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Abstract: Engineering microbial biosynthetic pathways represents a compelling route to
gain access to expanded chemical diversity. Carrier proteins (CPs) play a central role in
biosynthesis, but the fast motions of CPs make their conformational dynamics difficult to
capture using traditional spectroscopic approaches. Here we present a low-resource
method to directly reveal carrier protein-substrate interactions. Chemoenzymatic loading
of commercially-available, alkyne-containing substrates onto CPs enables rapid
visualization of the molecular cargo’s local environment using Raman spectroscopy. This
method could clarify the foundations of the chain sequestration mechanism, facilitate the
rapid characterization of CPs, and enable visualization of the vectoral processing of

natural products both in vitro and in vivo.
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Introduction

Microbial combinatorial biosynthesis represents a potentially powerful route to gain access
to expanded chemical diversity from renewable resources. Its success hinges on understanding
how proteins within a synthase communicate. Current mix-and-match approaches often fail due to
incompatibility between carrier proteins (CPs) and other enzymes, although the reason why is not
entirely clear.1 CPs are dynamic proteins that play the most central role during the biosynthesis of
pharmaceutically-important classes of molecules, such as fatty acids, polyketides, and non-
ribosomal peptides (Supplementary Figure 1). These small proteins interact with virtually all other
proteins within the synthase, and they tether a variety of molecular building blocks and
intermediates during the natural product biosynthesis.2

While visualizing CP conformational changes and interactions with other species is
essential to creating functional hybrid synthases, directly capturing transient interactions and the
full ensemble of CP conformations remains a challenge for at least two reasons.34 First,
catalytically-relevant CP movements are thought to occur on the micro- to pico-second (us to ps)
timescale,s and thus neither nuclear magnetic resonance spectroscopy (NMR) nor X-ray
crystallography can provide a direct picture of how the conformational distributions of CPs and
their Ppant arms change during catalysis. Second, these traditional protein structure methods are
time-, resource-, and sample-intensive.

A particularly conformationally mobile and important feature of CPs is the 18 A 4'-
phosphopantetheine (Ppant) arm, which is attached post-translationally to a conserved serine
residue typically at the N-terminal end of CP helix I1.6¢ The Ppant arm covalently tethers all building
blocks and intermediates as thioesters, and its flexibility enables the CP to sequester specific

molecular cargoes within its hydrophobic cavity.7 This chain sequestration is believed to protect
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the growing metabolite from undesired chemical reactions with cytoplasmic components and/or
drive other overall conformational changes that can enhance the specificity of a CP for a particular
enzymatic partner.s9 Sequestration has been primarily observed in acyl carrier proteins (ACPs)
from type II systems with discrete enzymes that act iteratively, where protection and transportation
of the intermediate to the appropriate enzymatic partner at the programmed stage in biosynthesis
are of the utmost importance in maintaining chemical fidelity.i0 In contrast, modular type I
synthases with covalently linked catalytic domains do not typically exhibit substrate
sequestration.i1 The precise molecular underpinnings of chain sequestration remain unknown but
are thought to involve the interplay of at least three factors: CP sequence, substrate length, and
substrate polarity.i2

Here we report a facile and low-resource method to visualize the full ensemble of CP-
substrate interactions using site-specific vibrational spectroscopy (Figure 1). In brief, molecular
substrate-mimics with terminal alkyne probes are installed onto the ACP via the ligase-catalyzed
addition of commercially-available carboxylic acids onto the Ppant arm. The alkyne C=C
stretching band is then used to report on changes in the probe environment, which can differentiate
with picosecond time resolution between the non-sequestered aqueous state (lower frequency) and
the sequestered hydrophobic environment (higher frequency). The modification of a native
substrate to include a terminal alkyne is expected to only minimally perturb the natural system
because it does not alter the overall length, volume, or hydrophobicity of the molecular cargo. The
alkyne C=C stretching band is a strong, narrow, and unique signal in the transparent region of the
Raman spectrum (close to 2100 cm-1) that does not overlap with other solvent or biomolecular

signals from the untagged ACP or other proteins.
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Results
Characterization of Chain Sequestration Behavior

For proof-of-concept experiments, we collected data from three ACPs for which chain
sequestration information was previously reported via NMR and molecular dynamics (MD)
simulations: the E. coli type II fatty acid synthase (FAS; EcCACP), Streptomyces coelicolor type 11
actinorhodin polyketide synthase (PKS, Act ACP), and the mammalian rat type I FAS (Rat ACP).
For EcACP, MD simulations suggested that an octanoyl acyl chain is the ideal length for complete
sequestration of the molecular cargo inside the ACP hydrophobic core.13 Shorter acyl chains were
proposed to be highly mobile and less sequestered since the ACP cavity is too large to stabilize
the short substrates; and larger acyl chains are sequestered only at the terminal end of the chain.14
Previous NMR analysis of Rat ACP in various acylated states suggested that Rat ACP does not
sequester any hydrophobic acyl-intermediates due to bulky hydrophobic residues that line the
interior pocket.i1 Rat ACP should be viewed as an analog of the ECACP with an inhibited
sequestration capability because Rat ACP has been shown to at least partially substitute for the
EcACP in vitro, functionally interacting with the acyltransferase, ketosynthase, and reductase
domains from the E. coli FAS.15 Taken together, the ECACP and Rat ACP systems present an ideal
juxtaposition for preliminary experiments. NMR studies of Act ACP reveal interesting and distinct
behavior: butyryl-, hexanoyl-, and octanoyl- acyl chains bind within the hydrophobic cavity, but
the substrates are situated perpendicular to their traditional orientation, possibly due to the large
size of the cavity (Supplementary Data 1).12

His-tagged ACPs were expressed and purified from E. coli BAP1 competent cells.i6 If
necessary, ACPs were completely phosphopantethienylated using the R4-4 Sfp transferase from

B. subtilis (Sfp).17 The V. harveyi acyl-ACP synthetase (AasS) was used to acylate the alkyne-
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containing carboxylic acid to the terminal thiol of the Ppant arm.18 7-octynoic acid (a mimic for
an eight-carbon Cs substrate) was loaded onto both EcCACP and Rat ACP, producing distinct
Raman spectra in the region of the alkyne probe signal (Figure 2a). ECACP, expected to sequester
the Cs cargo based on literature precedent,13 exhibited a higher frequency than that of the Cs probe
in buffered aqueous solution, consistent with chain sequestration. Conversely, the Rat ACP probe
frequency and lineshape were nearly identical to that of the solvated probe, indicating that the
same chain attached to Rat ACP was not sequestered. The probe Raman spectrum of Act ACP
loaded with 7-octynoic acid is broader and covers frequencies associated with both hydrophobic
and aqueous environments, in agreement with NMR data of octanoyl Act ACP that suggested the
Cs substrate was only partially sequestered (Supplementary Data 1).19 Taken together, these results
from already-characterized ACPs validate our Raman probe-based approach to visualize CP chain
sequestration. The spectra in Figure 2a highlight how the C=C frequency reports sequestration: the
line shape directly reports the complete distribution of environments experienced by the probe,
thus providing direct information about the heterogenous nature of substrate sequestration with
sufficient temporal resolution. The intrinsic timescale of Raman spectroscopy for this vibrational
probe is about 10 ps (see Supplementary Figure 2 for more detail); any configurations that

interconvert more slowly can be distinguished in the spectral lineshape.

Next, we used this technique to directly evaluate the role of the acyl chain length in chain
sequestration. ECACP was acylated with 4-pentynoic acid (a Cs substrate) and 12-tridecynoic acid
(a Ci3 substrate). Previous crystallography and NMR studies of acyl EcACPs suggested that
hexanoyl, heptanoyl and decanoyl chains were fully sequestered, while the precise range of

butyryl-bound substrate environments remained unclear.7,20 The Raman spectrum of the Cs probe
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on EcACP indicates that this probe is not sequestered, whereas the Ci3 probe displays a similar
spectrum to that of the sequestered Cs probe (Figure 2b). These data suggest that the two longer
probe-labeled chains are sequestered; this provides insight into how EcACP interacts with longer
chain lengths, such as C13, which has not been the subject of previous work. These results, from
different-length substrates on the same CP, point towards future application of our Raman-based
technique to explore how substrate sequestration changes throughout the entire substrate
elongation process.

This method provides a quick, low-cost, and effective means to analyze CP-substrate
interactions that does not depend on structural rendering of the entire protein through more labor-
intensive methods. All steps in the process are amenable to high-throughput approaches, which
will facilitate rapid characterization of CPs for which conventional structural data are not available.
To examine chain sequestration in these CPs, we ligated the Cs-alkyne probe onto the Ppant arm
of two previously uncharacterized type II PKS ACPs: arimetamycin (Arm ACP) and benastatin
(Ben ACP), as well as the ACP from the spore pigment biosynthetic gene cluster, WhiE ACP
(Figure 2¢). The Arm ACP spectrum exhibits a higher C=C frequency than the Cs probe in buffered
solution. Like Rat ACP, the Ben ACP and WhiE ACP spectra produced nearly identical signals to
those of the aqueous Cs probe. The spectrum of the WhiE ACP loaded with the Cs probe also
indicated a non-sequestrated state (Supplementary Figure 3). Alongside data from the Cs probe on
Act ACP, these results support the hypothesis that a general feature of type II PKS ACPs is a
hydrophobic cavity too large to fully stabilize shorter and/or less polar acyl chain probes relative
to the native substrate.12 Coupling the Raman probe technique described here with the synthesis

of more sophisticated substrate-intermediates, and/or site-directed mutagenesis of tagged ACPs,
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will reveal further details of the exact molecular interactions that govern chain sequestration in

both ACPs and CPs from other synthetic pathways.

Discussion

The ubiquitous yet heterogeneous (across substrate lengths and proteins from different
pathways) role of CP-substrate interactions is central in natural product biosynthesis, yet
conventional structural methods cannot directly capture these events. The site-specific vibrational
approach implemented here represents a relatively simple and broadly applicable method that will
enable the rapid elucidation of dynamic structures across diverse CP-substrate interactions. The
optical equipment used here (see Methods) is an ordinary continuous-wave, dispersive Raman
spectrometer that does not supply any optical enhancement (i.e. UV-resonance or stimulated
scattering) of the Raman signal, so signals like those we report are quite easy to access using
relatively unspecialized equipment. While the interpretations that we present of the alkyne
frequencies and lineshapes are based on empirical comparisons, recent work has demonstrated that
MD simulations coupled with effective fragment potential-based calculations can be used to
quantitatively simulate vibrational probe lineshapes.21,22 Our current computational work focuses
on the extension of such calculations to alkyne probes and the simulation of the spectra observed
here; these efforts should enable a more directly quantitative and physical interpretation of the
Raman data in Figure 2 and from other CPs of future interest.

The alkyne probes introduced onto the ACPs in this study could also serve as
bioorthogonally-reactive substrates capable of being processed through chain elongation, chain
transfer and tailoring events while simultaneously reporting on changes in the local substrate

environment. With strong and growing evidence that CP chain sequestration and flipping (the
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movement of a CP-bound substrate from inside the hydrophobic core of the CP into the active site
of a partner enzyme) is centrally linked to functional channeling of biosynthetic intermediates,s
this approach can be applied broadly to fill a central and unmet need in understanding the
molecular details of those synthetic pathways across many species and synthases.

It is also anticipated that this technique will be used to elucidate the unconventional
behaviors of ACPs and can be applied in cases where, for example, the substrate is tucked against
a non-polar patch on the surface of the ACP domain.23 Probe-labeled substrates, including those
containing alkynes further up the chain and those with more complicated oxidation and substitution
patterns, can also be utilized to provide more in-depth insight into the nature of ACP-substrate
interactions. Additionally, the alkyne probes in this work could also bridge the gap between in
vitro and in vivo studies of biosynthetic events, as alkyne-labeled species can be imaged in in vivo
by stimulated Raman microscopy (sometimes simultaneously with other fluorescently-labeled
species, which could enable novel co-localization studies of direct relevance to biosynthesis).24-26
In a more general sense, data from the technique reported here could help to design hybrid natural

product synthases capable of accessing novel chemical diversity.
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Methods

Protein expression and purification. BAP1 competent cells,ic which feature a T7 RNA
polymerase, were used to transform the respective plasmids for expression of ECACP, Act ACP,
Rat ACP, Arm ACP, Ben ACP, and WhiE ACP (all featuring kanamycin resistance, except for
Act ACP which featured carbenicillin resistance). The EcCACP plasmid pTL1427 (N- and C-
terminal Hise-tagged) was provided by the Khosla Lab at Stanford University. The Act ACP
plasmid (pMC002067; carbenicillin resistant) was provided by the Chang Lab at University of
California, Berkeley. For the remaining ACPs, plasmids were designed via the following protocol.
ACP sequences were purchased from integrated DNA technologies (IDT) as gBlock DNA
fragments. 100 ng of the DNA (dissolved in water) was digested (30 uL reaction) using 1 uL. Ndel
and 1 pL EcoRI (or BamHI) with 10X CutSmart buffer (New England Biolabs). The mixture was
then incubated at 37 °C (12 hrs). A QIAprep Miniprep kit (Qiagen) was used for DNA purification.
To precipitate the DNA, the mixture was treated with 2.5 pL of 3 M sodium acetate, 2 uL glycogen,
and 200 pL ethanol, and then stored at 20 °C (12 hrs). The supernatant was washed (200 pL of
70% ethanol), dried, and then suspended in 1X DNA dilution buffer. For ligation (using T4 DNA
Rapid Ligation Kit, Roche), the digested DNA insert was added to 100 ng of gel-purified
(Zymoclean) pET28a vector (featuring an N-terminal Hise-tag) digested with Ndel/EcoRI and
treated with calf-intestine alkaline phosphatase (CIP), T4 ligase, and 1X Dilution buffer. After
incubation at room temperature (30 min), 10 pL of the ligation product mixture was transformed
into chemically competent DH5a cells and plated on LB agar plates (50 pg/mL kanamycin). The
plasmids for Arm ACP, Ben ACP, and WhiE ACP were prepared by these means for a previous
study.2s As well, the plasmid for Rat ACP was prepared for this study (see Supplementary Figure
4 for sequence of DNA insert). All plasmids are available from the authors upon request.

A single colony was selected for the growth of seed cultures overnight at 37 °C in 10 mL
of LB media (50 pg/mL of kanamycin or 100 pg/mL of carbenicillin). Seed cultures were then
added to 0.75 L production cultures (50 pg/mL of kanamycin or 100 pg/mL of carbenicillin) and
were grown at 37 °C until the ODeoo = 0.6. After sufficient culture growth, cells were induced with
188 uL of 1 M IPTG. The induced cultures were incubated at 18 °C overnight, while shaking.
Following the incubation period, cells were harvested by centrifugation (5,000 RPM, 20 min), and
the cell pellet was stored at -80 °C. Next, the cells were thawed on ice, resuspended in lysis buffer
(50 mM sodium phosphate pH 7.6, 300 mM NaCl, 10 mM imidazole), and sonicated (cells on ice
at 4 °C, 10 x 30 sec pulses with 30 sec rest in between, 40% power). Cell debris was removed by
centrifugation (13,000 RPM, 45 min). Nickel-NTA agarose slurry was equilibrated into lysis
buffer by repeated centrifugation and decanting (3 times), before adding to the protein-containing
supernatant (4 mL slurry / L starting culture). The protein-nickel resin mixture was left to nutate
for 1 hour at 4 °C. The mixture was allowed to settle for 15 minutes and the supernatant was
decanted carefully with a serological pipette. The resin was loaded onto a fritted column, allowing
the flowthrough to be collected. The resin was then washed with 100 mL of wash buffer (50 mM
sodium phosphate pH 7.6, 300 mM NaCl, and 30 mM imidazole). Finally, the desired proteins
were eluted with 10 mL of elution buffer (50 mM phosphate, pH 7.6, 100 mM NacCl, and 150 mM
imidazole). The concentrations of the protein containing elution fractions were confirmed via
Nanodrop measurements. Desired fractions were pooled and buffer exchanged using a 3.5 kDa
MWCO 0.5 mL — 3 mL Thermo ScientificTM Slide-A-LyzerTM Dialysis Cassette into 50 mM
Phosphate buffer pH 7.6. Proteins were aliquoted and flash frozen for storage at -80 °C.
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Complete 4'-phosphopantetheinylation of ACPs. Liquid chromatography mass spectrometry
(LC-MS) analysis of ACPs (see below) revealed that some ACPs were produced as a mixture of
the apo and holo forms and thus a 4'-phosphopantetheinyl transferase was used to push these ACP
samples completely to the #olo form. Coenzyme A (1.5 mM) was added to a solution of ACP (0.95
- 1.0 mM) with Sfp R4-4 (2 uM),17 magnesium chloride (10 mM) and DTT (2.5 mM), in 50 mM
sodium phosphate pH 7.6 (0.8 - 1 mL total volume). The solution was incubated for 24 hours at
room temperature. All ACPs were purified into 50 mM Phosphate Buffer pH 7.6 using an AKTA
FPLC equipped with a HiPrep 26/10 de-salting column. ECACP was concentrated to 1 mM using
a 3.5 kDa MWCO Centricon centrifugal filter. LC-MS was used to confirm all ACPs were
completely in the #olo form before substrate loading.

Chemoenzymatic attachment of probe-containing substrates. 4-pentynoic acid (C5), 7-
octynoic acid (C8), and 12-tridecynoic acid (C13) were all commercially acquired (C5:Enamine,
C8:Enamine, C13:Mcule). NMR data were acquired to verify the purity of each probe
(Supplementary Figures 5-7). Carboxylic acids were loaded onto the ACPs using the Vibrio harvei
Acyl-acyl carrier protein synthetase (AasS). AasS has been shown to be a promiscuous ligase,
capable of loading various fatty acids onto the terminal thiol of the ACP’s Ppant arm.is The
reaction was completed on a 1-mL scale, consisting of the ACP (275 uM, stock in 50 mM sodium
phosphate buffer pH 7.6), dithiothreitol (2.5 mM), magnesium chloride (23 mM), ATP (18 mM,
stock adjusted to pH 7.6), AasS (0.8 uM, stock in Tris buffer pH 7.6), and the desired carboxylic
acid (4.6 mM, stock in isopropanol). The reaction was prepared in a glass vial, as plastic tubes
have previously been shown to contain competing carboxylic acids that could be loaded onto the
ACP in place of the desired substrates. The reaction mixture was left shaking at 100 RPM for 16
hours at 37 °C. Samples were spun in a centrifuge at 13,000 RPM for 5 minutes to pellet
precipitation. Supernatant was loaded onto a Sephadex G-25 in PD-10 Desalting Column to
separate the protein from salts and remaining unloaded substrate. A ThermoScientific Nanodrop
2000c spectrophotometer was used to determine protein concentration and purity. Fractions
featuring characteristic protein peaks and lacking a 260 nm peak (characteristic of the unloaded
carboxylic acid) were selected. Chosen fractions were pooled and concentrated using a 3.5 kDa
MWCO Centricon centrifugal filter. The concentration used for visualization via Raman
spectroscopy ranged from 1-3 mM.

Verification of Substrate Loading onto ACPs. ACPs (20uL of a 0.1 mg/mL solution in 50 mM
sodium phosphate buffer, pH 7.6) were analyzed by LC-MS (AgilentG6125BW) to confirm the
success of the loading reaction (Supplementary Figures 8-23). A Waters XBridge Protein BEH C4
Column (300A, 3.5um, 2.1 mm x 50 mm) heated to 45°C was used for analysis by ESI-MS in the
positive mode. The following gradient was used (solvent A = water + 0.1% formic acid; solvent B
= acetonitrile + 0.1% formic acid): 0—1 min 95% A, 3.1 min 5% A, 4.52 min 5% A, 4.92-9 min
95% A. Data were deconvoluted using ESIprot,29 a free, online software, and the observed MW
was compared to the calculated MW for /holo- and acyl-ACPs. All ACPs eluted from the column
at 4.4 minutes.

To determine if excess unloaded probe remaining in solution could be detected by LC-MS, free
carboxylic acids were added to probe-loaded ACPs at target concentrations (2.5 mM holo-Act
ACP, 250 uM free probe) to ensure that free probe did not remain in the acyl-ACP samples after
purification (Supplementary Figures 24-26). SDS-PAGE (Supplementary Figure 27) and urea
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PAGE (Supplementary Figure 28) were also used to distinguish ACPs with different size and
conformation. SDS PAGE analyses were performed using 12% acrylamide (1 mm) in Tris-HCl
gels. 5% (v/v) 2-mercaptoethanol was added to the sample loading dye. All samples were boiled
at 95°C and the gel was run at 160 V for about 60 minutes using premade running buffer (0.25 M
glycine, 0.375 M Tris-HCI pH 8.8, 0.1% (w/v) SDS, Jule Biotechnologies). Precision Plus Protein
Standard (BioRad) was used as the protein standard. Urea PAGE analyses were performed using
20% urea, 12% acrylamide (1 mm) in Tris-HCI gels. The gel was run at 165 V for about 80 minutes
using premade running buffer (0.25 M glycine, 0.375 M Tris-HCI pH 8.8). All gels were washed
in ddH20, stained at room temperature for 20-30 minutes using Coomassie SafeStain (Thermo
Fisher Scientific), and finally destained overnight at room temperature in ddHz20.

Characterizing ACP Secondary Structure After Probe Loading. Circular dichroism (CD)
spectroscopy was performed using an Aviv 410 spectrophotometer (Aviv Biomedical, NJ). The
secondary structures of #olo and modified ACPs were determined by obtaining CD spectra at far-
UV (260-180 nm) in a 0.1 mm path length cuvette (Hellma Analytics). All data were collected at
25 °C using a 1 nm bandwidth, a step resolution of 0.5 nm, and a 3 seconds averaging time. The
baseline was corrected against the storage buffer and ACPs concentrations were approximately 0.5
mg/ml. The corrected spectra were smoothed using a manual smoothing function implemented in
the instrument software, using a window width of 11 data points, degree 2. Smoothed data were
plotted in Origin (v.8.6.0). See Supplementary Figures 29-30.

Raman spectroscopy. All Raman spectra were collected using a home-built CW-Raman
spectrometer. A 532 nm DPSS CW laser (Cobolt, Inc.) attenuated to 80 mW incident power was
focused vertically through a 1 mM diameter glass capillary filled with 1-5 uL of sample. Scattered
light was collected at 90 degrees to the incoming excitation using a Nikon /1.2 camera lens and
then focused into the slit of a PI-Acton SpectraPro 500mm single monochromator (with a 600
grooves/mm grating blazed at 500 nm) and collected on a PI-Acton Spec10/100 liquid-nitrogen
cooled CCD camera. Rayleigh scattering was rejected using a >532 nm long-pass filter (Edmund
Optics). Spectra were collected in exposures of 1 minute for up to 2 hours total accumulation time.
All ACP samples were 1-2 mM concentration.

Data analysis was completed in Origin 8. The raw data was imported and was analyzed within a
large region around the desired peak to establish a baseline (2,000 cm-1 to 2,300 cm-1). A smaller
region containing the peak (2,100 cm-1 to 2,130 cm-1) was cut out to introduce a hole where the
peak of interest was. The hole-containing baseline region was fit to a seventh-degree polynomial,
and this polynomial was subtracted from the peak-containing baseline region data. The alkyne
probe signal was then scaled to set the maximum point of the peak of interest as 1.0 and all other
points a fraction relative to the maximum. The mode (from inspection), mean (calculated
between 2100-2130 cm-1), and FWHM (by inspection) are reported for each spectrum
(Supplementary Table 1).
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Figure 1: Workflow for determining CP-substrate interactions via Raman spectroscopy. An
alkyne-labeled fatty acid (of selected length) is ligated to the terminal thiol of the Ppant arm via
the promiscuous ligase AasS (top). The probe-labeled molecular cargo serves as a reporter of
whether a substrate is sequestered into the hydrophobic cavity of the CP through changes in the
Raman scattering spectrum. The C=C frequency reports on the solvation environment (lower
frequency when the probe is in an aqueous environment, or higher frequency when the probe is in
the protein’s hydrophobic cavity) and the line shape reports on the ps-resolved range of

conformations.
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Figure 2. Raman scattering of C=C modified substrates reports on chain sequestration. a.
Raman spectra for ECACP (blue), Act ACP (green), and Rat ACP (red), each loaded with the Cs
probe, provide information about the local environment of the C=C probe consistent with literature
precedent that a Cg substrate chain is sequestered by EcACP, not sequestered by Rat ACP, and
partially sequestered by Act ACP. b. Raman spectra for Cs (green), Cs (blue), and C13 (red) probes
on EcACP show how sequestration depends on the chain length. c. Spectra for Cs probe (yellow)
on Arm ACP (blue), Ben ACP (green), and WhiE ACP (red) provide chain sequestration
information about previously uncharacterized ACPs. In all cases, line spectra represent data
collected for probes on ACPs, and shaded bands represent data for free alkyne-labeled carboxylic
acids in buffered aqueous solution. In all cases, a shift to higher frequency indicates that the alkyne
probe enters a more hydrophobic environment as it becomes sequestered inside the hydrophobic

pocket of an ACP. (Source data are provided as a Source Data file.)



