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Abstract—Innovative and new computing paradigms must be
considered as we reach the limits of von Neumann computing
caused by the growth in necessary data processing. This paper
provides an introduction to three emerging computing models
that have established themselves as likely post-CMOS and post-
von Neumann solutions. The first of these ideas is quantum
computing, for which we discuss the challenges and potential of
quantum computer architectures. Next, a computational system
using intrinsic oscillators is introduced and an example is pro-
vided which shows its superiority in comparison to a typical von
Neumann computational system. Finally, digital memcomputing
using self-organizing logic gates is explained and then discussed
as a method for optimization problems and machine learning.

I. INTRODUCTION

Computers have been evolving at an extremely rapid pace
to keep up with the product benefits they support. These
benefits include constant innovation in fields such as healthcare
as well as personal devices as evidenced by the Internet of
Things (IoT) phenomenon and the amount of data process-
ing required for its maintenance. This evolution necessitates
continual increase in device complexity as exemplified by
Moore's law: the idea that every two years the number of
Complementary Metal-Oxide-Semiconductor (CMOS) transis-
tors in an Integrated Circuit (IC) should be doubled. But as
we reach and surpass the 5 nm technology node, Moore's
"law" becomes impossible to maintain through device scaling
alone, and standard von Neumann computing architectures are
struggling more than ever to sustain the increase of computing
needs. This is because von Neumann architectures work on
the assumptions that computation is fast and the amount of
data being processed is not large, and the latter assumption
has quickly become false [1]. The sense of urgency to power
the evolving technological engine that is so integrated to our
societal needs is persistent and requires a new approach.

Alternative design approaches such as the use of optimized
accelerators or advanced power management techniques are
successfully employed in contemporary designs, but these
are not enough to keep up with the ever-increasing gap
between on-chip and off-chip memory data rates. This trend,
known as the von Neumann bottleneck, is the limitation on
processor speed due to data transfer, and is the main restraint
to advancing both system performance and energy scaling. The
quest towards more energy-efficiency then requires solutions
that disrupt the von Neumann paradigm, and this in turn ne-
cessitates a rethinking of the entirety of computer architecture.
This overhaul includes considering both new software system
solutions and new physics for developing computer hardware
and is the basis for the IEEE Rebooting Computing Initiative
(https://rebootingcomputing.ieee.org).

Post-CMOS hardware solutions are quickly emerging from
the elementary device units to their integration into nanosys-
tems which consider system organization and architecture.

These novel nanotechnologies bring new logic devices and
new computational paradigms, requiring support from design
tools and methodologies such as Electronic Design Automa-
tion (EDA). Device level innovations, including novel geome-
tries and materials, introduce new logic devices [2; 3], such
as carbon nanotubes [4], 2D materials (e.g., graphene [5],
molybdenum disulfide (MoS32) [6]), spintronics [7] or devices
with improved functionalities with regards to traditional tran-
sistors [8; 9].

New computational paradigms are exemplified by a number
of revolutionary ideas which aim to change the approach they
take to computing. For instance, neuromorphic computing is
an innovative computing paradigm inspired by the feedback
system present in brain function [10; 11; 12; 13; 14]. The
resulting neural networks are computationally substantially
more efficient than von Neumann-style computing models. A
branch of neuromorphic computing is chemical computation
which models itself after biological cellular networks capable
of learning and adapting in the same way non-synthetic
biological systems do [15]. Other common applications using
neuromorphic computation systems are the modeling of spik-
ing neural networks [16; 17; 18] and spintronic-based neural
network systems [19; 20], two applications which are also
examples of in-memory computing. In-memory computation is
enabled by both novel memory cells such as Resistive Random
Access Memory (ReRAM) [21; 22; 23], Magnetic Random
Access Memory (MRAM) [24], Ferroelectric Field Effect
Transistors (FeFET) [25; 26], as well as standard memory
such as Static Random Access Memory (SRAM) [27; 28], and
this computation style effectively eliminates the von Neumann
bottleneck. Similar to in-memory computing is memcomputing
which uses memory to store and process information [29; 30].
Memcomputing machines have been shown to be efficient for
some combinatorial optimization problems [29; 31; 32; 33].
Alternately, quantum computing [34] and adiabatic computa-
tion [35] are some of the better known emerging computing
technologies which use quantum mechanical properties to
resolve classical problems with increased computing power
and decreased energy dissipation [36].

Novel computing models such as these allow for the
potential to change the way information is processed and
are the most substantial work-arounds of the von Neumann
bottleneck. In this paper, we consider three alternatives to von
Neumann computing chosen for their tight links with novel
device technologies. In particular, quantum computing and
its definition as a heterogenous architecture, as well as its
challenges and potential applications are addressed. Also of
interest is the idea of using coupled oscillators as an alternative
to current CMOS-based devices. Memcomputing is the final
approach discussed and refers to the idea of using memory



cells for processing so that there is no delay due to the transfer
between the two, thus eliminating the von Neumann bottleneck
completely.

The remainder of this paper is as follows: First, Section
IT considers the future of quantum computing. Section III
addresses coupled oscillators and their use in a physical com-
putational system. Section IV of this paper is a mathematical
and application-driven explanation of memcomputing. Finally,
Section V concludes this paper.

II. A QUANTUM COMPUTER AS AN ACCELERATOR

Designing a computer involves much more than the design
of the processor chip. A fully-functioning computer as we
know it involves using, storing, and computing data. Therefore,
besides a processor, a computer requires memory to store
instructions and data, interconnects so that this information can
be transported to the processor and back again to the memory
for storage after computation; ultimately, the results are stored
more permanently on a hard disk. We need keyboards and
screens to understand that the computer is operating correctly
and producing the expected result. The semiconductor industry
and subsequently the entire IT-industry has evolved from
single-core processor architectures to homogeneous multi-
core processors to finally the heterogeneous multi-core ar-
chitectures widely used today, which include Digital Signal
Processing (DSPs) and Graphical Processing Units (GPUs).

A. Quantum Computing as a Heterogeneous Architecture

The latest innovation in these heterogeneous architectures
is the use of Field-Programmable Gate Arrays (FPGAs); their
integration into conventional technologies took more than 15
years before becoming standard with big players like Intel and
IBM. The shift to heterogeneity in computer architecture is the
core change in the way computer engineers work to develop
and evolve the next generation of computer architectures. If
we define the quantum computer as an accelerator technology,
it becomes consistent with the heterogeneous multi-core phi-
losophy. In this sense, work on quantum computing seems to
be a logical next step to substantially improve the computing
power of high-performance computers. To understand this line
of research, we must start by defining the steps required in
developing a quantum computer and addressing how such a
computer can be connected to classical computers.

One main reason for adopting a quantum system view is
the current movement to cloud-based computer architectures
where powerful computer servers exist in data centers and are
accessed by the end-user through the Internet. This change in
processing implies also a change in applications to comply to
this new technical standard. This helps to solve the issue that
most fundamental quantum phenomena such as superposition
and entanglement work at very low temperatures, often at the
mK level. For instance, the use of superconducting quantum
processors requires (in most cases) an operational temperature
for the quantum chip of around 20 mK. Such low temperatures
require the use of expensive vacuum and control systems that
are difficult and costly to implement in a distributed and
decentralised way, but could easily be accessed through a
cloud-based system.

As shown in Figure 1, a heterogeneous multi-core system
architecture is defined in which GPUs, FPGAs, Tensor Pro-
cessing Units (TPUs) and now also quantum accelerators can
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Fig. 1: System architecture with heterogeneous accelerators.

all be used. This means that end-user application developers
are capable of programming their source code to be compiled
and executed on the quantum device.

B. Current Challenges in Quantum Computing

R. Feynman's 1982 paper on quantum computing [37]
instigated a world-wide research dive into quantum comput-
ing. The focus has been on overcoming significant low-level
challenges which has led to the development of, for instance,
the superconducting qubits. The design of proof-of-concept
quantum algorithms and their study with respect to their
theoretical complexity show computational improvements over
classical algorithms, and this capacity has received significant
attention. However, we still need substantial progress in both
the low-level design and programming domains. Qubits with
sufficiently long coherence times combined with true quantum-
killer applications are crucial requirements that have not yet
been met by the community. They are vital to demonstrating
the exponential performance increase of quantum over con-
ventional computers in practice and are urgently needed to
convince quantum skeptics about the usefulness of quantum
computing. These developments are necessary for quantum
computing to become a mainstream technology within the
coming 10 to 15 years. However, much more work is needed
before a fully-functioning computational device which con-
nects the algorithmic level to the physical chip can be created.
The requirements of such a device include: a compiler, run-
time support, and most importantly a micro-architecture that
executes a well-defined set of quantum instructions. So the
development of any quantum computer will be limited, at least
in the next 15 years, to the development of the layers that the
Quantum Accelerator will need to have. Figure 2 shows the
full system stack that any quantum accelerator should have
and be actively executing the quantum part of the big system
application and thus interacting with the controlling classical
processor.

C. Real-World Quantum Computing Applications

As we mentioned, one of the challenges is to find a killer
application. The highest level is the application layer where
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Fig. 2: The required layers of a Quantum Computer.

the potential end-user of the quantum computing system will
provide the instructions which include computational needs.
Quantum computing promises to become a computational
game changer, allowing for much faster calculation of various
algorithms (in some cases, exponentially faster) than their
classical counterparts. Applications with large sets of data are
particularly suitable for processing by quantum computers.
The cryptography domain is a clear candidate for quantum
computing as algorithms such as Shor's factorization have
shown that a quantum computer has the potential to break
any RSA-based encryption by finding the prime factors of the
public key [38] and then, based on that, easily calculating the
private key. In anticipation of this, the cryptography domain
has already established a post-quantum cryptography research
domain.

Another potential application area for quantum computing
is the biological domain specific to chemistry and pharma-
cology. As an example, consider the contemporary focus on
genome sequencing. A quantum computer would be necessary
to compute the DNA-profile of every human being in the
world; this takes currently one week on a large network of
extremely powerful servers for a single person's DNA. With
enough qubit capacity, the entire inputted data-set can be
encoded simultaneously as a superposition of a single wave
function.! This particular property makes it possible to perform
the computation of the entire data-set in parallel. This kind
of computational acceleration provides a promising approach
to addressing the computational challenges of DNA-analysis
algorithms where both character-based and sequence-based
correlation analyses are required. Regarding genome sequenc-
ing, we have to investigate whether the quantum approach can
be used to calculate the similarity between two different DNA
sequences.

III. INTRINSIC COMPUTING USING WEAKLY COUPLED
OSCILLATORS

Currently, most digital information processing is performed
by conventional CMOS-based devices; these consume sig-
nificantly more power than mixed-signal systems based on
emerging devices and architectures. This power consumption
is the main hindrance for deploying highly parallel ICs in small

IThough not an exact calculation, given the size of the genome, the number
of qubits would have to be at least in the millions.

form factor and their embedded application domains, and this
is due to limited available power budgets and insufficient heat-
sinking mechanisms. For this reason, emerging devices are
preferred to CMOS devices for information processing.

Certain computer vision algorithms such as corner de-
tection and pattern matching consist of a high number of
multiply-accumulate and fractional norm operations which
require significant computational resources [39]. Most of these
algorithms exhibit a high degree of parallelism and are also
latency-critical in real-time applications. Leveraging the paral-
lelism to speed up the computation in real-time applications re-
quires either stacking CMOS transistors or an efficient pipeline
mechanism with intermediate staging or buffering storage
requirements, both of which suffer from large gate counts and
increased power consumption. In recent years, nano-oscillator
based computing paradigms have garnered significant interest
owing to their inherent system dynamics which can be used
to solve computationally hard problems in computer vision,
optimization and neuromorphic applications.

In [39], an array of weakly coupled oscillators is shown
to synchronize when coupled together with close initial
states.These synchronized oscillatory systems can be leveraged
to perform several associative functions in a wide variety of
computer vision applications [40; 41]. The efficiency of a
coupled oscillator-based system in terms of power and area has
been shown in computer vision problems such as vertex color-
ing of graphs [42] and morphological image processing [43].
Most of these applications use the coupled oscillator-based
systems to compute a variety of fractional norms or /; norms,
where the /;; norm of z is defined as |[z||, = />, Ek

Recently, in [44] a coupled oscillator-based co-processor
has been proposed to accelerate computations like sorting,
degree of matching, etc. for use in applications such as pattern
recognition, clustering, and text recognition. A computation
model based on vanadium dioxide (VOs)-based coupled os-
cillators is demonstrated in this section and used to illustrate
the efficiency of a coupled oscillator-based implementation
of a corner detection algorithm compared to a CMOS-based
implementation.

A. A VO3-based Coupled Oscillator System

VO3 undergoes a volatile and sharp Insulator-to-Metal
Phase Trransition (IMT) with an applied electrical bias. When
a resistor is connected in series with the VO5 such that the
load line passes through the unstable regions of the hysteretic
I-V curve, it enables continuous relaxation oscillations in a
compact one-transistor and one-resistor (IT1R) configuration
[40]. The replacement of the series resistor with a transistor
allows control of the frequency of oscillation through the tran-
sistor gate voltage which adjusts the effective series resistance
seen by the IMT device.

Electrical coupling between two oscillators is achieved
through simple resistive and capacitive elements. Individually,
each oscillator can operate at a range of frequencies as
controlled by the series transistor's gate voltage (V4,), and
when the frequencies of two coupled oscillators are sufficiently
close to each other the coupling elements facilitate frequency
locking, as seen in Figure 3. The phase difference between
two synchronized waveforms is governed by the frequency
difference of the uncoupled oscillators as well as the strength
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elements showing frequency locking.
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Fig. 4: Readout scheme for pairwise coupled oscillators based on a
thresholded and time-averaged XOR.

of the coupling network, i.e. the values of the resistive and
capacitive elements.

One pathway towards non-traditional computing with cou-
pled oscillators involves encoding information (input values)
in the gate voltages (Vgs1, Vgs2) of the series transistors
to manipulate the phase-difference which can be quantified
through a readout circuit. To demonstrate this, we designed
an XOR-based readout, seen in Figure 4, that takes synchro-
nized waveforms as its input and performs a threshold-XOR
operation to be time-averaged over a certain number of cycles
to provide a stable output value. For a large range of coupling
strengths, two nearly-identical oscillators always have the [1-
Avg(XOR)] measure minima near the point where A Vg, =
(Vgs1-Vgs2) is zero. For increasing coupling strengths, (that
is, decreasing R¢), the shape of the curves around the minima
point follow increasing I, norms ((V g1 —Vgsg)k) ranging from
almost (k ~ 1.6) to parabolic (k ~ 2.0) to extremely non-
linear (k ~ 3.4) as shown in Figure 5. Further away from the
minima the curves take on a fractional norm shape (k < 1)
for a short range before becoming irregular near the edge of
the locking range.

B. Corner Detection Using the Coupled Oscillator-based Dis-
tance Norm

Corner detection is the process of identifying the important
features or interest points in an image which can then be
used to infer its contents. It is one of the fundamental pre-
processing steps in computer vision and is widely used in
applications such as object detection, motion recognition and
tracking, and 3D modeling and scene construction. Features
Jrom Accelerated Segment Tests (FAST) [45] is one of the most
common corner detection algorithms owing to its computa-
tional efficiency, as it is both faster and uses less computational
resources than other similar algorithms. The FAST corner
detection algorithm compares a pixel with its surrounding 16
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Fig. 5: XOR-measure showing various [, norms achieved with
coupled oscillators.

pixels on a Bresenham circle of radius 3. If the pixel is either
darker or brighter than the N contiguous pixels by a certain
threshold on the circle, it will be marked as a corner. The
FAST algorithm involves a series of systematic and parallel
comparison operations, and these operations are performed
using coupled oscillator distance norms for a demonstration
of the efficiency of this computation method.

FAST corner detection using coupled oscillator distance
norms involves two processing steps. First, a pixel under test
is compared with its 16 surrounding pixels and then results of
the norm operation are checked against a threshold to identify
the darker/brighter pixels. The intensities of the pixels under
comparison are then fed as voltages to the coupled oscillator
distance metric computation primitive for the comparison
operation. The distance metric gives an approximation of
absolute difference between the two voltages, but the direction
of the difference (that is, whether a pixel is brighter or darker
than the other pixel) is not known and does not matter. The
FAST algorithm requires a pixel to be either brighter or darker
than NV contiguous surrounding pixels. To avoid false positives,
if the first step outputs any contiguous pixels which meet the
threshold conditions, we compare the adjacent pixels in the
result set with each other to check if they are similar. If any of
the difference values are greater than two times the threshold,
then we can classify the result set as a false positive. The
entire system data flow is depicted in Figure 6.

Even though the coupled oscillator-based distance norms
provide low power hardware primitives for comparison, tuning
across computational layers might be needed to incorporate
them. For this case, we must do two comparison steps instead
of the one required for the baseline software algorithm. Unlike
CMOS-based accelerators, our design can be closely integrated
with analog image acquisition hardware, as the inputs to the
comparison hardware are variable voltage signals. This is
significant because it benefits on-the-fly computer vision appli-
cations by reducing the amount of on-chip storage required for
processing the entire image. This is because it requires only the
corner information to be stored in on-chip memory for further
processing. The power consumption of the coupled oscillator-
based block designed in this example to identify corners is
0.936 mW (including the XOR readout), whereas the power
consumption of the corresponding CMOS implementation at
the 32 nm process node is 3 mW, which shows the powerful
benefit of using a computational model based on coupled
oscillators.
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IV. THE MEMCOMPUTING PARADIGM

In this section we discuss yet another computing paradigm
that was recently suggested: memcomputing [30; 46; 47],
which stands for computing in and with memory (time non-
locality) [46]. Memcomputing is based on the premise that
the processing of information is accomplished by appropriate
memory systems, without the need to transfer information
from a processing unit to a memory unit, thus overcoming the
von Neumann bottleneck completely. The physical memory
units (memprocessors) that perform the computation can be
realized in practice using a variety of systems and materi-
als [30]. Irrespective, the memory components comprise both
active elements (e.g., transistors) and passive elements with
memory (e.g., resistive memories) and without memory (e.g.,
standard resistors, capacitors, etc.). The active elements are
fundamental to this computing paradigm since they provide the
necessary feedback to guide the machine towards the solution
of the problem it is meant to solve.

Although memcomputing machines can be defined as both
digital and analog [30], the digital ones are those that are
easily scalable [47]. This is due to the fact that in digital
computing the input and the output can be read/written with
finite precision, independent of the size of the machine. In
order to solve a specific combinatorial optimization problem,
Digital Memcomputing Machines (DMMs) are then designed
as follows. The problem is first written in Boolean form (or in
algebraic form if the problem is an integer linear programming
one, as seen in [48]). The corresponding Boolean circuit is
not even unique, in view of the freedom available in choosing
different logic gates as the basis of our Boolean logic [49]. The
gates of the circuit are then replaced by Self-Organizing Logic
Gates (SOLGs) [47] (or self-organizing algebraic gates for
algebraic problems [48]), whose only requirement is to self-
organize into the correct logical proposition of the given gate
irrespective of whether the signal comes from the traditional
inputs or the traditional outputs. In other words, SOLGs are
terminal agnostic, although not necessarily invertible in a one-

to-one sense.

As previously mentioned, physical realizations of these
gates employ a combination of circuit elements with and
without memory. When assembled together to form the full
Boolean circuit representing a given problem, these gates then
define a physical electronic circuit that can be built using
available technology. In fact, resistive memory components
can be emulated by an appropriate combination of active
elements [50], thus avoiding the need to integrate circuit
components outside of the traditional CMOS technology. The
original problem is then solved by applying the appropriate
signals at specific input terminals, and then letting the circuit
reach a steady-state. The signals at the appropriate output
terminals then represent the solution to the original problem.

Although a hardware implementation of DMMs would be
ideal, these machines are non-quantum systems. Therefore, it
is natural to ask if the equations of motion describing their
circuits offer any advantage when simulated on our standard
computers.

To address this, we first note that the physical DMMs are
described by non-linear ordinary differential equations whose
point attractors represent the solution to the original problem.
These equations may assume different forms [47] so long as
they represent the correct properties of SOLGs. One tidy form
for a given gate terminal ¢ can be written as

0; = AgurAVy + grAVR, (1
T = h(AVva)v VS [O, 1]v )

for the voltage v; representing the variable ¢ and the memory
state variable z. The first and second terms on the RHS of Eq.
1 represent the contributions from resistors with memory and
standard resistors, respectively. Agys (AVyy) and gr (AVR)
are the respective conductances (voltage drops) and h is a
function of the memory state variable.

In order to represent valid DMMs, the above equations must
correspond to point-dissipative systems [51]. This guarantees
that trajectories are bounded and will always converge to an
invariant set that is uniformly asymptotically stable, and that
if the solution to the original problem exists, then the system
will find it [47], and no periodic orbits [52] or chaos [53]
can coexist. The approach to equilibrium of these dynamical
systems would then solve the original problem.

Recent work has shown that simulations of DMMs perform
much better than traditional algorithmic approaches on a wide
variety of combinatorial optimization problems [32; 48; 54;
55; 56]. For instance, in [54] it was shown that these simula-
tions outperform specialized software specifically designed to
tackle maximum satisfiability problems. In [55] simulations of
DMMs were employed to the training of Restricted Boltzmann
Machines (RBMs) that are difficult to pre-train. The results
have shown that by simulating DMMs one can accelerate (in
number of iterations) the pre-training of RBMs as much as
the reported hardware application of the quantum annealing
method implemented by the D-Wave machine on the same net-
work and data set [57]. However, the memcomputing approach
is found to perform far better than the D-Wave machine in
terms of training-quality [55]. In addition, the memcomputing
approach has been shown to maintain a quality advantage
(> 1% in accuracy, corresponding to a 20% reduction in error
rate) over state-of-the-art supervised-learning training.



To better understand the physical reason behind this effi-
ciency, [58] shows both numerically and analytically that the
transient dynamics of DMMs proceeds via a succession of
classical trajectories (instantons) that connect critical points
(namely the zero solutions of Egs. 1 and 2) in the phase
space with different stability (indexes).

The existence of these instantonic trajectories is the reason
for the Dynamical Long-Range Order (DLRO) in the system.
DLRO means that distant parts of the machine can correlate
during dynamics, thus allowing the efficient computation of
complex problems. Another advantage of these transient dy-
namics is that the critical points are topological objects, so
that their number and stability cannot be easily changed by
perturbations and noise unless the topology of the phase space
itself is changed. This would require changing the physical
circuit itself.

As a consequence, the solution search of DMMs is very
robust to external perturbations, a fact that has also been shown
explicitly by adding noise to Eqs. 1 and 2 [59]. Recently, this
DLRO was more clearly demonstrated in the solution of a
difficult problem that is particularly important in physics: the
problem of the frustrated-loop using spin glass [56]. In this
case, it was shown that DMMs allow for the collective flipping
of clusters of spins spanning the entire lattice, as if the system
underwent a continuous phase transition.

All these studies show that memcomputing, and in particular
its digital (hence scalable) version, is a promising alternative to
the present computing paradigm capable of tackling a variety
of problems of interest to science and technology.

V. CONCLUSIONS

This paper addressed the rising need for disruptive com-
puting models beyond our current von Neumann computing
model to continue to sustain growing computational needs.
Beyond a brief survey of existing emerging computing models,
three computing solutions were presented and the benefits pro-
vided by these suggestions were thoroughly discussed. Quan-
tum computing was considered from its most basic physics
to the practicalities of making a useful computer, including
the necessary micro architecture (qubits) and programming
capabilities. The challenges of developing such a system were
outlined, along with some hopeful applications. Also presented
were novel ways of computing using intrinsic oscillators. The
physics of this idea has been around for over 40 years but com-
puting applications have not been considered until recently. In
particular, this section suggested a physical computation model
based on coupled oscillators made from VOs; and showed
the efficiency of such a model when compared to a CMOS-
based computation. Finally, memcomputing, which uses self-
organizing logic gates to solve complex computing problems
efficiently, was discussed. The digital form of this model was
considered specifically in terms of training RBMs and other
optimization problems.
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