Uniform symbolic topologies in normal toric rings

Robert M. Walker
Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, United States of America

A R T I C L E I N F O

Article history:

Received 9 March 2018
Available online 30 June 2018
Communicated by Luchezar L.
Avramov

MSC:

13 H 10
14 C 20
14 M 25

Keywords:
Symbolic powers
Toric ring
Monomial primes
Segre-Veronese

A B S T R A C T

Given a normal toric algebra R, we compute a uniform integer $D=D(R)>0$ such that the symbolic power $P^{(D N)} \subseteq P^{N}$ for all $N>0$ and all monomial primes P. We compute the multiplier D explicitly in terms of the polyhedral cone data defining R, illustrating the output for Segre-Veronese algebras.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction and conventions for the paper

Given any prime ideal P in a Noetherian ring R, its a-th ($a \in \mathbb{Z}_{>0}$) symbolic power ideal is the smallest P-primary ideal containing $P^{a}, P^{(a)}=P^{a} R_{P} \cap R:=$ $\left\{f \in R: u f \in P^{a}\right.$ for some $\left.u \in R-P\right\}$. Given a Noetherian commutative ring R, when is there an integer D, depending only on R, such that the symbolic power $P^{(D r)} \subseteq P^{r}$ for all prime ideals $P \subseteq R$ and all positive integers r ? In short, when does R have uniform

[^0]symbolic topologies on primes [8]? Moreover, can we effectively compute the multiplier D in terms of simple data about R ?

One celebrated affirmative answer is the improved Ein-Lazarsfeld-Smith Theorem: if R is a d-dimensional excellent regular ring, and $D=\max \{1, d-1\}$, then $Q^{(D r)} \subseteq Q^{r}$ for all radical ideals $Q \subseteq R$ and all $r>0$ [3,6,9]. Under mild stipulations in the non-regular setting, a local ring R regular on the punctured spectrum has uniform symbolic topologies on primes [7, Cor. 3.10], although explicit values for D remain elusive. See also our papers [10, Table 3.3] and [12, Thm. 1.2] for ADE rational surface singularities and for select domains with non-isolated singularities, respectively; see also the survey article [2, Thm. 3.29, Cor. 3.30] for module-finite direct summands of affine polynomial rings.

In this paper, we answer the above questions in the setting of torus-invariant primes in a normal toric (or monomial, or semigroup) algebra - the coordinate rings of normal affine toric varieties, hence also Cohen-Macaulay and combinatorially-defined. We state our two main results now for those readers already accustomed to the notation and terminology in Cox-Little-Schenck [1] and Fulton [4].

Theorem 1.1. Let $C \subseteq N_{\mathbb{R}}$ be a full pointed rational polyhedral cone. Let $R_{\mathbb{F}}=\mathbb{F}\left[C^{\vee} \cap M\right]$ be the associated toric algebra over a field \mathbb{F}. Set $D:=\max _{m \in \mathcal{B}}\left\langle m, v_{C}\right\rangle$, where \mathcal{B} is the minimal generating set for $C^{\vee} \cap M$ and $v_{C} \in N$ is the sum of the primitive generators for C. Then

$$
P^{(D(r-1)+1)} \subseteq P^{r}
$$

for all $r>0$, and all monomial primes P in $R_{\mathbb{F}}$.
Corollary 1.2. With notation as in Theorem 1.1, we assume further that C is simplicial. Define $T:=\max \left\{\max _{m \in \mathcal{B}}\left\langle m, v_{C}\right\rangle, D\right\}$, where D is any positive integer such that D. $\mathrm{Cl}\left(R_{\mathbb{F}}\right)=0$. Then

$$
P^{(T(r-1)+1)} \subseteq P^{r}
$$

for all $r>0$, all monomial primes, and all height one primes in $R_{\mathbb{F}}$.
We quickly prove the latter now. To clarify, the divisor class group of a Noetherian normal domain $R, \mathrm{Cl}(R)=\mathrm{Cl}(\operatorname{Spec}(R))$, is the free abelian group on the set of height one prime ideals of R modulo relations of the form $a_{1} P_{1}+\ldots+a_{r} P_{r}=0$ whenever the ideal $P_{1}^{\left(a_{1}\right)} \cap \ldots \cap P_{r}^{\left(a_{r}\right)}$ is principal.

Proof of Corollary 1.2. Since C is simplicial, $\# \mathrm{Cl}\left(R_{\mathbb{F}}\right)$ is finite by [11, Thm. 3.6 and Lem. 3.8]. Now combine Theorem 1.1 with [11, Lem. 1.1], and take the maximum of the values.

Conventions: Throughout, \mathbb{F} denotes an arbitrary ground field of arbitrary characteristic. All rings are commutative with identity - indeed, they are normal domains of finite type
over \mathbb{F}. For conciseness of exposition, we deduce all results only in the case of full pointed cones. Results extend to non-full pointed cones verbatim, with full details recorded in the author's Ph.D. thesis [13, Ch. 3].

Acknowledgments: This paper is part of my Ph.D. thesis at the University of MichiganAnn Arbor. My thesis adviser Karen E. Smith, along with Daniel Hernández and Jack Jeffries, suggested studying precursors for the ideals $I_{\bullet}(E)$ in the proof of Theorem 1.1. I am grateful for this idea. I thank an anonymous referee for comments improving exposition in the paper. I acknowledge support from a NSF GRF (Grant No. PGF-031543), NSF RTG grant DMS-0943832, and a 2017 Ford Foundation Dissertation Fellowship. Several computations were performed using the Polyhedra package in Macaulay2 [5] to gain an incisive handle on the polyhedral geometry.

2. Toric algebra notation and terminology preliminaries

As in Cox-Little-Schenck [1, Ch. 1, 3, 4] and Fulton [4, Ch. 1, 3], a lattice is a free abelian group of finite rank. We fix a perfect bilinear pairing $\langle\cdot, \cdot\rangle: M \times N \rightarrow \mathbb{Z}$ between two lattices M and N; this identifies M with $\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ and N with $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$. Our pairing extends to a perfect pairing of finite-dimensional vector spaces $\langle\cdot, \cdot\rangle: M_{\mathbb{R}} \times N_{\mathbb{R}} \rightarrow$ \mathbb{R}, where $M_{\mathbb{R}}:=M \otimes_{\mathbb{Z}} \mathbb{R}$ and $N_{\mathbb{R}}:=N \otimes_{\mathbb{Z}} \mathbb{R}$.

Going forward, we fix a full pointed N-rational polyhedral cone $C \subseteq N_{\mathbb{R}}$ and its M-rational dual: respectively, for some finite subset $G \subseteq N-\{0\}$ these are closed, convex sets of the form

$$
\begin{aligned}
C & =\operatorname{Cone}(G):=\left\{\sum_{v \in G} a_{v} \cdot v: \text { each } a_{v} \in \mathbb{R}_{\geq 0}\right\} \subseteq N_{\mathbb{R}}, \text { and } \\
C^{\vee} & :=\left\{w \in M_{\mathbb{R}}:\langle w, v\rangle \geq 0 \text { for all } v \in C\right\}=\left\{w \in M_{\mathbb{R}}:\langle w, v\rangle \geq 0 \text { for all } v \in G\right\} .
\end{aligned}
$$

By definition, the dimension of a cone in $M_{\mathbb{R}}$ or $N_{\mathbb{R}}$ is the dimension of the real vector subspace it spans; a cone is full(-dimensional) if it spans the full ambient space. A cone in $M_{\mathbb{R}}$ or $N_{\mathbb{R}}$ is pointed (or strongly convex) if it contains no line through the origin. A pointed full-dimensional cone C is said to be simplicial if it is generated by exactly $d=\operatorname{dim}_{\mathbb{R}}\left(N_{\mathbb{R}}\right)$ elements in N.

There is a uniquely-determined minimal finite generating set \mathcal{B} for the semigroup $C^{\vee} \cap M$, its Hilbert basis. This basis consists of the irreducible vectors $m \in C^{\vee} \cap M-\{0\}$, read, nonzero vectors that cannot be expressed as a sum of two nonzero vectors in $C^{\vee} \cap M$ [1, Prop. 1.2.17, Prop. 1.2.23].

Fix an arbitrary ground field \mathbb{F}. The semigroup ring $R_{\mathbb{F}}=\mathbb{F}\left[C^{\vee} \cap M\right]$ is the toric \mathbb{F}-algebra associated to C. This ring $R_{\mathbb{F}}$ is a normal domain of finite type over $\mathbb{F}[1$, Thm. 1.3.5]. Note that $R_{\mathbb{F}}$ has an \mathbb{F}-basis $\left\{\chi^{m}: m \in C^{\vee} \cap M\right\}$ of monomials, giving $R_{\mathbb{F}}$ an M-grading, where $\operatorname{deg}\left(\chi^{m}\right):=m$. A monomial ideal (also called an M-homogeneous or torus-invariant ideal) in $R_{\mathbb{F}}$ is an ideal generated by a subset of these monomials.

3. Proof of main result and example computations

Proof of Theorem 1.1. We may fix a face $F \neq\{0\}$ of the full pointed rational cone C, and $P=P_{F}$ the corresponding monomial prime in $R=R_{\mathbb{F}}$. First, we note F has a uniquely-determined set G_{F} of primitive generators; recall that by definition, a vector $v \in N$ is primitive if $\frac{1}{k} \cdot v \notin N$ for all $k \in \mathbb{Z}_{>1}$. Fulton [4, p. 53] records a surjective M-graded ring map between integral domains

$$
\phi_{F}: R_{\mathbb{F}}=\mathbb{F}\left[C^{\vee} \cap M\right] \rightarrow \mathbb{F}\left[F^{*} \cap M\right], \quad \phi_{F}\left(\chi^{m}\right)= \begin{cases}\chi^{m} & \text { if }\langle m, v\rangle=0 \text { for all } v \in F \\ 0 & \text { if }\langle m, v\rangle>0 \text { for some } v \in F\end{cases}
$$

The monomial prime ideal of $F, P_{F}:=\operatorname{ker}\left(\phi_{F}\right)$, has height equal to $\operatorname{dim}(F)$. By [11, Lem. 3.1],

$$
P_{F}=\left(\left\{\chi^{m}: m \in C^{\vee} \cap M \text { and the integer }\left\langle m, v_{F}\right\rangle>0\right\}\right) R_{\mathbb{F}}
$$

where G_{F} is the set of primitive generators of F and $v_{F}:=\sum_{v \in G_{F}} v \in F \cap N$.
Lemma 1. For each integer $E \geq 1$, we have $P_{F}^{(E)} \subseteq I_{F}(E) \subseteq P_{F}^{\left\lceil E / D^{\prime}\right\rceil} \subseteq P_{F}^{\lceil E / D\rceil}$ where

$$
I_{F}(E):=\left(\chi^{m}:\left\langle m, v_{F}\right\rangle \geq E\right) R, \quad D:=\max _{m \in \mathcal{B}}\left\langle m, v_{C}\right\rangle, \text { and } D^{\prime}:=\max _{m \in \mathcal{B}}\left\langle m, v_{F}\right\rangle \leq D .
$$

Proof. First, $I_{F}(E)$ is P_{F}-primary for all $E \geq 1$, i.e., if $s f \in I_{F}(E)$ for some $s \in R-P_{F}$, then $f \in I_{F}(E)$. As $I_{F}(E)$ is monomial, we may test this by fixing $\chi^{m} \in I_{F}(E) R_{P_{F}} \cap R$ and $\chi^{q} \in R-P_{F}$ such that $\chi^{m} \cdot \chi^{q}=\chi^{m+q} \in I_{F}(E)$: $\left\langle q, v_{F}\right\rangle=0$, while $E \leq\left\langle m+q, v_{F}\right\rangle=\left\langle m, v_{F}\right\rangle+\left\langle q, v_{F}\right\rangle=\left\langle m, v_{F}\right\rangle$, so $\chi^{m} \in I_{F}(E)$. Thus all $I_{F}(E)$ are P_{F}-primary, and certainly $P_{F}^{E} \subseteq I_{F}(E)$. Thus $P_{F}^{(E)} \subseteq I_{F}(E)$, being the smallest P_{F}-primary ideal containing P_{F}^{E}.

Now fix any monomial $\chi^{\ell} \in I_{F}(E)$, say $\ell=\sum_{m \in \mathcal{B}} a_{m} \cdot m$ with $a_{m} \in \mathbb{Z}_{\geq 0}$. Let $S \subseteq \mathcal{B}$ consist of those $m \in \mathcal{B}$ such that the monomials χ^{m} form a minimal generating set for P. By linearity of $\left\langle\bullet, v_{F}\right\rangle$,

$$
E \leq\left\langle\ell, v_{F}\right\rangle=\sum_{m \in \mathcal{B}} a_{m}\left\langle m, v_{F}\right\rangle=\sum_{m \in S} a_{m}\left\langle m, v_{F}\right\rangle \leq \sum_{m \in S} a_{m} \cdot D^{\prime} \Longrightarrow \sum_{m \in S} a_{m} \geq\left\lceil E / D^{\prime}\right\rceil
$$

Thus $\chi^{\ell} \in P_{F}^{\sum_{m \in S} a_{m}} \subseteq P_{F}^{\left\lceil E / D^{\prime}\right\rceil}$, ergo $I_{F}(E) \subseteq P_{F}^{\left\lceil E / D^{\prime}\right\rceil} \subseteq P_{F}^{\lceil E / D\rceil}$, proving the lemma.

To finish the proof of Theorem 1.1, set $E=D(r-1)+1$ in the lemma. Thus $P_{F}^{(D(r-1)+1)} \subseteq P_{F}^{r}$ for all $r>0$, as desired.

Example 3.1. Fix an arbitrary ground field \mathbb{F} and integers $n \geq 2$ and $E \geq 2$. Let

$$
R=\frac{\mathbb{F}\left[x_{1}, \ldots, x_{n}, z\right]}{\left(z^{E}-x_{1} \cdots x_{n}\right)}
$$

Then Theorem 1.1 and its corollary ensure that $P^{(T(r-1)+1)} \subseteq P^{r}$ for all $r>0$, all monomial primes, and all height one primes in R, where $T=\max \{n, E\}$. Indeed, R is a toric algebra arising from the simplicial full pointed cone $C \subseteq \mathbb{R}^{n}$ spanned by $\left\{e_{n}, E\right.$. $\left.e_{i}+e_{n}: i=1, \ldots, n-1\right\} \subseteq \mathbb{Z}^{n}$, where e_{1}, \ldots, e_{n} denote the standard basis vectors in \mathbb{R}^{n}. We can compute that $\mathrm{Cl}(R) \cong(\mathbb{Z} / E \mathbb{Z})^{n-1}$ so $E \cdot \mathrm{Cl}(R)=0$ [11, Ex. 5.6]. Meanwhile, in the notation of Theorem 1.1, $\mathcal{B}=\left\{e_{1}, \ldots, e_{n-1}, e_{n}, E \cdot e_{n}-e_{1}-\cdots-e_{n-1}\right\} \subseteq \mathbb{Z}^{n}$ and the vector $v_{C}=n \cdot e_{n}+E \cdot\left(e_{1}+\cdots+e_{n-1}\right) \in \mathbb{Z}^{n}$, so we compute that $\max _{m \in \mathcal{B}}\left\langle m, v_{C}\right\rangle=n$.

3.1. Closing example computation: Segre-Veronese algebras

Segre-Veronese algebras are a well-known class of normal toric rings.
Definition 3.2. Fix a family A_{1}, \ldots, A_{k} of k standard graded algebras of finite type over \mathbb{F}, with $A_{i}=\mathbb{F}\left[a_{i, 1}, \ldots, a_{i, b_{i}}\right]$ in terms of algebra generators. Their Segre product over \mathbb{F} is the ring $S=\left(\#_{\mathbb{F}}\right)_{i=1}^{k} A_{i}$ generated up to isomorphism as an \mathbb{F}-algebra by all k-fold products of the $a_{i, j}$.

Definition 3.3. We fix integers $E \geq 1$ and $m \geq 2$. Suppose $A=\mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ is a standard graded polynomial ring in m variables over a field \mathbb{F}. Let $V_{E, m} \subseteq A$ denote the E-th Veronese subring of A, the standard graded \mathbb{F}-subalgebra generated by all monomials of degree E in the x_{i}. There are $\left(\begin{array}{c}m-1+E\end{array}\right)$ such monomials; this number is the embedding dimension of $V_{E, m}$.

Definition 3.4. Fix k-tuples $\bar{E}=\left(E_{1}, \ldots, E_{k}\right) \in\left(\mathbb{Z}_{\geq 1}\right)^{k}$ and $\bar{m}=\left(m_{1}, \ldots, m_{k}\right) \in\left(\mathbb{Z}_{\geq 2}\right)^{k}$ of integers, with $k \geq 1$. Furthermore, we set $d(j)=\left(\sum_{i=1}^{j} m_{i}\right)-(j-1)$ for each $1 \leq j \leq k: d(k)$ is the Krull dimension of the Segre product $S V(\bar{E}, \bar{m})=\left(\#_{\mathbb{F}}\right)_{i=1}^{k} V_{E_{i}, m_{i}}$ of k Veronese rings in m_{1}, \ldots, m_{k} variables, respectively; this is a Segre-Veronese algebra with degree sequence \bar{E}.

Theorem 3.5. Suppose $A=S V(\bar{E}, \bar{m})$ is a Segre-Veronese algebra over \mathbb{F} with $\bar{E}=$ $\left(E_{1}, \ldots, E_{k}\right)$. Let $D:=\sum_{i=1}^{k} E_{i}$. Then $P^{(D(r-1)+1)} \subseteq P^{r}$ for all $r>0$ and all monomial primes P in A.

Proof. Given a lattice $N \cong \mathbb{Z}^{d}$ we will use $e_{1}, \ldots, e_{d} \in N$ to denote a choice of basis for N will dual basis $e_{1}^{*}, \ldots, e_{d}^{*}$ for M. In the setup of Theorem 1.1, the cardinality of the minimal generating set \mathcal{B} of $C^{\vee} \cap M$ is the embedding dimension of $R_{\mathbb{F}}=\mathbb{F}\left[C^{\vee} \cap M\right][1$, Sec. 1.0, Proof of Thm. 1.3.10].

We now provide an explicit cone $C \subseteq N_{\mathbb{R}}$ and an explicit Hilbert basis \mathcal{B} to feed into Theorem 1.1.

Fix k-tuples $\bar{E} \in\left(\mathbb{Z}_{\geq 1}\right)^{k}$ and $\bar{m} \in\left(\mathbb{Z}_{\geq 2}\right)^{k}$. Set $d(j)=\left(\sum_{i=1}^{j} m_{i}\right)-(j-1)$ for $1 \leq j \leq k$, while $d(0)=0$. Given $S V(\bar{E}, \bar{m})=\left(\#_{\mathbb{F}}\right)_{i=1}^{k} V_{E_{i}, m_{i}}$, we fix a lattice $N \cong \mathbb{Z}^{d(k)}$ and record a cone $C=C(\bar{E}, \bar{m}) \subseteq N_{\mathbb{R}} \cong \mathbb{R}^{d(k)}$ as stipulated with $R_{\mathbb{F}}=\mathbb{F}\left[C^{\vee} \cap\right.$ $M] \cong S V(\bar{E}, \bar{m})$. Specifically, consider the cone $C \subseteq N_{\mathbb{R}}$ generated by the following irredundant collection of primitive vectors:

$$
\mathcal{A}=\bigcup_{1 \leq j \leq k} A_{j}, \text { where } A_{1}=\left\{e_{1}, \ldots, e_{m_{1}-1},-e_{1}-\cdots-e_{m_{1}-1}+E_{1} \cdot e_{m_{1}}\right\}
$$

and for each $2 \leq j \leq k$,

$$
A_{j}=\left\{e_{h}, E_{j} \cdot e_{m_{1}}-\sum_{h=d(j-1)+1}^{d(j)} e_{h}: d(j-1)+1 \leq h \leq d(j)\right\}
$$

The semigroup $C^{\vee} \cap M$ is generated by the following set of irreducible vectors:

$$
\mathcal{B}=\left\{e_{m_{1}}^{*}+\sum_{j=1}^{k} \sum_{\ell=1}^{m_{j}-1} a_{j, \ell} \cdot e_{d(j-1)+\ell}^{*}: 0 \leq \sum_{\ell=1}^{m_{j}-1} a_{j, \ell} \leq E_{j} \text { for } 1 \leq j \leq k\right\}
$$

Indeed, $\# \mathcal{B}=\prod_{j=1}^{k}\binom{m_{j}-1+E_{j}}{E_{j}}$, the embedding dimension of $S V(\bar{E}, \bar{m})$. Finally, one can record a bijection between the monomial generators of $R_{\mathbb{F}}$ and those typically used to present $S V(\bar{E}, \bar{m})$; cf., [11, Proof of Lem. 5.3] for how the bijection would look in the coordinates $a_{j, \ell}$ for each j.

Feeding $v_{C}=\sum_{u \in \mathcal{A}} u=\left(\sum_{j=1}^{k} E_{j}\right) \cdot e_{m_{1}}$ and \mathcal{B} into Theorem 1.1 yields $D=$ $\sum_{j=1}^{k} E_{j}$.

Over any perfect field \mathbb{K}, a Segre-Veronese algebra has uniform symbolic topologies on all primes, per [3, Thm. 2.2], [6, Thm. 1.1], and [7, Cor. 3.10]. However, no explicit multiplier is provided by these cited results; indeed, the case $k=1$ was only addressed recently [2, Cor. 3.30]. By contrast, Theorem 3.5 gives an explicit multiplier for the torus-invariant primes in a Segre-Veronese algebra over an arbitrary field.

References

[1] D.A. Cox, J.B. Little, H.K. Schenck, Toric Varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011.
[2] H. Dao, A. De Stefani, E. Grifo, C. Huneke, L. Núñez-Betancourt, Symbolic powers of ideals, in: Singularities and Foliations. Geometry, Topology and Applications, in: Springer Proceedings in Mathematics \& Statistics, 2018, pp. 387-432, arXiv:1708.03010.
[3] L. Ein, R. Lazarsfeld, K. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001) 241-252, arXiv:math/0005098.
[4] W. Fulton, Introduction to Toric Varieties, Annals of Math. Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993.
[5] D.R. Grayson, M.E. Stillman, Macaulay 2, a software system for research in algebraic geometry, available at, http://www.uiuc.edu/Macaulay2/, 1992.
[6] M. Hochster, C. Huneke, Comparison of ordinary and symbolic powers of ideals, Invent. Math. 147 (2002) 349-369, arXiv:math/0211174.
[7] C. Huneke, D. Katz, J. Validashti, Uniform equivalence of symbolic and adic topologies, Illinois J. Math. 53 (1) (2009) 325-338.
[8] C. Huneke, D. Katz, J. Validashti, Uniform symbolic topologies and finite extensions, J. Pure Appl. Algebra 219 (3) (2015) 543-550.
[9] L. Ma, K. Schwede, Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers, arXiv:1705.02300, 2017.
[10] R.M. Walker, Rational singularities and uniform symbolic topologies, Illinois J. Math. 60 (2) (2016) 541-550.
[11] R.M. Walker, Uniform Harbourne-Huneke bounds via flat extensions, arXiv:1608.02320.
[12] R.M. Walker, Uniform symbolic topologies via multinomial expansions, Proc. Amer. Math. Soc. 146 (9) (2018) 3735-3746, arXiv:1703.04530.
[13] R.M. Walker, Uniform Symbolic Topologies in Non-Regular Rings, Dissertation, 2018, available upon request.

[^0]: E-mail address: robmarsw@umich.edu.

