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Abstract

The mechanics of fibrous materials are complicated by complex deformation mechanisms that re-
sult from the discrete fibrous structure. Though it is known that fibrous materials deform primarily
by rotating and bending of fibers, the implications of rotating and bending on the mechanics of the
network are not fully clear. Previous studies have investigated some effects of the fiber rotation and
bending, observing fibers to rotate into directions of maximum principal stress, resulting in strain
stiffening, and fibers under compression to buckle, resulting in compression softening. Nonlinear
constitutive models have recently been developed to account for these deformation mechanisms,
but the classical constitutive models that account for only stress and strain cannot fully account

for fiber rotations and bending. Here, we interpret the mechanics of fibrous materials through



micropolar elasticity, also called Cosserat elasticity, which differs from classical elasticity in that it
accounts for local moments caused by rotation of points within a material. The resulting equations
can be written in terms of characteristic lengths that cause stress to depend on both strain and
the length scale of the material. We simulated three-dimensional networks of fibers and observed
a strong effect of length scale on the stiffness of networks in bending with a more mild effect in
torsion. The length-scale dependence of stiffness is consistent with micropolar elasticity and can
be described in terms of characteristic lengths of the material. Factors affecting the characteristic
length were investigated by altering the fiber density, alignment, and bending stiffness. Although
density was found to have no effect on characteristic length, increased fiber alignment led to a
decrease in characteristic length, and increased fiber bending stiffness led to an increase in char-
acteristic length. These findings suggest that the characteristic length is increased by factors that
increase bending moments supported by the fibers. Although our parameter study manipulated
the magnitude of characteristic length, no combination of parameters gave a characteristic length

of zero, indicating that the mechanics of fibrous materials depend on length scale.
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1 Introduction

The shape and stiffness of many biological materials result from an underlying network of
structural fibers. Such materials have complex mechanics. Fibers under tension reorient and align,
causing the fiber network to strain stiffen (Onck et al., 2005; Vader et al., 2009; Stein et al., 2011;
Miinster et al., 2013; Rudnicki et al., 2013; Aghvami et al., 2016). Fiber alignment can also turn a
nominally isotropic network into an anisotropic one, leading to interesting observations such as an

apparent Poisson’s ratio that exceeds the isotropic limit of 0.5 (Roeder et al., 2009; Vader et al.,



2009). Under compressive stress, fibers buckle (Miinster et al., 2013; Kim et al., 2014; Burkel &
Notbohm, 2017), which reduces the stiffness in compression (van Oosten et al., 2016). The loss of
resistance to compression causes densification of compressed fibers, which creates a transition to a

new, densified phase, similar to observations in foams (Kim et al., 2016; Liang et al., 2017).

The mechanics become more complex at smaller length scales, e.g., tens of microns, which
matches the size of a biological cell. At this scale, cell-induced forces can locally provoke the phase
transition, causing dense bands of fibers that propagate from one cell to the next (Stopak & Harris,
1982; Korff & Augustin, 1999; Sawhney & Howard, 2002; Vader et al., 2009; Notbohm et al., 2015;
Sopher et al., 2018; Grekas et al., 2019). In addition, fiber buckling causes local displacements, like
those induced by a cell, to propagate over a longer range than predicted by classical linear elasticity
(Winer et al., 2009; Rudnicki et al., 2013; Notbohm et al., 2015; Rosakis et al., 2015; Burkel &
Notbohm, 2017; Grimmer & Notbohm, 2018). The fibrous structure also produces heterogeneity in
the stress and displacement fields at scales on the order of 10-50 pm (Arevalo et al., 2015; Wen et al.,
2007; Burkel et al., 2018). These heterogeneities result from heterogeneity in the local stiffness of
the fiber network (Velegol & Lanni, 2001; Kotlarchyk et al., 2011; Shayegan & Forde, 2013; Jones
et al., 2015; Proestaki et al., 2019). Another complication caused by the fibrous structure is that
fibers can change both position (by translating) and angle (by bending/twisting). Classical theories
of elasticity, both linear and nonlinear, consider points in space to only translate, not rotate. In
classical theories, changes in angle result from the collective action of multiple points. This may
be a limitation for fibrous materials, as a single point on a fiber could change both position and
angle. Therefore, interpreting the mechanics of fibrous materials through classical elasticity may

limit understanding.

The theory of micropolar elasticity, also called Cosserat elasticity, may be more accurate for
fibrous materials as it takes into account local rotations and moment transfer within a material.
In micropolar elasticity, there exists both a stress tensor o (having units of force per area) and a

couple stress tensor m (having units of torque per area). These are related to the strain tensor



€ and a vector defining the microrotation of individual points ¢. The full constitutive relation is

given by Eringen (1968):
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where d;; is the Kronecker delta, e;j; is the permutation symbol, and summation over repeated
indices is implied. The constants G and A are the shear and Lamé moduli, having the same
meaning as in classical elasticity (Lakes, 2016). Vector r is a macroscale rotation given by r; =
(1/2)e;j,0uy/0x; where u is the displacement vector. Of the remaining constants, «, §, and y are
micropolar terms that define the sensitivity of the material to rotation gradients, and have units
of torque per distance. k,, relates the micro and macro rotation fields and has units of force per
area. These constants can be rearranged to define inherent length scales of a micropolar material.
For example the characteristic lengths in bending, [, and torsion, [;, are given by the following

(Gauthier & Jahsman, 1975):

b=/ 1 (3)
Iy = ﬂ;&” (4)

Energy considerations impose limits on these constants (Gauthier & Jahsman, 1975). Notably,
—1 < B/y < 1, and therefore 0 < I; < 2lp, meaning that the characteristic length in torsion is
bounded to being no more than twice the characteristic length in bending. However, [, can be

infinitely larger than ;.

At length scales within an order of magnitude of [, and [;, micropolar elasticity predicts devia-
tions from classical elasticity. For example, beams made of micropolar material with diameters on
the order of [, and I; have greater stiffness in torsion and bending than predicted by classical elas-
ticity. For beams with substantially larger diameters, the length-scale effect becomes unimportant

and the stiffness of classical elasticity is recovered (Gauthier & Jahsman, 1975; Reddy & Venkata-



subramanian, 1978; Rueger & Lakes, 2016a). Micropolar materials also exhibit stress reduction in
the vicinity of circular holes under tension, with the effect increasing as hole size decreases (Kulesh
et al., 2001). The effects of micropolar theory in materials with cracks depend on the crack size and
shape. For the simple case of a center crack in an infinite plate under mode I loading, the stress
intensity factor depends on crack length: for crack lengths smaller (greater) than the micropolar
characteristic length, the stress intensity factor is smaller (greater) than predicted by classical linear

elasticity (Li & Lee, 2009).

Characteristic lengths associated with micropolar theory are typically related to an inherent
length within the material. For example, in foams, the characteristic length is on the order of
size of the foam’s ribs (Rueger & Lakes, 2016a). As fibers provide structure in a similar way to
ribs of a foam, it is reasonable to hypothesize that fibrous materials exhibit a characteristic length
described by micropolar theory. Previous research testing this hypothesis remains limited. There
is evidence that fibrous networks can be described by couple stress elasticity, a special case of
micropolar elasticity (Reda et al., 2018; Berkache et al., 2019b). However, studies have observed
other effects of length scale, such as modulus depending on network size (Shahsavari & Picu, 2013)
and mechanics consistent with strain gradient elasticity (Reda et al., 2018; Berkache et al., 2019a),

which are described by theories other than micropolar elasticity.

In this work, we studied the effect of length scale as described by the characteristic lengths in
micropolar elasticity. Using a three-dimensional (3D) fiber network model, cylinders of different
radii were loaded under torsion and bending boundary conditions. The stiffnesses in torsion and
bending were compared to classical elasticity, and the data were used to compute the characteristic
lengths. We then investigated the effects of fiber density, alignment, and bending stiffness on the

characteristic lengths.
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Figure 1: (a) Structure of a typical gel made of collagen I fibers. (b) Sample fiber network structure
used to model gels of collagen 1. (c) Sketch showing branching procedure described in the Methods
section. The top sketch shows fibers (black) connected to a node before the branching procedure
with the branch angles labeled in gray. The bottom sketch shows the fibers after the branching
procedure; notice angles are reduced. (d—f) Histograms of connectivity (d), fiber length normalized
by the mean fiber length [; (e) and angles between all connecting fibers (f) for a representative
simulated network.

2 Methods

2.1 Network Generation

To generate the random fiber networks, we used a method described by Grimmer & Notbohm
(2018), which is based on a network generation method by Lindstrom et al. (2010, 2013). This
method was designed to generate 3D networks of fibers that match those of extracellular matrix
materials like collagen (Fig. la-b), and we refer to it as the simulated annealing method. Nodes,
which later became fiber endpoints, were placed randomly within a cylindrical domain until a
desired nodal density per unit volume was achieved. Nodal connectivity, the number of fibers
that used a given node as an endpoint, was then randomly assigned for each node in the range
of 2-6 such that the average value was 3.4. Fibers were then connected to nodes randomly until
at least 98% of the nodal connectivities were satisfied. Next, a penalty function, defined as the

sum of squares of the differences between the current fiber lengths and a desired fiber length,



was introduced. Nodes were sequentially modified either by swapping fibers with a nearby node
or by a random translation. Both of these modifications occurred with equal probability. If the
modification reduced the penalty function, it was accepted. If the modification caused the penalty
function associated with the fibers connected to the modified nodes to increase by less than 20%,
it was accepted with a 5% chance. All other modifications were rejected. Iterations were repeated

until the penalty function reached 0.5% of its initial value.

Connections between fibers typically branch, with many acute angles between the fibers (Fig.
la, ¢) (Rens et al., 2016; Grimmer & Notbohm, 2018). To mimic fiber branching, we used another
penalty function, referred to as the branching penalty function. For each node, we identified the
two fibers at that node that were most closely aligned. Of those two fibers, the one that was
least aligned with the others was defined as the “root fiber”; branch angles were defined to be the
angles supplementary to the angles formed between each fiber and the root fiber (Fig. 1c). A local
penalty function was defined as the sum of the branch angles at each node; the branching penalty
function was then the sum over all nodes. Once again nodes were moved to change the angles of
all fibers other than the root fiber. Changes that reduced the branching penalty function were
accepted. Additionally, changes that increased the local penalty function by 20% were accepted
with a probability of 1%. As above, the procedure was carried out sequentially on each node, and
iterations were repeated until the total branching penalty function became < 30% if its initial value.
Histograms showing distributions of connectivity, fiber length, and all angles between connecting

fibers are shown for a representative network in Fig. 1d-f.

2.2 Fiber Density

We defined fiber density as the number of fibers N; divided by the unitless volume of the

cylindrical domain,
Ny
= — 5
" v/ lfc’ (5)



where the average fiber length /¢ sets the length scale, so unitless volume is the cylinder volume
V divided by l?c. Our method of network generation allowed for controlling the number of fibers
Ny separately from average fiber length [;. However, the simulated annealing method altered fiber
lengths, which prohibited precise control of average fiber length, making it impossible to precisely
control the density n. Therefore, networks having density in a prescribed range were used. Except

where stated in the text, the range used was 1 <n < 1.4.

2.3 Fiber Alignment

In some simulations, fibers were aligned along a preferred direction. To produce alignment, the
positions of the nodes were adjusted. First, the center of the network was determined and nodes
were translated outward from the center along the preferred direction of alignment. Secondly, the
nodes were translated inwards in the off-axis directions by an amount that conserved the volume of
the network. Lastly, all nodes were moved inward such that the average fiber length matched the
initial fiber length. For all nodal adjustments, the magnitude of the translation was proportional

to the initial distance from each node to the center of the network.

To quantify fiber alignment, the 3D order parameter S was used:

S = _(3cos’; — 1), (6)

N

where subscript 7 indicates the i-th fiber, and the brackets <> indicate a mean over all fibers. The
angle 0; is the angle between the fiber’s orientation and the preferred direction of alignment which
was defined as axially along the cylinder. S takes a value of 0 when fibers orientations are random
and a value of 1 when all fibers are aligned with the cylinder’s axis. Alignment was studied in only
one set of simulations as described in the text; no fiber alignment (i.e., S ~ 0) was present in the

other simulations.



2.4 Fiber Mechanical Properties

Fibers in the network were modeled as Timoshenko beams having bending stiffness kj, axial
stiffness k,, and shearing stiffness ks. The two stiffnesses can be combined into two dimensionless
ratios. The most important ratio is that between the bending and axial stiffnesses, kK = ky/k, =
(EfIf)/(EfAfl?c), where E is the fiber’s Young’s modulus, Ay is its cross sectional area, and I is
its moment of inertia. Assuming each fiber has circular cross section of radius ry, the dimensionless
stiffness k is proportional to 7“]20 / l?c. As pointed out previously (Licup et al., 2015; Vahabi et al.,
2016; van Oosten et al., 2016), the ratio rfc/lfc is also proportional to the volume fraction of fibers
as follows: volume fraction is given by fiber volume over total volume, i.e., volume fraction equals
wrj%l ¢/ lfc, which is proportional to rfc / lfc. Hence, & is proportional to the volume fraction of the fiber
network, which is in the range of 107 — 1072 (Licup et al., 2015; Vahabi et al., 2016; van Oosten
et al., 2016). It is common for theoretical models to test a larger range of &, e.g., 1077 —10°, which
accounts for networks dominated by bending (low k) and stretching (high ) (Wilhelm & Frey,
2003; Head et al., 2003; Onck et al., 2005; Hatami-Marbini & Picu, 2008; Conti & MacKintosh,
2009; Broedersz et al., 2011). Except where stated in the text, we used a value of x = 1074, as
this value is typical of fibrous gels made of collagen. A second ratio defines the dimensionless ratio
between shearing and axial stiffnesses of each fiber, k, = ks/k, = Gy/Ey, where G is the fiber’s

shear modulus. Except where stated in the text, all simulations used a value of ks = 1/2.

2.5 Geometry and Boundary Conditions

Cylinders of different radii were simulated. To produce the different cylinders, each fiber network
having starting radius of R/l; = 65 was cut multiple times to generate multiple cylinders of smaller
radii in the range of 6 < R/l; < 65. Cutting was performed by removing fibers that were entirely
outside the desired cylinder volume. Rather than remove fibers that intersected the boundary, the
nodes outside were translated to be exactly on the boundary to reduce heterogeneity along the

boundaries. The cylinders were then subjected to torsion, bending, and uniaxial extension.
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Figure 2: (a) Boundary conditions applied in torsion induced a rotation of §/2 on each end of the
cylinder, giving a relative rotation angle of 6. (b) Representative fiber network having radius of
10l and length of 30l under torsion. Gray circles show ends where boundary conditions were
applied. Color shows magnitude of displacement u/l;.

For torsion simulations, a rotation of #/2 was applied to each boundary for a relative rotation
of # as shown in Fig. 2. Cylinder length L and applied rotation § = 0.001 rad were the same for all
torsion simulations. For bending, a rotation of i) was applied to each boundary of the cylinder for
a total rotation of 2t as shown in Fig. 3a-c. The resulting radius of curvature was p = L/(21)).
A dimensionless value of p/l; = 865 was used for all bending simulations. For the networks having
largest radius, R/ly = 65, this radius of curvature produced a maximum network-level strain of

13%. Deformations of individual remained small, as shown by histograms of fiber axial strain,

rotation angle, and curvature for a representative network having a radius R/l = 65 (Fig. 3d-f).

The 3D beams used had six degrees of freedom, three for translation in the X, Y, and Z
directions and three for rotation about those axes. For both torsion and bending simulations, the
translational and rotational degrees of freedom were prescribed on the left and right faces of each
cylinder, as illustrated in Fig. 3b. The nodal rotation was equal to the rotation of the cylinder

face.
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Figure 3: (a) Planar view of 3D cylinder geometry, with radius R and length L. (b) Deformed
geometry of the cylinder under pure bending boundary conditions. Nodes on cylinder faces were
displaced and rotated such that L = 2i¢p. (c) Representative fiber network having radius 10/; and
length 30/; under bending. Gray circles show faces where boundary conditions were applied. Color
shows the component of displacement along the axis of the cylinder. (d—f) Histograms showing
distributions of axial strain (d), rotation angle (e), and dimensionless curvature (f) for each fiber
of a single representative network of radius R/l; = 65 in bending. (g) Distribution of stresses
in a classically linear elastic material under bending. The neutral axis is located at the center of
cylinder. (h) Example of the distribution of stresses due to bending of a heterogeneous material
similar to the fiber networks studied here. Due to heterogeneity, the neutral axis is not necessarily
located at the center of the cylinder. (i) Histogram of normalized distance from center of cylinder
to neutral axis, Rxa/R for multiple fiber networks tested under bending.

2.6 Finite Element Solver

The finite element software Abaqus 6.16 (Dassault Systémes) was used to compute the forces and
moments resulting from the prescribed boundary conditions. Fibers were modeled as 3D, 3-node,
quadratic, Timoshenko beam elements. Connections between fibers were made by tying FE nodes
together, which transmitted both forces and moments between fibers. Deformations were induced

using displacement and rotation boundary conditions. Applied deformations were sufficiently small

11



such that the maximum strain based on predictions of continuum mechanics remained below 1%.
The implicit static solver with the nonlinear geometry option was used for all computations. In
comparison to the implicit dynamic quasi-static solver, the static solver produced nearly identical

results with a much lower computational time.

The forces and moments within each fiber were output from the finite element software and used
for later analysis. In the uniaxial extension simulations, the total force supported by each network
was computed from the reaction forces at the boundaries. In the torsion and bending simulations,
the total moment was computed by taking the cross product between the position and reaction
force of each node on the cylinder boundaries. To compute each node’s position, the origin was
taken as the center of the face corresponding to that node. In bending, this computation assumed
that the neutral axis remained at the center of the cylinder, which is true for a homogeneous, linear,
elastic material (Fig. 3g) but may not be true for a heterogeneous material (Fig. 3h). To verify this
assumption, we fit a line to axial force versus distance from the center of the cylinder and computed
the intercept, which gave the distance to the neutral axis Rxa. Repeating this procedure for many
different cylinders produced a histogram. Nearly all values of normalized distance to the neutral
axis Rya/R were < 0.1 with most values < 0.05 (Fig. 3i). These small values indicate that the

assumption of the neutral axis being located at the center of the cylinder produced minimal error.

3 Analysis

Young’s modulus and Poisson’s ratio for each network were computed using simulations in uni-
axial extension. The Young’s modulus of each fiber network F, was computed from the applied
force F', the cross sectional area A, and the axial strain € according to the equation E,, = F/(A¢c).A
previous study observed Young’s modulus to depend on the size of a fiber network (Shahsavari &
Picu, 2013). The networks used in our study showed a similar dependence on size with dimen-
sionless network modulus E, /E; decreasing in networks having small radius (Fig. 4). Although

this observation is inconsistent with micropolar elasticity, it does not rule out the possibility that

12
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Figure 4: Dimensionless Young’s modulus of cylinders of random fiber networks subjected to uni-
axial tension. Each color corresponds to one random network, and the points represent cylinders
of different radii cut from that network. Network properties used were k = 1074, k= 1/2, S = 0,
and 1 <n <14.

micropolar elasticity describes effects of length scale in torsion and bending. To avoid artifacts in
our analysis caused by the dependence of Young’s modulus on cylinder radius, we analyzed the re-
sults using two different definitions of Young’s modulus for each cylinder. The first defined Young’s
modulus to be the value computed for the largest dimensionless radius of R/l = 65; the second

defined Young’s modulus to be the value computed for each radius. Most figures in this manuscript

compare results obtained with both definitions.

The Poisson’s ratio of each network v was computed from the ratio of macroscale normal strains,
which were computed by fitting lines to nodal displacements against nodal position and taking the
slopes. As the resulting values of Poisson’s ratio were heterogeneous with a mean of 0.25 and a
standard deviation of 0.07, the mean value was used for all networks rather than their individually

computed values.

Torsion and bending were simulated to compute apparent moduli under these boundary condi-
tions. For torsion, the apparent modulus is a function of v, L, 8, the applied moment M, and the
polar moment of inertia J:

ML

By = 2(1+v)—". (7)
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If effects of length scale are present in torsion, the apparent modulus E; differs from the actual
modulus E,. The ratio of E; to E, is a relative stiffness in torsion, which is computed according
to the equation

E, 2(1+v)ML

N SN ®

The physical meaning of €); is that it describes an increase in torsional stiffness as compared to
predictions of classical linear elasticity. For classical elasticity, the relative stiffness €24 is equal to
1, whereas in micropolar elasticity it has values in the range 1 < €; < oo (Gauthier & Jahsman,
1975). The relative stiffness in torsion of micropolar cylinders has the approximate form (Rueger

& Lakes, 2016a)

A%
o~ 16 () )
where [; is the characteristic length in torsion (Eq. 4).

The same comparison to classical elasticity can be made for a material under pure bending.
Here the apparent modulus depends on the applied moment M the radius of curvature of the

deformed cylinder p and the moment of inertia of the network’s cross section I,,.
Ey = — (10)

Again, the apparent modulus may differ from the Young’s modulus, because micropolar theory
predicts a length-scale effect for bending of cylinders. The relative stiffness in bending, €2, is given
by

O =2 = . (11)

The effect of length scale on relative stiffness is predicted by micropolar theory and has the ap-

proximate form (Rueger & Lakes, 2016a)

- b\ 1= (8/7)
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where [}, is the characteristic length in bending (Eq. 3) and 8 and « are the material constants in

Eq. 2.

In this study, variables having units of length were made dimensionless by dividing by the

average fiber length [;. Eqs. 9 and 12 can therefore be rewritten as

2
fh%1+GC%Z) (13)

and

zb/zf>2 1- (/7 (14)

Qp~1+8
PR <Rﬂf 1+v

These equations allowed for computing the dimensionless characteristic lengths in torsion and
bending I;/l; and lp/l; by fitting the relative stiffnesses €2y and €2, against dimensionless cylinder

radius R/l;.

4 Results

To study the effects of length scale in torsion, we simulated cylinders of fibers under torsion
and quantified the relative stiffness €2y according to Eq. 8. Simulations were done on six randomly
generated networks, with each network cut to different cylinder radii in the range of 101y to 65/.
The simulations resulted in six data sets showing the effect of cylinder radius on relative stiffness.
The data show a relative stiffness > 1 in cylinders with small radii (Fig. 5), which is inconsistent
with classical elasticity but agrees with micropolar theory. The relative stiffness €2; has high het-
erogeneity at the smaller radii. Nevertheless, we fit the data to the micropolar approximation of
relative stiffness of a cylinder under torsion (Eq. 13) using a nonlinear least square fitting. The
curve fitting resulted in normalized characteristic lengths in the range 0.5 < I;/ly < 5.4, with an

average value of 3.0.

Thermodynamic considerations of the micropolar constants give limits on characteristic length

15
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Figure 5: Relative stiffness of cylinders of random fiber networks subjected to torsion. Each plot
corresponds to one random network, and the points represent cylinders of different radii cut from
that network. Network properties used were k = 107%, ks = 1/2, S = 0, and 1 < n < 1.4.
The dashed lines show the relative stiffness for a classically linear elastic material, ; = 1. The
solid lines show the fits of Eq. 13 to the data. Panels a—f have characteristic lengths in torsion,
I/l =1.7,5.4,1.9, 0.5, 4.8, and 3.5 respectively.

in torsion of 0 < [; (Gauthier & Jahsman, 1975). As it is possible that the characteristic length
in torsion is very small, it may be that a clear length-scale effect in torsion would require fiber
networks having such small radii that heterogeneity of the network dominates over effects of length
scale. This could explain the large heterogeneity observed in Fig. 5. In considering both torsion
and bending, characteristic lengths must satisfy to relationship 0 < l; < 2l (Gauthier & Jahsman,

1975), which implies that even if the characteristic length in torsion is small, the characteristic

length in bending may be large.

We therefore performed simulations in pure bending on the same fiber networks to quantify the
relative stiffness in bending. The effect of network radius on relative stiffness was much stronger
in bending as compared to torsion, with relative stiffnesses for networks having the smallest radii
typically reaching values greater than 5 (Fig. 6). In this figure, the main plots show relative stiffness
Qp as defined in Eq. 11 calculated by taking Young’s modulus to be the value computed for the

largest cylinder radius of R/ly = 65; insets show 2, calculated using Young’s modulus computed

16



for each cylinder radius. Comparison of each plot to the corresponding inset shows only modest
differences, indicating that the increase in relative stiffness was insensitive to the effect of length
scale on Young’s modulus shown in Fig. 4. The increase in relative stiffness at small radii was also
insensitive to the precise boundary conditions used, as other simulations of bending in a cylindrical
network loaded by a point force at its tip produced similar values of relative stiffness as those shown
in Fig. 6. In this manuscript, we show results only for pure bending, as there exists a theoretical
solution of micropolar theory for pure bending (Reddy & Venkatasubramanian, 1978). The relative
stiffnesses ), for all radii and all networks closely matched the approximation to micropolar theory
given by Eq. 14. Fits of the main plots in Fig. 6 to the theory (Eq. 14) gave characteristic lengths
in bending in the range 5.1 < [,/ly < 6.6 with an average value of 5.8. Fits to the insets gave
slightly larger characteristic lengths, in the range 5.4 <1,/l; < 9.0. These results indicate a clear

effect of length scale in bending.

Next we considered the effects of changing fiber structure and properties on the characteristic
length. Because some simulations in torsion did not match predictions of micropolar theory (Fig.
5), but all simulations in bending did (Fig. 6), we chose to focus on the characteristic length in
bending for the remainder of our study. We began by changing the dimensionless number density of
fibers n (defined in Eq. 5) in the range of 1 to 3. As expected, increasing the fiber number density
n linearly increased the dimensionless modulus of the network E, /E¢ (Fig. 7a). For each network,
the characteristic length in bending [, was computed by fitting to plots of Q2 vs. R as in Fig. 6.
Surprisingly, fiber density had no clear effect on the characteristic length in bending (Fig. 7b, ¢). As
micropolar theory predicts characteristic lengths to result from internal couple moments supported
in a material, a possible explanation for density having no effect on characteristic length is that
it does not affect the overall balance of moment and force in each fiber. To test this hypothesis,
we analyzed the 3D internal forces F' and moments M supported by each fiber by combining them
into the dimensionless number

YL -
=\ o) (15)
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Figure 6: Relative stiffness of cylinders of random fiber networks under pure bending. Each plot
corresponds to one random network, and the points represent cylinders of different radii cut from
that network. Network properties used were kK = 1074, ks = 1/2, S =0, and 1 < n < 1.4. The
dashed lines show the relative stiffness for a classically linear elastic material, €2, = 1. The solid
lines are fits of Eq. 14 to the data. Panels a—f have characteristic lengths in bending I;/ly = 6.6,
5.4, 6.1, 6.0, 5.1, and 5.2, respectively. Networks tested are identical to those shown in Fig. 5.
Main figures show relative stiffness computed using the value of Young’s modulus £y corresponding
to the largest radius, R/ly = 65; insets show relative stiffness computed using the value of Young’s
modulus corresponding to each cylinder’s radius.

where superscript ¢ indicates the i-th fiber, and the brackets <> indicate a mean over all fibers. T’
is bounded by 0 < I" < 1, where I' = 0 indicates fibers in the network support only internal forces
and I" = 1 indicates fibers support only moments. I' was found to be independent of fiber number

density n (Fig. 7d), suggesting no effect of density on the balance of forces and moments within

each fiber.

The variable I' depends on the discrete moments and forces within each fiber, whereas micropolar
theory assumes the material is not discrete but rather a continuum. We therefore defined a second
dimensionless number A that still used the moment within each fiber but compared it to the
magnitude of force in each fiber predicted by classical linear elasticity. To compute the force in
each fiber predicted by classical linear elasticity, we began with the stress |o¢| = E,y'/p, where 3!

is the distance between the i-th fiber and the neutral axis. As the continuum stress is supported
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Figure 7: Effects of dimensionless fiber density n on (a) the dimensionless network uniaxial modulus
E,/Ey¢, (b, ¢) the normalized characteristic length in bending /; /1, (d) the dimensionless parameter
I', and (e) the dimensionless parameter A. Points in panel b were computed using the value of
Young’s modulus corresponding to the largest radius R/l; = 65; points in panel ¢ were computed
using the value of Young’s modulus corresponding to each cylinder’s radius. Network properties
used were x = 1074, kK, = 1/2, and S = 0. Each point is the value computed for one randomly
generated network, cut to many different cylinder sizes. Each random network network is assigned
a different color, which is used for all panels. Points in panels a, d, and e are averages over all
cylinder sizes; points in panels b and ¢ are from fits to Eq. 14.

by n fibers in a cross sectional area of lfc, the force supported by the i-th fiber is |ai\lfc /n. The

dimensionless number A is therefore given by

M) = (|ofi2/n) i
A:1<1+| i ‘f/>f>. (16)

| M|+ (|ai|z;%/n) li

Again, 0 < A < 1, where A = 0 indicates fibers in the network support no moments, and A = 1
indicates fibers support very large moments. The difference between I' and A is that I' considers
local moments and forces in the fibers whereas A considers local moments in the fibers but forces
predicted by continuum theory. Similar to its effect on I', fiber number density had negligible

effect A (Fig. Te). These findings are consistent with the notion that density had minimal effect
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Figure 8: Effects of fiber alignment (quantified by order parameter S) on (a) the dimensionless
network uniaxial modulus £, /Ey, (b, ¢) the normalized characteristic length in bending /I, (d)
dimensionless parameter I', and (e) dimensionless parameter A. Points in panel b were computed
using the value of Young’s modulus corresponding to the largest radius R/l; = 65; points in
panel ¢ were computed using the value of Young’s modulus corresponding to each cylinder’s radius.
Network properties used were k = 1074, ks = 1/2, and 1 < n < 1.4. Each point is the value
computed for one randomly generated network, cut to many different cylinder sizes. Each random
network network is assigned a different color, which is used for all panels. Points in panels a, d,
and e are averages over all cylinder sizes; points in panels b and c are from fits to Eq. 14.

on internal moments in the fibers and, therefore, minimal effect on the characteristic length in

bending.

Next, the effect of fiber alignment was assessed by generating networks having different amounts
of fiber alignment along the axis of the cylinder. As fibers aligned, the modulus in uniaxial tension
increased (Fig. 8a). In bending, the characteristic length decreased with alignment (Fig. 8b, ¢),
which may be the result of alignment causing fibers to support greater forces relative to moments.
In agreement with this explanation, both I" and A decreased with increasing alignment (Fig. 8d,
e). Therefore, fiber alignment along the axis of the cylinder reduced the effect of length scale by

reducing the relative magnitude of moments supported by each fiber.
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Lastly, the dimensionless bending stiffness x was considered by varying it over a range spanning
a low, bending-dominated value of 1076 to a large, stretching-dominated value of 102. The modulus
in uniaxial extension increased with increasing bending stiffness until & reached a value of ~ 107!
(Fig. 9a). For x < 107!, the slope of the data matches the black line having a slope of 1 in Fig.
9a, which indicates modulus scales linearly with dimensionless bending stiffness s in the bending-
dominated regime, consistent with previous studies (Broedersz et al., 2011; Licup et al., 2016;
Sharma et al., 2016; Rens et al., 2016). For x > 107! there is a transition into a regime where
normalized network modulus is insensitive to dimensionless bending stiffness «. This new regime
results from a transition from fiber bending to stretching (Head et al., 2003; Wilhelm & Frey,
2003; Conti & MacKintosh, 2009; Licup et al., 2016; Islam & Picu, 2018). Though the exact value
of kK to cause the transition depends on the type of fiber network, a previous study observed the
transition to occur near k = 2 x 1072 for cellular networks (Islam & Picu, 2018), which are similar
in structure to the networks studied here. Networks were then subjected to bending to compute
the characteristic lengths. We expected that increasing the dimensionless bending stiffness x would
affect the distribution of moments and forces in the fiber network. Consistent with our hypothesis,
the characteristic length in bending increased with increasing values of x above 10~! (Fig. 9b,
c). The critical value of ~10~! was the same whether the data were analyzed using the value of
Young’s modulus corresponding to the largest cylinder (Fig. 9b) or the value corresponding to each
cylinder’s radius (Fig. 9b). The dimensionless numbers I' and A also increased with increasing s
(Fig. 9c, d). Notably, I" and A each spanned a large range from 0.3 to 1, implying that the fibers
transitioned from supporting primarily forces to supporting only moments as s was increased. It
is also noteworthy that E,/Ey, I', and A all trend upward for x 2 10!, which suggests that the
transition of fiber bending to stretching caused an increase in characteristic length. Accordingly,

the characteristic length increased with increasing x for x > 1071,

The characteristic length also increased for small values of x, with large values of characteristic
length observed for the smallest value, £ = 107%. Though the cause of this increase is unknown,

it may be related to the fact that heterogeneity, as quantified using different metrics for nonaffine
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Figure 9: Effects of dimensionless bending stiffness, x, on (a) the dimensionless network uniaxial
modulus E,/Ey, (b, ¢) the normalized characteristic length in bending l,/l¢, (d) dimensionless
parameter I'; and (e) dimensionless parameter A. Points in panel b were computed using the
value of Young’s modulus corresponding to the largest radius R/ly = 65; points in panel ¢ were
computed using the value of Young’s modulus corresponding to each cylinder’s radius. Each color
represents results from one randomly generated network, cut to many different cylinder sizes. The
four networks tested are chosen to be representative of the spectrum of random networks. The blue
and green points represent networks having densities of n = 1.09 and n = 2.83 and characteristic
lengths at k = 1074 of Iy/ly = 5.0 of I/ly = 4.7, respectively. The orange and dark red points
represent networks having densities of n = 1.40 and n = 0.97 but the maximum and minimum
characteristic lengths at x = 107*. All networks had S = 0. Points in panels a, d, and e are
averages over all cylinder sizes; points in panels b and ¢ are from fits to Eq. 14.

displacements, increased with decreasing bending stiffness x (Head et al., 2003; Hatami-Marbini
& Picu, 2008; Conti & MacKintosh, 2009). Consistent with this notion, we observed the relative
stiffness in bending € to be highly heterogeneous for x = 1075, with values of €, ranging from

0.2 to 47. This heterogeneity in relative stiffness was present only for the smallest values of «; for

k > 1074, heterogeneity in relative stiffness largely disappeared as demonstrated by Fig. 6.

Close inspection of Fig. 9a shows that at large values of dimensionless bending stiffness x, the
dimensionless network modulus E, /Ef decreased. We suspected that the decrease resulted from

the fact that the shear modulus of each fiber was of the same order of magnitude as the Young’s
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modulus, which could produce another deformation mechanism, fiber shearing, occurring for very
large values of k. We therefore increased the dimensionless fiber shear modulus ks by two orders
of magnitude and repeated the simulations of Fig. 9. Under these conditions the network modulus
increased monotonically with  (Fig. 10a), confirming the predicted effect of fiber shearing. When
the networks made of fibers with large shear modulus were subjected to bending, the general
trends remained the same: I/lf, I', and A all increased with increasing & for £ > 107! (Fig. 10b-
e). However, there were two notable differences. Firstly, the magnitude of characteristic length
in bending [;/l; was larger for networks made of fibers with large shear modulus (Fig. 10b, c)
compared to small shear modulus (Fig. 9b, ¢). Similarly, the magnitudes of I' and A increased
with increasing fiber shear modulus. This observation indicates that increasing the fiber shear
modulus caused fibers to support greater bending moments. Secondly, comparison of Figs. 9b, c
and 10b, ¢ shows that increasing the fiber shear modulus reduced network-to-network heterogeneity
in characteristic length for low values of x. Fig. 10 therefore clarifies the effect of bending stiffness
k on characteristic length: it is relatively unaffected by s for £ < 107! and increases with & above
this value. Importantly, the fibers in real materials have a dimensionless shear modulus ks < 1/2,
so the heterogeneity present in Fig. 9 is more representative of real materials than the data in Fig.

10.

5 Discussion

We investigated effects of micropolar elasticity in materials made of random fibers using a model
designed to simulate biological materials such as gels of collagen fibers. The fibrous structure is
similar to other materials shown to exhibit micropolar elasticity such as foams (Rueger & Lakes,
2016a) and bones (Yang & Lakes, 1981, 1982). We observed the stiffness to depend on length
scale in bending with characteristic length found to be a few times larger than the average fiber
length. To investigate factors affecting the characteristic length, we varied fiber density, alignment

and bending stiffness. Density was found to have no effect on the characteristic length, whereas
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Figure 10: Effects of dimensionless bending stiffness, x, with an increased shear modulus G on
(a) the dimensionless network uniaxial modulus E,/Ey, (b, c) the normalized characteristic length
in bending Iy/l¢, (d) dimensionless parameter I', and (e) dimensionless parameter A. Plots are
computed identically to Fig. 9. All networks had a large dimensionless shear modulus of ks = 50.

decreased alignment and increased bending stiffness each produced a greater characteristic length.

The observation that fiber density (number per unit volume) had no effect on the characteristic
length (Fig. 7) differs from observations in other materials. In foams, the cell density (number
of cells per unit volume) is coupled to cell size: increasing the number of cells per unit volume
requires that the cell size be reduced, which in turn reduces the average lengths of the ribs. In
turn, the reduced rib size reduces the characteristic length (Rueger & Lakes, 2016b). A similar
case is present in bones and lattice structures. By contrast, the fiber networks studied here have
no coupling between fiber density and fiber length. This feature is due to the fact that the long,
thin fibers produce a network with a large amount of void space between them. As a result, fibers
can be added to the network without connecting. The fact that density is unrelated to fiber length
explains why density has no effect on characteristic length (Fig. 7). This observation is unique to the

simulated annealing network generation method used here. Other methods of network generation,
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such as those based on fiber growth, Voronoi tesselation, or lattices (Heussinger & Frey, 2007;
Humphries et al., 2017) have a coupling between fiber length and fiber density and therefore may
behave more like foams. This reasoning is supported by a previous study using networks based on
the fiber growth method (Berkache et al., 2019b), which observed micropolar moduli to depend on

the fiber density.

An increase in dimensionless fiber bending stiffness k resulted in a greater characteristic length
in bending [, (Figs. 9-10), indicating a greater dependence on length scale. This observation is
unintuitive, because greater bending stiffness produces deformations with less fiber bending and
more fiber stretching. The transition from bending to stretching could be expected to reduce the
microrotations associated with micropolar elasticity, but, in contrast, the data show an increase in
characteristic length. It is important to note, however, that increasing the bending stiffness could
affect both the microrotations and the micropolar elastic moduli that relate the microrotations
to the couple stress. In this case, the increased characteristic length in bending [, results from
a change in the micropolar modulus v and/or the shear modulus G as dictated by Eq. 3. The
exact relationship between the bending stiffness and the micropolar elastic moduli is unclear, but
it is reasonable to expect increasing bending stiffness x to increase both the micropolar modulus ~
and the shear modulus G. The increases in v and GG were not proportional, however, because the
characteristic length in bending [l;, was observed to increase. This finding indicates that increasing
Kk caused a greater increase in y as compared to G. According to the constitutive equation for
couple stress (Eq. 2), larger 7 would tend to increase the couple stress. As fiber deformations
transitioned from bending to stretching, it is possible that the increased v had a greater effect on
the couple stress than the decreased rotations. This reasoning is supported by the dimensionless
variables T" and A, which quantify the ratio of local moments and forces. As shown in Figs. 9-10,
increasing  caused I' and A to increase, which indicates that the ratio of local moments and forces
also increased. Therefore, greater x causes an increase in couple stress (moment per area) that

exceeds the increase of stress (force per area) in the network.
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Effects of length scale occur at small size scales, in this case in cylinders having radii of tens
of fiber lengths as shown in Fig. 6. It is important to consider that at these small length scales,
heterogeneity due to the random fibrous structure becomes apparent. We have previously quantified
heterogeneity in modulus by using contracting particles that mimicked the contraction of a cell
(Proestaki et al., 2019). The data showed that for particles of diameter approximately 10 times the
average fiber length, modulus varied by a factor of 1.4 at different positions within the same fiber
network. In comparison, the results in bending (Fig. 6) show that for a cylinder radius R/l; = 10,
the relative stiffness in bending € is ~ 3, which is larger than the effects of heterogeneity. In a
different study, the typical length scale for a heterogeneously deforming group of fibers was observed
to be ~ 2.2l; (Burkel et al., 2018). It may be that on this length scale, heterogeneity in stiffness
would dominate effect of length scale on stiffness. But because an apparent increase in stiffness is
observed for cylinders having radii up to 20 fiber lengths (Fig. 6), there exists a regime in which
the length scale is large enough that the mechanics are not dominated by heterogeneity but small

enough that effects of length scale are present.

The fact that fibrous materials depend on length scale may be useful in improving continuum
models for these materials. The recent continuum models for fibrous materials (Wang et al.,
2014; Rosakis et al., 2015; Xu & Safran, 2015; Steinwachs et al., 2016; Ban et al., 2019) have
focused on behaviors such as strain stiffening and compression softening. These are nonlinear
phenomena caused by alignment of fibers in tension and buckling of fibers in compression. The
length-scale effects studied here differ from nonlinearity in that they occur at small strains. Models
for the mechanics of fibrous materials at size scales of tens of fibers could therefore be improved
by incorporating length-scale effects. The resulting combination of nonlinearity and length-scale

dependence could lead to new predictions for the mechanics of fibrous materials.
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