

Journal of Algebra 511 (2018) 292-298

Uniform symbolic topologies in normal toric rings

Robert M. Walker

Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, United States of America

ARTICLE INFO

Article history: Received 9 March 2018 Available online 30 June 2018 Communicated by Luchezar L. Avramov

MSC: 13H10 14C20 14M25

Keywords: Symbolic powers Toric ring Monomial primes Segre–Veronese

ABSTRACT

Given a normal toric algebra R, we compute a uniform integer D = D(R) > 0 such that the symbolic power $P^{(DN)} \subseteq P^N$ for all N > 0 and all monomial primes P. We compute the multiplier D explicitly in terms of the polyhedral cone data defining R, illustrating the output for Segre–Veronese algebras.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and conventions for the paper

Given any prime ideal P in a Noetherian ring R, its *a*-th $(a \in \mathbb{Z}_{>0})$ symbolic power ideal is the smallest P-primary ideal containing P^a , $P^{(a)} = P^a R_P \cap R :=$ $\{f \in R: uf \in P^a \text{ for some } u \in R - P\}$. Given a Noetherian commutative ring R, when is there an integer D, depending only on R, such that the symbolic power $P^{(Dr)} \subseteq P^r$ for all prime ideals $P \subseteq R$ and all positive integers r? In short, when does R have **uniform**

 $\label{eq:https://doi.org/10.1016/j.jalgebra.2018.05.038} 0021\mbox{-}8693 \mbox{\ensuremath{\oslash}} \mbox{2018 Elsevier Inc. All rights reserved.}$

E-mail address: robmarsw@umich.edu.

symbolic topologies on primes [8]? Moreover, can we effectively compute the multiplier D in terms of simple data about R?

One celebrated affirmative answer is the *improved* Ein–Lazarsfeld–Smith Theorem: if R is a d-dimensional excellent regular ring, and $D = \max\{1, d-1\}$, then $Q^{(Dr)} \subseteq Q^r$ for all radical ideals $Q \subseteq R$ and all r > 0 [3,6,9]. Under mild stipulations in the non-regular setting, a local ring R regular on the punctured spectrum has uniform symbolic topologies on primes [7, Cor. 3.10], although explicit values for D remain elusive. See also our papers [10, Table 3.3] and [12, Thm. 1.2] for ADE rational surface singularities and for select domains with non-isolated singularities, respectively; see also the survey article [2, Thm. 3.29, Cor. 3.30] for module-finite direct summands of affine polynomial rings.

In this paper, we answer the above questions in the setting of torus-invariant primes in a normal toric (or monomial, or semigroup) algebra—the coordinate rings of normal affine toric varieties, hence also Cohen-Macaulay and combinatorially-defined. We state our two main results now for those readers already accustomed to the notation and terminology in Cox–Little–Schenck [1] and Fulton [4].

Theorem 1.1. Let $C \subseteq N_{\mathbb{R}}$ be a full pointed rational polyhedral cone. Let $R_{\mathbb{F}} = \mathbb{F}[C^{\vee} \cap M]$ be the associated toric algebra over a field \mathbb{F} . Set $D := \max_{m \in \mathcal{B}} \langle m, v_C \rangle$, where \mathcal{B} is the minimal generating set for $C^{\vee} \cap M$ and $v_C \in N$ is the sum of the primitive generators for C. Then

$$P^{(D(r-1)+1)} \subset P^r$$

for all r > 0, and all monomial primes P in $R_{\mathbb{F}}$.

Corollary 1.2. With notation as in Theorem 1.1, we assume further that C is simplicial. Define $T := \max \{\max_{m \in \mathcal{B}} \langle m, v_C \rangle, D\}$, where D is any positive integer such that $D \cdot Cl(R_{\mathbb{F}}) = 0$. Then

$$P^{(T(r-1)+1)} \subset P^r$$

for all r > 0, all monomial primes, and all height one primes in $R_{\mathbb{F}}$.

We quickly prove the latter now. To clarify, the **divisor class group** of a Noetherian normal domain R, $\operatorname{Cl}(R) = \operatorname{Cl}(\operatorname{Spec}(R))$, is the free abelian group on the set of height one prime ideals of R modulo relations of the form $a_1P_1 + \ldots + a_rP_r = 0$ whenever the ideal $P_1^{(a_1)} \cap \ldots \cap P_r^{(a_r)}$ is principal.

Proof of Corollary 1.2. Since *C* is simplicial, $\# \operatorname{Cl}(R_{\mathbb{F}})$ is finite by [11, Thm. 3.6 and Lem. 3.8]. Now combine Theorem 1.1 with [11, Lem. 1.1], and take the maximum of the values. \Box

Conventions: Throughout, \mathbb{F} denotes an arbitrary ground field of arbitrary characteristic. All rings are commutative with identity—indeed, they are normal domains of finite type over \mathbb{F} . For conciseness of exposition, we deduce all results only in the case of full pointed cones. Results extend to non-full pointed cones verbatim, with full details recorded in the author's Ph.D. thesis [13, Ch. 3].

Acknowledgments: This paper is part of my Ph.D. thesis at the University of Michigan-Ann Arbor. My thesis adviser Karen E. Smith, along with Daniel Hernández and Jack Jeffries, suggested studying precursors for the ideals $I_{\bullet}(E)$ in the proof of Theorem 1.1. I am grateful for this idea. I thank an anonymous referee for comments improving exposition in the paper. I acknowledge support from a NSF GRF (Grant No. PGF-031543), NSF RTG grant DMS-0943832, and a 2017 Ford Foundation Dissertation Fellowship. Several computations were performed using the Polyhedra package in Macaulay2 [5] to gain an incisive handle on the polyhedral geometry.

2. Toric algebra notation and terminology preliminaries

As in Cox–Little–Schenck [1, Ch. 1, 3, 4] and Fulton [4, Ch. 1, 3], a lattice is a free abelian group of finite rank. We fix a perfect bilinear pairing $\langle \cdot, \cdot \rangle \colon M \times N \to \mathbb{Z}$ between two lattices M and N; this identifies M with $\operatorname{Hom}_{\mathbb{Z}}(N,\mathbb{Z})$ and N with $\operatorname{Hom}_{\mathbb{Z}}(M,\mathbb{Z})$. Our pairing extends to a perfect pairing of finite-dimensional vector spaces $\langle \cdot, \cdot \rangle \colon M_{\mathbb{R}} \times N_{\mathbb{R}} \to$ \mathbb{R} , where $M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$ and $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$.

Going forward, we fix a full pointed *N*-rational polyhedral cone $C \subseteq N_{\mathbb{R}}$ and its *M*-rational dual: respectively, for some finite subset $G \subseteq N - \{0\}$ these are closed, convex sets of the form

$$C = \operatorname{Cone}(G) := \left\{ \sum_{v \in G} a_v \cdot v \colon \text{ each } a_v \in \mathbb{R}_{\ge 0} \right\} \subseteq N_{\mathbb{R}}, \text{ and}$$
$$C^{\vee} := \{ w \in M_{\mathbb{R}} \colon \langle w, v \rangle \ge 0 \text{ for all } v \in C \} = \{ w \in M_{\mathbb{R}} \colon \langle w, v \rangle \ge 0 \text{ for all } v \in G \}.$$

By definition, the **dimension** of a cone in $M_{\mathbb{R}}$ or $N_{\mathbb{R}}$ is the dimension of the real vector subspace it spans; a cone is **full(-dimensional)** if it spans the full ambient space. A cone in $M_{\mathbb{R}}$ or $N_{\mathbb{R}}$ is **pointed (or strongly convex)** if it contains no line through the origin. A pointed full-dimensional cone C is said to be **simplicial** if it is generated by exactly $d = \dim_{\mathbb{R}}(N_{\mathbb{R}})$ elements in N.

There is a uniquely-determined *minimal* finite generating set \mathcal{B} for the semigroup $C^{\vee} \cap M$, its **Hilbert basis**. This basis consists of the **irreducible** vectors $m \in C^{\vee} \cap M - \{0\}$, read, nonzero vectors that cannot be expressed as a sum of two nonzero vectors in $C^{\vee} \cap M$ [1, Prop. 1.2.17, Prop. 1.2.23].

Fix an arbitrary ground field \mathbb{F} . The semigroup ring $R_{\mathbb{F}} = \mathbb{F}[C^{\vee} \cap M]$ is the **toric F-algebra associated to** C. This ring $R_{\mathbb{F}}$ is a normal domain of finite type over \mathbb{F} [1, Thm. 1.3.5]. Note that $R_{\mathbb{F}}$ has an \mathbb{F} -basis { $\chi^m : m \in C^{\vee} \cap M$ } of monomials, giving $R_{\mathbb{F}}$ an M-grading, where deg(χ^m) := m. A **monomial ideal (also called an** M-homogeneous or torus-invariant ideal) in $R_{\mathbb{F}}$ is an ideal generated by a subset of these monomials.

3. Proof of main result and example computations

Proof of Theorem 1.1. We may fix a face $F \neq \{0\}$ of the full pointed rational cone C, and $P = P_F$ the corresponding monomial prime in $R = R_{\mathbb{F}}$. First, we note F has a uniquely-determined set G_F of primitive generators; recall that by definition, a vector $v \in N$ is **primitive** if $\frac{1}{k} \cdot v \notin N$ for all $k \in \mathbb{Z}_{>1}$. Fulton [4, p. 53] records a surjective M-graded ring map between integral domains

$$\phi_F \colon R_{\mathbb{F}} = \mathbb{F}[C^{\vee} \cap M] \twoheadrightarrow \mathbb{F}[F^* \cap M], \quad \phi_F(\chi^m) = \begin{cases} \chi^m & \text{if } \langle m, v \rangle = 0 \text{ for all } v \in F \\ 0 & \text{if } \langle m, v \rangle > 0 \text{ for some } v \in F. \end{cases}$$

The monomial prime ideal of F, $P_F := \ker(\phi_F)$, has height equal to $\dim(F)$. By [11, Lem. 3.1],

 $P_F = (\{\chi^m \colon m \in C^{\vee} \cap M \text{ and the integer } \langle m, v_F \rangle > 0\})R_{\mathbb{F}},$

where G_F is the set of primitive generators of F and $v_F := \sum_{v \in G_F} v \in F \cap N$.

Lemma 1. For each integer $E \ge 1$, we have $P_F^{(E)} \subseteq I_F(E) \subseteq P_F^{\lceil E/D' \rceil} \subseteq P_F^{\lceil E/D \rceil}$ where

$$I_F(E) := (\chi^m \colon \langle m, v_F \rangle \ge E) R, \quad D := \max_{m \in \mathcal{B}} \langle m, v_C \rangle, \text{ and } D' := \max_{m \in \mathcal{B}} \langle m, v_F \rangle \le D.$$

Proof. First, $I_F(E)$ is P_F -primary for all $E \geq 1$, i.e., if $sf \in I_F(E)$ for some $s \in R - P_F$, then $f \in I_F(E)$. As $I_F(E)$ is monomial, we may test this by fixing $\chi^m \in I_F(E)R_{P_F} \cap R$ and $\chi^q \in R - P_F$ such that $\chi^m \cdot \chi^q = \chi^{m+q} \in I_F(E)$: $\langle q, v_F \rangle = 0$, while $E \leq \langle m+q, v_F \rangle = \langle m, v_F \rangle + \langle q, v_F \rangle = \langle m, v_F \rangle$, so $\chi^m \in I_F(E)$. Thus all $I_F(E)$ are P_F -primary, and certainly $P_F^E \subseteq I_F(E)$. Thus $P_F^{(E)} \subseteq I_F(E)$, being the smallest P_F -primary ideal containing P_F^E .

Now fix any monomial $\chi^{\ell} \in I_F(E)$, say $\ell = \sum_{m \in \mathcal{B}} a_m \cdot m$ with $a_m \in \mathbb{Z}_{\geq 0}$. Let $S \subseteq \mathcal{B}$ consist of those $m \in \mathcal{B}$ such that the monomials χ^m form a minimal generating set for P. By linearity of $\langle \bullet, v_F \rangle$,

$$E \leq \langle \ell, v_F \rangle = \sum_{m \in \mathcal{B}} a_m \langle m, v_F \rangle = \sum_{m \in S} a_m \langle m, v_F \rangle \leq \sum_{m \in S} a_m \cdot D' \Longrightarrow \sum_{m \in S} a_m \geq \lceil E/D' \rceil.$$

Thus $\chi^{\ell} \in P_F^{\sum_{m \in S} a_m} \subseteq P_F^{\lceil E/D' \rceil}$, ergo $I_F(E) \subseteq P_F^{\lceil E/D' \rceil} \subseteq P_F^{\lceil E/D \rceil}$, proving the lemma. \Box

To finish the proof of Theorem 1.1, set E = D(r-1) + 1 in the lemma. Thus $P_F^{(D(r-1)+1)} \subseteq P_F^r$ for all r > 0, as desired. \Box

Example 3.1. Fix an arbitrary ground field \mathbb{F} and integers $n \geq 2$ and $E \geq 2$. Let

$$R = \frac{\mathbb{F}[x_1, \dots, x_n, z]}{(z^E - x_1 \cdots x_n)}$$

Then Theorem 1.1 and its corollary ensure that $P^{(T(r-1)+1)} \subseteq P^r$ for all r > 0, all monomial primes, and all height one primes in R, where $T = \max\{n, E\}$. Indeed, R is a toric algebra arising from the simplicial full pointed cone $C \subseteq \mathbb{R}^n$ spanned by $\{e_n, E \cdot e_i + e_n : i = 1, \ldots, n-1\} \subseteq \mathbb{Z}^n$, where e_1, \ldots, e_n denote the standard basis vectors in \mathbb{R}^n . We can compute that $\operatorname{Cl}(R) \cong (\mathbb{Z}/\mathbb{ZZ})^{n-1}$ so $E \cdot \operatorname{Cl}(R) = 0$ [11, Ex. 5.6]. Meanwhile, in the notation of Theorem 1.1, $\mathcal{B} = \{e_1, \ldots, e_{n-1}, e_n, E \cdot e_n - e_1 - \cdots - e_{n-1}\} \subseteq \mathbb{Z}^n$ and the vector $v_C = n \cdot e_n + E \cdot (e_1 + \cdots + e_{n-1}) \in \mathbb{Z}^n$, so we compute that $\max_{m \in \mathcal{B}} \langle m, v_C \rangle = n$.

3.1. Closing example computation: Segre-Veronese algebras

Segre–Veronese algebras are a well-known class of normal toric rings.

Definition 3.2. Fix a family A_1, \ldots, A_k of k standard graded algebras of finite type over \mathbb{F} , with $A_i = \mathbb{F}[a_{i,1}, \ldots, a_{i,b_i}]$ in terms of algebra generators. Their **Segre product** over \mathbb{F} is the ring $S = (\#_{\mathbb{F}})_{i=1}^k A_i$ generated up to isomorphism as an \mathbb{F} -algebra by all k-fold products of the $a_{i,j}$.

Definition 3.3. We fix integers $E \ge 1$ and $m \ge 2$. Suppose $A = \mathbb{F}[x_1, \ldots, x_m]$ is a standard graded polynomial ring in m variables over a field \mathbb{F} . Let $V_{E,m} \subseteq A$ denote the E-th **Veronese subring** of A, the standard graded \mathbb{F} -subalgebra generated by all monomials of degree E in the x_i . There are $\binom{m-1+E}{E}$ such monomials; this number is the **embedding dimension** of $V_{E,m}$.

Definition 3.4. Fix k-tuples $\overline{E} = (E_1, \ldots, E_k) \in (\mathbb{Z}_{\geq 1})^k$ and $\overline{m} = (m_1, \ldots, m_k) \in (\mathbb{Z}_{\geq 2})^k$ of integers, with $k \geq 1$. Furthermore, we set $d(j) = \left(\sum_{i=1}^j m_i\right) - (j-1)$ for each $1 \leq j \leq k$: d(k) is the Krull dimension of the Segre product $SV\left(\overline{E}, \overline{m}\right) = (\#_{\mathbb{F}})_{i=1}^k V_{E_i,m_i}$ of k Veronese rings in m_1, \ldots, m_k variables, respectively; this is a **Segre–Veronese algebra** with degree sequence \overline{E} .

Theorem 3.5. Suppose $A = SV(\overline{E}, \overline{m})$ is a Segre-Veronese algebra over \mathbb{F} with $\overline{E} = (E_1, \ldots, E_k)$. Let $D := \sum_{i=1}^k E_i$. Then $P^{(D(r-1)+1)} \subseteq P^r$ for all r > 0 and all monomial primes P in A.

Proof. Given a lattice $N \cong \mathbb{Z}^d$ we will use $e_1, \ldots, e_d \in N$ to denote a choice of basis for N will dual basis e_1^*, \ldots, e_d^* for M. In the setup of Theorem 1.1, the cardinality of the minimal generating set \mathcal{B} of $C^{\vee} \cap M$ is the **embedding dimension** of $R_{\mathbb{F}} = \mathbb{F}[C^{\vee} \cap M]$ [1, Sec. 1.0, Proof of Thm. 1.3.10].

We now provide an explicit cone $C \subseteq N_{\mathbb{R}}$ and an explicit Hilbert basis \mathcal{B} to feed into Theorem 1.1.

Fix k-tuples $\overline{E} \in (\mathbb{Z}_{\geq 1})^k$ and $\overline{m} \in (\mathbb{Z}_{\geq 2})^k$. Set $d(j) = \left(\sum_{i=1}^j m_i\right) - (j-1)$ for $1 \leq j \leq k$, while d(0) = 0. Given $SV\left(\overline{E},\overline{m}\right) = (\#_{\mathbb{F}})_{i=1}^k V_{E_i,m_i}$, we fix a lattice $N \cong \mathbb{Z}^{d(k)}$ and record a cone $C = C\left(\overline{E},\overline{m}\right) \subseteq N_{\mathbb{R}} \cong \mathbb{R}^{d(k)}$ as stipulated with $R_{\mathbb{F}} = \mathbb{F}[C^{\vee} \cap M] \cong SV\left(\overline{E},\overline{m}\right)$. Specifically, consider the cone $C \subseteq N_{\mathbb{R}}$ generated by the following irredundant collection of primitive vectors:

$$\mathcal{A} = \bigcup_{1 \le j \le k} A_j, \text{ where } A_1 = \{e_1, \dots, e_{m_1-1}, -e_1 - \dots - e_{m_1-1} + E_1 \cdot e_{m_1}\},\$$

and for each $2 \leq j \leq k$,

$$A_j = \left\{ e_h, \ E_j \cdot e_{m_1} - \sum_{h=d(j-1)+1}^{d(j)} e_h \colon d(j-1) + 1 \le h \le d(j) \right\}.$$

The semigroup $C^{\vee} \cap M$ is generated by the following set of irreducible vectors:

$$\mathcal{B} = \left\{ e_{m_1}^* + \sum_{j=1}^k \sum_{\ell=1}^{m_j-1} a_{j,\ell} \cdot e_{d(j-1)+\ell}^* \colon 0 \le \sum_{\ell=1}^{m_j-1} a_{j,\ell} \le E_j \text{ for } 1 \le j \le k \right\}.$$

Indeed, $\#\mathcal{B} = \prod_{j=1}^{k} {m_j - 1 + E_j \choose E_j}$, the embedding dimension of $SV(\overline{E}, \overline{m})$. Finally, one can record a bijection between the monomial generators of $R_{\mathbb{F}}$ and those typically used to present $SV(\overline{E}, \overline{m})$; cf., [11, Proof of Lem. 5.3] for how the bijection would look in the coordinates $a_{j,\ell}$ for each j.

Feeding $v_C = \sum_{u \in \mathcal{A}} u = (\sum_{j=1}^k E_j) \cdot e_{m_1}$ and \mathcal{B} into Theorem 1.1 yields $D = \sum_{j=1}^k E_j$. \Box

Over any perfect field \mathbb{K} , a Segre–Veronese algebra has uniform symbolic topologies on all primes, per [3, Thm. 2.2], [6, Thm. 1.1], and [7, Cor. 3.10]. However, no explicit multiplier is provided by these cited results; indeed, the case k = 1 was only addressed recently [2, Cor. 3.30]. By contrast, Theorem 3.5 gives an explicit multiplier for the torus-invariant primes in a Segre–Veronese algebra over an arbitrary field.

References

- D.A. Cox, J.B. Little, H.K. Schenck, Toric Varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011.
- [2] H. Dao, A. De Stefani, E. Grifo, C. Huneke, L. Núñez-Betancourt, Symbolic powers of ideals, in: Singularities and Foliations. Geometry, Topology and Applications, in: Springer Proceedings in Mathematics & Statistics, 2018, pp. 387–432, arXiv:1708.03010.
- [3] L. Ein, R. Lazarsfeld, K. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001) 241–252, arXiv:math/0005098.
- [4] W. Fulton, Introduction to Toric Varieties, Annals of Math. Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993.

- [5] D.R. Grayson, M.E. Stillman, Macaulay 2, a software system for research in algebraic geometry, available at, http://www.uiuc.edu/Macaulay2/, 1992.
- [6] M. Hochster, C. Huneke, Comparison of ordinary and symbolic powers of ideals, Invent. Math. 147 (2002) 349–369, arXiv:math/0211174.
- [7] C. Huneke, D. Katz, J. Validashti, Uniform equivalence of symbolic and adic topologies, Illinois J. Math. 53 (1) (2009) 325–338.
- [8] C. Huneke, D. Katz, J. Validashti, Uniform symbolic topologies and finite extensions, J. Pure Appl. Algebra 219 (3) (2015) 543–550.
- [9] L. Ma, K. Schwede, Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers, arXiv:1705.02300, 2017.
- [10] R.M. Walker, Rational singularities and uniform symbolic topologies, Illinois J. Math. 60 (2) (2016) 541–550.
- [11] R.M. Walker, Uniform Harbourne–Huneke bounds via flat extensions, arXiv:1608.02320.
- [12] R.M. Walker, Uniform symbolic topologies via multinomial expansions, Proc. Amer. Math. Soc. 146 (9) (2018) 3735–3746, arXiv:1703.04530.
- [13] R.M. Walker, Uniform Symbolic Topologies in Non-Regular Rings, Dissertation, 2018, available upon request.