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1. Introduction and conventions for the paper

Over an arbitrary field F, let S = F[PN ] = F[x0, x1, . . . , xN ] be the standard N-graded 
polynomial algebra. The groundbreaking work of Ein–Lazarsfeld–Smith and Hochster–
Huneke [8,16] implies that the symbolic power I(Nr) ⊆ Ir for all graded ideals 0 � I � S

and all integers r > 0. Using graded ideals of star configurations in PN , Bocci and Har-
bourne [4] showed that in securing these containments one cannot replace N by some 
integer 0 < C < N , even asymptotically. In particular, I(4) ⊆ I2 holds for all graded 
ideals in F[P2], and Huneke asked whether an improvement I(3) ⊆ I2 holds for any 
radical ideal I defining a finite set of points in P2. Building on this, Harbourne pro-
posed dropping the symbolic power from Nr down to the Harbourne–Huneke bound
Nr − (N − 1) = N(r − 1) + 1 when N ≥ 2 [3, Conj. 8.4.2]: i.e.,

I(N(r−1)+1) ⊆ Ir for any graded ideal 0 � I � S, all r > 0, and all N ≥ 2. (1)

There are several scenarios where these improved containments hold: for instance, they 
hold for all monomial ideals in S over any field [3, Ex. 8.4.5]; see the recent ideal con-
tainment problem survey by Szemberg and Szpond [20, Thm. 3.8], as well as recent work 
of Grifo–Huneke [12] in 2017.

However, Dumnicki, Szemberg, and Tutaj-Gasińska showed in characteristic zero [7]
that the containment I(3) ⊆ I2 can fail for a radical ideal defining a point configuration 
in P2. Harbourne–Seceleanu showed in odd positive characteristic [13] that (1) can fail 
for pairs (N, r) �= (2, 2) and ideals I defining a point configuration in PN . Akesseh [1]
cooks up many new counterexamples to (1) from these original constructions via finite, 
flat morphisms ϕ# : PN → PN . No prime ideal counterexample is known.

Lately, there has been better sustained success in showing that a containment in (1)
fails – and perhaps, more fervor. However, we want to revisit the fact that in arbitrary 
characteristic (1) holds for all monomial ideals in S. In particular, our investigation 
of Harbourne–Huneke bounds improves upon the fact that P (N(r−1)+1) ⊆ P (r) =
P r for all r > 0 and for all monomial prime ideals P in S (i.e., monomial ideals gener-
ated by subsets of the variables x0, . . . , xN ). Indeed, P (r) = P r for all r whenever P is 
a complete intersection ideal in S, and for all r > 0, N(r − 1) + 1 ≥ (r − 1) + 1 = r.

The goal of this paper is to show that a variant of (1) holds for several familiar classes 
of ideals (e.g., combinatorial ideals such as monomial primes) in certain non-regular 
rings – even though it already fails for a large class of ideals defining point configurations 
in PN , and hence can fail for arbitrary graded ideals in F[PN ]. More precisely, we work 
in the setting of rational surface singularities and higher-dimensional normal toric rings. 
First, we demonstrate how one can strengthen Lemmas 1.1 and 2.6 of our IJM paper 
[21] to a version involving a Harbourne–Huneke bound:

Lemma 1.1. Let R be a Noetherian normal domain of positive Krull dimension whose 
global divisor class group Cl(R) := Cl(Spec(R)) is annihilated by an integer D > 0. 
Then
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q(D(r−1)+s) = (q(D))r−1q(s), and q(D(r−1)+1) ⊆ qr

for all ideals q ⊆ R of pure height one, all r > 0, and all 0 ≤ s < D.

When the domain R in this lemma is two-dimensional, P (r) = P r when the ideal P is 
zero or maximal, and so we infer that P (D(r−1)+1) ⊆ P r for all prime ideals P in R and 
all r > 0, and that P (3) ⊆ P 2 for all primes when D = 2 works. As discussed in [21], the 
above lemma already applies to any two-dimensional, local rational singularity (Lipman 
[17]) and the coordinate rings of simplicial toric varieties; see Theorem 3.6 below. The 
intro to [21] gives Lipman’s definition of two-dimensional, normal local rational singu-
larities; Section 3 therein gives remarks on class groups, both for these singularities and 
for toric varieties. We prove a result for Veronese rings (Theorem 5.4 below) from which 
one can infer that the ideal containment in the lemma can be tight by example.

However, it is the result to follow that inspires the chosen title for this paper. It allows 
us to give first examples of the Harbourne–Huneke bound for all monomial primes in 
certain normal algebras of dimension three or higher, subalgebras of a Laurent polynomial 
ring that are generated by monomials. These domains are the coordinate rings of normal 
affine toric varieties, called toric rings, monomial rings, or affine semigroup rings. In this 
setting, we adduce a result (Proposition 2.1) on ideal containment preservation along 
faithfully flat ring extensions, as part of deducing the following

Theorem 1.2. Let R1, . . . , Rn be normal affine semigroup rings over a field F. For each 
1 ≤ i ≤ n, suppose there is an integer Di > 0 such that P (Di(r−1)+1) ⊆ P r for all r > 0
and all monomial primes P ⊆ Ri. Set D := max{D1, . . . , Dn}. Then Q(D(r−1)+1) ⊆ Qr

for all r > 0 and any monomial prime Q in the normal affine semigroup ring R =
R1 ⊗F · · · ⊗F Rn.

To clarify, a normal affine semigroup F-algebra A has an F-basis of Laurent monomials 
and an ideal in A is monomial if it is generated by monomials. See Section 3 for more 
details.

All normal toric rings of dimension at most two have finite cyclic divisor class group, 
and thus satisfy the hypotheses on the Ri factors in the theorem; aside from these cases, 
the factors Ri may be taken from the following classes of rings (including those of Krull 
dimension three or higher):

Theorem 1.3. Let S = F[x1, . . . , xn] (n ≥ 1) be a polynomial ring over an arbitrary field 
F and consider the module-finite extensions of normal toric rings VD ⊆ S ⊆ HD, where

1. VD ⊆ S is the D-th Veronese subring with its standard N-grading, and
2. HD = F[z, x1, . . . , xn]/(zD − x1 · · · xn) is a hypersurface ring.

Then P (D(r−1)+1) ⊆ P r for all r > 0, where P is a monomial ideal in any of the three 
rings.
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Conventions: All our rings are Noetherian and commutative with identity. From Section 4
onwards, our rings will be affine F-algebras, that is, of finite type over a fixed field F of 
arbitrary characteristic. By algebraic variety, we will mean an integral scheme of finite 
type over the field F.
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discussions along the way. I also thank Daniel Hernández, Jack Jeffries, Luis Núñez-
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2. Symbolic powers, faithful flatness, and the proof of Lemma 1.1

2.1. Symbolic powers and faithful flatness

If I is any proper ideal in a nonzero Noetherian ring R, and AssR(R/I) is the set of 
associated primes of I, we define its a-th (a ∈ Z>0) symbolic power ideal I(a) by the 
rule:

I(a) := IaW −1R ∩ R, where W = R −
⋃

{P : P ∈ AssR(R/I)}.

Equivalently, I(a) = {f ∈ R : sf ∈ Ia for some s ∈ W}. While Ia ⊆ I(a) for all a, the 
converse can fail for a > 1: I(1) = I since W is the set of nonzerodivisors modulo I.

Consider a flat map φ : A → B of Noetherian rings. In what follows, the ideal JB :=
〈φ(J)〉B for any ideal J in A, and JrB = (JB)r for all r ≥ 0 since the two ideals share 
a generating set. For any A-module E, the proof of Theorem 23.2 (ii) in Matsumura [18]
shows that

AssB(E ⊗A B) =
⋃

P ∈AssA(E)

AssB(B/PB). (2)

We define a set I(A) = {proper ideals I ⊆ A : AssB(B/IB) = {PB : P ∈ AssA(A/I)}}. 
Setting E = A/I in (2), we observe that I ∈ I(A) if and only if the extended ideal PB

is prime for all P ∈ AssA(A/I). Our paper [22] records a simple example to illustrate 
that in an arbitrary faithfully flat ring extension, I(A) need not contain all prime ideals 
in A, let alone all proper ideals.

Proposition 2.1. Suppose φ : A → B is a faithfully flat map of Noetherian rings. Then 
for each I ∈ I(A) and all integer pairs (N, r) ∈ (Z≥0)2, we have

I(N)B = (IB)(N), (3)

and I(N) ⊆ Ir if and only if (IB)(N) = I(N)B ⊆ IrB = (IB)r.
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Proof. First, I(N)B ⊆ (IB)(N): indeed, if f ∈ I(N), then sf ∈ IN for some s ∈ A such 
that

s /∈
⋃

P ∈AssA(A/I)

P
(�)=

⋃
P ∈AssA(A/I)

(PB ∩ A) =

⎛
⎝ ⋃

P ∈AssA(A/I)

PB

⎞
⎠ ∩ A

where (�) holds by faithful flatness; it follows that s /∈
⋃

P ∈AssA(A/I) PB =⋃
Q∈AssB(B/IB) Q, where equality holds since I ∈ I(A) by hypothesis. We thus con-

clude that f ∈ (IB)(N).
By definition, (IB)(N)BW = (IB)N BW = IN BW since all three ideals contract to 

(IB)(N), where BW = W −1B denotes the ring obtained via localization of B at the 
multiplicative system

W = B −

⎛
⎝ ⋃

Q∈AssB(B/IB)

Q

⎞
⎠ = B −

⎛
⎝ ⋃

P ∈AssA(A/I)

PB

⎞
⎠ .

Notice that since I(N)B ⊆ (IB)(N), the right-hand containment holds in

IN BW ⊆ I(N)BW = (I(N)B)BW ⊆ (IB)(N)BW = IN BW .

Thus I(N)B and (IB)(N) localize to the same ideal IN BW ; contracting back to B, 
we conclude that (3) holds for all N ≥ 0. Finally, (3) gives both implications of the 
second part of the proposition, adducing faithful flatness once more to contract an ideal 
containment to A. �

We adapt Proposition 2.1 later on (cf., Proposition 4.4) to prove Theorem 4.1, from 
which Theorem 1.2 follows as an immediate corollary.

2.2. Preliminaries on divisor class groups

Our main references are Fossum [9], Hartshorne [14, II.6], Hochster [15], and Mat-
sumura [18, Ch. 11]. However, we opt to state mathematical definitions and results from 
these sources only for Noetherian normal domains, rather than for Krull domains in 
general as is done in [9].

Throughout, R will denote a Noetherian normal domain. Let P denote the set of 
height-one primes in R. As noted in Matsumura’s chapter on Krull rings [18, Corollary 
of Thm. 12.3], when f ∈ R is a nonzero nonunit, and νP is the discrete valuation on the 
DVR RP (for P ∈ P), we have a unique primary decomposition

(f)R =
⋂

P (NP ), where NP := νP (f) = 0 for all but finitely many P.

P ∈P
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We define the Weil divisor of f to be div(f) :=
∑

P ∈P NP · P . Additionally, we define 
the trivial effective Weil divisor div(〈1〉R) = div(R) = [R] := 0 of the unit ideal to have 
identically zero Z-coefficients.

Definition 2.2. The divisor class group of a Noetherian normal domain R,

Cl(R) = Cl(Spec(R)),

is the free abelian group on the set P of height one prime ideals of R modulo relations

a1P1 + . . . + arPr = 0,

whenever the ideal P (a1)
1 ∩ . . . ∩ P

(ar)
r is principal.

In particular, Cl(R) is trivial if and only if R is a UFD [14, II.6]. Both conditions 
mean that every height one prime ideal in R is principal. We note that P (a) = P a for 
all a > 0 and all height one primes P in a Noetherian UFD.

We now record three theorems without formal proof, consolidating some results from 
Ch. II, Sections 7, 8, and 10 of Fossum [9]. The first result consolidates some immediate 
consequences of a fact called Nagata’s theorem [9, Thm. 7.1], on the behavior of class 
groups under localization.

Theorem 2.3 (cf., Fossum [9, Cor. 7.2, Cor. 7.3]). Let S be a multiplicatively closed 
subset of a Noetherian normal domain A. Then:

1. The natural map Cl(A) → Cl(S−1A) is a surjection of abelian groups. The kernel is 
generated by the classes of the height one prime ideals which meet S.

2. If S is generated by prime elements of A, then Cl(A) → Cl(S−1A) is an isomorphism 
of abelian groups.

The next two results will be especially useful in Section 3. They allow us to reduce 
class group computations to particularly nice cases where we end up enjoying a more 
incisive handle on computing class groups up to isomorphism.

Theorem 2.4 (cf., Fossum [9, Thm. 8.1, Cor. 8.2]). Working with polynomial ring ex-
tensions of a Noetherian normal domain A, we have isomorphisms for any n ∈ Z>0:

Cl(A) ∼= Cl(A[X1, . . . , Xn]) ∼= Cl(A[X±1
1 , . . . , X±1

n ]).

Proof sketch. One can induce on n with base case n = 1. Assuming n = 1, the left-hand 
isomorphism is the content of Fossum [9, Thm. 8.1]. For the right-hand isomorphism, 
apply Theorem 2.3(2) to the polynomial ring B = A[X] and the multiplicatively closed 
set S ⊆ B generated by the prime element X ∈ B, so S−1B = A[X±1] is a Laurent 
polynomial ring in one variable over A. �
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Theorem 2.5 (cf., Fossum [9, Cor. 10.3, Cor. 10.7]). Suppose that A = ⊕∞
i=0Ai is an 

N-graded Noetherian normal domain where A0 = F is a field, with homogeneous maximal 
ideal m = ⊕∞

i=1Ai. Suppose that F′ is any field extension of A0 = F, and that A′ :=
A ⊗FF′ is a Noetherian normal domain. Then A′ is faithfully flat over A and the induced 
homomorphism Cl(A) → Cl(A′) is injective.

2.3. The proof of Lemma 1.1

We start by recalling the following proposition deduced in [21]. To clarify, an ideal has
pure height h is every associated prime has height h. In particular, none are embedded.

Proposition 2.6 (cf., [21, Prop. 2.5]). Let R be a Noetherian normal domain of positive 
Krull dimension, and q any ideal of pure height one with associated primes P1, . . . , Pc. 
Then:

(a) There exist positive integers b1, . . . , bc, uniquely determined by q, such that the sym-
bolic power q(E) = P

(Eb1)
1 ∩ . . . ∩ P

(Ebc)
c for all E ≥ 0.

(b) If either (1) D · Cl(R) = 0, or (2) the class [q] ∈ Cl(R) has finite order D, then for 
all integers r ≥ 0, q(Dr) = (q(D))r is principal and q(Dr) ⊆ qr.

Per part (a) of this proposition, we may define Weil divisors

div[q] := b1 · P1 + · · · + bc · Pc, div[q(E)] := E · div[q] = Eb1 · P1 + · · · + Ebc · Pc,

where E > 0. In particular, div[q(A+B)] = div[q(A)] +div[q(B)] for all nonnegative integers 
A and B.

Proof of Lemma 1.1. Our proof of the first claim replaces r − 1 with r ≥ 0. Per Propo-
sition 2.6(b), suppose q(Dr) = (q(D))r = (fr) is principal for all r ≥ 0 and some nonzero 
f ∈ R. Now set I = q(s). Following the first proof in Hochster’s notes [15], we have a 
short exact sequence

0 → (fr)R
(fr)I → R

(fr)I → R

(fr)R → 0

and (fr)R
(fr)I

∼= R/I as R-modules via the R-linear map φ : R � (fr)R
(fr)I with φ(g) = gfr. 

Thus per our exact sequence (cf., Matsumura [18, Thm. 6.3]),

∅ �= AssR(R/(fr)I) ⊆ AssR(R/I) ∪ AssR(R/(fr)R)

and so AssR(R/(fr)I) contains only height one primes since the latter two sets do. 
Finally, comparing Weil divisors of pure height one ideals
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div[(fr)I = (q(D))rq(s)] (∗)= div[(fr)R] + div[I]

= div[q(Dr)] + div[q(s)] = div[q(Dr+s)].

As Hochster notes, one can check identity (*) after first localizing at each height one 
prime Q; in this case, the identity is obvious in a DVR. Per (*), the two pure height 
one ideals q(Dr+s), (q(D))rq(s) have the exact same primary decomposition and hence 
are equal. To conclude: since q(D) ⊆ q(1) = q, setting s = 1 yields q(D(r−1)+1) =
(q(D))r−1q(1) ⊆ qr−1+1 = qr. �

We close by remarking that after adapting the statement of [21, Lem. 2.6] to feature 
the Harbourne–Huneke bounds, the exact same proof we gave in [21] will suffice. Namely, 
we reduce to the local case, and then invoke Lemma 1.1 from the present paper.

3. Toric algebra preliminaries

We review notation and relevant facts from toric algebra, citing Cox–Little–Schenck 
[5, Ch. 1, 3, 4] and Fulton [10, Ch. 1, 3]. A lattice is a free abelian group of finite rank. 
We fix a perfect bilinear pairing 〈·, ·〉 : M × N → Z between two lattices M and N ; this 
identifies M with HomZ(N, Z) and N with HomZ(M, Z). Our pairing extends to a perfect 
pairing of finite-dimensional vector spaces 〈·, ·〉 : MR × NR → R, where MR := M ⊗Z R
and NR := N ⊗Z R.

Fix an N -rational polyhedral cone and its M -rational dual: respectively, for some
finite subset G ⊆ N − {0} these are closed, convex sets of the form

C = Cone(G) :=
{∑

v∈G

av · v : each av ∈ R≥0

}
⊆ NR, and

C∨ := {w ∈ MR : 〈w, v〉 ≥ 0 for all v ∈ C} = {w ∈ MR : 〈w, v〉 ≥ 0 for all v ∈ G}.

By definition, the dimension of a cone in MR or NR is the dimension of the real vector 
subspace it spans; a cone is full(-dimensional) if it spans the full ambient space. A cone 
in MR or NR is pointed (or strongly convex) if it contains no line through the origin. 
A face of C is a convex polyhedral cone F in NR obtained by intersecting C with a 
hyperplane which is the kernel of a linear functional m ∈ C∨; F is proper if F �= C. 
When C is both N -rational and pointed, so is every face F . Each such face F �= {0} has 
a uniquely-determined set GF of primitive generators. By definition, v ∈ N is primitive
if 1

k · v /∈ N for all k ∈ Z>1.
There is a bijective inclusion-reversing correspondence between faces F of C and faces 

F ∗ of C∨, where F ∗ = {w ∈ C∨ : 〈w, v〉 = 0 for all v ∈ F} is the face of C∨ dual to F

[10, Sec. 1.2]. Under this correspondence, either cone is pointed if and only if the other 
is full, and

dim(F ) + dim(F ∗) = dim(NR) = dim(MR). (4)
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Fix an arbitrary ground field F and a cone C as above in NR. The semigroup ring 
RF = F[C∨ ∩ M ] is the toric F-algebra associated to C. This ring RF is a normal domain 
of finite type over F [5, Thm. 1.3.5]. Note that RF has an F-basis {χm : m ∈ C∨ ∩ M} of 
monomials, giving RF an M -grading, where deg(χm) := m. A monomial ideal (also called 
an M -homogeneous or torus-invariant ideal) in RF is an ideal generated by a subset of 
these monomials. When C∨ is pointed, RF also has a non-canonical N-grading obtained 
by fixing any group homomorphism M → Z taking positive values C∨ ∩ M − {0}. The 
set {χm : m ∈ C∨ ∩M − {0}} generates the unique homogeneous maximal ideal m under 
this N-grading.

Remark 1. In forming the toric algebra F[C∨ ∩ M ], there is no loss of generality in 
assuming C is pointed in NR. Indeed, because C∨ ∩ M = C∨ ∩ M ′ where M ′ = M ∩
{R-span of C∨ in MR}, we may replace M by M ′ to assume C∨ is full in (M ′)R. Now, 
replacing N and C by the duals of M ′ and C∨, we may assume that C is pointed in 
N ′ = HomZ(M ′, Z). See [5, Thm. 1.3.5] for details.

Fix a face F of a pointed rational cone C: [10, p. 53] records a surjective M -graded 
ring map

φF : RF = F[C∨ ∩ M ] � F[F ∗ ∩ M ], φF (χm) =
{

χm if 〈m, v〉 = 0 for all v ∈ F

0 if 〈m, v〉 > 0 for some v ∈ F.

Both rings are domains. The monomial prime ideal of F , PF := ker(φF ), has height 
equal to dim(F ). Conversely, any monomial prime of RF corresponds bijectively to a 
face of C.

Lemma 3.1. Fix a face F of a pointed rational cone C, and the monomial prime PF ⊆ RF

above. Let GF be the set of primitive generators of F , and set vF :=
∑

v∈GF
v ∈ F ∩ N . 

Then

PF = ({χm : m ∈ C∨ ∩ M and the integer 〈m, vF 〉 > 0})RF. (5)

Proof. First, in defining φF (χm) above, notice we can work with v ∈ GF without loss 
of generality. Now, fix m ∈ C∨ ∩ M . Then 〈m, v〉 ∈ Z≥0 for all v ∈ C ∩ N . As 〈·, ·〉 is 
bilinear, (5) follows since a sum of nonnegative integers is positive if and only if one of 
the summands is positive. �
Proposition 3.2 (Minkowski sum-ideal sum). Suppose C ⊆ NR is a pointed rational poly-
hedral cone, and RF = F[C∨ ∩ M ] is the corresponding toric F-algebra. When a face 
F = Cone(GF ) = ρ1 + . . . + ρ� as a Minkowski sum of rays,

PF =
�∑

j=1
Pρj

(6)

as a sum of ideals.
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Proof. Let GF = {uρj
: 1 ≤ j ≤ �} consist of the primitive ray generators. Any v ∈ F

satisfies

v =
�∑

j=1
ajuρj

, for some a1, . . . , a� ∈ R≥0.

Given any w ∈ C∨, 〈w, v〉 ≥ 0 for all v ∈ C. Thus for v ∈ F as above,

0 ≤ 〈w, v〉 =
�∑

j=1
aj〈w, uρj

〉, for some a1, . . . , a� ∈ R≥0,

and so 〈w, v〉 is positive if and only if 〈w, uρj
〉 > 0 for some 1 ≤ j ≤ �. We infer from 

this that the monomial ideals PF and 
∑�

j=1 Pρj
have a generating set in common, and 

hence are equal. �
Definition 3.3. With notation as in Proposition 3.2, we call (6) a Minkowski sum-ideal 
sum decomposition for PF .

Remark 2. Adapting the proof of Proposition 3.2 accordingly, we could use any decom-
position of F as a Minkowski sum of faces, the latter need not be rays.

Our next goalpost is Lemma 3.4 on decomposing monomial primes in tensor products 
of normal toric rings. Fix two pointed rational polyhedral cones Ci = Cone(Si) ⊂ (Ni)R
(i = 1, 2), where each Si consists of the primitive ray generators. Define lattices N =
N1 × N2, M = M1 × M2 per the standing conventions. Let 〈, 〉i : Mi × Ni → Z and 
〈, 〉 : M × N → Z indicate our three designated bilinear pairings.

Remark 3. While tedious, we could pedantically write down compatibility conditions 
to the effect that the output values of these pairings will agree relative to the obvious 
Z-linear embeddings Ni ↪→ N and Mi ↪→ M , e.g., N1 ∼= N1 × {0}. In particular, in a 
slight abuse of notation, going forward we identify

〈, 〉 = 〈, 〉1 + 〈, 〉2.

This generalizes the usual dot product setup naturally, ZE ⊆ RE , where E = m + n as 
a sum of positive integers.

The product cone C = C1 × C2 in NR is a pointed rational polyhedral cone. In terms 
of ray generators, C is generated as

C = (C1 × {0}) + ({0} × C2) = Cone[(S1 × {0}) ∪ ({0} × S2)] ⊆ NR.



R.M. Walker / Journal of Algebra 516 (2018) 125–148 135
Note that

C∨ = (C1 × {0})∨ ∩ ({0} × C2)∨ = C∨
1 × C∨

2 .

For the right-hand equality, we defer to Remark 3.

Lemma 3.4. For n ≥ 2, let R1, . . . , Rn be normal toric rings over a field F, built from 
pointed rational polyhedral cones Ci ⊆ (Ni)R, respectively. Consider the normal toric 
ring R ∼= R1 ⊗F · · · ⊗F Rn. Every monomial prime ideal Q in R can be expressed as a 
sum Q =

∑n
i=1(PiR) of expanded ideals, where each ideal Pi ⊆ Ri is a monomial prime.

Proof. Induce on n with base case n = 2; we focus on the base case for the remainder 
of the proof. Suppose Ri = (Ri)F = F[C∨

i ∩ Mi], and

R = RF = F[C∨ ∩ M ] ∼= R1 ⊗F R2.

Any monomial prime in R corresponds bijectively with a face of C. All faces of C are 
of the form F = F1 × F2 where Fi is a face of Ci. Given F as stated, with QF ⊆ R the 
corresponding monomial prime, the base case follows from proving that

(1) QF1×F2 = QF1×{0} + Q{0}×F2 ; and
(2) As expansions of monomial ideals, QF1×{0} = PF1R, Q{0}×F2 = PF2R.

The Minkowski sum-ideal sum decomposition (6) suffices to verify both claims. First, 
to see (1), notice F1 × F2 = (F1 × {0}) + ({0} × F2) as a Minkowski sum of faces. As 
for (2), (6) allows us to reduce verification to the case where the Fi are rays. We do so 
explicitly for Qρ×{0} where ρ is a ray of C1. We will use notations χa, φb, ψc for characters 
in R, R1, R2 respectively. We express an arbitrary

w = (w1, w2) ∈ C∨ ∩ M = (C∨
1 ∩ M1) × (C∨

2 ∩ M2), (7)

where wi ∈ C∨
i ∩Mi. For w as in (7), the three characters χw, χ(w1,0) = φw1 , χ(0,w2) = ψw2

all lie in R. Indeed, given any v = (v1, v2) ∈ C with vi ∈ Ci, and w as in (7), all dot 
product terms below are nonnegative: deferring to Remark 3,

〈w, v〉 = 〈w1, v1〉 + 〈w2, v2〉
〈(w1, 0), v〉 = 〈w1, v1〉 ≥ 0, 〈(0, w2), v〉 = 〈w2, v2〉 ≥ 0.

In particular, since v ∈ C was arbitrary both (w1, 0) and (0, w2) lie in C∨ ∩ M .
Now suppose χw = χ(w1,0)χ(0,w2) = φw1ψw2 ∈ Qρ×{0}, i.e., 〈w, v〉 > 0 for some 

vector v = (v1, v2) ∈ ρ × {0}. Since v2 = 0 here, equivalently 〈w, v〉 = 〈w1, v1〉 > 0
for some v1 ∈ ρ, i.e., the character χ(w1,0) = φw1 ∈ PρR. Since χ(0,w2) = ψw2 ∈ R, 
χw = φw1ψw2 ∈ PρR. Thus Qρ×{0} ⊆ PρR. For the other inclusion: the characters 
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χ(w1,0) = φw1 as above generate PρR, and each such generator lies in Qρ×{0} since we 
already indicated above that χw ∈ Qρ×{0} if and only if χ(w1,0) = φw1 ∈ PρR. �
3.1. Hilbert bases, non-full cones, and toric divisor theory

First, suppose the pointed cone C from Remark 1 is full. Then there is a uniquely-
determined minimal generating set B for C∨ ∩M , in the sense that any other generating 
set contains B. The set B is called the Hilbert basis of the semigroup, and consists of the
irreducible vectors m ∈ C∨ ∩ M − {0}; a vector v ∈ C∨ ∩ M is irreducible if it cannot 
be expressed as a sum of two vectors m ∈ C∨ ∩ M − {0}. See [5, Prop. 1.2.17] and [5, 
Prop. 1.2.23] for details.

In case the pointed cone C is not full, the next proposition is handy.

Proposition 3.5. Let N ′
R

be the R-span of a pointed cone C ⊆ NR. Set N ′ = N ′
R

∩ N , and 
consider C as a full-dimensional cone in N ′

R
(relabeled as C ′). Let M ′ = HomZ(N ′, Z)

be the dual lattice. Then working over an arbitrary ground field F, the toric ring RF :=
F[C∨ ∩ M ] is isomorphic to R′

F
⊗F L where the toric ring R′

F
:= F[(C ′)∨ ∩ M ′] and L

is a Laurent polynomial ring over F. In particular, there is a bijective correspondence 
between the monomial primes of R′

F
and RF given by expansion and contraction of ideals 

along the faithfully flat ring map ϕ : R′
F

↪→ R′
F

⊗ L = RF. Moreover, the divisor class 
groups of RF and R′

F
are isomorphic.

Proof. While Cox–Little–Schenck [5, Proof of Prop. 3.3.9] yields the first assertion, 
Lemma 3.4 yields the second since a Laurent polynomial ring has no nonzero mono-
mial primes. As for the class group assertion, RF is a Laurent polynomial ring over R′

F

after base change, so apply Theorem 2.4. �
We now recall how to compute divisor class groups up to isomorphism when working 

over algebraically closed fields. Working over an algebraically closed field F, fix a pointed 
cone C as in Remark 1 and the pair of rings RF and R′

F
as in Proposition 3.5. When 

C �= {0}, each ρ ∈ Σ(1), the collection of rational rays (one-dimensional faces) of C, 
yields a unique primitive generator uρ ∈ ρ ∩ N for C and a torus-invariant height one 
prime ideal Pρ in R′

F
; cf., [5, Thm. 3.2.6]. The torus-invariant height one primes generate 

a free abelian group 
⊕

ρ∈Σ(1) ZPρ which maps surjectively onto the divisor class group 
of R′

F
. More precisely, we record the following well-known theorem; see [5, Ch. 4].

Theorem 3.6. With notation as in Proposition 3.5, let C ⊆ NR be a pointed cone with 
primitive generators Σ(1) as described above. Then there is a short exact sequence of 
abelian groups

0 → M ′ φ→
⊕

ZPρ → Cl(R′
F
) → 0, (8)
ρ∈Σ(1)
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where φ(m) = div(χm) =
∑

ρ∈Σ(1)〈m, uρ〉Pρ. Furthermore, Cl(RF) and Cl(R′
F
) are iso-

morphic, Cl(RF) is finite abelian if and only if C is simplicial, and trivial if and only if 
C is smooth.

Remark 4. This above result follows from [5, Prop. 3.3.9, Prop. 4.1.1–4.1.2, Thm. 4.1.3, 
Exer. 4.1.1–4.1.2, Prop. 4.2.2, Prop. 4.2.6, and Prop. 4.2.7], essentially consolidating 
what facts we need to bear in mind going forward in the manuscript.

Definition 3.7. The cone C ⊆ NR is simplicial (respectively, smooth) if C = {0} or the 
primitive ray generators form part of an R-basis for NR (resp., a Z-basis for N). We also 
apply the adjectives simplicial and smooth to the corresponding toric algebra RF and 
the toric F-variety Spec(RF).

Remark 5. In algebro-geometric language, if C as in Theorem 3.6 is simplicial, then all 
Weil divisors on Spec(RF) are Q-Cartier of index at most the order of Cl(RF).

The next lemma says we can reduce all toric divisor class group computations to the 
case where F is algebraically closed, to leverage Theorem 3.6.

Lemma 3.8. With notation as in Proposition 3.5, the divisor class groups Cl(RF) ∼=
Cl(R

F
) are isomorphic.

Proof. By now it is clear we can reduce to the case where C is a full pointed cone in NR. 
The algebra RF admits an N-grading with its zeroth graded piece being F; see the passage 
above Remark 1. We may then cite Theorem 2.5 to conclude that up to isomorphism, 
Cl(RF) ⊆ Cl(R

F
) as a subgroup. This improves to an equality for normal toric rings 

because the divisor classes of height one monomial primes belong to both groups and 
generate the latter by Theorem 3.6. �
Remark 6. Citing Lemma 3.8, we observe in passing that the two toric algebra results 
deduced in the IJM paper [21, Thm. 1.3, Cor. 3.2] extend to the case where we are 
working over arbitrary fields which need not be algebraically closed.

4. The proof of Theorem 1.2: new examples from old

Theorem 1.2 is an immediate corollary, indeed a uniform bound analogue, of the 
following

Theorem 4.1. For n ≥ 2, let R1, . . . , Rn be normal toric rings over a field F, Pi ⊆ Ri

monomial primes with 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, suppose there is an integer 
Di > 0 such that P

(Di(r−1)+1)
i ⊆ P r

i for all r > 0. Set D = max{D1, . . . , Dn}. Then 
Q(D(r−1)+1) ⊆ Qr for all r > 0, where the monomial prime Q =

∑n
i=1(PiR) ⊆ R ∼=

R1 ⊗F · · · ⊗F Rn.
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Prior to giving the proof, we will state two preliminary lemmas, proving the latter 
lemma.

Lemma 4.2 ([6, Ch. 3]). For any prime ideal P in a Noetherian ring S, and N ∈ Z≥0,

P (N) = P N :S (s)∞ =
⋃
j≥0

(P N :S (sj)) = P N :S (sT )

for all T � 0 and any s /∈ P belonging to all embedded primes of P N .

Lemma 4.3. Given any proper ideal I in a Noetherian ring S, and E ∈ Z≥0,

(1) I(N) ⊆ I�N/E	 for all N ≥ 0 ⇐⇒ (2) I(E(r−1)+1) ⊆ Ir for all r > 0.

Proof. The case N = 0 is trivial (the unit ideal is contained in itself), so we show 
equivalence when N > 0. Given r > 0, setting N = E(r − 1) + 1 in (1) gives (2). That 
(2) implies (1) follows from noticing that for any two positive integers N, r, we have 
r = �N/E� if and only if N = E(r − 1) + j for some 1 ≤ j ≤ E, and I(m) ⊆ I(n) when 
m ≥ n. �

Finally, we adapt Proposition 2.1 to a specialized form suited to the proof. The back-
drop will be as follows. Fix a field F. For n ≥ 2, fix nonzero F-algebras R1, . . . , Rn. 
Since R2 ⊗F · · · ⊗F Rn �= 0 is free and hence faithfully flat over F, the tensor prod-
uct R = R1 ⊗F R2 ⊗F · · · ⊗F Rn is faithfully flat over R1; indeed, R is faithfully flat 
over each Ri by permuting the tensor factor under consideration (cf., Exercise 9.11 in 
Altman–Kleiman [2]). Thus we can view the factors Ri as subrings of R.

Proposition 4.4. Given the rings Ri and R as above, suppose that R and each factor Ri

is Noetherian. Then for each 1 ≤ i ≤ n, we have I(N)R = (IR)(N) for all integers N ≥ 0
where

I ∈ I(Ri) = {proper ideals I ⊆ Ri : AssR(R/IR) = {PR : P ∈ AssRi
(Ri/I)}}.

Moreover, given (N, r) ∈ (Z≥0)2, I(N) ⊆ Ir if and only if (IR)(N) ⊆ (IR)r.

Proof of Theorem 4.1. By Propositions 3.5 and 4.4, we may assume that all the toric 
rings Ri and R are built from full-dimensional pointed rational polyhedral cones. For 
each 1 ≤ i ≤ n, let xi,1, . . . , xi,ti

be the monomial algebra generators of Ri over F
corresponding to the Hilbert basis. By the isomorphism R ∼= R1 ⊗F · · · ⊗F Rn, R is the 
F-algebra generated by {xi,1, . . . , xi,ti

: 1 ≤ i ≤ n}. We define S(N) := {(A1, . . . , An) ∈
(Z≥0)n :

∑n
i=1 Ai = N} for each N ≥ 0, so

QN =
(

n∑
i=1

(PiR)
)N

=
∑

(A1,...,An)∈S(N)

n∏
i=1

(PiR)Ai .
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We will in fact show that the monomial ideal

Q(N) ⊆
∑

(A1,...,An)∈S(N)

n∏
i=1

(PiR)(Ai). (9)

We may assume without loss of generality that all of the primes Pi are nonzero.
Take an arbitrary monomial g =

∏n
i=1 mi ∈ R where mi is a monomial in the xi,�

for 1 ≤ i ≤ n and 1 ≤ � ≤ ti. Re-indexing if necessary, we may assume that PiR =
(xi,1, . . . , xi,si

)R for 1 ≤ i ≤ n where 1 ≤ si ≤ ti, and this is a minimal generating 
set in the sense of Nakayama’s Lemma since R is N-graded by the discussion preceding 
Remark 1. Define a “complement” monomial M =

∏n
i=1
∏ti

�=si+1 xi,� consisting of all 
algebra generators not among the generators of the PiR. Any embedded prime of a 
power of Q is graded (read, monomial), so that Q(N) = QN :R (M)∞ as a saturation 
per Lemma 4.2. If g ∈ Q(N), then for all T � 0, the monomial

gMT ∈ QN =
∑

(A1,...,An)∈S(N)

n∏
i=1

(PiR)Ai ,

whence for some (A1, . . . , An) ∈ S(N) and each 1 ≤ j ≤ n we have

gMT =
n∏

i=1
mi

(
ti∏

�=si+1

xi,�

)T

= mj

n∏
i=1

m
1−δij

i

(
ti∏

�=si+1

xi,�

)T

∈
n∏

j=1
(PjR)Aj ,

where δij is the Kronecker delta. We can express (PjR)(Aj) = PjRAj :R (N )∞ where N
is any “complement” monomial built from powers of all algebra generators not among 

the generators of PjR. Therefore, setting N = N (j) =
∏n

i=1 m
1−δij

i

(∏ti

�=si+1 xi,�

)T

, we 

see mj ∈ (PjR)(Aj) for each 1 ≤ j ≤ n. Thus g =
∏n

j=1 mj ∈
∏n

j=1(PjR)(Aj). Since 
g ∈ Q(N) was arbitrary, (9) is immediate.

Finally, we show that (!) Q(N) ⊆ Q�N/D	 for all N ≥ 0 where the integer D =
max{D1, . . . , Dn}. Using (9): where A = (A1, . . . , An) ∈ (Z≥0)n,

Q(N)
(9)
⊆

∑
A∈S(N)

n∏
i=1

(PiR)(Ai)
(A)
⊆

∑
A∈S(N)

n∏
i=1

(PiR)�Ai/Di	 (B)
⊆ Q�N/D	.

To see (A), by hypothesis, for all 1 ≤ i ≤ n, P
(Di(r−1)+1)
i ⊆ P r

i for all r > 0, so 
(PiR)(Di(r−1)+1) ⊆ (PiR)r for all r > 0 by Proposition 4.4 since Pi ∈ I(Ri) by the 
proof of Lemma 3.4. Thus by Lemma 4.3, (PiR)(Ai) ⊆ (PiR)�Ai/Di	 for all Ai ≥ 0 and 
all 1 ≤ i ≤ n. As for (B): for each (A1, . . . , An) ∈ S(N), we have 

∏n
i=1(PiR)�Ai/Di	 ⊆

Q�N/D	; indeed, �Ai/Di� ≥ �Ai/D� for each 1 ≤ i ≤ n, and the integer 
∑n

i=1�Ai/D� ≥
�(
∑n

i=1 Ai)/D� = �N/D� for each (A1, . . . , An) ∈ S(N). To finish, since Q(N) ⊆ Q�N/D	

for all N ≥ 0, we invoke Lemma 4.3 again. �
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5. Proving Theorem 1.3 in a refined form, class group computations

Theorem 1.3 is easy if n = 1 or D = 1: all rings in sight are polynomial rings and 
monomial primes are complete intersections. Thus for the remainder of this section, we 
will assume that n ≥ 2 and D ≥ 2. We will give presentations of our rings as subrings of 
the domain of Laurent polynomials L = F[s±1

1 , . . . , s±1
n−1, u±1] in n indeterminates over 

the field F. The proof will proceed in cases, starting with the ring HD = F[x1,...,xn,z]
(zD−x1···xn) .

Remark 7. Maintaining all notation conventions from Section 3, in practice going forward 
we pick a basis e1, . . . , en of our lattice N with dual basis e∗

1, . . . , e∗
n for the dual lattice M , 

so that both N and M are isomorphic to Zn. Then the pairing 〈·, ·〉 becomes the usual 
dot product.

5.1. The hypersurface case

We first observe that HD is a toric ring, up to isomorphism:

Lemma 5.1. Consider the full-dimensional simplicial pointed rational polyhedral cone 
σ

(n)
D ⊆ NR

∼= Rn whose ray generators are Dei + en ∈ N for 1 ≤ i < n and en ∈ N in 
terms of the selected basis for N .

1. The Hilbert basis of the semigroup (σ(n)
D )∨ ∩ M consists of n + 1 vectors: the n dual 

basis vectors e∗
1, . . . , e∗

n, together with the vector −e∗
1 · · · − e∗

n−1 + De∗
n ∈ M .

2. The toric ring F[(σ(n)
D )∨ ∩ M ] ∼= F[x1,...,xn,z]

(zD−x1···xn) = HD.

Proof. The reader can use the hilbertBasis algorithm implemented in the Polyhedra
package in Macaulay2 [11] to check (1). For (2), recall that to each m =

∑n
i=1 mie

∗
i ∈

(σ(n)
D )∨ ∩ M we assign a Laurent monomial χm = sm1

1 · · · s
mn−1
n−1 umn in the semigroup 

ring F[(σ(n)
D )∨ ∩ M ]. Given (1), in terms of F-algebra generators we have

F[(σ(n)
D )∨ ∩ M ] = F

[
s1, . . . , sn−1,

uD

(s1 · · · sn−1) , u

]
⊆ F[s±1

1 , . . . , s±1
n−1, u±1].

Given a polynomial ring R = F[x1, . . . , xn−1, xn, z] in n + 1 variables, consider the 
surjective algebra map φ : R = F[x1, . . . , xn−1, xn, z] � F[(σ(n)

D )∨ ∩M ] under which xi �→
si for each 1 ≤ i ≤ n − 1, xn �→ uD

(s1···sn−1) , and z �→ u. Since dim(R) = dim(F[(σ(n)
D )∨ ∩

M ]) +1, we conclude that the kernel of φ is a height one prime in the UFD R, and hence 
is principal. Now F = zD − x1 · · · xn ∈ R is irreducible by Eisenstein’s Criterion and 
belongs to the kernel of φ, so ker φ = (F ), and the isomorphism claim follows. �

We now deduce the following refinement of Theorem 1.3 for HD:
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Theorem 5.2. Take the ring HD = F[x1, . . . , xn, z]/(zD − x1 · · · xn), and P one of the 
monomial prime ideals of HD (i.e., M -graded /torus-invariant); assume P is nonzero 
and nonmaximal. When D ≤ ht(P ) (the height of P ), P (E) = P E for all E > 0. If 
D ≥ ht(P ) and E ≡ 1 (mod D), then

P (E) ⊆ P
ht(P )

(
E−1

D

)
+1

.

In particular, P (Dr) ⊆ P (D(r−1)+1) ⊆ P ht(P )(r−1)+1 ⊆ P r for all r > 0.

Proof. Citing the proof of Lemma 5.1(2), the height j prime ideal Pj := (z, x1, . . . , xj)HD, 
for 1 ≤ j ≤ n − 1, equals Pτ for the j-dimensional face τ of σ(n)

D generated by Dei + en

for 1 ≤ i ≤ j. As a saturation, P
(E)
j = P E

j :HD
(
∏n

i=j+1 xi)∞. Since P
(E)
j is mono-

mial, in chasing down inclusions below it suffices to discern which monomial classes 
g = (z�xa1

1 · · · x
aj

j )(xaj+1
j+1 · · · xan

n ) ∈ HD multiply a power of m =
∏n

i=j+1 xi into P E
j . For 

g as above, by definition g ∈ P
(E)
j if and only if for all T � 0,

P E
j � mT g = z�

⎛
⎝ n∏

i=j+1
xai+T

i

⎞
⎠( j∏

i=1
xai

i

)

= z�

(
n∏

i=1
xi

)T ′ ⎛
⎝ n∏

i=j+1
xai+T −T ′

i

⎞
⎠( j∏

i=1
xai−T ′

i

)

=
(

zD·T ′+�

j∏
i=1

xai−T ′

i

)⎛⎝ n∏
i=j+1

xai+T −T ′

i

⎞
⎠ ,

where T ′ = T ′(T ) := min(a1, . . . , aj , aj+1 + T, . . . , an + T ) = min(a1, . . . , aj) for all 
T � 0. We conclude that zD·T ′+�

(∏j
i=1 xai−T ′

i

)
∈ P E

j , and infer the inequality

(D − j)T ′ +
(

j∑
i=1

ai

)
+ � ≥ E. (10)

Before proceeding, notice that since T ′ ≥ 0, when D ≤ j so that the number (D−j)T ′

is nonpositive, (10) implies that 
(∑j

i=1 ai

)
+ � ≥ E, so (z�xa1

1 · · · x
aj

j ) ∈ P E
j and hence 

g ∈ P E
j already. Thus P (E)

j = P E
j for all E > 0 when D ≤ j, since both are generated 

by monomial classes. Thus in the remainder of the proof we will assume that D ≥ j =
ht(Pj), i.e., D − j ≥ 0.

In this case, assuming E ≡ 1 (mod D), we now show that P (E)
j ⊆ P

1+j
(

E−1
D

)
j . Fix a 

monomial
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g =
(

z�

j∏
i=1

xai
i

)⎛⎝ n∏
i=j+1

xai
i

⎞
⎠ ∈ P

(E)
j ,

and T ′ = min(a1, . . . , aj) exactly as before. Now g ∈ P G
j where G := � +

∑j
i=1 ai. The 

more involved case for us is when (**) T ′ ≤ (E − 1)/D: otherwise

G ≥ a1 + · · · + aj ≥ jT ′ ≥ j(E − 1)/D + 1,

whence one easily infers that g ∈ P
j
(

E−1
D

)
+1

j . Assuming (**), we now show that G ≥
j
(

E−1
D

)
+ 1. Suppose to the contrary that G ≤ j

(
E−1

D

)
. Since g ∈ P

(E)
j , inequality (10)

above says

(D − j)T ′ + G = (D − j)T ′ +
(

j∑
i=1

ai

)
+ � ≥ E =⇒ G ≥ E − (D − j)T ′.

Then since E − 1 − DT ′ ≥ 0 by (**), and D − j ≥ 0, we see that

j (E − 1) = Dj

(
E − 1

D

)
≥ DG ≥ DE − D(D − j)T ′

= D(E − 1) + D − D(D − j)T ′

= j(E − 1) + D + (D − j)(E − 1 − DT ′)

≥ j(E − 1) + D + (D − j)(0)

= j(E − 1) + D

a contradiction. Thus G ≥ j
(

E−1
D

)
+ 1, so g ∈ P

1+j
(

E−1
D

)
j . In particular, when E =

D(r − 1) + 1, we have P (D(r−1)+1)
j ⊆ P

1+j(r−1)
j . Finally, applying coordinate changes 

according to every permutation of x[n] := {x1, . . . , xn}, any (nonzero, nonmaximal) 
monomial prime ideal in HD can be obtained from the Pj running through all indices 
1 ≤ j ≤ n − 1, along with obtaining the desired containments. �
5.2. The Veronese case

Let N = Z≥0 denote the set of nonnegative integers. To start,

Lemma 5.3. Consider the full-dimensional simplicial pointed rational polyhedral cone 
η

(n)
D ⊆ NR

∼= Rn whose ray generators are ei for 1 ≤ i < n along with the vector 
−e1 − . . . − en−1 + Den in terms of the basis selected for N .
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1. The Hilbert basis of the semigroup (η(n)
D )∨ ∩ M is the set of vectors

{
e∗

n +
n−1∑
i=1

aie
∗
i ∈ M : all ai ≥ 0 and 0 ≤

n−1∑
i=1

ai ≤ D

}
.

2. The toric ring F[(η(n)
D )∨ ∩ M ] ∼= VD, the D-th Veronese subring of the polynomial 

ring F[s1, . . . , sn−1, u] in the n indeterminates s1, . . . , sn−1, u.

Proof. The reader can use the hilbertBasis algorithm implemented in the Polyhedra
package in Macaulay2 [11] to check (1). Given (1), as an algebra over F, we have

F[(η(n)
D )∨ ∩ M ] = F

[
sa1

1 · · · s
an−1
n−1 u : each ai ≥ 0, 0 ≤

n−1∑
i=1

ai ≤ D

]

∼=
F[x(a1,...,an−1) : each ai ≥ 0, 0 ≤

∑n−1
i=1 ai ≤ D]

(xexf − xgxh : e + f = g + h ∈ Nn−1) .

Within the polynomial ring F[s1, . . . , sn−1, u], applying the correspondence

sa1
1 · · · s

an−1
n−1 u ←→ sa1

1 · · · s
an−1
n−1 uD−a1−···−an−1

takes the generators in the presentation of F[(η(n)
D )∨ ∩ M ] and recovers the usual pre-

sentation of VD in terms of degree D monomials in n variables. Therefore, (2) holds: 
F[(η(n)

D )∨ ∩ M ] ∼= VD. �
We use the toric presentation of VD to deduce the following refinement of Theorem 1.3

for VD:

Theorem 5.4. Over an arbitrary field F, take the D-th Veronese subring VD ⊆
F[s1, . . . , sn−1, u] and P one of the monomial prime ideals of VD. When P is nonzero and 
nonmaximal, P (E) ⊆ P r if and only if r ≤ �E/D�. In particular, P (Dr) ⊆ P (D(r−1)+1) ⊆
P r for all r > 0 and the right-hand containment is sharp.

Proof. Picking up from Lemma 5.3, for all 1 ≤ j ≤ n − 1, we define height one primes

Pj = Pej
=
(

sa1
1 · · · s

an−1
n−1 u : aj > 0, and 1 ≤

n−1∑
b=1

ab ≤ D

)
VD.

Then by the Minkowski sum-ideal sum decomposition (6) Pj1<···<jk
:= Pj1 +· · ·+Pjk

is a 
prime of height 1 ≤ k ≤ n −1 for each size-k subset j1 < . . . < jk of [n −1] = {1, . . . , n −1}. 
In particular, we focus on P1<···<k = (sāu : ā ∈ Tk)VD, where
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Tk :=
{

ā = (a1, . . . , an−1) ∈ Nn−1 : 1 ≤
k∑

b=1

ab ≤
n−1∑
b=1

ab ≤ D

}
.

Any monomial g in P (E)
1<···<k ⊆ P1<···<k ⊆ P1<···<n−1 belongs to P1<···<k and so decom-

poses (for some B ≥ 0) as

g = uB
∏

ā∈Tn−1

(sāu)iā =
∏

ā∈Tk

(sāu)iā

⎛
⎝uB

∏
ā∈Tn−1−Tk

(sāu)iā

⎞
⎠ ∈ P

∑
ā∈Tk

iā

1<···<k .

Note that this factorization of g into two monomial pieces (Tk versus Tn−1 − Tk) is 
unique up to applying the Veronese relations sēu · sf̄ u = sḡu · sh̄u (ē + f̄ = ḡ + h̄). 
Setting the monomial m := u ·

∏
ā∈Tn−1−Tk

sāu ∈ VD to be the product of the monomials 
sa1

1 · · · s
an−1
n−1 u with aj = 0 for all 1 ≤ j ≤ k(≤ n − 1), we have P (E)

1<···<k = P E
1<···<k :VD

(m)∞, and the monomial g is in P (E)
1<···<k precisely when for all T � 0,

g · mT =
(

uB+T
∏

ā∈Tk

(sāu)iā

) ∏
ā∈Tn−1−Tk

(sāu)iā+T ∈ P E
1<···<k.

In particular, the monomial in parentheses is in P E
1<···<k so it is a multiple of some 

E-fold product of generators of P1<···<k = (sāu : ā ∈ Tk)VD. Thus we infer that two 
inequalities must hold, signifying we have enough u’s and sj ’s (1 ≤ j ≤ k) at our 
disposal, respectively, to feasibly form such a E-fold product. These inequalities are
(1)
∑

ā∈Tk
iā + B + T ≥ E, and (2) the sum

∑
ā∈Tk

iā(a1 + · · · + ak) =
D∑

j=1
�j · j ≥ E,

where �j :=
∑

ā∈Tk,j
iā, Tk,j := {ā ∈ Tk : the partition a1 + · · · + ak = j}. Indeed,

E ≤
D∑

j=1
�j · j ≤ D

⎛
⎝ D∑

j=1
�j

⎞
⎠ =⇒

D∑
j=1

�j ≥ �E/D�,

so (2) implies that (3)
∑

ā∈Tk
iā =

∑D
j=1 �j ≥ �E/D�.1 For any monomial g ∈ P

(E)
1<···<k,

(3) implies that g ∈ P
�E/D	
1<···<k. Thus P (E)

1<···<k ⊆ P
�E/D	
1<···<k for all E > 0.

1 Together, inequalities (1) and (3) are equivalent to

∑
ā∈Tk

iā =
D∑

j=1
�j ≥ max{�E/D	, E − (B + T )} = �E/D	 for all T ≥ E.
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Additionally if we consider R with its standard N-grading, then the minimal degree 
of a monomial (e.g., a monomial generator) in P r

1<···<k is r. Noticing that for 1 ≤
j ≤ k, the degree �E/D� monomial (sD

j u)�E/D	 ∈ P E
1<···<k : (u(E+1)−�E/D	) ⊆ P E

1<···<k :
(m(E+1)−�E/D	) ⊆ P

(E)
1<···<k, we obtain the only-if part of: for each 1 ≤ k ≤ n, P (E)

1<···<k ⊆
P r

1<···<k if and only if r ≤ �E/D�.
Setting E = Dr − (D − 1) = D(r − 1) + 1, we have �E/D = (r − 1) + 1/D� = r, so 

that P (Dr−(D−1))
1<···<k ⊆ P r

1<···<k for all r > 0 and this containment is sharp.
In review, our argument does not depend crucially on which size-k index subset j1 <

. . . < jk of [n] = {1, 2, . . . , n} we worked with; going with 1 < 2 < . . . < k merely 
simplifies notation. In other words, in applying suitable permutations of the algebra 
generators for VD, one obtains the above characterization of ideal containment for all of 
the monomial prime ideals in the ring having one of the Pj as an ideal summand. To 
handle monomial primes having the height one prime

P(−1,...,−1,D) =
(

sa1
1 · · · s

an−1
n−1 u : 0 ≤

n−1∑
i=1

ai ≤ D − 1
)

as a summand, we use the F-algebra isomorphisms φj : VD → VD (1 ≤ j ≤ n − 1) under 
which a monomial algebra generator g = sa1

1 · · · s
aj

j · · · s
an−1
n−1 u with 0 ≤ A :=

∑n−1
i=1 ai ≤

D is sent to

φj(g) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sa1
1 · · · sD−A

j · · · s
an−1
n−1 u if A ≤ D − 1 and aj = 0

sa1
1 · · · s0

j · · · s
an−1
n−1 u if A = D and aj > 0

g if A ≤ D − 1 and aj > 0
g if A = D and aj = 0.

We note that φ2
j = φj ◦φj is the identity, and the height one prime φj(P(−1,...,−1,D)) = Pj : 

indeed, when h = sa1
1 · · · s

aj

j · · · s
an−1
n−1 u is a generator of Pj , aj > 0; when A ≤ D − 1, 

h = φj(h), or else D − A = 0, aj = D −
(∑

1≤i�=j≤n−1 ai

)
> 0, and h = φj(g) where g =

sa1
1 · · · s0

j · · · s
an−1
n−1 u ∈ P(−1,...,−1,D). Moreover, we conclude that a (sharp) containment 

Q(m) ⊂ Qr for any monomial prime Q with Pj as a summand translates under φj to a 
(sharp) containment (Q′)(m) ⊂ (Q′)r for a monomial prime Q′ of the same height as Q, 
with P(−1,...,−1,D) replacing Pj as an ideal summand. Having analyzed ideals with one of 
the Pj as a summand quite thoroughly, this final observation completes the proof. �

As advertised in the introduction, we want to close by drawing a connection between 
Lemma 1.1 and Theorems 5.2 and 5.4, e.g., to see that the containments in the lemma 
can be tight by example.

Remark 5.5. With notation as in Theorem 3.6, we note that if C ⊆ NR is a full pointed 
rational polyhedral cone, then we have the following presentation for the divisor class 
group:
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Cl(F[C∨ ∩ M ]) ∼=
⊕

ρ∈Σ(1) Z · [Dρ]
〈
∑

ρ∈Σ(1)〈e∗
i , uρ〉[Dρ] = 0: 1 ≤ i ≤ n〉 ,

where the e∗
i ∈ M form the dual basis to the basis e1, . . . , en ∈ N chosen in N .

Example 5.6. We work with the polyhedral cones in the proof of Theorem 1.3, showing 
that Cl(HD) ∼= (Z/DZ)n−1 and Cl(VD) ∼= Z/DZ. Although these class group facts are 
well known in certain circles and can be deduced by other means (see e.g., [19]), for 
completeness of exposition we include succinct computations.

1. The cone σ(n)
D ⊆ NR has ray generators fi = Dei + en for 1 ≤ i < n and en, and

Cl(F[(σ(n)
D )∨ ∩ Zn]) ∼=

Z · [Den
] ⊕
⊕n−1

i=1 Z · [Dfi
]

〈D[Dfi
] = 0 (1 ≤ i < n), [Den

] = −[Df1
] − · · · − [Dfn−1

]〉

∼=
Z · −[Df1

] − · · · − [Dfn−1
] ⊕
⊕n−1

i=1 Z · [Dfi
]

〈D[Df1 ] = 0, . . . , D[Dfn−1 ] = 0〉

=
⊕n−1

i=1 Z · [Dfi
]

〈D[Df1 ] = 0, . . . , D[Dfn−1 ] = 0〉
∼= (Z/DZ)n−1.

2. The cone η(n)
D ⊆ NR has ray generators ei for 1 ≤ i < n and fn = Den −

∑n−1
i=1 ei, 

and

Cl(F[(η(n)
D )∨ ∩ Zn]) ∼=

Z · [Dfn
] ⊕
⊕n−1

i=1 Z · [Dei
]

〈[Dei
] − [Dfn

] = 0 (1 ≤ i < n), D[Dfn
] = 0〉

∼= Z · [Dfn
]

〈D[Dfn
] = 0〉

∼= (Z/DZ).

6. Lingering questions related to Theorem 1.2

To summarize, we have deduced two existence criteria for uniform Harbourne–Huneke 
bounds. Lemma 1.1 holds for ideals of pure height one in a Noetherian normal domain. 
And Theorem 1.2 holds for monomial primes in finite tensor products of normal toric 
rings; we deduced Theorem 1.3 to increase the range of examples that can be used as 
tensor factors. These criteria cover a prodigious class of normal toric rings. We include 
the following illustrative example:

Example 6.1. Let pi ∈ N be the i-th prime number, Ri the pi-th Veronese subring of 
F[Xi,1, . . . , Xi,14641]. Set
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R(n) = (
n⊗

i=1
)FRi, σ(n) =

n∏
i=1

pi (the primorial function).

One can compute that Cl(R(n)) ∼= Z/σ(n) via toric divisor theory, so Lemma 1.1 says 
that

q(σ(n)(r−1)+1) ⊆ qr

for all ideals q ⊆ R(n) of pure height one, and all r > 0. Also, D = pn in Theorem 1.2, 
covering all 214641n monomial primes in R(n). The multiplier for monomial primes climbs 
much slower than the multiplier in pure height one as n climbs to infinity.

We close with a few natural lines for further investigation.

1. Does the conclusion of Theorem 1.2 extend to monomial primes in any simplicial 
toric ring? Can we identify a candidate mechanism (e.g., group-theoretic) to help 
explain and verify these Harbourne–Huneke bounds in height two or higher for a 
larger class of ideals than monomial primes?

2. Given the role of tensor products in our manuscript, do analogues of Theorems 1.2
and 4.1 hold for other graded ring constructions in the toric setting, such as Segre 
products?
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