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Quantum metrology based on solid-state spins has demon-
strated impressive sensing capabilities for various environ-
mental physical quantities. In particular, the NV centre in 

diamond has emerged as a leading room-temperature quantum 
sensor for temperature1–4, strain5–7, electric fields8–10 and magnetic 
fields11–17, including for atomic species18–25. The capabilities of 
NV-based quantum metrology are based on its long spin coherence 
time26 and its efficient optical interface for spin polarization and 
readout. Furthermore, picotesla magnetic field sensitivity at direct 
current (d.c.) under ambient conditions has been achieved by inter-
rogating NV centre ensembles27.

Conventional approaches for NV magnetometry, which are 
based on optically detected magnetic resonance (ODMR)28, involve 
bulky and discrete off-the-shelf instruments that limit the practical 
applications and scalability of the approach. NV-ODMR requires a  
number of specific components: a microwave signal generator, 
an amplifier and a delivery interface for NV spin manipulation;  
an optical filter to reject the pump laser; a photodetector for NV 
spin-dependent fluorescence measurements; a pump laser. In  
this Article, we report a custom complementary metal–oxide– 
semiconductor (CMOS) architecture that stacks the microwave 
inductor, filter and photodiode into a 200 μm × 200 μm footprint. 
This extends our previous report29 on a hybrid diamond–CMOS 
platform by demonstrating ambient quantum vector magneto
metry with a twofold improvement in sensitivity, as well as  
simultaneous thermometry.

Chip-scale quantum sensing
Figure 1a illustrates the device for on-chip ODMR. A diamond 
slab is irradiated and annealed to produce NV centres at a density 
of ~0.01 ppm. A 45° cut in the corner of the diamond directs the 
off-chip green pump beam along the length of the diamond slab. 
This side excitation reduces the pump laser background into the 
photodetector located below the diamond. An on-chip microwave  
generator and inductor drives the NV electron spin transitions.

NV magnetometry detects external magnetic fields via the 
Zeeman shift induced on the NV’s spin ground-state sublevels28, as 
shown in Fig. 2a. Specifically, an external magnetic field B induces 
an energy shift γeBz on the NV ground-state spin triplet (|ms = 0, 
±1〉), where Bz is the magnetic field component along the NV sym-
metry axis. The spin transition frequencies, ν±, between sublevels |0〉  
and |±1〉, are given by

ν ± ¼ ðDgs � βTΔTÞ± γeBz ð1Þ

where Dgs = 2.87 GHz is the room-temperature natural ground-state 
splitting between sublevels |0〉 and |±1〉, γe is the electronic gyro-
magnetic ratio (28 GHz T−1), βT ≈ 74 kHz K−1 (ref. 30) and ΔT is the 
temperature shift from room temperature. Measuring ν± gives Bz 
and ΔT in their difference and sum, respectively. In addition, mea-
suring Bz for at least three of the four possible NV orientations in 
diamond (inset, Fig. 1a) quantifies all components of B for vector 
magnetometry31–34.

The NV ground-state transitions ν± are measured by ODMR 
under green laser excitation, as illustrated in Fig. 2a. The spin mag-
netic sublevel |0〉 has a bright cycling transition, where it emits  
red fluorescence. By contrast, the |±1〉 can undergo an intersystem 
crossing into a metastable, dark spin-singlet state, from where it 
decays back into the |0〉 sublevel. This has two consequences: opti-
cal spin polarization into sublevel |0〉 and lower average fluores-
cence of the |±1〉 spin populations. The microwave field moves spin 
population between |0〉 and |±1〉. Sweeping the applied microwave 
frequency leads to the ODMR spectra in Fig. 2b, from which ν± are 
determined.

On-chip microwave generation and delivery
In our chip-scale NV magnetometer, the ground-state spin transi-
tions are driven by the on-chip generated microwave fields. Figure 3a  
shows the circuitry for on-chip microwave generation and  
delivery. This circuitry is composed of a phase-locked loop (PLL), 
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a current driver and a resonant loop inductor. The PLL generates 
the microwave sweep signal from 2.6 GHz to 3.1 GHz, required for 
the ODMR experiment. The main component of this loop is an on-
chip voltage-controlled ring oscillator (VCO) with three differen-
tial inverter stages. The use of a ring VCO35 avoids any large-size 
inductor and minimizes the crosstalk between the oscillator and the 
microwave inductor, which drives the NV ensemble. The mutual-
locking inverter pair (for example, INV2 in Fig. 3a) forms a latch and 
ensures the differential phases between the left and right branches 
of the VCO. The frequency tunability of the oscillator is realized  
via three pairs of MOS variable capacitors (for example, CVCO in  
Fig. 3a), where the capacitance changes from 22 fF to 75 fF when 

the PLL control voltage Vctrl varies from 0 to 5 V. The entire PLL 
is closed with off-chip components to enhance the stability and 
decrease the phase noise of the signal. Further details are provided 
in the Methods.

The microwave fields are delivered to the NV ensemble through 
the loop inductor (Fig. 3a) implemented on the topmost copper layer 
(Metal 9, see Methods for details) with a thickness of 3.4 μm. To effi-
ciently deliver the microwave field, the loop inductor and a pair of 
shunt capacitors (C1 and C2 in Fig. 3a) form a resonating load for the 
current driver. C1 and C2 are MOS variable capacitors with capaci-
tance ranging from 312 fF to 1.4 pF. By electrically tuning them via 
Vtune, the load resonates near Dgs. This current driver fed by the out-
put of the ring VCO produces oscillating current in the inductor at 
the VCO microwave frequency. To improve the performance of this 
inductor for advanced NV sensing protocols36, we need to increase 
the applied microwave field amplitude. The amplitude is enhanced 
by a factor Q of the driver d.c. bias current (Ibias ≈ 5 mA from a 2.5 V 
power supply), where Q (~15) is the quality factor of the inductor. In 
addition, we use a three-turn loop to multiply the microwave field 
strength. Overall, we have 25× enhanced microwave field strength 
compared to a non-resonant single-turn loop (as plotted in Fig. 3b). 
With an outer diameter of 236 μm, the loop exhibits an inductance 
of ~3 nH. In addition, the aforementioned sensing protocols also 
require highly uniform microwave fields over the excitation volume.  
To achieve this, three capacitive parasitic loops are inserted29. We 
tailor the radius of these loops so that their opposite induced field 
homogenizes the overall generated field. Another degree of free-
dom is provided by the capacitive gaps in the parasitic loops. This 
controls the amount of current flowing in these loops. We thus 
optimized these two parameters (the parasitic loop radius and the 
capacitive gap) for the three parasitic loops to achieve >95% uni-
formity. Detailed dimensions of the microwave launcher and loop 
inductor are provided in the Methods and Supplementary Fig. 1, 
respectively. The spectral purity (phase noise) of the microwave  
is −90 dBc Hz−1 at an offset frequency (also the FM modulation  
frequency fm) of 1.5 kHz.

On-chip spin readout
The NV spin transitions are detected using an on-chip photodetec-
tor. The green laser pump beam is filtered by a CMOS-compatible 
periodic metal–dielectric structure (Fig. 4a) in the Metal 8 intercon-
nect layer. Specifically, incident light couples to the surface plasmon 
polariton at the metal–dielectric interface, where the green pump 
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Fig. 1 | CMOS-integrated quantum sensing architecture. a, A green pump laser excites an NV ensemble in the diamond slab. Microwave fields generated 
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diagram: the green optical pump (green arrow) excites NV electrons  
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light rapidly decays due to frequency-dependent ohmic loss37,38. The 
inset in Fig. 4a presents the intensity map for the green (λ = 532 nm, 
top) and red (λ = 700 nm, bottom) light, showing ~95% and ~5% 
absorption with the metal–dielectric structure, respectively.

The photodiode consists of a p+/n-well/p-substrate junctions 
(inset, Fig. 4b), which is preferable for long wavelength detection39. 
Because we place the photodiode with its conductive layers below 
the inductor (Fig. 1a), large eddy currents near 2.87 GHz can be 
induced. This reduces the quality factor of the inductor, resulting in 
microwave amplitude reduction. We can reduce this eddy current by 
half by dividing the photodiode area into four sub-areas as shown 
in Fig. 4b (see Methods for a detailed analysis). Furthermore, the 
anode/cathode connectors are arranged in a similar way to the pat-
terned ground shielding used in CMOS inductors40. This arrange-
ment avoids any closed loops, which helps to cut the eddy current 
that may flow in the metallic connections. The photodiode has a 
measured responsivity of 0.23 A W−1 at a wavelength of 532 nm, 
which corresponds to a quantum efficiency of 0.54.

On-chip ODMR detection and quantum sensing
We detect NV-ODMR with a lock-in technique. The green laser 
beam continuously excites the NV ensemble, and the frequency-
modulated (FM) microwave fields (fm = 1.5 kHz, modulation depth 
of 6 MHz) drive the NV electron spin transition. The spin-depen-
dent fluorescence produces photocurrent within the on-chip pho-
todiode (Fig. 4b). We read out the modulated photocurrent with 
the voltage drop across a 50 Ω resistor at fm with 1 s integration time, 
which corresponds to an equivalent noise bandwidth of 0.078 Hz 

(considering the filter roll-off of 24 dB oct−1) with a Stanford 
Research Systems lock-in amplifier (SR865A). The use of the  
lock-in amplifier rejects the d.c. current offset of the photodiode, 
which is caused by the unmodulated green laser, and avoids the  
low-frequency flicker noise accordingly.

Figure 5a shows the lock-in signal for the ODMR experiment 
under zero external magnetic field applied. This spectrum corres
ponds to the derivative of the ODMR spectrum shown in Fig. 2b. 
Next, we align a permanent magnet (6.27 mT) to split the spin  
transitions of the four NV orientations. Figure 5b plots the ODMR 
spectrum, which exhibits the expected eight spin transitions  
(Fig. 2b). The use of the corresponding four NV ensembles enables 
vector magnetometry. In particular, we note the spin transitions  
at ν− = 2.8303 GHz and ν+ = 2.9330 GHz of the NV ensemble.

Monitoring the lock-in signal V at ν− and ν+ enables independent 
measurements of the magnetic field and temperature, as described 
above. Specifically, the sum of the lock-in signal change ΔV at ν± is 
proportional to ΔT, while the difference provides ΔBz:

ΔT ¼ 1
2βT
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Figure 5c plots the detected ΔBz induced by an electromagnet (blue) 
and the measured centre frequency shift (red). The plotted centre 
frequency could be converted to a temperature after βT calibration.

The magnetic field sensitivity is given by the following relation:

S ¼ σBzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENBW

p ð4Þ

where σBz
I

 is the noise in ΔBz measurements and ENBW is the equiv-
alent noise bandwidth of the lock-in detector. In our measurement, 
ENBW = 5/(64τ) with a time constant τ of 1 s, accounting for the 
24 dB oct−1 of the lock-in amplifier filter roll-off. By measuring σBz

I
 

of 6.3 μT from the modulated spin-dependent fluorescence (inset,  
Fig. 5c), we determine a d.c. magnetic field sensitivity of 32.1 μT Hz−1/2,  
which includes an additional 

ffiffiffi
2

p
I

 factor of the ν+ and ν− signal 
average. This d.c. magnetic field sensitivity is limited by the noise 
detected in the ENBW at fm = 1.5 kHz. Figure 5d plots the noise 
spectral density measured at ν− (no temperature compensation) 
using the lock-in amplifier, where the noise floor is ~35 nV Hz−1/2. 
This noise is then converted to the magnetic field sensitivity with the 
slope at ν− and γe (plotted in the right y axis in Fig. 5d).

The achieved magnetic field sensitivity is orders of magnitude 
worse than the best d.c. sensitivities reported: 290 and 28 pT Hz−1/2 
for vector27 and scalar41 magnetometry, respectively, to the best 
of our knowledge. Our sensitivity is mainly limited by the green 
laser intensity noise (see Methods for detailed noise estimation). 
However, this performance can be improved by (1) including metal 
gratings in multiple CMOS metal layers based on the wavelength-
dependent Talbot effect42 and (2) fabricating a resonant grating43 
in diamond. These also attenuate the green laser and consequently 
reduce the laser intensity noise by several orders of magnitude. In 
addition, using a diamond waveguide geometry27—possibly with 
a higher NV density44 (~10 ppm)—should increase the signal-to-
noise ratio by orders of magnitudes. Moreover, dynamical decou-
pling sequences28,36 can improve the sensitivity by a few orders of 
magnitude for measuring magnetic fields at frequencies above the 
NV decoherence rate.
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One component not presently integrated into our diamond–
CMOS platform is the pump laser for NV optical excitation. This 
optical pump can be integrated into our platform by using a chip-
scale laser diode45, green vertical-cavity surface-emitting lasers46 
or CMOS-compatible waveguided delivery of the optical pump 
beam47. We note that CMOS integration of all currently off-chip 
electronic components, such as the PLL with frequency modula-
tion and the lock-in amplifier, has been demonstrated in previous 
research48. This suggests the feasibility of a millimetre-scale form 
factor for future quantum-sensing systems.

Conclusions
We have reported chip-scale quantum magnetometry by integrat-
ing diamonds with CMOS technology, creating an architecture in 
which the essential components to detect NV-ODMR—a micro-
wave generator, an inductor, an optical pump beam filter and a 
photodetector—are fabricated throughout the CMOS multilayers. 
NV spin ensembles integrated on the CMOS chip measure external 
magnetic fields with a sensitivity of 32.1 μT Hz−1/2, and this compact 
spin-CMOS platform can be extended to on-chip sensing of other 
quantities such as electric fields. We emphasize that our CMOS 
circuit provides direct physical interactions with the NV quantum 
states beyond electronic input/output signalling49. In addition to 
chip-scale quantum sensing capability, our CMOS-based spin con-
trol and readout scheme can uniquely provide a scalable solution 
for implementing spin quantum-bit controls. This is, in particular, 
essential to developing a large-scale quantum system49–52, which 
would enable quantum-enhanced sensing36,53,54 and quantum infor-
mation processing55–57.

Methods
Diamond preparation and CMOS chip design. To avoid the direct injection of the 
green laser pump beam onto the CMOS, we cut the CVD-grown diamond single 
crystal (Element 6) as shown in Fig. 1a, enabling optical pumping in parallel with the 
CMOS–diamond interface with total internal reflection. The diamond was irradiated 
by an electron beam with a dosage of 1 × 1018 e− cm−2 at 1 MeV, then annealed for 
2 h at 850 °C. The diamond slab was picked and placed on the CMOS chip under 
a microscope, and immersion oil was used in the diamond–CMOS interface to 
adhere the two together. This also minimized the fluorescence loss by reducing the 
refractive index difference. The chips were fabricated with standard 65 nm low-
power CMOS technology (TSMC), producing 1.2 V and 2.5 V MOSFET transistors; 
the latter, with a minimum gate length of 280 nm, were used in this work. The 
CMOS technology also produced nine copper interconnect layers (Metal 1–Metal 9), 
an aluminium pad/redistribution layer and a top nitride layer for surface passivation, 
which we removed by reactive ion etching to reduce the associated red fluorescence. 
No additional post-processing other than etching of the passivation layer was carried 
out. The total chip area, including the electronic/photonic components and the bond 
pads, was 0.8 × 0.5 mm2. In Fig. 3, the sizes (gate width/gate length) of transistors 
M1–M4 are 80 μm/280 nm, 80 μm/280 nm, 72 μm/500 nm and 720 μm/500 nm, 
respectively. Inside each inverter stage (for example, INV1 in Fig. 3a) of the on-chip 
ring VCO, the sizes of the NMOS and PMOS are 24 μm/280 nm and 54 μm/280 nm, 
respectively. Inside each latch inverter (for example, INV2 in Fig. 3a), the NMOS and 
PMOS sizes are 5.2 μm/280 nm and 12 μm/280 nm, respectively.

Measurement set-up. The measurement set-up is arranged as follows. A linearly 
polarized DPSS green laser beam (500 mW, λ = 532 nm, Verdi G2, Coherent) is 
delivered to the diamond through a telescope with f1 = 35 mm and f2 = 150 mm. 
The beam diameter incident on the diamond is ~500 μm. A half-wave plate is 
used to rotate the polarization of the laser beam to maximize the laser absorption 
through the periodic metal/dielectric structure in the Metal 8 layer. The CMOS 
chip is wire-bonded on a printed circuit board. Its internal ring VCO, combined 
with an off-chip synthesizer circuit (AD9525, Analog Devices) including a charge 
pump, a phase/frequency detector and a frequency divider, form a phase-locked 
loop (PLL). The VCO output signal is frequency-divided by 24 and then compared 
to a 120 MHz reference signal provided by an external signal source (HP ESG-
D4000A). The loop filter of the PLL is a typical second-order low-pass filter and 
the values of the components shown in Fig. 3a are R1 = 0.4 kΩ, C3 = 4.5 nF and 
C4 = 150 pF. A permanent magnet is used in Fig. 5b to split the NV orientations. 
The square-wave magnetic field applied in Fig. 5c is generated by an electromagnet. 
An alternating electric current is used to avoid magnetization. A lens system is 
used because our laser is located far from the sample for experimental convenience, 
although we note that the lens system could be avoided if the laser were to be 
positioned near the CMOS chip.

Eddy current analysis. For a square photodiode with a side length L, the eddy 
current power Peddy is quadratically proportional to the change in magnetic flux 
dϕ(t)/dt:

Peddy /
ðdϕðtÞ=dtÞ2

R
/ L4 dB

dt

� �2

L
/ L3

dB
dt

� �2

where t is the time, R is the resistance and B is the magnetic field generated by  
the loop inductor in Metal 9. By dividing the photodiode active area into N × N 
sub-areas, the eddy current is reduced by N2 × (L/N)3/L3 = 1/N.

Noise estimation. In our experiment, the measurement noise (38 nVHz�1=2

I
 at 

fm = 1.5 kHz) primarily derives from the green laser intensity noise due to the 
limited performance of the optical filters. This laser intensity noise is orders of 
magnitude larger than other noise sources: (1) the NV red fluorescence shot noise 
is R

ffiffiffiffiffiffiffiffiffi
2qiD

p  9 pVHz�1=2

I
 at fm = 1.5 kHz, where iD ~ (1/C)(100 nV)/R, ODMR 

contrast C ~ 0.02, q = 1.6 × 10−19 C and R = 50 Ω; (2) the thermal noise of 50 Ω 
resistance is � 0:9 nVHz�1=2

I
, which is used to convert the photocurrent to voltage; 

(3) the noise converted from the microwave spectral purity (ϕp = −90 dBc Hz−1 at 
fm) is / Vsϕpfmβ  1 fVHz�1=2

I
. Here, Vs is the signal voltage amplitude and β is 

the slope of the FM-ODMR curve. We assume that ϕp ≪ 1.
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The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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