bulb to control. BlueBee achieves direct control of

JIANG et al.: BOOSTING THE BITRATE OF CTC ON COMMODITY IoT DEVICES 1081

ZigBee devices from a BLE radio without a ZigBee-BLE
gateway [10] and any hardware modification at either side, and
can be easily generalized to other IoT scenarios. It is a key
enabler for other IoT cross-technology control design under
commodity ZigBee and BLE devices. The related video can
be found at [14].

IX. RELATED WORK

The boom of diversified wireless technologies, such as
WiFi, ZigBee, Bluetooth, and LTE-U in the last decade
satisfies different needs for wireless connections. However,
it makes the harmony coexistence of heterogeneous wire-
less technologies on the common ISM band an even more
challenging and urgent problem. The efforts in the academia
trying to relieve and solve this problem can be categorized as
follows: (i) wireless communication under cross-technology
interference, (ii) packet-level cross-technology communica-
tion, and (iii) physical layer signal manipulation between
heterogeneous wireless devices. In contrast, BlueBee achieves
efficient explicit communication between heterogeneous wire-
less devices with no hardware or firmware change, which
creates a new paradigm for cross-technology communication
and coordination.

A. Communication Under Cross-Technology Interference

Popular wireless technologies on the 2.4G ISM band, such
as WiFi, ZigBee, Bluetooth, and LTE-U are competing for the
spectrum. However, their heterogeneous PHY and asymmetric
link blind them from detecting the existence of each other,
which bring significant cross-technology interference(CTI) [3],
[9], [16], [25]. To alleviate this issue, there have been numer-
ous research works on alleviating the CTI by detecting and
avoiding the interference, or recovering the corrupted signal
from the interference [26]–[28], [31], [33]–[36], [38].

Although these solutions are effective, they generally
require modification of the PHY layer mechanisms, or suf-
fer from the dynamic interference patterns. In contrast,
by enabling direct CTC among heterogeneities, BlueBee offers
the capability of explicit channel coordination between BLE
and ZigBee, thus alleviating the severe CTI problem, which
has been demonstrated in Section VII-H.

B. Packet-Level Cross-Technology Communication

In recent years, researchers propose cross-technology com-
munication (CTC) which directly builds the communication
between heterogeneous devices [5], [6], [18], [34], [37]. The
core idea of these CTC methods is that the sender creates
special energy patterns by sending out legacy packets, while
the receivers detect these patterns by either the received
signal strength (RSS) sampling or the channel state infor-
mation (CSI), which are supported by the existing hardware.
For example, Esense [5], and HoWiES [37] build the CTC
from WiFi to ZigBee by sending out multiple dedicated
WiFi packets with specific packet durations to distinguish
the CTC packets from background noises. FreeBee [18] relies
on the mandatory WiFi beacons, and embed CTC message
in a free channel by changing the transmission timings of
existing beacons. GSense [34] attach customized preambles
before heterogeneous wireless packets and exchange CTC
information through the gaps between the customized pream-
bles. B2W 2 [6] introduces the CTC from Bluetooth to WiFi

by modulating the energy level of Bluetooth packets and
then demodulate through WiFi CSI at the receiver side.
C-Morse [32] constructs a series of Morse code like long and
short WiFi packets, which can be demodulated at the ZigBee
receiver. However, the packet level CTC technologies com-
monly use coarse packet-level information, thus intrinsically
suffer from the low throughput and long transmission delay.
In contrast, BlueBee introduces the PHY-layer emulation for
boosting the CTC throughput, thus offering the possibility of
explicit channel coordination via CTC.

C. Physical Layer Signal Manipulation

The core idea of signal emulation in the BlueBee
is inspired by several recent works studying the signal
manipulation [4], [13], [17], [20], [23]. In [17], researchers
build the legacy WiFi packets via customized tags by uti-
lizing the backscatter effect. In addition, in the LTE system,
Ultron [4]

emulates the WiFi packets via a LTE transmitter to coor-
dinate between LTE and WiFi. However it requires the
modification of existing LTE standard, and the sent frames
are no longer LTE-compliant MAC frames. Different from
these approaches, BlueBee does not require any modification
to existing hardware, and is fully compatible with existing
commodity Bluetooth and ZigBee hardware.

X. CONCLUSION

In this work we present BlueBee, a new PHY layer
cross-technology communication technique proposing a direc-
tion of emulating legitimate ZigBee frames using BLE radio.
BlueBee paves the road to practical CTC by offering over
10, 000× the throughput compared to the state-of-the-art CTC
designs that rely on coarse-grained packet-level information.
The emulation is achieved simply by selecting the payload
bytes of BLE frames to provide unique dual-standard compli-
ance and transparency where neither hardware nor firmware
changes are required at the BLE senders and ZigBee receivers.
BlueBee includes advanced features such as multi-channel
concurrent CTC via adaptive frequency hopping. Compre-
hensive testbed evaluation on both USRP and commodity
ZigBee/BLE devices show that BlueBee achieves 99% accu-
racy, while providing reliability under mobile and duty cycled
scenarios.

REFERENCES

[1] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specification, Standard IEEE 802.11, 1999.

[2] (2016). Scapy Radio. [Online]. Available: https://github.com/
BastilleResearch/scapy-radio

[3] F. Adib, S. Kumar, O. Aryan, S. Gollakota, and D. Katabi,
“Interference alignment by motion,” in Proc. MobiCom, 2013,
pp. 279–290.

[4] E. Chai, K. Sundaresan, M. A. Khojastepour, and S. Rangarajan, “LTE
in unlicensed spectrum: Are we there yet?” in Proc. MobiCom, 2016,
pp. 135–148.

[5] K. Chebrolu and A. Dhekne, “Esense: Communication through energy
sensing,” in Proc. 15th Annu. Int. Conf. Mobile Comput. Netw., 2009,
pp. 85–96.

[6] Z. Chi et al., “B2w2: N-way concurrent communication for IoT devices,”
in Proc. 14th ACM Conf. Embedded Netw. Sensor Syst. CD-ROM, 2016,
pp. 245–258.

[7] Gartner. (2016). Gartner Report. [Online]. Available: http://cloudtimes.
org/2013/12/20/gartner-theinternet-of-things-willgrow-30-times-to-26-
billion-by-2020/.

1082 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 3, JUNE 2019

[8] M. Ha, K. Kwon, D. Kim, and P.-Y. Kong, “Dynamic and distributed
load balancing scheme in multi-gateway based 6LoWPAN,” in Proc.
IEEE Int. Conf. Internet of Things (iThings), IEEE Green Comput. Com-
mun. (GreenCom) IEEE Cyber, Phys. Social Comput., Taipei, Taiwan,
Sep. 2014, pp. 87–94.

[9] T. Hao, R. Zhou, G. Xing, M. W. Mutka, and J. Chen, “WizSync:
Exploiting Wi-Fi infrastructure for clock synchronization in wire-
less sensor networks,” IEEE Trans. Mobile Comput., vol. 13, no. 6,
pp. 1379–1392, Jun. 2014.

[10] M. Hawelikar and S. Tamhankar, “A design of Linux based ZigBee and
bluetooth low energy wireless gateway for remote parameter monitor-
ing,” in Proc. Int. Conf. Circuits, Power Comput. Technol., Mar. 2015,
pp. 1–4.

[11] R. Heydon, Bluetooth Low Energy: The Developer’s Handbook, vol. 1.
Upper Saddle River, NJ, USA: Prentice-Hall, 2013.

[12] J. Huang, G. Xing, G. Zhou, and R. Zhou, “Beyond co-existence:
Exploiting WiFi white space for ZigBee performance assurance,” in
Proc. 18th IEEE Int. Conf. Netw. Protocols, Oct. 2010, pp. 305–314.

[13] V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith, “Inter-
technology backscatter: Towards Internet connectivity for implanted
devices,” in Proc. ACM SIGCOMM Conf., 2016, pp. 356–369.

[14] W. Jiang, R. Liu, L. Liu, and T. He. (2017). BlueBee for Smart Light
Control, [Online]. Available: https://youtu.be/ZAtHBLRmEUs

[15] W. Jiang et al., “BlueBee: A 10,000x faster cross-technology com-
munication via PHY emulation,” in Proc. 15th ACM Conf. Embed-
ded Netw. Sensor Syst. (SenSys), New York, NY, USA, 2017, p. 3.
doi: 10.1145/3131672.3131678.

[16] T. Jin, G. Noubir, and B. Sheng, “WiZi-Cloud: Application-transparent
dual ZigBee-WiFi radios for low power Internet access,” in Proc.
INFOCOM, Apr. 2011, pp. 1593–1601.

[17] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, “PASSIVE Wi-
Fi: Bringing low power to Wi-Fi transmissions,” in Proc. NSDI, 2016,
pp. 151–164.

[18] S. M. Kim and T. He, “FreeBee: Cross-technology communication via
free side-channel,” in Proc. MOBICOM, 2015, pp. 317–330.

[19] Z. Li and T. He, “Webee: Physical-layer cross-technology communi-
cation via emulation,” in Proc. 23rd Annu. Int. Conf. Mobile Comput.
Netw., 2017, pp. 2–14.

[20] Z. Li, Y. Xie, M. Li, and K. Jamieson, “Recitation: Rehearsing wireless
packet reception in software,” in Proc. MobiCom, 2015, pp. 291–303.

[21] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, “Surviving Wi-Fi
interference in low power ZigBee networks,” in Proc. 8th ACM Conf.
Embedded Netw. Sensor Syst. (SenSys), 2010, pp. 309–322.

[22] S. Nastic, H.-L. Truong, and S. Dustdar, “SDG-Pro: A programming
framework for software-defined IoT cloud gateways,” J. Internet Services
Appl., vol. 6, no. 1, pp. 21-1–21-17, 2015.

[23] J. Ou, Y. Zheng, and M. Li, “MISC: Merging incorrect symbols using
constellation diversity for 802.11 retransmission,” in Proc. INFOCOM,
Apr./May 2014, pp. 2472–2480.

[24] S. Qanbari, N. Behinaein, R. Rahimzadeh, and S. Dustdar, “Gatica:
Linked sensed data enrichment and analytics middleware for IoT gate-
ways,” in Proc. 3rd Int. Conf. Future Internet Things Cloud, Rome, Italy,
Aug. 2015, pp. 38–43.

[25] S. Rathinakumar, B. Radunovic, and M. K. Marina, “CPRecycle: Recy-
cling cyclic prefix for versatile interference mitigation in OFDM based
wireless systems,” in Proc. 12th Int. Conf. Emerg. Netw. Exp. Technol.,
2016, pp. 67–81.

[26] A. Saifullah et al., “SNOW: Sensor network over white spaces,” in
Proc. 14th ACM Conf. Embedded Netw. Sensor Syst. CD-ROM, 2016,
pp. 272–285.

[27] S. Sen, R. R. Choudhury, and S. Nelakuditi, “No time to countdown:
Migrating backoff to the frequency domain,” in Proc. MobiCom, 2011,
pp. 241–252.

[28] S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi, “Successive
interference cancellation: Carving out MAC layer opportunities,” IEEE
Trans. Mobile Comput., vol. 12, no. 2, pp. 346–357, Feb. 2013.

[29] B. Specification. (2011). Bluetooth Technology Website. [Online]. Avail-
able: http://www.bluetooth.com/

[30] D. Spill and A. Bittau, “BlueSniff: Eve meets alice and Bluetooth,” in
Proc. WOOT, vol. 7, 2007, pp. 1–10.

[31] S. singh et al., “TRINITY: A practical transmitter cooperation frame-
work to handle heterogeneous user profiles in wireless networks,” in
Proc. MobiHoc, 2015, pp. 297–306.

[32] Z. Yin, W. Jiang, S. M. Kim, and T. He, “C-Morse: Cross-technology
communication with transparent Morse coding,” in Proc. INFOCOM,
May 2017, pp. 1–9.

[33] S. Yun and L. Qiu, “Supporting WiFi and LTE co-existence,” in
Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr./May 2015,
pp. 810–818.

[34] X. Zhang and K. G. Shin, “Gap Sense: Lightweight coordination
of heterogeneous wireless devices,” in Proc. INFOCOM, Apr. 2013,
pp. 3094–3101.

[35] X. Zhang and K. G. Shin, “Enabling coexistence of heterogeneous
wireless systems: Case for ZigBee and WiFi,” in Proc. MobiHoc, 2011,
p. 6.

[36] X. Zhang and K. G. Shin, “Cooperative carrier signaling: Harmoniz-
ing coexisting WPAN and WLAN devices,” IEEE/ACM Trans. Netw.,
vol. 21, no. 2, pp. 426–439, Apr. 2013.

[37] S. Yun and L. Qiu, “Howies: A holistic approach to ZigBee assisted
WiFi energy savings in mobile devices,” in Proc. INFOCOM, Apr. 2013,
pp. 1366–1374.

[38] R. Zhou, Y. Xiong, G. Xing, L. Sun, and J. Ma, “ZiFi: Wireless LAN
discovery via ZigBee interference signatures,” in Proc. 16th Annu. Int.
Conf. Mobile Comput. Netw., 2010, pp. 49–60.

Wenchao Jiang received the B.S. and M.S. degrees
from Shanghai Jiao Tong University, China. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Computer Science and Engineering, Univer-
sity of Minnesota Twin Cities. His research interests
include the Internet of Things, wireless networks,
sensor networks, and mobile systems.

Zhimeng Yin received the B.S. and M.S. degrees
from the Huazhong University of Science and Tech-
nology, China. He is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering, University of Minnesota Twin
Cities. His research interests include the Internet of
Things, mobile systems, and wireless networks.

Ruofeng Liu received the B.S. and M.S. degrees
from Northwestern Polytechnical University, China.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
University of Minnesota Twin Cities. His current
research interests include the Internet of Things,
wireless network, backscatter systems, and mobile
systems.

Zhijun Li (M’18) received the M.S. and Ph.D.
degrees in computer science and technology from
the Harbin Institute of Technology in 2001 and 2006,
respectively. He is currently an Associate Professor
with the School of Computer Science and Technol-
ogy, Harbin Institute of Technology. His research
focuses on the wireless networks, the Internet of
Things, and ubiquitous computing. He was a recip-
ient of the Mobicom17 Best Paper Award.

http://dx.doi.org/10.1145/3131672.3131678

JIANG et al.: BOOSTING THE BITRATE OF CTC ON COMMODITY IoT DEVICES 1083

Song Min Kim received the B.E. and M.E. degrees
from the Department of Electrical and Computer
Engineering, Korea University, in 2007 and 2009,
respectively, and the Ph.D. degree from the Depart-
ment of Computer Science and Engineering, Uni-
versity of Minnesota, in 2016. He was with the
Department of Computer Science, George Mason
University, USA. He is currently an Assistant Pro-
fessor with the School of Electrical Engineering,
KAIST, South Korea. His research interests include
wireless and low-power embedded networks, mobile

computing, the Internet of Things, and cyber–physical Systems. His research
is supported by the National Science Foundation, the Commonwealth of
Virginia, and the National Research Foundation in Korea. He received the
Best Paper Award at the IEEE ICDCS 2018.

Tian He (F’18) is currently a Professor with the
Department of Computer Science and Engineering,
University of Minnesota Twin Cities. He is the
author or coauthor of over 280 papers in pre-
mier network journals and conferences with over
22 000 citations (H-Index 65). His research interests
include wireless networks, networked sensing sys-
tems, cyber–physical systems, real-time embedded
systems, and distributed systems. He was the recipi-
ent of the NSF CAREER Award in 2009, the McK-
night Land-Grant Chaired Professorship in 2011,

the China NSF Outstanding Overseas Young Researcher I and II in 2012 and
2016, the George W. Taylor Distinguished Research Award in 2015, and
seven best paper awards in international conferences, including MobiCom,
SenSys, and ICDCS. He has served a few general/program chair positions
in international conferences and on many program committees and also has
been an editorial board member for six international journals. He is an ACM
Fellow.

