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Abstract— Task-invariant feedback control laws for powered
exoskeletons are preferred to assist human users across varying
locomotor activities. This goal can be achieved with energy
shaping methods, where certain nonlinear partial differential
equations, i.e., matching conditions, must be satisfied to find
the achievable dynamics. Based on the energy shaping methods,
open-loop systems can be mapped to closed-loop systems with
a desired analytical expression of energy. In this paper, the
desired energy consists of modified potential energy that is well-
defined and unified across different contact conditions along
with the energy of virtual springs and dampers that improve
energy recycling during walking. The human-exoskeleton sys-
tem achieves the input-output passivity and Lyapunov stability
during the whole walking period with the proposed method.
The corresponding controller provides assistive torques that
closely match the human torques of a simulated biped model
and able-bodied human subjects’ data.

I. INTRODUCTION

Powered exoskeletons have been developed to serve as
rehabilitative and assistive devices for human users. They
can either enhance a healthy person’s abilities or support
a physically impaired person’s activities of daily living by
providing powered hip, knee, and/or ankle motions based
on different control designs. Despite the promising results
in gait rehabilitation, significant challenges remain in the
control design. Most exoskeletons use trajectory-based con-
trol methods, for instance, the robot suit Hybrid Assistive
Limb [1], ReWalk [2], Ekso Bionics [3], and the bilateral
Wandercraft [4]. However, controllers based on pre-defined
trajectories cannot adjust to continuously varying activities.
In contrast, task-invariant control for powered exoskeletons
is more desirable as it provides more flexibility in assisting
humans in a continuum of activities despite the specific tasks
and environment changes.

An energy shaping method can serve as the task-invariant
control by altering the dynamic characteristics of the human
body via the Euler-Lagrange equations, which have already
seen success in applications of bipedal locomotion [5], [6].
These applications of the energy shaping methods satisfy
the set of nonlinear partial differential equations (PDEs)
corresponding to the matching conditions. With the obtained
solution of the matching conditions, the feasible structure of
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the closed-loop system can be derived and provides flexibility
to the design of suitable closed-loop Euler-Lagrange systems.
Spong [7] proposed the method of controlled symmetries
that reproduces passive limit cycles on arbitrary slopes. Lv
et al. [8], [9] proposed task-invariant controllers for pow-
ered exoskeletons using potential energy shaping methods
which provide virtual body-weight support (BWS) during the
walking gait. The stability of the altered dynamical system
is considered during the fully-actuated phase (i.e., flat foot
contact). During the underactuated phases (i.e., heel contact
and toe contact), the closed-loop potential energy in [8],
[9] cannot be retrieved directly from the altered dynamical
system and can only be approximated. In [10], we used
a modified mass/inertia matrix and approximated potential
energy to achieve further assistance during walking via total
energy shaping. However, the controller based on the total
energy shaping method requires complicated calculations of
the inverse of the mass/inertia matrix. Similar to [8], [9],
the stability proof for the closed-loop system is limited to
the fully-actuated phase due to the lack of an analytical
expression of potential energy. New energy-shaping methods
are needed to resolve these challenges for task-invariant
exoskeleton control.

As mentioned in [11], mechanical energy is largely con-
served during biped walking due to the interchange between
the kinetic energy and the gravitational potential energy.
Based on [12], the center of mass (COM) of the body is
lowered during the forward acceleration and raised during the
forward deceleration in a step. Despite the complex dynamics
during walking or running, the Spring-Loaded Inverted Pen-
dulum (SLIP) model [13] is a good template that describes
all locomotion modes and captures the essential walking
characteristics. Based on this simple model, the energy is
stored in the spring when the support leg is compressed to
decelerate the downward motion of the COM, and the stored
energy is returned to redirect the COM upwards and forwards
when the body is lifted and accelerated. Advantages of the
SLIP model include energy recycling, power amplification,
and impulse attenuation [14].

Motivated by the essential characteristics of the SLIP
model, we design an energy-shaping controller for the
stance leg that satisfies the matching condition with a true
modified potential energy (MPE) and virtual springs and
dampers (VSD). This MPE is well-defined across different
contact conditions, including underactuated ones. Therefore,
the input-output passivity and Lyapunov stability about an
equilibrium point of the altered dynamical system can be
guaranteed during every contact conditions. Moreover, the
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Fig. 1. Kinematic model of the human body. COP denotes the Center of
Pressure. The solid links denote the stance leg, the dashed links denote the
swing leg. This figure is reproduced from [16].

proposed controller based on the MPE and VSD provides as-
sistive torques without taking the inverse of the mass/inertia
matrix. The virtual springs also improve energy recycling
during walking. Instead of simply adding linear torsion
springs and dampers in the joints, we connect the hip and
ankle joints, and the knee joint and the heel, with VSD to
achieve a closed-loop system that considers the full dynamics
of the biped over the specific kinematics of the joints.

The rest of this paper is organized as follows. In Section
II, we review the concepts of the controlled Lagrangians and
dynamics of the biped under different contact conditions.
Feasible solutions of the matching condition with energy
dissipation are derived and the MPE is proposed. The unified
control law with VSD is shown in Section III, which also
includes passivity and stability of the closed-loop system
during the whole walking period. Simulation results based
on different shaping strategies are given in Section IV. We
test the unified control law on a simulated biped model and
compare the torques between different shaping strategies. We
also examine the torques provided by inputting able-bodied
human subjects’ kinematic data [15] into the controller,
motivating future implementations in exoskeleton hardware.
Finally, we present the conclusion in Section V.

II. ENERGY SHAPING METHODS FOR POWERED
EXOSKELETONS

In this section, we review the dynamics of the biped
with stance and swing legs, separately. We also review the
definition of energy shaping and the corresponding matching
conditions. Based on the solution of the matching conditions,
we propose the MPE shaping method to render a unified
controller under different contact conditions.

A. Dynamics of the Biped

The biped model with coupled dynamics of the stance and
swing legs is shown in Fig. 1. The masses of the human limb
and the exoskeleton are combined together in the model. We
assume identical powered knee-ankle exoskeletons on both
human legs with no connection between them to make the
full biped model symmetric [9], [17]. For control purposes,
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Fig. 2. Heel contact (left), flat foot (center), and toe contact conditions
(right) during the single-support period of human locomotion. The biped is
assumed to be walking on a slope with angle γ . This figure is reproduced
from [9].

the dynamics of the stance and swing legs are modeled
separately with coupled interaction forces. Consider the
forced Euler-Lagrange system of the stance leg with the
corresponding Lagrangian L(qst , q̇st) : T Q→ R as

L(qst , q̇st) = K(qst , q̇st)−V (qst) =
1
2

q̇T
stM(qst)q̇st −V (qst),

where qst = (px, py,φ ,θa,θk)
T ∈ R5×1 are the generalized

coordinates in the 5-dimensional configuration space Q with
(px, py) representing the Cartesian coordinates of the heel
with respect to the inertial reference frame (IRF). The origin
of the IRF is coincident with the stance heel during heel and
flat foot contact. The heel angle φ is defined with respect to
the vertical axis, and θa and θk are the stance ankle and knee
angles, respectively. The kinetic energy K(qst , q̇st) is based
on the generalized mass/inertia matrix M(qst) ∈ R5×5, and
V (qst)∈R is the potential energy. In the following equations,
we omit the arguments qst and q̇st of the dynamic terms to
abbreviate notation.

The dynamics of L with contact constraints are given as

d
dt

∂q̇st L−∂qst L+AT
l λ = Mq̈st +Cq̇st +N +AT

l λ = τ, (1)

where C is the Coriolis matrix, and N is the gradient of
the potential energy V along the generalized coordinates.
We denote the human and exoskeleton torques as τ = τexo +
τhum = Bu+Bv+JT F , where B = [02×3, I2×2]

T ∈R5×2 maps
the human and exoskeleton inputs into the dynamics. The
control input u ∈ R2×1 consists of the torques for ankle and
knee provided by the exoskeleton and v ∈ R2×1 represents
the human input for the same two joints. The interaction
forces F between the hip and the swing thigh are mapped
to the system by the body Jacobian matrix J. The Lagrange
multiplier λ ∈ Rw×1 represents the ground reaction forces
and can be calculated as [18], [19]

λ = (AlM−1AT
l )
−1[AlM−1(τ−Cq̇st −N)+ Ȧl q̇st ].

The holonomic contact constraints of the biped can be
expressed as al(qst) = 0w×1 where w denotes the number
of constraints. The constraint matrix Al = ∇qst al ∈ Rw×5

satisfies Al(qst)q̇st = 0 with the subscript l ∈ {heel, f lat, toe}
indicating the contact configurations shown in Fig. 2.

For the heel contact phase, the heel is fixed to the ground
and the stance leg rotates about the heel. The holonomic



contact constraint is aheel(qst) = (px, py)
T = 0 and the matrix

Aheel =∇qst aheel = [I2×2,02×3]. At the flat foot phase, the foot
is flat on the ground and φ is equal to the slope angle γ . The
constraint is a f lat(qst) = (px, py,φ − γ)T = 0 and the matrix
A f lat = [I3×3,03×2]. During the toe contact phase, the stance
leg rotates around the toe. The corresponding constraint is
atoe(qst) = (px− l f cos(φ)+ l f , py− l f sin(φ))T = 0 and the
matrix Atoe is given as

Atoe(qst) =

[
1 0 l f sin(φ) 0 0
0 1 −l f cos(φ) 0 0

]
.

For the dynamical model of the swing leg, the generalized
coordinates in the configuration space are given as qsw =
(hx,hy,θth,θsk,θsa)

T ∈R5×1, where (hx,hy) are the positions
of the hip with respect to the IRF, θth is the angle between
the vertical axis and the swing thigh, and θsk and θsa are the
swing knee and ankle angles, respectively. We do not have
contact constraints in the swing leg dynamics, i.e., A(qsw) =
0.

B. Solution of the Matching Conditions

We wish to achieve the closed-loop Lagrangian system of
the stance leg with L̃ = 1

2 q̇T
stMq̇st −Ṽ as

Mq̈st +Cq̇st + Ñ +∇q̇st D+AT
l λ = Bv+ JT F, (2)

where Ñ = ∇qstṼ ∈R5×1 represents the closed-loop potential
forces vector, and D : T Q→ R>0 represents some positive
semi-definite dissipation functions of (qst , q̇st). We treat the
ground reaction forces AT

l λ as the external forces, which
remain unchanged in the closed-loop system. According to
[20], systems (1) and (2) match if and only if there exists
a full rank left annihilator of B in the orthogonal projection
form, i.e., B⊥B = 0, for all qst ∈ Q such that

0 = B⊥M[M−1(Cq̇st +N +AT
l λ −Bv− JT F)

−M−1(Cq̇st + Ñ +∇q̇st D+AT
l λ −Bv− JT F)],

= B⊥(N− Ñ−∇q̇st D), (3)

holds true along all trajectories (qst , q̇st) ∈ T Q [5]. The
corresponding state feedback control law is explicitly given
by

u = (BT B)−1BT (N− Ñ−∇q̇st D). (4)

Equation (3) is a simplified matching condition without the
modified mass/inertia matrix in two unknowns Ṽ and ∇q̇st D.
The human joint input v and the interaction forces F are
generally difficult to measure in practice. Together with
the ground reaction forces AT

l λ , these terms are treated as
external forces and not changed in the closed-loop system,
so that they disappear in the matching condition. As a result,
the control law (4) does not depend on the human joint input,
the interaction forces, or the environmental reaction forces,
making it task-invariant and unified with respect to different
contact conditions.

The left annihilator matrix B⊥ in the stance leg model is
given as

B⊥ =

[
I3×3 03×2
02×3 02×2

]
.

Based on the matrix B⊥, we can express equation (3) as

0 = B⊥[N− Ñ−∇q̇st D] =

[
N1:3− Ñ1:3−∇q̇st D1:3

02×1

]
,

where N1:3 ∈ R3×1 represents the first three elements of
the vector N. To satisfy the matching condition, the first
three rows of Ñ must be equal to those of N, while D
must be a function that only depends on θ̇a and θ̇k. As
a result, the closed-loop potential force vector is given as
Ñ = [ÑT

1:3, Ñ
T
4:5]

T = [NT
1:3,N

T
4:5 + N̂T ]T with free parameters

N̂ ∈ R2×1, and the dissipation force vector is given as
∇q̇st D = [01×3,∇θ̇a

D,∇
θ̇k

D]T .

C. MPE Shaping Method for Powered Exoskeletons

Our prior work [10] of potential energy shaping reduce the
gravitational forces vector by setting N̂ = (µ − 1)N4:5 with
a constant µ ∈ [0,1] [10]. As a result, the torques acting
on the ankle and knee joints due to gravity are reduced.
The potential energy Ṽ is well defined during the fully-
actuated phase, i.e., the flat foot contact, while during the
under-actuated phases, i.e., the heel contact and toe contact,
Ṽ cannot be retrieved directly from the altered dynamical
system and is only approximated. As a result, the stability
proof of the closed-loop system is limited to the fully-
actuated phase. In order to get a well-defined potential energy
Ṽ over the whole walking period, we investigate the structure
of the gravitational forces vector.

The gravitational force vector of the stance leg is given
by N(qst) = [NT

1:3,N4,N5]
T , where

N5 =−
1
2

glt(Mt +2Mp)sin(φ +θa +θk),

N4 =−
1
2

gls(Ms +2Mt +2Mp)sin(φ +θa)+N5,

where Ms, Mt , and Mp represent the mass of the shank, thigh,
and hip, respectively, and ls and lt represent the length of the
shank and thigh, respectively. The components of N4 and N5
consist of the torques acting on the ankle and knee joints
generated by the gravity forces. We can decompose N5 in
the following form

N5 =−
1
2

[
g(Mt +2Mp)cos(φ)
g(Mt +2Mp)sin(φ)

]T [lt sin(θa +θk)
lt cos(θa +θk)

]
.

As illustrated in Fig. 3, the gravitational force acting on
the mass of thigh can be decomposed into two components,
where one is acting parallel to the foot plane, i.e., Mtgsin(φ),
and the other is acting perpendicular to the foot plane, i.e.,
Mtgcos(φ). The products of these two components with the
distances from knee joint formulate the torques related to Mt
in N5. We treat the torques related to Mp in N5 similarly.

The MPE shaping method focuses on reducing the torques
provided by the forces acting perpendicular to the foot
based on the assumption that φ ∈ [−π

2 ,
π

2 ] (for the swing
leg, θth ∈ [−π

2 ,
π

2 ]), so that cos(φ) is always positive in the
configuration space Q. This assumption is reasonable and
covers the vast majority of human locomotion modes [15].



Consequently, we can have Ñ5 = N5+ N̂5, and Ñ4 = N4+ N̂4,
where

N̂5 =−µ2
1
2

glt(Mt +2Mp)sin(θa +θk),

N̂4 =−µ1
1
2

gls(Ms +2Mt +2Mp)sin(θa)+ N̂5.

The constant coefficients µ2 and µ1 determine the quantity of
reduced torques acting on ankle and knee joints and give us
choices on providing further/less assistance on either ankle
or knee joints. As a result, the gravitational forces vector in
the closed-loop system is given by Ñ = [NT

1:3,N
T
4:5 + N̂T ]T ,

with N̂ = [N̂4, N̂5]
T , which is well-defined with a symmetric

Jacobian matrix, i.e., ∂ Ñi
∂q j

=
∂ Ñ j
∂qi

for any i, j ∈ {1, · · · ,5}. The
corresponding potential energy in the closed-loop system can
then be retrieved by the variable gradient method [21], even
during the underactuated phases. The MPE in the closed-loop
system for the swing leg is defined similarly to the stance
leg except that the gravitational forces are decomposed into
two components that are parallel and perpendicular to the
thigh.
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Fig. 3. For the stance leg, the gravitational force acting on the knee joint can
be decomposed into two components that are parallel and perpendicular to
the foot. The stance leg is shown in solid black and the swing leg in dashed
black.

III. UNIFIED CONTROLLER WITH VSD

In this section, we design the unified controller based on
the energy shaping methods which consist of MPE and VSD.
The virtual stiffness and damping constants are properly
chosen to be applicable to the physical system. The corre-
sponding control law satisfies the matching condition and the
input-output passivity. We also show possible stability results
with certain assumptions on the form of human input.

A. VSD for Powered Exoskeletons

As mentioned before, the dynamics of the walking gait
can be simplified as a SLIP model with the legs modeled as
spring-loaded massless straight links. Motivated by the SLIP
template, our desired closed-loop energy contains additional
virtual elastic potential (spring) and dissipation (damper)
energy to achieve energy recycling. As shown in Fig. 4, we
add a spring and damper system across the hip and ankle
joints, as well as a spring and damper system across the
knee joints and the heel.
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Fig. 4. Model of the stance leg with VSD connecting the ankle and hip
joints, and the knee joint and the heel.

The displacement x1 that represents the distance between
the hip and ankle joints can be written as a function of the
knee angle θk, i.e.,

x1 = f (θk) = ls + lt − [l2
s + l2

t +2lslt cos(θk)]
1
2 .

The displacement x2 that represents the distance between the
knee joint and the heel is given as

x2 = g(θa) = ls + la− [l2
s + l2

a +2lsla cos(θa)]
1
2 .

As a result, the virtual spring energy is Vs = ∑
2
i=1

1
2 kix2

i =
1
2 (k1 f (θk)

2 + k2g(θa)
2) and the dissipation function of the

damper is D = ∑
2
i=1

1
2 ciẋ2

i =
1
2 c1[

∂ f (θk)
∂θk

θ̇k]
2 + 1

2 c2[
∂g(θa)

∂θa
θ̇a]

2.
Since the additional elastic potential and dissipation energy
depend only on θk, θ̇k, θa, and θ̇a, the corresponding
Ñ +∇qstVs and ∇q̇st D in the closed-loop system is within
the specification given in Section II-B, i.e., the matching
condition is satisfied.

The application of adding VSD connecting two joints
are different from simply adding linear torsion springs and
dampers in the joints, where the torques provided by linear
torsion springs and dampers are given by Kp(q− q0) and
Kd q̇, i.e., PD controllers with constant Kp and Kd . Based
on our model, the closed-loop system considers the full
dynamics of the biped over the specific kinematics of the
joints. The Lagrange of the closed-loop system becomes
L̃ = 1

2 q̇T
stMq̇st + Ṽ +Vs with dissipation function D > 0, and

the corresponding dynamics of the system is given as

Mq̈st +Cq̇st + Ñ +Ns +∇q̇st D+AT
l λ = τhum, (5)

where Ns = ∇qstVs represents the force vector corresponding
to the spring energy. The unified controller across different
contact conditions is based on the energy shaping methods
which consist of MPE and VSD.

B. Passivity and Stability of the Closed-Loop System with
VSD

Considering the closed-loop system (5), the passive re-
lationship from the human input τhum to the output q̇st
can be proved by choosing the total energy E(qst , q̇st) =
1
2 q̇T

stMq̇st + Ṽ +Vs > 0 as the storage function. Therefore,



the time derivative of E(qst , q̇st) is

Ė(qst , q̇st) = q̇T
st(Mq̈st +

1
2

Ṁq̇st + Ñ +Ns)

= q̇T
st(−Cq̇st +

1
2

Ṁq̇st −∇q̇st D−AT
l λ + τhum)

=−c1[∂θk f (θk)θ̇k]
2− c2[∂θag(θa)θ̇a]

2 + q̇T
stτhum

6 q̇T
stτhum,

where Ṁ−2C is skew-symmetric and q̇T
stA

T
l λ = 0 due to the

fact that constraint forces do no work [18].
The stability of the closed-loop system around the equi-

librium point (q?st ,0) can also be proved where (q?st ,0) is the
state that Ñ +Ns +AT

l λ −τhum = 0, i.e., the forces along the
shaped potential energy balance the muscular spring forces
and the ground reaction forces. We assume that the human is
modulating joint impedance where τhum = −Kpe−Kd ė [9].
The constant diagonal matrices Kp, Kd ∈ R5×5 are positive
semi-definite and e = qst − q̄st represents the difference
between qst and the fixed constant vector q̄st . We can set
the Lyapunov function to be V (qst , q̇st) = E + 1

2 eT Kpe +∫ qst
q0

Al(s)T λ (s,0) ·ds− V̄ where q0 is the state at t = 0 and V̄

is a constant such that V̄ = E(q?st ,0)+
1
2 (q

?
st− q̄st)

T Kp(q?st−
q̄st).

Lemma 3.1: The Lyapunov function V (qst , q̇st) is positive
definite around the equilibrium point with V (q?st ,0) = 0 in
the tangent bundle T Q.

Proof: The Lyapunov function V (qst , q̇st) achieves the
minimum value at ∂qst V = 0 and ∂q̇st V = 0. Given ∂q̇st V = 0,
we have q̇st = 0, and given ∂qst V = 0, we have

∂qst V (qst ,0) = Ñ +Ns +Kpe+AT
l λ = 0,

which corresponds to the equilibrium point (q?st ,0). Since
(q?st ,0) achieves the minimal value of V (qst , q̇st), by sub-
tracting V̄ , we have V (q?st ,0) = 0. For any (q, q̇) ∈ T Q with
(q, q̇) 6= (q?st ,0), we have

V (qst , q̇st) =
1
2

q̇T
stMq̇st +Ṽ +Vs +

1
2

eT Kpe

+
∫ qst

q0

Al(s)T
λ (s,0) ·ds− V̄

=
1
2

q̇st
T Mq̇st +Ṽ +Vs +

1
2

eT Kpe− V̄ > 0,

where
∫ qst

q0
Al(s)T λ (s,0) · ds = 0 due to the fact that AT

l λ ·
dqst = 0 [18]. The incorporation of

∫ qst
q0

Al(s)T λ (s,0) · ds
guarantees the appearance of the GRFs to balance the unactu-
ated parts of Ñ at the equilibrium state when ∂qst V (qst ,0) =
0.

Having verified that V is a proper Lyapunov function, we
take the time derivative of V to obtain

V̇ (qst , q̇st) =− c1[∂θk f (θk)θ̇k]
2− c2[∂θag(θa)θ̇a]

2

+ q̇T
stτhum + q̇T

stKpe

6q̇T
st(−Kpe−Kd ė)+ q̇T

stKpe 6 0,

which implies the Lyapunov stability of the closed-loop
system at the equilibrium point. Based on LaSalle’s theorem
[21], V̇ ≡ 0 implies q̈st = q̇st ≡ 0, so that V (qst , q̇st) only

vanishes at the equilibrium point (q?st ,0) and the closed-loop
system is asymptotically stable. The input-output passivity
and stability of the closed-loop system for the swing leg can
be proved similarly without the constraint matrix A.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we specify the system parameters to
be applied in the simulation and introduce the simulation
method. We compare the results based on different shaping
strategies.

A. System Parameters and Simulation Methods

As mentioned in Section II-A, we assume that we have
identical powered knee-ankle exoskeletons on both human
legs. As a result, the corresponding controllers (4) for both
legs only require local feedback and depend on the dynamical
models of the stance and swing legs, respectively. In the
simulation, the exoskeleton controller is applied to an 8-DOF
human-like biped where the coupled dynamics of the two
legs are shown in Fig. 1. We assume there is no continuous
double-support period during walking of the biped model
in the simulation. The generalized coordinates of the full
biped model in the configuration space are given as q =
(px, py,φ ,θa,θk,θh,θsk,θsa)

T ∈ R8×1, where θh represents
the hip angle between the stance and swing thigh. The
full biped is modeled as a hybrid dynamical system where
impacts happen at the change of contact conditions [9], [17].
We simulate the full biped with joint impedance control
for the human muscular inputs [22]. The human impedance
parameters q̄st , Kp, and Kd are kept constant with respect to
each phase of stance and the model parameters are chosen
from Table I in [9]. Based on the maximum allowable
torques provided by exoskeletons, we set the feasible VSD
constants to be k1 = 400 N/m, c1 = 200 N · s/m, and k2 =
20000 N/m, c2 = 1000 N · s/m.

B. Simulated Biped Model

We present the simulation results of three different shaping
strategies: the MPE, the VSD, and the combination of MPE
and VSD on a simulated biped model. The exoskeleton
torques at the stance ankle and knee during one steady step
for the three different shaping strategies are shown in Fig. 5.
The constant coefficients of the MPE shaping methods in
the simulation are set to µ1 = −0.15 and µ2 = 0.2µ1. The
swing leg controller for all three strategies is the same, i.e.,
the MPE shaping method with the same parameters µ1 and
µ2. As a result, the torques of the swing leg controller are
identical and are omitted from the results. The shape of
torques generated by the MPE+VSD is similar to the human
torques in the simulation. The VSD provide torques during
the start of the step which helps absorb the impact energy
and regulate the joint velocities.

Fig. 6 gives the simulated metabolic costs for different
shaping strategies, where the metabolic cost estimate is
defined in [23]. The metabolic cost is the sum of the
individual joint costs for one step and reflects the energy
consumption of the muscles to generate forces [9]. All three
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Fig. 6. The estimated metabolic costs with different shaping strategies.

shaping strategies have reduced metabolic costs. The VSD
contributes a small reduction of the metabolic cost due to
the small variations of joint angles and joint velocities in the
simulation model.

C. Normative Kinematic Data

We examine the torques provided by inputting able-bodied
human subjects’ normative kinematic data [15] into the con-
troller. Fig. 7 compares estimated exoskeleton joint torques
with average able-bodied data from [15], for the decline,
level and incline conditions, respectively. The damping con-
stant c1 in VSD is reduced to provide achievable torques
from the exoskeleton, where c1 = 20 N · s/m. The perfor-
mance of the MPE and MPE+VSD strategies is compared
to the potential energy shaping strategy in [8]. The main
phases during stance when exoskeleton assistance is required
are weight absorption and push-off [24]. A weakness in the
quadriceps muscles results in knee-buckling during weight
acceptance, which makes patients tend to adopt a locked-
knee gait. Knee extension, as well as plantar flexion, is
used in late stance to propel the body forwards and project
the limb upwards (swing). The inability to push-off (from
weakness in plantar-flexors and/or quadriceps) results in
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Fig. 7. From top to bottom: the torques acting on ankles and knees
based on decline (−10◦), level ground (0◦), and incline (10◦) walking
on a treadmill with walking speed 1.2 m/s. The red solid lines represent
the averaged human torques with variance. PE represents the potential
energy shaping method introduced in [8]. Positive values represent ankle
dorsiflexion torques and knee extension torques.

reduced walking speeds as well as reduced foot clearance
[24]. It can be seen that the potential energy shaping strategy
provides very aggressive plantar-flexion torques that increase
in a linear fashion until the terminal stance. This can be
dangerous as it can cause hyper plantar-flexion during the
early swing and further aggravate the problem of foot-
drop. The MPE and MPE+VSD strategies show a marked
improvement in this regard, tapering down the plantar-flexion
torques towards terminal stance. The drawback, however,
may be the overall low plantar-flexion torques for level
and incline conditions. The potential energy shaping strategy
provides knee flexion torques in late stance for all conditions,
which may be helpful for incline, but is counterproductive for
the decline and level conditions. This is corrected with the
MPE and MPE+VSD strategies, which provide the required
knee extension torques (albeit excessively with MPE+VSD
for decline). All three strategies in Fig. 7 provide the knee
extension torques during weight absorption, however, the
potential energy shaping strategy is overly aggressive in early
stance.

V. CONCLUSIONS

In this paper, we designed a task-invariant feedback con-
trol law by using the energy shaping methods with MPE
and VSD. Different from our prior work [10], the MPE
shaping method is well-defined during all gait phases. We
used the VSD to achieve further energy recycling and provide
further assistance instead of taking the mass/inertia matrix
inverse, which is beneficial for implementation purposes.



The open-loop system was mapped to a passive and sta-
ble closed-loop system based on the unified control law.
Simulations were performed on different shaping strategies
and the corresponding controllers were tested using able-
bodied human subjects’ kinematic data. Based on the sim-
ulation results, the proposed MPE + VSD method provided
torques that closely match human torques in different tasks.
This demonstrates the potential for this control strategy
to assist patients in future experimental studies. We will
also consider the passivity conditions where the physical
damping in the mechanism should be sufficient to dissipate
the excess energy due to the sampling in discrete-time control
implementations in embedded systems as shown in [25]. The
passivity conditions may limit the value of the spring and
damping coefficients and affect the overall performance of
the controller. In that scenario, we will investigate the inter-
connection and damping assignment passivity-based control
(IDA-PBC) [26], [27], which is a more general methodology
and provides extra flexibility for control design.
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and D. Pradon, “Effects of a knee–ankle–foot orthosis on gait biome-
chanical characteristics of paretic and non-paretic limbs in hemiplegic
patients with genu recurvatum,” Clinical Biomechanics, vol. 28, no. 1,
pp. 73–78, 2013.

[25] J. E. Colgate and G. G. Schenkel, “Passivity of a class of sampled-data
systems: Application to haptic interfaces,” Journal of robotic systems,
vol. 14, no. 1, pp. 37–47, 1997.

[26] R. Ortega, A. J. Van Der Schaft, I. Mareels, and B. Maschke, “Putting
energy back in control,” IEEE Control Systems Magazine, vol. 21,
no. 2, pp. 18–33, 2001.

[27] R. Ortega, A. Van Der Schaft, B. Maschke, and G. Escobar, “Inter-
connection and damping assignment passivity-based control of port-
controlled hamiltonian systems,” Automatica, vol. 38, no. 4, pp. 585–
596, 2002.


