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TENSOR-MULTINOMIAL SUMS OF IDEALS: PRIMARY DECOMPOSITIONS
AND PERSISTENCE OF ASSOCIATED PRIMES

IRENA SWANSON AND ROBERT M. WALKER

ABSTRACT. Given a polynomial ring C' over a field and proper ideals I and J whose generating
sets involve disjoint variables, we determine how to embed the associated primes of each power of
I + J into a collection of primes described in terms of the associated primes of select powers of [
and of J. We record two applications. First, in case the field is algebraically closed, we construct
primary decompositions for powers of I 4+ J from primary decompositions for powers of I and J.
Separately, we attack the persistence problem for associated primes of powers of an ideal in case
one of I or J is a non-zero normal ideal.

1. INTRODUCTION

Throughout, A = K{[z1,...,24], B= K[y1,...,p), and C = AQxg B = K[z1,...,Za,Y1,- -, Y|,
where x1,...,%q,¥y1,...,Yp are variables over a field K. We fix ideals [ ; A and J ; B. By abuse
of notation, we use the same symbol to denote ideals in A or B and their expansions to C.

Our primary focus is on constructing primary decompositions for the powers of the ideal

I+JSC,

which we call a (two-term) tensor-multinomial sum of ideals, clarifying our chosen title.
By a result of Brodmann [1] (or [2, Theorem 3.5]), the collection A4 (1) := (J,2; Assa(A/I") of
associated primes of powers of I is a finite set. By our abuse of notation, A4 (I) = Ac(I).

Definition 1.1. Suppose As(I) = Ac(I) = {Py,..., P} and Ag(J) = Ac(J) = {Q1,...,Qs}.
For each integer m > 1, fix primary decompositions

Im:pmlﬂ"'mpmr and Jm:(Jmlﬂ"'QQmsy
where for each k = 1,...,r, the ideal p,,; is either P-primary or equals C, and for £ = 1,...,s,
the ideal g0 is either Q-primary or else C. We also set por = qo¢r = C for all k, £.
Definition 1.2. A list of ideals {L.}.>0 in C is a filtration if Lo = C' and L. D L. for all ¢ > 0.

Remark 1.3. This definition differs from Ha-Nguyen—Trung—Trung [4, Section 3] only in that we
do not require L1 to be non-zero and proper — upon inspection this assumption is inessential for
the proofs of [4, Proposition 3.3, Theorem 3.4]. We briefly recall this point at the start of Section 3.

The technical heart of the paper lies in the following theorem, deduced in Section 3:

Theorem 1.4. Fiz a field K, and polynomial K-algebras A = K[x1,...,24], B = Kly1,---, Y]
and C = AQkg B=Klx1,...,Zaq,Y1,.--,Yp). Let I be an ideal in A and J an ideal in B. Then for
each integer n > 0,

Ass(C/(I+)") | J{PeMin(C/(P+Q)): Pe O Ass(C/I'),Q € Lnj Ass(C/J) Y,

i=1 j=1
and moreover

Ac(I +J) = J{P e Min(C/(P +Q)) : P € A(I),Q € A(J)}.
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We record two applications of Theorem 1.4. First, we record the following theorem, our primary
result in the paper — we construct primary decompositions for powers of I +J from filtered primary
components for powers of I and J in the case where K is algebraically closed.

Theorem 1.5 (Cf. Corollary 3.4). Let K be an algebraically closed field and suppose that for each
pair 1 <k <r and 1 < € < s, the collections {pmi}oo—y and {gme}o—y from Definition 1.1 are
filtrations. Then for each positive integer n,

I+ J)" = ﬂ m <me . qn—i,z> ;
k=1¢=1

i=0
where each Y\ Dik - qn—i¢ ts either C' or primary to the prime ideal Py + Q. Furthermore,
Ac(I+J)={Pe+Qp: 1<k <r1</(<s},
and so the cardinalities of these finite sets satisfy the relation
#Ac(I +J) = #Aa(l) - #Ap(J).

Lemma 2.1 below indicates how to easily construct filtered collections — such as {pmi}oo_, and
{@me}io—_o in Theorem 1.5 — from arbitrary primary decompositions for powers of I, J, and I + J.

Prior to obtaining Theorem 1.4, we originally pursued Theorem 1.5 with a view towards attacking
the following question on persistence of associated primes.

Question 1.6. Suppose that Ass(A/1""1) C Ass(A/I") and Ass(B/J"1) C Ass(B/J") for all
integers n > 0. When is it the case that Ass(C/(I + J)" 1) C Ass(C/(I + J)") for all n as well?

This persistence property seems to hold for prime ideals in polynomial rings that we have been
able to find in the literature and study using Macaulay2 [3]. We know of no prime ideal that fails
to satisfy persistence. That said, it seems unlikely that this persistence of associated primes holds
for all prime ideals in any polynomial ring over an arbitrary ground field.

As a second application of Theorem 1.4, we answer Question 1.6 affirmatively when one of I or
J is a nonzero normal ideal, i.e., when all the powers of I or of J are integrally closed. Said ideal
satisfies the persistence property by a result of Katz and Ratliff [7, (1.3) Theorem], and even if the
other ideal does not, the corollary to follow indicates that their sum does satisfy it, indicating that
the persistence property is remarkably persistent and robust under extension of scalars.

Corollary 1.7. Fiz a field K, along with polynomial rings A = K[z1,...,24], B = K[y1,...,ys)
and C = AQk B=Klz1,...,Zaq,Y1,.--,Yp). Let I be an ideal in A and J a non-zero normal ideal
in B. Then Ass(C/(I + J)" 1) C Ass(C/(I + J)™) for all positive integers n.

Remark 1.8. Theorems 1.4 and 1.5 and Corollary 1.7 extend in two directions. Our proofs
extend to the setting considered by Ha-Nguyen—Trung—Trung [4]. Namely, they fix Noetherian
commutative algebras A and B over a common field K, such that C' = A Qg B is Noetherian as
well, along with non-zero ideals I C A and J C B. Moreover, both results can be rendered for finite
tensor products and tensor-multinomial sums of ideals, and deduced via inductive arguments; see
the second author’s paper [9, Proof of Multinomial Theorem 2.8] which is instructive in this vein.

Acknowledgements: We thank Karen E. Smith for encouraging our collaboration and for editing
several drafts to improve exposition. The second author acknowledges support from NSF RTG grant
DMS-0943832, a 2017-18 Ford Foundation Dissertation Fellowship, and a 2018-19 Rackham Science
Award from the Rackham Graduate School at UM-Ann Arbor. Several instructive computations
were performed using Macaulay?2 [3], as reflected by the examples recorded in Section 4.
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2. PREPARATORY LEMMAS

We continue to work with the polynomial K-algebras A, B, and C as in the Introduction. Of
the lemmas recorded here, the ones cited in proofs in Section 3 are Lemmas 2.1, 2.5, and 2.7 — 2.9.

Lemma 2.1. Consider the ideal collection {pmi}oo_, from Definition 1.1 for a fizved index 1 < k <
r. If we set pl , = O pix, then {p] }2°_y is a filtration such that p , is either C' or Py-primary
for each m >0, and I"™ = (Nyp.,,. is a primary decomposition with possible redundancies.

Proof. Each p/, is a finite intersection of ideals that are either C' or Py-primary, and hence p/ , is
either C of Py-primary. Since I* D I™ for all i < m, it follows that any Py-primary component of
I'" contains I"™. Thus I"™ C N N pir = NPl C NePmk = I, so equality holds throughout. O

Lemma 2.2. For any ideals I C A and J1,Js C B,
([—I-Jl)ﬂjg =1Jo+ J1NJo.

Similarly, for any ideals I1,Io € A and J C B, [ N (I + J) = I1 N Is + I1J. In particular,
INnJ=1J.

Proof. We only prove the displayed equality because the second statement follows by symmetry,
and because the last statement follows trivially from it. We adapt the proof for [4, Lemma 3.1].
First, some notation: given sets U and V in A and B, respectively, their simple tensor set is

UV ={u®v:ueUwveV}

Let U be a K-vector space basis for I, and V' a K-vector space basis for J; N Jy. Extend V to a
K-basis V; for each J;, and extend U to a K-basis U* for A and V5 to a K-basis V5" for B. Then
U* ® V' is a K-basis for A @ B. Notice (I 4+ J1) N Ja is generated by

UeVy)uU oW))NnU e V) =U®V,)U (U (Vin))

and the right-hand side generates I.J; + (J1 N J2). O
Lemma 2.3. For any index k € Zso, let T, = {Lix}2, consist of ideals in A and J = {J;}32,
consist of ideals in B with Jo 2 J1 O Jy D ---. Then for any pair of integers r > 1 and n > 0,

N (z u) s (m z) ho

k=1 \i=0 i=0 \k=1

where Zk = Z;L:Z L. When 1y, is a filtration in C for a given index k, then in fact Ek = Iji.
An analogous identity holds when the roles of A and B are switched.

Proof. We induce on r and then on n. The case r = 1 is trivial. Observe that for all k,
> Lijdn-i =Y IipJni.
i=0 i=0

Replacing the I;; with fik for all k, it suffices to prove the lemma assuming the Z, are filtrations.
By induction it suffices to prove the case r = 2. Several times in the proof we will use Lemma 2.2.

Since [y, = C for all k, the claim holds for n = 0 as Ip1Jo N lo2Jo = Jo = (Lo1 N Ip2)Jp. Now assume

that n > 0, assuming the identity for r = 2 and n — 1. The first three equalities below, along

with the sixth, use the easy fact that for any ideals Li,Ls,Ls in a ring R, if L; C L3 then

(L1 + Lo)N Ly = L1 + (L2 N Lg); if n > 2, the fifth holds by applying Lemma 2.2 to the first boxed

intersection and applying the induction hypothesis to the latter, first replacing I;; with I/, = I
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for 1 <i<n—1. Set Sp 1, = Zf:u I Ji—; for pairs t > 1 and u > 1. Note that Sy, = C if
t < u and otherwise lies in I, for triples ¢t > u > v > 0. The left-hand intersection is

(Jn+S101) N (I +S2m1) = Jn + ((Jn +S1n1) NS2.m1) (L1 = J,, € Ly = Jp + Sin,1)

= Jp+ <<Jn + (11 N (St + 51,n,2))> N (Liz N (Jp-1 + 52,n,2))> [L1=Skn1 C Ly =1, k=1,2]
=Jp+ ((Jn +111) N (Jp—1 +S1n2) N ({12 N (Jp—1 + 52,n,2))> [L1=J, C Ly = Jp—1+ Sing

=J, + <(Jn + 1) NTiaN (Jpe1 4+ Sin2) N (Jn—1 + ng,g)) [by reordering].

If n =1, we are now done with Lemma 2.2, otherwise we continue with equalities:

=J,+ ((Jnflg + I N [12) N (Jn—l + Z([il N I,’Q)Jn_i)>

1=2

=Jn+ <((Jn[12 + 1 N I) N dng) + > (T 0 Ii2)Jn—i> (L1 =Y (In NIig)Jn_i C Ly = Iy N Iy

=2 1=2
=Jn+ (Jnflz + <Z(Ii1 N Ii2)<]n—i>> [L1 = Jnlia € L = Jp-1],
i=1
which certainly equals the desired right-hand sum. The lemma then follows in full. O

Remark 2.4. The same argument proves that if the J; form a chain of ideals, then

N ( u) - (m z) T

k=1 \i=0 i=0 \k=1
where ]A'Zk is the sum of those I, for which J,,_; € J,,_;. Indeed, this follows from the identity
Ligdn—i + Ligdn—j = LigJn—i + LigJn—i + LigJn—j.

Lemma 2.5. Suppose the ideal collections {pni }oro and {gne}5> from Definition 1.1 are filtrations
for each fixed pair 1 <k <r and 1 <{¢ <s. Then for each positive integer n,

I+ J)" = ﬂ ﬂ <szk : qn—i,z) :
k=1

=1 i=0
Proof. We invoke Lemma, 2.3 twice:

s

O () - (b)) (S5 ) - 2

i=0 k

=0

Remark 2.6. If P, is not associated to I,I%,...,I", then no components involving the p;; are
needed in the decomposition of (1 +.J)" in the lemma above. However, if P} is associated to some
I" for ¢ < n, then p1,...,pnr may or may not be needed, as shown in examples in Section 4.

Lemma 2.7. Let f be a non-zero divisor in A. Let I be an ideal in A and J an ideal in B. Then
I+J):f={T:f)+J.
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Proof. Let ¢ € (I +J): f. Then by Lemma 2.2,

cf eI+ I)N(f)=In(f)+J(f)=UT:f)f +I(f),
so that ¢ € (I : f) + J. The other inclusion is easy. O

Lemma 2.8. Let Ly C Lo be proper ideals in a Noetherian ring R and let P be a prime ideal
associated to Ly but not to La. Then (L1 : P) N Lo properly contains L1 and there exists f € (L :
P)N Ly such that Ly : f = P.

Proof. Certainly L; is contained in (L; : P) N Ly. Suppose that Ly = (Ly : P) N Ly. Let p be
a P-primary component of Li. Then p : P is the only P-primary component on the right-hand
side of the ideal equality, and so by the mix-and-match theorem of primary decompositions due
to Yao [10], p : P is also a primary component of L; on the left-hand side. But then p : P" is a
primary component of Ly for all non-negative integers n, but this is a contradiction as for large n,
p: P" = R. Thus (L; : P) N Ls properly contains L.

Let L’ be the intersection of all primary components of L; whose radicals properly contain L.
Then P is not associated to Ly N L' and L1 C Ly N L’'. Then by the previous paragraph there exists
fe(Ly:P)NLyNL such that f ¢ L. Then P C Ly : f, and the latter is a proper ideal whose
associated primes are all associated to L; and none properly contain P. Thus P = Ly : f. O

Lemma 2.9. Let L be an ideal in a Noetherian ring R containing a non-zerodivisor. Let n be a
positive integer and suppose that L,L?,..., L™ ' are integrally closed. Suppose that P is associated
to L™. Then there exists f € L™ such that L™ : f = P.

Proof. Let g, be the intersection of primary components of L™ whose radicals properly contain P.
Certainly L™ C (L™ : P)N L" ! Ng,. Suppose that equality holds. By Lemma 2.8, P is associated
to L1 N g,, and hence to L™~ !. Colon the equality by L:

(L":L): P)Nn (L™ :L)N(gn:L)=L": L.

By the determinantal trick due to Priifer (see [6, Corollary 1.1.8]) for all positive integers k, L* : L
is a subset of the integral closure of L*~1. By assumption this equals LF~1 if & < n. Thus

(L" ' P)NL" %N (q,: L) =L""L.
By repeating this step we get that P is associated to L"2,L"3,..., L and that
(L:P)N(qy:L" H=(L:P)NnL°N(q,: L") =L.

If the P-primary component on the right is p, then the only P-primary component on the left
is p : P, and so by the mix-and-match theorem of primary decompositions due to Yao [10], in
a primary decomposition of L we can replace p with p : P, and similarly that with p : P2, et
cetera. But for large m, p : P™ = R, which says that P is not associated to L after all, which is
a contradiction. Thus L" is properly contained in (L™ : P) N L" ' N ¢q,. Let f be in the latter
ideal and not in L™. Then L™ : f is a proper ideal which contains P and has no associated primes
strictly larger than P, so that L™ : f = P. d

3. PROOFS OF THE KEY RESULTS

We continue to work with the polynomial K-algebras A, B, and C as in the Introduction. Of
the lemmas recorded above, we require Lemmas 2.1, 2.5 and 2.7 —2.9 going forward.

Our proofs rely on Hai-Nguyen—Trung—Trung [4, Lemma 2.4, Theorem 2.5, Proposition 3.3, Proof
of Theorem 3.4]. The proofs of these results in [4] work for filtrations as defined in Definition 1.2.
By [4, Theorem 2.5], given nonzero finitely-generated modules M and N over A and B, respectively,

Assc(M @k N) =|_J{P € Ming(C/p+q): p € Assa(M), g € Assp(N)}, (3.1)
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in terms of sets of associated primes and minimal associated primes. By [4, Proposition 3.3], for
any filtrations {I;};>0 and {J;};>0 in A and B, respectively, we have for any integer n > 0 an
isomorphism of C-modules deduced at the level of K-vector spaces:

Ditj—nlidj
Zi—l—j:n—l-l 1 Jj
Lemma 3.1. Suppose that for each pair 1 <k <r and 1 < { < s, the collections {pmr}oo_, and

{G@me}So_o from Definition 1.1 are filtrations. Then for each triple of integersn > 1, k € {1,...,1},
te{l,...,s},

= @ (Li/Iiv1 @k Jn—if Jn—i+1). (3.2)
i=0

Asso | C/( ) pir- gje) | € Ming(C/(Py + Q).
i+j=n
In particular, in case Y, ;_, Pik - qje is proper and P, + Qq is a prime ideal (e.g., this holds when
K is algebraically closed), Ziﬂ-:n Dik - Qe 1S primary to Py + Q.

Proof. We adapt from the proof given for the Symbolic Power Binomial Theorem [4, Theorem 3.4].
Define Ly := ), it Pik * Qe for any integer ¢ > 1. From the short exact sequences

0— L1 ke/Lige— C/Lie— C/Li_1p0—0 (1<t<n),

we may infer that

Assc(C/Ly k) U Assc(Li—1 0/ Lige)-
=1

By Display (3.2), we have

Assc(Li—1 o/ Ligy) = U Assc (i /Pit1,k K 4.0/ dj+1,0) -
i+j=t—1

When the ideal p; k. /pit1.6 C A/pit1k is non-zero, its only associated prime ideal is P, and similarly
the only associated prime ideal of g;¢/qj41, is Q¢. Thus by Display (3.1) we observe that

Assc(Li—1 /Lt ko) € Ming(C/(Py + Qr)),
whence the lemma follows in full. O

Lemma 3.2. Let i and j be the least positive integers such that P is associated to I' and Q is

associated to J7. Let P € Min(C/(P + Q)). Then P is associated to (I + J)" =1 and to no lower
power of I + J.

Proof. By Lemma 2.8, there exist f € I'™! and g € J7~! such that P = I : f and J7 : g = Q.
Then
PfgCIigC 't C (I 4 J)" 1,
and similarly Qfg C (I + J)"*7~1. In particular,
P+QC I+ )y fgC (I'+.77) : g,

and by Lemma 2.7, this is a subset of (I' : f)+ (J7: g) = P+ Q. Thus P+Q = (I + J)"7~1: fg.
Since P is minimal over P + @, there exists ¢ € C such that (P 4+ Q) : ¢ = P, so that P =
(I + J)=1: cfg, which means that P is associated to (I + J)* =1,
Now suppose that P is associated to (I + J)". By Lemma 2.5, P is associated to some Ly, j, s =
> o 1 Pmkdn—my- By Lemma 3.1, P is minimal over Py + Q. By Lemma [4, Lemma 2.4] we
6



conclude that P = P, and Q = Q. Since pop =p1x = =pic1x =C =qu=que=""-=qj—14,

n—j
Ln,k,Z = Pn—j+1,k T Qn—it1,0 + Z Pmkdn—m,¢;
m=i
and for P-primary component to appear, n —j+ 1>, ie, n>1+ 75— 1. O

At last, we are now set to deduce Theorems 1.4 and 1.5 and Corollary 1.7 from the Introduction.

Proof of Theorem 1./. We want to show that for each integer n > 1,

Ass(C/(I+)") €L PeMin(C/(P+Q)): Pe| JAss(C/T'),Q € | JAss(C/T) ¢,
i=1 j=1
and that
Ac(I +J) = J{P e Min(C/(P +Q)) : P € A(I),Q € A(J)}.
By Lemma 2.1, for each index pair k,l with 1 <k <r and 1 < ¢ < s we can make monotone filtra-
tions {p;k}i>o0 and {g;¢};>0 behaving as stipulated in Definition 1.1. Set Ly, k¢ = > 1 o Di kGn—i¢-
By Lemma 2.5, (I 4+ J)" is the intersection of the L, ¢ as k and ¢ vary. Thus Ass(C/(I + J)") is
a subset of J;, , Ass(C/Ly k). Then Lemma 3.1 proves the inclusions C in the two displays. The
opposite inclusion in the latter display follows by Lemma 3.2. O

Remark 3.3. Equality may fail in the first display involving Ass(C/(I + J)™) — see Example 4.2.

Corollary 3.4. Let K be an algebraically closed field, let A = K[x1,...,24], B = K[y1,-..,u),
and C = A®k B=K|x1,...,Zq,Y1,-..,Yp] be polynomial K-algebras. Let I be an ideal in A and
J an ideal in B, and suppose that for each pair 1 <k <r and 1 < ¢ <'s, the collections {pmr}5o_,
and {qme}>_o from Definition 1.1 are filtrations (perhaps manufactured via Lemma 2.1 first). Then
for each positive integer n,

a1 =N <Zm - M)

{=1k=1
1$ a possibly redundant primary decomposition. Furthermore,

Ac(I+J) = {P+Q: P e AI),Q € A(J)}
and so in terms of cardinality of sets, we have the relation
#Ac( +J) = #Ac(I) - #Ac(J).
Proof. When K is algebraically closed, the sum of expansions for a prime ideal in A and a prime
ideal in B is a prime ideal in C' — see Milne (8, Prop. 4.15]. Thus by Lemma 3.1, > ( pik - Gn—i¢

is (Px + Q¢)-primary if it is proper. The first display in the statement of the corollary is simply
Lemma 2.5. The corollary then follows in full as a consequence of Theorem 1.4. O

Proof of Corollary 1.7. Let P be associated to (I + J)"~!. By Theorem 1.4, P is minimal over
an ideal of the form P, 4+ Qg, where P, is associated to I’ and @, is associated to J7 for some
i,7 € {1,...,n — 1}. Indeed take i and j to be the smallest positive integers such that Py is
associated to I’ and @ is associated to J7. Lemma 3.2 then says that i +j — 1 <n — 1, i.e., that
j < n—i. By aresult of Katz and Ratliff [7, (1.3) Theorem], since powers of J are integrally closed,
Q, is associated to J" ¢ as well.

By Lemma 2.8, there exists f € I'™! such that P, = I’ : f, and by Lemma 2.9, there exists
g € J* =1 such that Q, = J" : g. Then a proof similar to the beginning part of the proof of
Lemma 3.2 shows that (I + J)" : fg = Px 4+ Qy, and so the prime ideal P minimal over Py + Q) is
associated to (I 4+ J)™. The corollary follows in full. O
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4. A FEw CONCLUDING EXAMPLES

We close with illustrative examples addressing Remark 3.3. We use notation as in Definition 1.1.
Recall that given a prime ideal q in a Noetherian ring R, its c-th symbolic power (c € Z~) is

q(C):qCquR:{feR:ufeqcforsomeueR—q}.

Example 4.1. In this example, for all n > 1,

n n
Ass(C/(I+ J)™) = {P +Q:Pe | JAss(C/T), Qe Ass(C/Ji)} :

i=1 i=1
Let I = (o}, 23xq, 232323, 7123, 23) and J = (v —y2ys3, ¥3 — 193, Y3 — y3y2). Then P; = (21, 72) is a
minimal prime over I and P, = (21, z2, z3) is associated only to I and to no other power of I. For all
n > 1 we have p,; = (21, 72)*", and for filtration sake we set ppo = p12 = (2}, 30, 1123, 73, 3).
The ideal Q; = J is the prime ideal defining the monomial curve (¢3,¢* °), and by [5], Q2 =
(y1,12,y3) is associated to all higher powers of J. Here ¢, = J™, q12 = C and other g, are
proper ideals such that {gn2}72 is a filtration. Below we need the fact that for all positive n,
J" 1N g, properly contains J". For ¢ = 2 this holds by comparing the J-primary components
and noting that the symbolic powers of J are distinct, and for ¢ = 1 we first observe that for
a large integer M, g,—11 = J" ' 1 yM and g¢,1 = J"* : yM, so that g,_12 = J" 1 + (yM) and
qn2 = J" + (yM). Then

T g = T 0 (1) = T O 0 ) = 0,

and yM J(™=1) is not a subset of J" as it is not a subset after localizing at J. Thus J" ! N gn;

properly contains J”. By Lemma 2.5,
2

2 2
I+J= ﬂ (Pokq11 + P1kqo1) = ﬂ (q11 + p1k) ﬂ J + p1x)
k=1 k=1 k=1

and clearly both components are needed. For n > 1,

(I+J)" ﬂ ﬂ (szan M)

£=1k=1
and here all four components are needed as we prove next. By Lemma 2.3,
n n
» oo n
m (szlqn M) =Y pad" = (w1, w2) T = (w1, w2)t + )
=1 i=0 i=0

The intersection of this with Y " ( piaGn—ir = Gne + P12 D 1y Gn—it = qne + (:Ei‘, l‘i’ﬂ?g, xlzng, JE%, x3),
contains x2x3(J" "1 N gy,e) which is not in (I—l— J)"™. Thus for n > 2 in the intersection of (I + .J)"

in Lemma 2.5 we cannot omit any component involving P,. We certainly cannot omit the minimal
component P; 4+ ()1, and we cannot omit the component for P; + Q)2 because

n n n n n
<Zpi1%z—i,l> n <Zpi2%—i,1> n <Zpi2%—i,2> = <Z($17x2)4ZQn—i,1> N (Zpigjn_l>
i=0 i=0 i=0 =0

=0

n
:<Z($1,x2)4iQn—i,1) (J" + (21, 2320, 2123, 23, 23))

=0

contains r3q,; and is thus not a subset of (I + J)™. This proves that for all n > 2, (I 4+ J)™ has
four associated primes.
8



Example 4.2. In this example, for all n > 2,

n n
Ass(C/(T+ ") S{P+Q: Pe | JAss(C/T'),Q € | JAss(C/T)

i=1 i=1
Let I be as in the previous example, and let J = (y7,¥3y2, y3y3ys, y193, y3), which is the ideal I
when replacing z; — y;. Thus I and J each have two associated primes and higher powers have
only one associated prime. It is straightforward to show that I + J has four associated primes,
namely all the combinations P; + ();. We prove next that for all n > 2, P, + ()2 is not associated
to (I + J)", i.e., that the component p12 + ¢12 is redundant in the intersection in the Lemma 2.3.
Namely,

n n n n
Zpﬂ%—m N ZpiIQn—i,2 N Zpiz%—m = Zpﬂ JV ) N (g + p12),
i=0 i=0 i=0 i=0

and by the nature of monomial ideals and since g,; = J", this intersection equals

Zpﬂ (J" N gn) + Z (pi Np12) J" = J" + ZIiJ"_i =T+ J)"
i=0 i=0 i=0

REFERENCES

[1] M. Brodmann, Asymptotic Stability of Ass(M/I"M), Proc. of the AMS 74 (1979). no.1, 16-18. 11
[2] H. Dao, A. De Stefani, E. Grifo, C. Huneke, and L. Nuifiez-Betancourt, Symbolic Powers of Ideals, 2017. To
appear in Advances in Singularities and Foliations: Geometry, Topology and Applications, Springer Proceedings
in Mathematics & Statistics. arXiv/1708.03010. 11
[3] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, 1992. Avail-
able at http://www.uiuc.edu/Macaulay2/. 12
[4] H. T. Ha, H. D. Nguyen, N. V. Trung, and T. N. Trung, Symbolic Powers of Sums of Ideals, 2017.
arXiv/1702.01766. 11, 2, 3, 5, 6
[5] C. Huneke, The primary components of and integral closures of ideals in 3-dimensional regular local rings,
Mathematische Annalen 275 (1986), no. 4, 617—635. 18
[6] C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture
Note Series, 336, Cambridge University Press, Cambridge, 2006. 15
[7] D. Katz and L. J. Ratliff, On the prime divisors of IJ when I is integrally closed, Archiv der Mathematik 51
(1988), 520-522. 12, 7
[8] J.S. Milne, Algebraic Geometry, 2013. Lecture Notes, Version 5.22. Online Link. 17
[9] R.M. Walker, Uniform Symbolic Topologies via Multinomial Expansions, 2017. To appear in Proceedings of the
AMS. arXiv/1703.04530. 12
[10] Y. Yao, Primary decomposition: compatibility, independence and linear growth, Proceedings of the American
Mathematical Society 130 (2002), no. 6, 1629-1637. 15

DEPARTMENT OF MATHEMATICS, REED COLLEGE, 3203 SE WoobDsTOCK BLvD, PORTLAND, OR, 97202
FE-mail address: iswanson@reed.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI, 48109
E-mail address: robmarsw@umich.edu


https://arxiv.org/abs/1708.03010
https://arxiv.org/abs/1702.01766
http://www.jmilne.org/math/CourseNotes/ag.html
https://arxiv.org/abs/1703.04530

	1. Introduction
	2. Preparatory Lemmas 
	3. Proofs of the Key Results
	4. A Few Concluding Examples
	References

