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FROBENIUS AND VALUATION RINGS

RANKEYA DATTA AND KAREN E. SMITH

Abstract. The behavior of the Frobenius map is investigated for valuation rings of prime
characteristic. We show that valuation rings are always F-pure. We introduce a generaliza-
tion of the notion of strong F-regularity, which we call F-pure regularity, and show that a
valuation ring is F-pure regular if and only if it is Noetherian. For valuations on function
fields, we show that the Frobenius map is finite if and only if the valuation is Abhyankar;
in this case the valuation ring is Frobenius split. For Noetherian valuation rings in function
fields, we show that the valuation ring is Frobenius split if and only if Frobenius is finite, or
equivalently, if and only if the valuation ring is excellent.
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1. Introduction

Classes of singularities defined using Frobenius—F-purity, Frobenius splitting, and the
various variants of F-regularity—have played a central role in commutative algebra and
algebraic geometry over the past forty years. The goal of this paper is a systematic study
of these F-singularities in the novel, but increasingly important non-Noetherian setting of
valuation rings.

Let R be a commutative ring of prime characteristic p. The Frobenius map is the ring

homomorphism R
F
→ R sending each element to its p-th power. While simple enough, the

Frobenius map reveals deep structural properties of a Noetherian ring of prime characteristic,
and is a powerful tool for proving theorems for rings containing an arbitrary field (or varieties,
say, over C) by standard reduction to characteristic p techniques. Theories such as Frobenius
splitting [33] and tight closure [22] are well-developed in the Noetherian setting, often under
the additional assumption that the Frobenius map is finite. Since classically most motivating
problems were inspired by algebraic geometry and representation theory, these assumptions
seemed natural and not very restrictive. Now, however, good reasons are emerging to study
F-singularities in certain non-Noetherian settings as well.

One such setting is cluster algebras [14]. An upper cluster algebra over Fp need not be
Noetherian, but recently it was shown that it is always Frobenius split, and indeed, admits a
“cluster canonical” Frobenius splitting [4]. Likewise valuation rings are enjoying a resurgence
of popularity despite rarely being Noetherian, with renewed interest in non-Archimedean
geometry [9], the development of tropical geometry [17], and the valuative tree [13], to name
just a few examples, as well as fresh uses in higher dimensional birational geometry (e.g.
[10, 11, 6]).

For a Noetherian ring R, the Frobenius map is flat if and only if R is regular, by a famous
theorem of Kunz [28]. As we observe in Theorem 3.1, the Frobenius map is always flat for
a valuation ring. So in some sense, a valuation ring of characteristic p might be interpreted
as a “non-Noetherian regular ring.”

On the other hand, some valuation rings are decidedly more like the local rings of smooth
points on varieties than others. For example, for a variety X (over, say, an algebraically
closed field of characteristic p), the Frobenius map is always finite. For valuation rings of the
function field of X, however, we show that the Frobenius is finite if and only the valuation
is Abhyankar; see Theorem 5.1. In particular, for discrete valuations, finiteness of Frobenius
is equivalent to the valuation being divisorial—that is, given by the order of vanishing along
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a prime divisor on some birational model. Abhyankar valuations might be considered the
geometrically most interesting ones (C.f. [12]), so it is fitting that their valuation rings
behave the most like the rings of smooth points on a variety. Indeed, recently, the local
uniformization problem for Abhyankar valuations was settled in positive characteristic [27].

One can weaken the demand that Frobenius is flat and instead require only that the
Frobenius map is pure (see §2.5). Hochster and Roberts observed that this condition, which
they dubbed F-purity, is often sufficient for controlling singularities of a Noetherian local
ring, an observation at the heart of their famous theorem on the Cohen-Macaulayness of
invariant rings [26, 25]. We show in Corollary 3.3 that any valuation ring of characteristic p
is F-pure. Purity of a map is equivalent to its splitting under suitable finiteness hypotheses,
but at least for valuation rings (which rarely satisfy said hypotheses), the purity of Frobenius
seems to be better behaved and more straightforward than its splitting. Example 4.5.1 shows
that not all valuation rings are Frobenius split, even in the Noetherian case.

Frobenius splitting has well known deep local and global consequences for algebraic vari-
eties. In the local case, Frobenius splitting has been said to be a “characteristic p analog”
of log canonical singularities for complex varieties, whereas related properties correspond to
other singularities in the minimal model program [19, 37, 40, 46]. For projective varieties,
Frobenius splitting is related to positivity of the anticanonical bundle; see [8, 33, 41, 42]. Al-
though valuation rings are always F-pure, the question of their Frobenius splitting is subtle.
Abhyankar valuations in function fields are Frobenius split (Theorem 5.1), but a discrete
valuation ring is Frobenius split if and only if it is excellent in the sense of Grothendieck
(Theorem 4.2.2). Along the way, we prove a simple characterization of the finiteness of Frobe-
nius for a Noetherian domain in terms of excellence, which gives a large class of Noetherian
domains in which Frobenius splitting implies excellence; see §2.6 for details.

Closely related to F-purity and Frobenius splitting are the various variants of F-regularity.
Strong F-regularity was introduced by Hochster and Huneke [21] as a proxy for weak F-
regularity—the property that all ideals are tightly closed—because it is easily shown to pass
to localizations. Whether or not a weakly F-regular ring remains so after localization is a long
standing open question in tight closure theory, as is the equivalence of weak F-regularity and
strong F-regularity. Strong F-regularity has found many applications beyond tight closure,
and is closely related to Ramanathan’s notion of “Frobenius split along a divisor" [35, 41].
A smattering of applications might include [2, 4, 5, 8, 15, 18, 34, 39, 36, 42, 43, 44, 41].

Traditionally, strong F-regularity has been defined only for Noetherian rings in which
Frobenius is finite. To clarify the situation for valuation rings, we introduce a new definition
which we call F-pure regularity (see Definition 6.1.1) requiring purity rather than splitting
of certain maps. We show that F-pure regularity is better suited for arbitrary rings, but
equivalent to strong F-regularity under the standard finiteness hypotheses; it also agrees
with another generalization of strong F-regularity proposed by Hochster (using tight closure)
in the local Noetherian case [20]. Likewise, we show that F-pure regularity is a natural and
straightforward generalization of strong F-regularity, satisfying many expected properties—
for example, regular rings are F-pure regular. Returning to valuation rings, in Theorem 6.5.1
we characterize F-pure regular valuation rings as precisely those that are Noetherian.

Finally, in §6.6, we compare our generalization of strong F-regularity with the obvious
competing generalization, in which the standard definition in terms of splitting certain maps
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is naively extended without assuming any finiteness conditions. To avoid confusion,1 we call
this split F-regularity. We characterize split F-regular valuation rings (at least in a certain
large class of fields) as precisely those that are Frobenius split, or equivalently excellent; see
Corollary 6.6.3. But we also point out that there are regular local rings that fail to be split
F-regular, so perhaps split F-regularity is not a reasonable notion of “singularity.”

The authors gratefully acknowledge the conversation with Karl Schwede and Zsolt Patak-
falvi that inspired our investigation of Frobenius in valuation rings, and especially Karl,
with whom we later had many fruitful discussions. The authors also acknowledge helpful
discussions with Mel Hochster, Daniel Hernandez, Mattias Jonsson, Eric Canton, Linquan
Ma, and Juan Felipe Pérez, some of which occurred at the American Mathematical Society’s
2015 Mathematics Research Community in commutative algebra, attended by the first au-
thor. In addition, Karl and Linquan made detailed comments on an earlier version, which
greatly improved the paper. In particular, Linquan suggested Corollary 6.5.4. We also thank
the referee for helpful suggestions.

2. Preliminaries

Throughout this paper, all rings are assumed to be commutative, and of prime charac-
teristic p unless explicitly stated otherwise. By a local ring, we mean a ring with a unique
maximal ideal, not necessarily Noetherian.

2.1. Valuation Rings. We recall some basic facts and definitions about valuation rings (of
arbitrary characteristic), while fixing notation. See [7, Chapter VI] or [32, Chapter 4] for
proofs and details.

The symbol Γ denotes an ordered abelian group. Recall that such an abelian group is
torsion free. The rational rank of Γ, denoted rat. rank Γ, is the dimension of the Q-vector
space Q⊗Z Γ.

Let K be a field. A valuation on K is a homomorphism

v : K× → Γ

from the group of units of K, satisfying

v(x+ y) ≥ min{v(x), v(y)}

for all x, y ∈ K×. We say that v is defined over a subfield k of K, or that v is a
valuation on K/k, if v takes the value 0 on elements of k.

There is no loss of generality in assuming that v is surjective, in which case we say Γ (or
Γv) is the value group of v. Two valuations v1 and v2 on K are said to be equivalent if
there is an order preserving isomorphism of their value groups identifying v1(x) and v2(x)
for all x ∈ K×. Throughout this paper, we identify equivalent valuations.

The valuation ring of v is the subring Rv ⊆ K consisting of all elements x ∈ K× such
that v(x) ≥ 0 (together with the zero element of K). Two valuations on a field K are

1An earlier version of this paper used the terms pure F-regularity and split F-regularity for the two gener-
alizations of classical strong F-regularity, depending upon whether maps were required to be pure or split.
The names were changed at Karl Schwede’s urging to avoid confusion with terminology for pairs in [45].
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equivalent if and only if they determine the same valuation ring. Hence a valuation ring of
K is essentially the same thing as an equivalence class of valuations on K.

The valuation ring of v is local, with maximal ideal mv consisting of elements of strictly
positive values (and zero). The residue field Rv/mv is denoted κ(v). If v is a valuation
over k, then both Rv and κ(v) are k-algebras.

A valuation ring V of K can be characterized directly, without reference to a valuation, as
a subring with the property that for every x ∈ K, either x ∈ V or x−1 ∈ V . The valuation
ring V uniquely determines a valuation v on K (up to equivalence), whose valuation ring in
turn recovers V . Indeed, it is easy to see that the set of ideals of a valuation ring is totally
ordered by inclusion, so the set of principal ideals Γ+ forms a monoid under multiplication,
ordered by (f) ≤ (g) whenever f divides g. Thus, Γ can be taken to be the ordered abelian
group generated by the principal ideals, and the valuation v : K× → Γ is induced by the
monoid map sending each non-zero x ∈ V to the ideal generated by x. Clearly, the valuation
ring of v is V . See [32, Chapter 4].

2.2. Extension of Valuations. Consider an extension of fields K ⊆ L. By definition, a
valuation w on L is an extension of a valuation v on K if the restriction of w to the subfield
K is v. Equivalently, w extends v if Rw dominates Rv, meaning that Rv = Rw ∩K with
mw ∩ Rv = mv. In this case, there is an induced map of residue fields

κ(v) →֒ κ(w).

The residue degree of w over v, denoted by f(w/v), is the degree of the residue field
extension κ(v) →֒ κ(w).

If w extends v, there is a natural injection of ordered groups Γv →֒ Γw, since Γv is the
image of w restricted to the subset K. The ramification index of w over v, denoted by
e(w/v), is the index of Γv in Γw.

If K →֒ L is a finite extension, then both the ramification index e(w/v) and the residue
degree f(w/v) are finite. Indeed, if K ⊆ L is a degree n extension, then

(2.2.0.1) e(w/v)f(w/v) ≤ n.

More precisely, we have

Proposition 2.2.1. [7, VI.8]. Let K ⊆ L be an extension of fields of finite degree n. For a
valuation v on K, consider the set S of all extensions (up to equivalence) w of v to L. Then

∑

wi∈S

e(wi/v)f(wi/v) ≤ n.

In particular, the set S is finite. Furthermore, equality holds if and only if the integral closure
of Rv in L is a finitely generated Rv-module.

2.3. Abhyankar Valuations. Fix a field K finitely generated over a fixed ground field k,
and let v be a valuation on K/k. By definition, the transcendence degree of v is the
transcendence degree of the field extension

k →֒ κ(v).
5



The main result about the transcendence degree of valuations is due to Abhyakar [3]. See
also [7, VI.10.3, Corollary 1].

Theorem 2.3.1 (Abhyankar’s Inequality). Let K be a finitely generated field extension of
k, and let v be a valuation on K/k. Then

(2.3.1.1) trans. deg v + rat. rank Γv ≤ trans. deg K/k.

Moreover if equality holds, then Γv is a finitely generated abelian group, and κ(v) is a
finitely generated extension of k.

We say v is an Abhyankar valuation if equality holds in Abhyankar’s Inequality (2.3.1.1).
Note that an Abyhankar valuation has a finitely generated value group, and its residue field
is finitely generated over the ground field k.

Example 2.3.2. Let K/k be the function field of a normal algebraic variety X of dimension
n over a ground field k. For a prime divisor Y of X, consider the local ring OX,Y of rational
functions on X regular at Y . The ring OX,Y is a discrete valuation ring, corresponding to
a valuation v (the order of vanishing along Y ) on K/k; this valuation is of rational rank
one and transcendence degree n − 1 over k, hence Abhyankar. Such a valuation is called a
divisorial valuation. Conversely, every rational rank one Abhyankar valuation is divisorial:
for such a v, there exists some normal model X of K/k and a divisor Y such that v is the
order of vanishing along Y [48, VI, §14, Thm 31].

Proposition 2.3.3. Let K ⊆ L be a finite extension of finitely generated field extensions
of k, and suppose that w is valuation on L/k extending a valuation v on K/k. Then w is
Abhyankar if and only if v is Abhyankar.

Proof. Since L/K is finite, L and K have the same transcendence degree over k. On the
other hand, the extension κ(v) ⊆ κ(w) is also finite by (2.2.0.1), and so κ(v) and κ(w) also
have the same transcendence degree over k. Again by (2.2.0.1), since Γw/Γv is a finite abelian
group, Q⊗Z Γw/Γv = 0. By exactness of

0 → Q⊗Z Γv → Q⊗Z Γw → Q⊗Z Γw/Γz → 0

we conclude that Γw and Γv have the same rational rank. The result is now clear from the
definition of an Abhyankar valuation. �

2.4. Frobenius. Let R be a ring of prime characteristic p. The Frobenius map R
F
→ R

is defined by F (x) = xp. We can denote the target copy of R by F∗R and view it as an
R-module via restriction of scalars by F ; thus F∗R is both a ring (indeed, it is precisely R)
and an R-module in which the action of r ∈ R on x ∈ F∗R produces rpx. With this notation,
the Frobenius map F : R → F∗R and its iterates F e : R → F e

∗R are ring maps, as well as
R-module maps. See [44, 1.0.1] for a further discussion of this notation.

We note that F e
∗ gives us an exact covariant functor from the category of R-modules to

itself. This is nothing but the usual restriction of scalars functor associated to the ring
homomorphism F e : R→ R.

For an ideal I ⊂ R, the notation I [p
e] denotes the ideal generated by the pe-th powers of

the elements of I. Equivalently, I [p
e] is the expansion of I under the Frobenius map, that is,

I [p
e] = IF e

∗R as subsets of R.
6



The image of F e is the subring Rpe ⊂ R of pe-th powers. If R is reduced (which is equiva-
lent to the injectivity of Frobenius), statements about the R-module F e

∗R are equivalent to
statements about the Rpe-module R.

Definition 2.4.1. A ring R of characteristic p is F-finite if F : R → F∗R is a finite map
of rings, or equivalently, if R is a finitely generated Rp-module. Note that F : R → F∗R is
a finite map if and only if F e : R→ F e

∗R is a finite map for all e > 0.

F-finite rings are ubiquitous. For example, every perfect field is F-finite, and a finitely
generated algebra over an F-finite ring is F-finite. Furthermore, F-finiteness is preserved
under homomorphic images, localization and completion. This means that nearly every ring
classically arising in algebraic geometry is F-finite. However, valuation rings even of F-finite
fields are often not F-finite.

2.5. F-purity and Frobenius splitting. We first review purity and splitting for maps
of modules over an arbitrary commutative ring A, not necessarily Noetherian or of prime

characteristic. A map of A-modules M
ϕ
→ N is pure if for any A-module Q, the induced

map
M ⊗A Q→ N ⊗A Q

is injective. The map M
ϕ
→ N is split if ϕ has a left inverse in the category of A-modules.

Clearly, a split map is always pure. Although it is not obvious, the converse holds under a
weak hypothesis:

Lemma 2.5.1. [26, Corollary 5.2] Let M
ϕ
→ N be a pure map of A-modules where A is a

commutative ring. Then ϕ is split if the cokernel N/ϕ(M) is finitely presented.

Definition 2.5.2. Let R be an arbitrary commutative ring of prime characteristic p.

(a) The ring R is Frobenius split if the map F : R → F∗R splits as a map of R-modules,
that is, there exists an R-module map F∗R → R such that the composition

R
F
−→ F∗R→ R

is the identity map.
(b) The ring R is F-pure if F : R → F∗R is a pure map of R-modules.

A Frobenius split ring is always F-pure. The converse is also true under modest hypothesis:

Corollary 2.5.3. A Noetherian F-finite ring of characteristic p is Frobenius split if and only
if it is F -pure.

Proof. The F-finiteness hypothesis implies that F∗R is a finitely generated R-module. So a
quotient of F∗R is also finitely generated. Since a finitely generated module over a Noetherian
ring is finitely presented, the result follows from Lemma 2.5.1. �

2.6. F-finiteness and Excellence. Although we are mainly concerned with non-Noetherian
rings in this paper, it is worth pointing out the following curiosity for readers familiar with
Grothendieck’s concept of an excellent ring, a particular kind of Noetherian ring expected
to be the most general setting for many algebro-geometric statements [16, Définition 7.8.2].
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Proposition 2.6.1. A Noetherian domain is F-finite if and only if it is excellent and its
fraction field is F-finite.

Proof. If R is F-finite with fraction field K, then also R ⊗Rp Kp ∼= K is finite over Kp, so
the fraction field of R is F-finite. Furthermore, Kunz showed that F-finite Noetherian rings
are excellent [29, Theorem 2.5].

We need to show that an excellent Noetherian domain with F-finite fraction field is F-
finite. We make use of the following well-known property2 of an excellent domain A: the
integral closure of A in any finite extension of its fraction field is finite as a A-module [16,
IV, 7.8.3 (vi)]. The ring Rp is excellent because it is isomorphic to R, and its fraction field
is Kp. Since Kp →֒ K is finite, the integral closure S of Rp in K is a finite Rp-module. But
clearly R ⊂ S, so R is also a finitely generated Rp module, since submodules of a Noetherian
module over a Noetherian ring are Noetherian. That is, R is F-finite. �

Using this observation, we can clarify the relationship between F-purity and Frobenius
splitting in an important class of rings.

Corollary 2.6.2. For an excellent Noetherian domain whose fraction field is F-finite, Frobe-
nius splitting is equivalent to F-purity.

Proof of Corollary. Our hypothesis implies F-finiteness, so splitting and purity are equivalent
by Lemma 2.5.1. �

3. Flatness and Purity of Frobenius in Valuation Rings.

Kunz showed that for a Noetherian ring of characteristic p, the Frobenius map is flat if
and only if the ring is regular [28, Theorem 2.1]. In this section, we show how standard
results on valuations yield the following result:

Theorem 3.1. Let V be a valuation ring of characteristic p. Then the Frobenius map
F : V → F∗V is faithfully flat.

This suggests that we can imagine a valuation ring to be “regular” in some sense. Of course,
a Noetherian valuation ring is either a field or a one dimensional regular local ring— but
because valuation rings are rarely Noetherian, Theorem 3.1 is not a consequence of Kunz’s
theorem.

Theorem 3.1 follows from the following general result, whose proof we include for the sake
of completeness.

Lemma 3.2. [7, VI.3.6, Lemma 1]. A finitely-generated, torsion-free module over a valuation
ring is free. In particular, a torsion free module over a valuation ring is flat.

Proof. Let M 6= 0 be a finitely generated, torsion-free V -module. Choose a minimal set of
generators {m1, . . . , mn}. If there is a non-trivial relation among these generators, then there
exists v1, . . . , vn ∈ V (not all zero) such that v1m1+ · · ·+vnmn = 0. Re-ordering if necessary,
we may assume that v1 is minimal among (non-zero) coefficients, that is, (vi) ⊂ (v1) for all

2sometimes called the Japanese or N2 property.
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i ∈ {1, . . . , n}. Then for each i > 1, there exists ai ∈ V such that vi = aiv1. This implies
that

v1(m1 + a2m2 + · · ·+ anmn) = 0.

Since v1 6= 0 and M is torsion free, we get

m1 + a2m2 + · · ·+ anmn = 0.

Then m1 = −(a2m2+· · ·+anmn). So M can be generated by the smaller set {m2, . . . , mn}
which contradicts the minimality of n. Hence {m1, . . . , mn} must be a free generating set.

The second statement follows by considering a torsion-free module as a directed union of
its finitely generated submodules, since a directed union of flat modules is flat [7, I.2.7 Prop
9] �

Proof of Theorem 3.1. Observe that F∗V is a torsion free V -module. So by Corollary 3.2,
the module F∗V is flat, which means the Frobenius map is flat. To see that Frobenius is
faithfully flat, we need only check that mF∗V 6= F∗V for m the maximal ideal of V [7, I.3.5
Prop 9(e)]. But this is clear: the element 1 ∈ F∗V is not in mF∗V , since 1 ∈ V is not in the
ideal m[p]. �

Corollary 3.3. Every valuation ring of characteristic p is F -pure.

Proof. Fix a valuation ring V of characteristic p. We have already seen that the Frobenius
map V → F∗V is faithfully flat (Theorem 3.1). But any faithfully flat map of rings A → B
is pure as a map of A-modules [7, I.3.5 Prop 9(c)]. �

4. F-finite Valuation Rings

In this section, we investigate F-finiteness in valuation rings. We first prove Theorem 4.1.1
characterizing F-finite valuation rings as those V for which F∗V is a free V -module. We then
prove a numerical characterization of F-finiteness in terms of ramification index and residue
degree for extensions of valuations under Frobenius in Theorem 4.3.1. This characterization
is useful for constructing interesting examples, and later for showing that F-finite valuations
are Abhyankar.

4.1. Finiteness and Freeness of Frobenius. For any domain R of characteristic p, we
have already observed (see the proof of Proposition 2.6.1) that a necessary condition for F-
finiteness is the F-finiteness of its fraction field. For this reason, we investigate F-finiteness
of valuation rings only in F-finite ambient fields.

Theorem 4.1.1. Let K be an F-finite field. A valuation ring V of K is F-finite if and only
if F∗V is a free V -module.

Proof. First assume F∗V is free over V . Since K ⊗R F∗V ∼= F∗K as K-vector spaces, the
rank of F∗V over V must be the same as the rank of F∗K over K, namely the degree
[F∗K : K] = [K : Kp]. Since K is F-finite, this degree is finite, and so F∗V is a free
V -module of finite rank. In particular, V is F-finite.
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Conversely, suppose that V is F-finite. Then F∗V is a finitely generated, torsion-free
V -module. So it is free by Lemma 3.2. �

Corollary 4.1.2. An F-finite valuation ring is Frobenius split.

Proof. One of the rank one free summands of F∗V is the copy of V under F , so this copy
of V splits off F∗V . Alternatively, since V → F∗V is pure, we can use Lemma 2.5.1: the
cokernel of V → F∗V is finitely presented because it is finitely generated (being a quotient
of the finitely generated V -module F∗V ) and the module of relations is finitely generated
(by 1 ∈ F∗V ). �

Remark 4.1.3. The same argument shows that any module finite extension V →֒ S splits—
in other words, every valuation ring is a splinter in the sense of [31]; see also [31, Lemma
1.2].

4.2. Frobenius Splitting in the Noetherian case. We can say more for Noetherian
valuation rings. First we make a general observation about F-finiteness in Noetherian rings:

Theorem 4.2.1. For a Noetherian domain whose fraction field is F-finite, Frobenius splitting
implies F-finiteness (and hence excellence).

Before embarking on the proof, we point out a consequence for valuation rings:

Corollary 4.2.2. For a discrete valuation ring V whose fraction field is F-finite, the follow-
ing are equivalent:

(i) V is Frobenius split;
(ii) V is F-finite;
(iii) V is excellent.

Proof of Corollary. A DVR is Noetherian, so equivalence of (i) and (ii) follows from com-
bining Theorem 4.2.1 and Corollary 4.1.2. The equivalence with excellence follows from
Proposition 2.6.1. �

Remark 4.2.3. We have proved that all valuation rings are F-pure. However, not all
valuation rings, even discrete ones on Fp(x, y), are Frobenius split, as Example 4.5.1 below
shows.

The proof of Theorem 4.2.1 relies on the following lemma:

Lemma 4.2.4. A Noetherian domain with F-finite fraction field is F-finite if and only there
exists φ ∈ HomRp(R,Rp) such that φ(1) 6= 0.

Proof of Lemma. Assuming such φ exists, we first observe that the canonical map to the
double dual

R → R∨∨ := HomRp(HomRp(R,Rp), Rp)

is injective. Indeed, let x ∈ R be a non-zero element. It suffices to show that there exists
f ∈ R∨ := HomRp(R,Rp) such that f(x) 6= 0. Let f = φ ◦ xp−1, where xp−1 is the Rp-linear
map R → R given by multiplication by xp−1. Then f(x) = φ(xp) = xpφ(1) 6= 0. This shows
that the double dual map is injective.
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Now, to show that R is a finitely generated Rp-module, it suffices to show that the larger
module R∨∨ is finitely generated. For this it suffices to show that R∨ is a finitely generated
Rp-module, since the dual of a finitely generated module is finitely generated.

We now show that R∨ is finitely generated. Let M be a maximal free Rp-submodule of
R. Note that M has finite rank (equal to [K : Kp], where K is the fraction field of R) and
that R/M is a torsion Rp-module. Since the dual of a torsion module is zero, dualizing the
exact sequence 0 →M → R → R/M → 0 induces an injection

R∨ := HomRp(R,Rp) →֒ HomRp(M,R) =M∨.

Since M is a finitely generated Rp-module, also M∨, and hence its submodule R∨ is finitely
generated (R is Noetherian). This completes the proof that R is F-finite.

For the converse, fix any Kp-linear splitting ψ : K → Kp. Restricting to R produces
an Rp-linear map to Kp. Since R is finitely generated over Rp, we can multiply by some
non-zero element c of Rp to produce a non-zero map φ : R → Rp such that φ(1) = c 6= 0.
The proof of Lemma 4.2.4 is complete. �

Proof of Theorem 4.2.1. Let R be a domain with F-finite fraction field. A Frobenius splitting
is a map φ ∈ HomRp(R,Rp) such that φ(1) = 1. Theorem 4.2.1 then follows immediately
from Lemma 4.2.4. �

4.3. A numerical Criterion for F-finiteness. Consider the extension

Kp ⊆ K

where K any field of characteristic p. For any valuation v on K, let vp denote the restriction
to Kp. We next characterize F-finite valuations in terms of the ramification index and residue
degree of v over vp:

Theorem 4.3.1. A valuation ring V of an F-finite field K of prime characteristic p is
F-finite if and only if

e(v/vp)f(v/vp) = [K : Kp],

where v is the corresponding valuation on K and vp is its restriction to Kp.

Proof. First note that v is the only valuation of K extending vp. Indeed, v is uniquely
determined by its values on elements of Kp, since v(xp) = pv(x) and the value group of v is
torsion-free. Furthermore, the valuation ring of vp is easily checked to be V p.

Observe that V is the integral closure of V p in K. Indeed, since V is a valuation ring, it
is integrally closed in K, but it is also obviously integral over V p. We now apply Lemma
2.2.1. Since there is only one valuation extending vp, the inequality

e(v/vp)f(v/vp) ≤ [K : Kp]

will be an equality if and only if the integral closure of V p in K, namely V , is finite over
V p. �

The following simple consequence has useful applications to the construction of interesting
examples of F-finite and non F-finite valuations:

Corollary 4.3.2. Let V be a valuation ring of an F -finite field K of characteristic p. If
e(v/vp) = [K : Kp] or f(v/vp) = [K : Kp], then V is F -finite.
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Remark 4.3.3. Theorem 4.3.1 and its corollary are easy to apply, because the ramification
index and residue degree for the extension V p →֒ V can be computed in practice. Indeed,
since Γvp is clearly the subgroup pΓv of Γv, we see that

(4.3.3.1) e(v/vp) = [Γv : pΓv].

Also, the local map V p →֒ V induces the residue field extension κ(vp) →֒ κ(v), which
identifies the field κ(vp) with the subfield (κ(v))p. This means that

(4.3.3.2) f(v/vp) = [κ(v) : κ(v)p].

4.4. Examples of Frobenius Split Valuations. We can use our characterization of F-
finite valuations to easily give examples of valuations on Fp(x, y) that are non-discrete but
Frobenius split.

Example 4.4.1. Consider the rational function field K = k(x, y) over a perfect field k of
characteristic p. For an irrational number α ∈ R, let Γ be the ordered additive subgroup of
R generated by 1 and α. Consider the unique valuation v : K× → Γ determined by

v(xiyj) = i+ jα,

and let V be the corresponding valuation ring. Since Γ ∼= Z ⊕ Z via the map which sends
a+ bα 7→ (a, b), we see that the value group of vp is pΓ ∼= p(Z⊕ Z). Hence

e(v/vp) = [Γ : pΓ] = p2 = [K : Kp].

So V is F-finite by Corollary 4.3.2. Thus V is also Frobenius split by Corollary 4.1.2.

Example 4.4.2. Consider the lex valuation on the rational function fieldK = k(x1, x2, . . . , xn)
over a perfect field k of characteristic p. This is the valuation v : K× → Zn on K/k defined
by sending a monomial xa11 . . . xann to (a1, . . . , an) ∈ Z⊕n, where Γ = Z⊕n is ordered lexico-
graphically. Let V be the corresponding valuation ring. The value group of V p is pΓ, so
e(v/vp) = [Γ : pΓ] = pn = [K : Kp]. As in the previous example, Corollary 4.3.2 implies that
V is F -finite, and so again F-split.

4.5. Example of a non-Frobenius Split Valuation. Our next example shows that dis-
crete valuation rings are not always F-finite, even in the rational function field Fp(x, y). This
is adapted from [48, Example on pg 62], where it is credited to F. K. Schmidt.

Example 4.5.1. Let Fp((t)) be the fraction field of the discrete valuation ring Fp[[t]] of
power series in one variable. Since the field of rational functions Fp(t) is countable, the
uncountable field Fp((t)) can not be algebraic over Fp(t). So we can find some power series

f(t) =

∞∑

n=1

ant
n

in Fp[[t]] transcendental over Fp(t).

Since t and f(t) are algebraically independent, there is an injective ring map

Fp[x, y] →֒ Fp[[t]] sending x 7→ t and y 7→ f(t)

which induces an extension of fields

Fp(x, y) →֒ Fp((t)).
12



Restricting the t-adic valuation on Fp((t)) to the subfield Fp(x, y) produces a discrete valu-
ation v of Fp(x, y). Let V denote its valuation ring.

We claim that V is not F-finite, a statement we can verify with Theorem 4.3.1. Note that
L = Fp(x, y) is F-finite, with [L : Lp] = p2. Since the value group Γv is Z, we see that

e(v/vp) = [Γv : pΓv] = p.

On the other hand, to compute the residue degree f(v/vp), we must understand the field
extension κ(v)p →֒ κ(v). Observe that for an element u ∈ Fp(x, y) to be in V , its image in
Fp((t)) must be a power series of the form

∞∑

n=0

bnt
n

where bn ∈ Fp. Clearly
v(u− b0) > 0

which means that the class of u =
∑∞

n=0 bnt
n in κ(v) is equal to the class of b0 in κ(v). This

implies that κ(v) ∼= Fp, so that [κ(v) : κ(v)p] = 1. That is, f(v/vp) = 1.

Finally, we then have that

e(v/vp)f(v/vp) = p 6= p2 = [Fp(x, y) : (Fp(x, y))
p].

So V cannot be F-finite by Theorem 4.3.1. Thus this Noetherian ring is neither Frobenius
split nor excellent by Corollary 4.2.2.

4.6. Finite Extensions. Frobenius properties of valuations are largely preserved under
finite extension. First note that if K →֒ L is a finite extension of F-finite fields, then
[L : Lp] = [K : Kp]; this follows immediately from the commutative diagram of fields

L K? _oo

Lp
� ?

OO

Kp.? _oo

� ?

OO

To wit, [L : Kp] = [L : K][K : Kp] = [L : Lp][Lp : Kp] and [L : K] = [Lp : Kp], so that
[L : Lp] = [K : Kp]. Moreover,

Proposition 4.6.1. Let K →֒ L be a finite extension of F-finite fields of characteristic p.
Let v be a valuation on K and w an extension of v to L. Then:

(i) The ramification indices e(v/vp) and e(w/wp) are equal.
(ii) The residue degrees f(v/vp) and f(w/wp) are equal.
(iii) The valution ring for v is F -finite if and only if the valuation ring for w is F -finite.

Proof. By (2.2.0.1), we have

[Γw : Γv][κ(w) : κ(v)] ≤ [L : K],

so both [Γw : Γv] and [κ(w) : κ(v)] are finite. Of course, we also know that the ramification
indices e(w/wp) = [Γw : pΓw] and e(v/vp) = [Γv : pΓv] are finite, as are the residue degrees
f(w/wp) = [κ(w) : κ(w)p] and f(v/vp) = [κ(v) : κ(v)p].
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(i) In light of (4.3.3.1), we need to show that [Γw : pΓw] = [Γv : pΓv]. Since Γw is torsion-
free, multiplication by p induces an isomorphism Γw

∼= pΓw, under which the subgroup Γv

corresponds to pΓv. Thus [pΓw : pΓv] = [Γw : Γv]. Using the commutative diagram of finite
index abelian subgroups

Γw Γv
? _oo

pΓw

� ?

OO

pΓv,? _oo

� ?

OO

we see that [Γw : pΓw][pΓw : pΓv] = [Γw : Γv][Γv : pΓv]. Whence [Γw : pΓw] = [Γv : pΓv].

(ii) In light of (4.3.3.2), we need to show that [κ(w) : κ(w)p] = [κ(v) : κ(v)p]. We have
[κ(w)p : κ(v)p] = [κ(w) : κ(v)], so the result follows from computing the extension degrees
in the commutative diagram of finite field extensions

κ(w) κ(v)? _oo

κ(w)p
� ?

OO

κ(v)p.? _oo

� ?

OO

(iii) By (i) and (ii) we get e(w/wp) = e(v/vp) and f(w/wp) = f(v/vp). Therefore

e(w/wp)f(w/wp) = e(v/vp)f(v/vp).

Since also [L : Lp] = [K : Kp], we see using Theorem 4.3.1 that w is F -finite if and only
if v is F -finite. �

5. F-finiteness in Function Fields

An important class of fields are function fields over a ground field k. By definition, a field
K is a function field over k if it is a finitely generated field extension of k. These are the
fields that arise as function fields of varieties over a (typically algebraically closed) ground
field k. What more can be said about valuation rings in this important class of fields?

We saw in Example 4.5.1 that not every valuation of an F-finite function field is F-finite.
However, the following theorem gives a nice characterization of those that are.

Theorem 5.1. Let K be a finitely generated field extension of an F-finite ground field k.
The following are equivalent for a valuation v on K/k:

(i) The valuation v is Abhyankar.
(ii) The valuation ring Rv is F-finite.
(iii) The valuation ring Rv is a free Rp

v-module.

Furthermore, when these equivalent conditions hold, it is also true that Rv is Frobenius split.

Since Abhyankar valuations have finitely generated value groups and residue fields, the
following corollary holds.

Corollary 5.2. An F-finite valuation of a function field over an F-finite field k has finitely
generated value group and its residue field is a finitely generated field extension of k.
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For example, valuations whose value groups are Q can never be F-finite.

Remark 5.3. In light of Proposition 2.6.1, we could add a fourth item to the list of equiv-
alent conditions in Theorem 5.1 in the Noetherian case: the valuation Rv is excellent. The
theorem says that the only discrete valuation rings (of function fields) that are F-finite are
the divisorial valuation rings or equivalently, the excellent DVRs.

To prove Theorem 5.1, first recall that the equivalence of (ii) and (iii) was already es-
tablished in Theorem 4.1.1. The point is to connect these conditions with the Abyhankar
property. Our strategy is to use Theorem 4.3.1, which tells us that a valuation v on K is
F-finite if and only if

e(v/vp)f(v/vp) = [K : Kp].

We do this by proving two propositions—one comparing the rational rank of v to the ramifi-
cation index e(v/vp), and the other comparing the transcendence degree of v to the residue
degree f(v/vp).

Proposition 5.4. Let v be a valuation of rational rank s on an F-finite field K. Then

e(v/vp) ≤ ps,

with equality when the value group Γv is finitely generated.

Proof. To see that equality holds when Γv is finitely generated, note that in this case, Γv
∼=

Z⊕s. So Γv/pΓv
∼= (Z/pZ)⊕s, which has cardinality ps. That is, e(v/vp) = ps.

It remains to consider the case where Γ may not be finitely generated. Nonetheless, since
e(v/vp) is finite (C.f. 2.2.0.1), we do know that [Γv : pΓv] = e(v/vp) is finite. So the proof of
Proposition 5.4 comes down to the following simple lemma about abelian groups:

Lemma 5.5. Let Γ be a torsion free abelian group of rational rank s. Then [Γ : pΓ] ≤ ps.

It suffices to show that Γ/pΓ is a vector space over Z/pZ of dimension ≤ s. For if d
is the dimension of Γ/pΓ, then [Γ : pΓ] = pd. So let t1, . . . , tn be elements of Γ whose
classes modulo pΓ are linearly independent over Z/pZ. Then we claim that the ti are Z-
independent elements of Γ. Assume to the contrary that there is some non-trivial relation
a1t1 + · · · + antn = 0, for some integers ai. Since Γ is torsion-free, we can assume without
loss of generality, that at least one aj is not divisible by p. But now modulo pΓ, this relation
produces a non-trivial relation on classes of the ti in Γ/pΓ, contrary to the fact that these are
linearly independent. This shows that any Z/pZ-linearly independent subset of Γ/pΓ must
have cardinality at most s. Then the lemma, and hence Proposition 5.4, are proved. �

Proposition 5.6. Let K be a finitely generated field extension of an F-finite ground field
k. Let v be a valuation of transcendence degree t on K over k. Then

f(v/vp) ≤ pt[k : kp],

with equality when κ(v) is finitely generated over k.

Proof. The second statement follows immediately from the following well-known fact, whose
proof is an easy computation:

Lemma 5.7. A finitely generated field L of characteristic p and transcendence degree n over
k satisfies [L : Lp] = [k : kp]pn.
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It remains to consider the case where κ(v) may not be finitely generated. Because K/k is
a function field, Abhyankar’s inequality (2.3.1.1) guarantees that the transcendence degree
of κ(v) over k is finite. Let x1, . . . , xt be a transcendence basis. There is a factorization

k →֒ k(x1, . . . , xt) →֒ κ(v)

where the second inclusion is algebraic. The proposition follows immediately from:

Lemma 5.8. If L′ ⊆ L is an algebraic extension of F-finite fields, then [L : Lp] ≤ [L′ : L′p].

To prove this lemma, recall that Proposition 4.6.1 ensures that [L : Lp] = [L′ : L′p] when
L′ ⊆ L is finite. So suppose L is algebraic but not necessarily finite over L′. Fix a basis
{α1, . . . , αn} for L over Lp, and consider the intermediate field

L′ →֒ L′(α1, . . . , αn) →֒ L.

Since each αi is algebraic over L′, it follows that L̃ := L′(α1, . . . , αn) is finite over L′, so

again [L̃ : L̃p] = [L′ : L′p] by Proposition 4.6.1. Now observe that L̃p ⊂ Lp, and so the
Lp-linearly independent set {α1, . . . , αn} is also linearly independent over L̃p. This means

that [L : Lp] ≤ [L̃ : L̃p] and hence [L : Lp] ≤ [L′ : L′p]. This proves Lemma 5.8.

Finally, Proposition 5.6 is proved by applying Lemma 5.8 to the inclusion

L′ = k(x1, . . . , xt) →֒ L = κ(v).

[Note that κ(v) is F-finite, because [κ(v) : (κ(v))p] = f(v/vp) ≤ [K : Kp] from the general
inequality (2.2.0.1)).] So we get

f(v/vp) = [κ(v) : (κ(v))p] ≤ [k(x1, . . . , xt) : (k(x1, . . . , xt))
p] = pt[k : kp].

�

Proof of Theorem 5.1. It only remains to prove the equivalence of (i) and (ii). First assume
v is Abhyankar. Then its value group Γv is finitely generated and its residue field κ(v) is
finitely generated over k. According to Proposition 5.4, we have e(v/vp) = ps, where s is
the rational rank of v. According to Proposition 5.6, we have f(v/vp) = pt[k : kp], where
t is the transcendence degree of v. By definition of Abhyankar, s + t = n, where n is the
transcendence degree of K/k. But then

e(v/vp)f(v/vp) = (ps)(pt)[k : kp] = pn[k : kp] = [K : Kp].

By Theorem 4.3.1, we can conclude that v is F-finite.

Conversely, we want to prove that a valuation v with F-finite valuation ring Rv is Ab-
hyankar. Let s denote the rational rank and t denote the transcendence degree of v. From
Theorem 4.3.1, the F-finiteness of v gives

e(v/vp)f(v/vp) = [K : Kp] = pn[k : kp].

Using the bounds ps ≥ e(v/vp) and pt[k : kp] ≥ f(v/vp) provided by Propositions 5.4 and
5.6, respectively, we substitute to get

(ps)(pt[k : kp]) ≥ e(v/vp)f(v/vp) = pn[k : kp].

It follows that s+ t ≥ n. Then s+ t = n by (2.3.1.1), and v is Abhyankar. �
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6. F-regularity

An important class of F-pure rings are the strongly F-regular rings. Originally, strongly
F-regular rings were defined only in the Noetherian F-finite case. By definition, a Noetherian
F-finite reduced ring R of prime characteristic p is strongly F-regular if for every non-zero-
divisor c, there exists e such that the map

R→ F e
∗R sending 1 7→ c

splits in the category of R-modules [21]. In this section, we show that by replacing the word
"splits" with the words "is pure" in the above definition, we obtain a well-behaved notion
of F-regularity in a broader setting. Hochster and Huneke themselves suggested, but never
pursued, this possibility in [23, Remark 5.3].

Strong F-regularity first arose as a technical tool in the theory of tight closure: Hochster
and Huneke made use of it in their deep proof of the existence of test elements [23]. Indeed,
the original motivation for (and the name of) strong F-regularity was born of a desire to
better understand weak F-regularity, the property of a Noetherian ring that all ideals are
tightly closed. In many contexts, strong and weak F-regularity are known to be equivalent
(see e.g. [30] for the graded case, [21] for the Gorenstein case) but it is becoming clear that
at least for many applications, strong F-regularity is the more useful and flexible notion.
Applications beyond tight closure include commutative algebra more generally [2, 5, 39,
36, 44], algebraic geometry [15, 18, 34, 42, 41], representation theory [8, 33, 35, 43] and
combinatorics [4].

6.1. Basic Properties of F-pure regularity. We propose the following definition, in-
tended to be a generalization of strong F-regularity to arbitrary commutative rings of char-
acteristic p, not necessarily F-finite or Noetherian.

Definition 6.1.1. Let c be an element in a ring R of prime characteristic p. Then R is said
to be F-pure along c if there exists e > 0 such that the R-linear map

λec : R→ F e
∗R sending 1 7→ c

is a pure map of R-modules. We say R is F-pure regular if it is F-pure along every
non-zerodivisor.

A ring R is F-pure if and only if it is F -pure along the element 1. Thus F-pure regularity is
a substantial strengthening of F-purity, requiring F-purity along all non-zerodivisors instead
of just along the unit.

Remark 6.1.2. (i) If R is Noetherian and F-finite, then the map λec : R → F e
∗R is

pure if and only if it splits (by Lemma 2.5.1). So F-pure regularity for a Noetherian
F-finite ring is the same as strong F-regularity.

(ii) If c is a zerodivisor, then the map λec is never injective for any e ≥ 1. In particular,
a ring is never F -pure along a zerodivisor.

(iii) The terminology “F-pure along c” is chosen to honor Ramanathan’s closely related
notion of “Frobenius splitting along a divisor” [35]. See [41].

The following proposition gathers up some basic properties of F-pure regularity for arbi-
trary commutative rings.
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Proposition 6.1.3. Let R be a commutative ring of characteristic p, not necessarily Noe-
therian or F-finite.

(a) If R is F-pure along some element, then R is F-pure. More generally, if R is F -pure
along a product cd, then R is F -pure along the factors c and d.

(b) If R is F -pure along some element, then R is reduced.
(c) If R is an F-pure regular ring with finitely many minimal primes, and S ⊂ R is a

multiplicative set, then S−1R is F-pure regular. In particular, F-pure regularity is
preserved under localization in Noetherian rings, as well as in domains.

(d) Let ϕ : R → T be a pure ring map which maps non-zerodivisors of R to non-
zerodivisors of T . If T is F-pure regular, then R is F-pure regular. In particular,
if ϕ : R → T is faithfully flat and T is F-pure regular, then R is F-pure regular.

(e) Let R1, . . . , Rn be rings of characteristic p. If R1 × · · · × Rn is F-pure regular, then
each Ri is F-pure regular.

The proof of Proposition 6.1.3 consists mostly of applying general facts about purity to
the special case of the maps λec. For the convenience of the reader, we gather these basic
facts together in one lemma:

Lemma 6.1.4. Let A be an arbitrary commutative ring A, not necessarily Noetherian nor
of characteristic p.

(a) If M → N and N → Q are pure maps of A-modules, then the composition M →
N → Q is also pure.

(b) If a composition M → N → Q of A-modules is pure, then M → N is pure.
(c) If B is an A-algebra and M → N is pure map of A-modules, then B⊗AM → B⊗AN

is a pure map of B-modules.
(d) Let B be an A-algebra. If M → N is a pure map of B-modules, then it is also pure

as a map of A-modules.
(e) An A-module map M → N is pure if and only if for all prime ideals P ⊂ A,

MP → NP is pure.
(f) A faithfully flat map of rings is pure.
(g) If (Λ,≤) is a directed set with a least element λ0, and {Nλ}λ∈Λ is a direct limit system

of A-modules indexed by Λ and M → Nλ0 is an A-linear map, then M → lim
−→λ

Nλ is
pure if and only if M → Nλ is pure for all λ.

(h) A map of modules A → N over a Noetherian local ring (A,m) is pure if and only if
E ⊗A A→ E ⊗AN is injective where E is the injective hull of the residue field of R.

Proof of Lemma 6.1.4. Properties (a)-(d) follow easily from the definition of purity and ele-
mentary properties of tensor product. As an example, let us prove (d). If P is an A-module,
we want to show that P ⊗A M → P ⊗A N is injective. The map of B-modules

(P ⊗A B)⊗B M → (P ⊗A B)⊗B N

is injective by purity of M → N as a map of B-modules. Using the natural A-module
isomorphisms (P ⊗A B)⊗B M ∼= P ⊗AM and (P ⊗AB)⊗B N ∼= P ⊗AN, we conclude that
P ⊗A M → P ⊗A N is injective in the category of A-modules.

18



Property (e) follows from (c) by tensoring with Ap and the fact that injectivity of a map of
modules is a local property. Property (f) follows from [7, I.3.5, Proposition 9(c)]. Properties
(g) and (h) are proved in [24, Lemma 2.1]. �

Proof of Proposition 6.1.3. (a) Multiplication by d is an an R-linear map, so by restriction
of scalars also

F e
∗R

×d
−→ F e

∗R

is R-linear. Precomposing with λec we have

R
λe
c−→ F e

∗R
×d
−→ F e

∗R sending 1 7→ cd,

which is λecd. Our hypothesis that R is F-pure along cd means that there is some e for which
this composition is pure. So by Lemma 6.1.4(b), it follows also that λec is pure. That is, R
is F-pure along c (and since R is commutative, along d). The second statement follows since
F-purity along the product c× 1 implies R is F-pure along 1. So some iterate of Frobenius
is a pure map, and so F-purity follows from Lemma 6.1.4(b).

(b) By (a) we see that R is F-pure. In particular, the Frobenius map is pure and hence
injective, so R is reduced.

(c) Note R is reduced by (b). Let α ∈ S−1R be a non-zerodivisor. Because R has finitely
many minimal primes, a standard prime avoidance argument shows that there exists a non-
zerodivisor c ∈ R and s ∈ S such that α = c/s (a minor modification of [20, Proposition on
Pg 57]). By hypothesis, R is F-pure along c. Hence there exists e > 0 such that the map
λec : R → F e

∗R is pure. Then the map

λec/1 : S
−1R −→ F e

∗ (S
−1R) sending 1 7→ c/1

is pure by 6.1.4(e) and the fact that S−1(F e
∗R)

∼= F e
∗ (S

−1R) as S−1R-modules (the isomor-
phism S−1(F e

∗R)
∼= F e

∗ (S
−1R) is given by r/s 7→ r/sp

e

). Now the S−1R-linear map

ℓ1/s : S
−1R → S−1R sending 1 7→ 1/s

is an isomorphism. Applying F e
∗ , we see that

F e
∗ (ℓ1/s) : F

e
∗ (S

−1R) → F e
∗ (S

−1R) sending 1 7→ 1/s

is also an isomorphism of S−1R-modules. In particular, F e
∗ (ℓ1/s) is a pure map of S−1R-

modules. So purity of
F e
∗ (ℓ1/s) ◦ λ

e
c/1

follows by 6.1.4(a). But F e
∗ (ℓ1/s) ◦ λ

e
c/1 is precisely the map

λec/s : S
−1R → F e

∗ (S
−1R) sending 1 7→ c/s.

(d) Let c ∈ R be a non-zerodivisor. Then ϕ(c) is a non-zero divisor in T by hypothesis.
Pick e > 0 such that the map λeϕ(c) : T → F e

∗T is a pure map of T -modules. By 6.1.4(f) and

6.1.4(a),

R
ϕ
−→ T

λe
ϕ(c)

−−−→ F e
∗T
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is a pure map of R-modules. We have commutative diagram of R-linear maps

R T

F e
∗R F e

∗T

ϕ

λe
c λe

ϕ(c)

F e
∗
(ϕ)

The purity of λec follows by 6.1.4(b). Note that if ϕ is faithfully flat, then it is pure by
6.1.4(f) and maps non-zerodivisors to non-zerodivisors.

(e) Let R := R1 × · · · × Rn. Consider the multiplicative set

S := R1 × · · · ×Ri−1 × {1} × Ri+1 × · · · × Rn.

Since S−1R ∼= Ri, it suffices to show that S−1R is F-pure regular. So let α ∈ S−1R be a
non-zerodivisor. Note that we can select u ∈ R and s ∈ S such that u is a non-zerodivisor
and α = u/s. So we can now repeat the proof of (c) verbatim to see that S−1R must be
pure along α. �

Remark 6.1.5. It is worth observing in Definition 6.1.1, that if the map λec is a pure map,
then λfc is also a pure map for all f ≥ e. Indeed, to see this note that it suffices to show that
λe+1
c is pure. We know R is F-pure by 6.1.3(a). So Frobenius

F : R→ F∗R

is a pure map of R-modules. By hypothesis,

λec : R → F e
∗R

is pure. Hence 6.1.4(d) tell us that

F∗(λ
e
c) : F∗R → F∗(F

e
∗R)

is a pure map of R-modules. Hence the composition

R
F
−→ F∗R

F∗(λe
c)−−−→ F∗(F

e
∗R) sending 1 7→ c

is a pure map of R-modules by 6.1.4(a). But F∗(F
e
∗R) as an R-module is precisely F e+1

∗ R.
So

λe+1
c : R → F e+1

∗ R.

is pure.

Example 6.1.6. The polynomial ring over Fp in infinitely many variables (localized at the
obvious maximal ideal) is an example of a F-pure regular ring which is not Noetherian.

6.2. Relationship of F-pure regularity to other singularities. We show that our gen-
eralization of strong F-regularity continues to enjoy many important properties of the more
restricted version.

Theorem 6.2.1. (C.f. [21, Theorem 3.1(c)]) A regular local ring, not necessarily F-finite,
is F-pure regular.

Proof. Let (R,m) be a regular local ring. By Krull’s intersection theorem we know that
⋂

e>0

m[pe] = 0.
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Since R is a domain, the non-zerodivisors are precisely the non-zero elements of R. So let
c ∈ R be a non-zero element. Choose e such that c /∈ m[pe]. We show that the map

λec : R → F e
∗R; 1 7→ c

is pure.

By Lemma 6.1.4, it suffices to check that for the injective hull E of the residue field of R,
the induced map

λec ⊗ idE : R⊗R E → F e
∗R⊗R E

is injective, and for this, in turn, we need only check that the socle generator is not in the
kernel.

Recall that E is the direct limit of the injective maps

R/(x1, . . . , xn)
x

−→ R/(x21, . . . , x
2
n)

x
−→ R/(x31, . . . , x

3
n)

x
−→ R/(x41, . . . , x

4
n) −→ · · ·

where x1, . . . , xn is a minimal set of generators for m, and the maps are given by multiplica-
tion by x = Πd

i=1xi. So the module F e
∗R ⊗R E is the direct limit of the maps

R/(xp
e

1 , . . . , x
pe

n )
xpe

−→ R/(x2p
e

1 , . . . , x2p
e

n )
xpe

−→ R/(x3p
e

1 , . . . , x3p
e

n )
xpe

−→ R/(x4p
e

1 , . . . , x4p
e

n ) −→ · · ·

which remains injective by the faithful flatness of F e
∗R. The induced map λec ⊗ idE : E →

F e
∗R ⊗ E sends the socle (namely the image of 1 in R/m) to the class of c in R/m[pe], so

it is non-zero provided c /∈ m[pe]. Thus for every non-zero c in a regular local (Noetherian)
ring, we have found an e, such that the map λec is pure. So regular local rings are F-pure
regular. �

Proposition 6.2.2. An F-pure regular ring is normal, that is, it is integrally closed in its
total quotient ring.

Proof. Take a fraction r/s in the total quotient ring integral over R. Then clearing denom-

inators in an equation of integral dependence, we have r ∈ (s), the integral closure of the
ideal (s). This implies that there exists an h such that (r, s)n+h = (s)n(r, s)h for all n [32,
p64]. Setting c = sh, this implies crn ∈ (s)n for all large n. In particular, taking n = pe, we
see that class of r modulo (s) is in the kernel of the map induced by tensoring the map

(6.2.2.1) R→ F e
∗R sending 1 7→ c

with the quotient module R/(s). By purity of the map (6.2.2.1), it follows that r ∈ (s). We
conclude that r/s is in R and that R is normal. �

6.3. Connections with Tight Closure. In his lecture notes on tight closure [20], Hochster
suggests another way to generalize strong F-regularity to non-F-finite (but Noetherian) rings
using tight closure. We show here that his generalized strong F-regularity is the same as
F-pure regularity for local Noetherian rings.

Although Hochster and Huneke introduced tight closure only in Noetherian rings, we can
make the same definition in general for an arbitrary ring of prime characteristic p. Let
N →֒ M be R-modules. The tight closure of N in M is an R-module N∗

M containing
N . By definition, an element x ∈ M is in N∗

M if there exists c ∈ R, not in any minimal
prime, such that for all sufficiently large e, the element c ⊗ x ∈ F e

∗R ⊗R M belongs to the
image of the module F e

∗R ⊗R N under the natural map F e
∗R ⊗R N → F e

∗R ⊗R M induced
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by tensoring the inclusion N →֒ M with the R-module F e
R. We say that N is tightly closed

in M if N∗
M = N .

Definition 6.3.1. Let R be a Noetherian ring of prime characteristic p. We say that R is
strongly F-regular in the sense of Hochster if, for any pair of R modules N →֒ M , N∗

M = N .

The next result compares F-pure regularity with strongly F-regularity in the sense of
Hochster:

Proposition 6.3.2. Let R be an arbitrary commutative ring of prime characteristic. If R
is F-pure regular, then N is tightly closed in M for any pair of R modules N ⊂ M . The
converse also holds if R is Noetherian and local.

Proof. (i) Suppose x ∈ N∗
M . Equivalently the class x of x in M/N is in 0∗M/N . So there exists

c not in any minimal prime such that c ⊗ x = 0 in F e
∗R ⊗R M/N for all large e. But this

means that the map
R → F e

∗R sending 1 7→ c

is not pure for any e, since the naturally induced map

R⊗M/N → F e
∗R⊗M/N

has 1⊗ x in its kernel.

For the converse, let c ∈ R be not in any minimal prime. We need to show that there
exists some e such that the map R→ F e

∗R sending 1 to c is pure. Let E be the injective hull
of the residue field of R. According to Lemma 6.1.4(i), it suffices to show that there exists
an e such that after tensoring E, the induced map

R⊗ E → F e
∗R⊗ E

is injective. But if not, then a generator η for the socle of E is in the kernel for every e, that
is, for all e, c⊗ η = 0 in F e

∗R⊗ E. In this case, η ∈ 0∗E, contrary to our hypothesis that all
modules are tightly closed. �

Remark 6.3.3. We do not know whether Proposition 6.3.2 holds in the non-local case.
Indeed, we do not know if F-pure regularity is a local property: if Rm is F-pure regular for
all maximal ideals m of R, does it follow that R is F-pure regular? If this were the case,
then our argument above extends to arbitrary Noetherian rings.

Remark 6.3.4. A Noetherian ring of characteristic p is weakly F-regular if N is tightly
closed in M for any pair of Noetherian R modules N ⊂ M. Clearly F-pure regular implies
weakly F-regular. The converse is a long standing open question in the F-finite Noetherian
case. For valuation rings, however, our arguments show that weak and pure F-regularity are
equivalent (and both are equivalent to the valuation ring being Noetherian); See Corollary
6.5.4.

6.4. Elements along which F-purity fails. We now observe an analog of the splitting
prime of Aberbach and Enescu [1]; See also [47, 4.7].

Proposition 6.4.1. Let R be a ring of characteristic p, and consider the set

I := {c ∈ R : R is not F-pure along c}.

Then I is closed under multiplication by R, and R−I is multiplicatively closed. In particular,
if I is closed under addition, then I is a prime ideal (or the whole ring R).

22



Proof of Proposition 6.4.1. We first note that I is closed under multiplication by elements
of R. Indeed, suppose that c ∈ I and r ∈ R. Then if rc /∈ I, we have that R is F-pure along
rc, but this implies R is F-pure along c by Proposition 6.1.3(a), contrary to c ∈ I.

We next show that the complement R \ I is a multiplicatively closed set (if non-empty).
To wit, take c, d /∈ I. Because R is F-pure along both c and d, we have that there exist e
and f such such the maps

R
λe
c−→ F e

∗R sending 1 7→ c, and R
λf
d−→ F f

∗ R sending 1 7→ d

are both pure. Since purity is preserved by restriction of scalars (Lemma 6.1.4(d)), we also
have that

F e
∗R

F e
∗
(λf

d
)

−→ F e
∗F

f
∗ R = F e+f

∗ R

is pure. Hence the composition

R
λe
c−→ F e

∗R
λf
d−→ F e

∗F
f
∗ R sending 1 7→ cp

e

d

is pure as well (Lemma 6.1.4(a)). This means that cp
e

d is not in I, and since I is closed
under multiplication, neither is cd. Note also that if R \ I is non-empty, then 1 ∈ R \ I by
Proposition 6.1.3(a). Thus R \ I is a multiplicative set.

Finally, if I is closed under addition (and I 6= R), we conclude that I is a prime ideal
since it is an ideal whose complement is a multiplicative set. �

Remark 6.4.2. If R is a Noetherian local domain, then the set I of Proposition 6.4.1 can
be checked to be closed under addition (see, for example, [47, 4.7] for the F-finite case).
Likewise, for valuation rings, the set I is also an ideal: we construct it explicitly in the next
section. However, for an arbitrary ring, I can fail to be an ideal. For example, under suitable
hypothesis, the set I is also the union of the centers of F-purity in the sense of Schwede,
hence in this case, I is a finite union of ideals but not necessarily an ideal in the non-local
case; see [38].

6.5. F-pure regularity and Valuation Rings. In this subsection we characterize valua-
tion rings that are F-pure regular. The main result is:

Theorem 6.5.1. A valuation ring is F-pure regular if and only if it is Noetherian. Equiva-
lently, a valuation ring is F-pure regular if and only if it is a field or a DVR.

A key ingredient in the proof is the following theorem about the set of elements along
which V fails to be F-pure (C.f. Definition 6.1.1):

Theorem 6.5.2. The set of elements c along which a valuation ring (V,m) fails to be F-pure
is the prime ideal

Q :=
⋂

e>0

m[pe].

Proof. First, take any c ∈ Q. We need to show that V is not F-pure along c, that is, that
the map

λec : V → F e
∗V sending 1 7→ c

is not pure for any e. Because c ∈ m[pe], we see that tensoring with κ := V/m produces the
zero map. So λec is not pure for any e, which means V is not F-pure along c.
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For the other inclusion, let c /∈ m[pe] for some e > 0. We claim that λec : V → F e
∗V is pure.

Apply Lemma 6.1.4(g) to the set Σ of finitely generated submodules of F e
∗V which contain

c. Note Σ is a directed set under inclusion with a least element, namely the V -submodule
of F e

∗V generated by c, and F e
∗V is the direct limit of the elements of Σ. It suffices to show

that if T ∈ Σ, then
λT : V → T sending 1 7→ c

is pure. But T is free since it is a finitely generated, torsion-free module over a valuation
ring (Lemma 3.2). Since c /∈ m[pe], by the V module structure on T , we get c /∈ mT . By
Nakayama’s Lemma, we know c is part of a free basis for T . So λT splits, and is pure in
particular.

Now that we know that the set of elements along which R is not F-pure is an ideal, it
follows that it is a prime ideal from Proposition 6.4.1. �

Corollary 6.5.3. For a valuation ring (V,m) of characteristic p, define Q :=
⋂

e>0m
[pe].

Then the quotient V/Q is a F-pure regular valuation ring. Furthermore, V is F-pure regular
if and only if Q is zero.

Proof. The second statement follows immediately from Theorem 6.5.2. For the first, observe
that V/Q is a domain since Q is prime. So ideals of V/Q inherit the total ordering under
inclusion from V , and V/Q is a valuation ring whose maximal m ideal satisfies

⋂
e>0m

[pe] = 0.
So V/Q is F-pure regular. �

Corollary 6.5.4. For a valuation ring, F-pure regularity is equivalent to all ideals (equiva-
lently, the maximal ideal) being tightly closed.

Proof. Proposition 6.3.2 ensures that F-pure regularity implies all ideals are tightly closed.
For the converse, note that if there is some non-zero c in

⋂
e>0m

[pe], then 1 ∈ m∗. So for any

proper ideal m, the condition that m∗ = m implies that
⋂

e>0m
[pe] = 0. In particular, if the

maximal ideal of a valuation ring V is tightly closed, then Corollary 6.5.3 implies that V is
F-pure regular. �

Proof of Theorem 6.5.1. First observe that if V is a field or DVR, then it is F-pure regular.
Indeed, every map of modules over a field is pure (since all vector space maps split). And a
DVR is a one dimensional regular local ring, so it is F-pure regular by Theorem 6.2.1.

Conversely, we show that if (V,m) is F-pure regular, its dimension is at most one. Suppose
(V,m) admits a non-zero prime ideal P 6= m. Choose x ∈ m \ P , and a non-zero element
c ∈ P. The element c cannot divide xn in V , since in that case we would have xn ⊂ (c) ⊂ P ,
but P is a prime ideal not containing x. It follows from the definition of a valuation ring,
then, that xn divides c for all n. This means in particular that c ∈ (x)[p

e] ⊂ m[pe] for all e.
So c ∈ Q. According to Theorem 6.5.2, R is not F-pure regular.

It remains to show that an F-pure regular valuation ring V of dimension one is discrete.
Recall that the value group Γ of V is (order isomorphic to) an additive subgroup of R [32,
Theorem 10.7].

We claim that Γ has a least positive element. To see this, let η be the greatest lower
bound of all positive elements in Γ. First observe that η is strictly positive. Indeed, for fixed
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c ∈ m, the sequence v(c)
pe

consists of positive real numbers approaching zero as e gets large. If
Γ contains elements of arbitrarily small positive values, then we could find x ∈ V such that

0 < v(x) <
v(c)

pe
.

But then 0 < v(xp
e

) < v(c), which says that c ∈ (x)[p
e] ⊂ m[pe] for all e. This contradicts

our assumption that V is F-pure along c (again, using Theorem 6.5.2).

Now that we know the greatest lower bound η of Γ is positive, it remains to show that
η ∈ Γ. Choose ǫ such that 0 < ǫ < η. If η /∈ Γ, we know η < v(y) for all y ∈ m. Since η is
the greatest lower bound, we can find y such that

η < v(y) < η + ǫ,

as well as x such that
η < v(x) < v(y) < η + ǫ.

Then
0 < v(y/x) < ǫ < η,

contradicting the fact that η is a lower bound for Γ. We conclude that η ∈ Γ, and that Γ
has a least positive element.

It is now easy to see using the Archimedean axiom for real numbers that the ordered
subgroup Γ of R is generated by its least positive element η. In particular, Γ is order
isomorphic to Z. We conclude that V is a DVR. �

Remark 6.5.5. For a valuation ring (V,m) of dimension n ≥ 1, our results show that in
general

Q =
⋂

e∈N

m[pe]

is a prime ideal of height at least n − 1. It is easy to see that the situation where V/Q is
a DVR arises if and only if m is principal, which in turn is equivalent to the value group Γ
having a least positive element. For example, this is the case for the lex valuation in Example
4.4.2. It is not hard to check that Q is uniformly F-compatible ideal in the sense of Schwede
[38] (see also [44, 3.1] for further discussion of uniformly F-compatible ideals), generalizing of
course to the non-Noetherian and non-F-finite setting. A general investigation of uniformly
F-compatible ideals appears to be fruitful, and is being undertaken by the first author.

6.6. Split F-regularity. Of course, there is another obvious way3 to adapt Hochster and
Huneke’s definition of strongly F-regular to arbitrary rings of prime characteristic p:

Definition 6.6.1. A ring R is split F-regular if for all non-zero divisors c, there exists e
such that the map R → F e

∗R sending 1 to c splits as a map of R-modules.

Since split maps are pure, a split F-regular ring is F-pure regular. Split F-regular rings
are also clearly Frobenius split. On the other hand, Example 4.5.1 shows that a discrete
valuation ring need not be Frobenius split, so split F-regularity is strictly stronger than
F-pure regularity. In particular, not every regular local ring is split F-regular, so split F-
regularity should not really be considered a class of "singularities" even for Noetherian rings.

3This generalization is used for cluster algebras in [4] for example.
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Remark 6.6.2. In Noetherian rings, split F-regularity is very close to F-pure regularity. For
example, if R is an F-pure regular Noetherian domain whose fraction field is F-finite, then
the only obstruction to split F-regularity is the splitting of Frobenius. This is a consequence
of Theorem 4.2.4, which tells us R is F-finite if it is Frobenius split, and Lemma 2.5.1, which
tells us F-split and F-pure are the same in F-finite Noetherian rings.

Corollary 6.6.3. For a discrete valuation ring V whose fraction field is F-finite, the follow-
ing are equivalent:

(i) V is split F-regular;
(ii) V is Frobenius split;
(iii) V is F-finite;
(iv) V is free over V p;
(v) V is excellent.

Moreover, if K is a function field over an F-finite ground field k, and V is a valuation of
K/k, then (i)-(v) are equivalent to V being a divisorial valuation ring.

Proof. All this has been proved already. Recall that a DVR is a regular local ring, so it is
always F-pure regular and hence split F-regular if it is F-finite. Also, the final statement
follows from Theorem 5.1 because an Abyhankar valuation of rational rank one is necessarily
divisorial, and a divisorial valuation of a functional field over an F-finite field is necessarily
F -finite. �

To summarize: A valuation ring is F-pure regular if and only if it is Noetherian, and split
F-regular (under the additional assumption that its fraction field is F-finite) if and only if it
is excellent.

7. Concluding Remarks

We have argued that for valuation rings, F-purity and F-pure regularity (a version of
strong F-regularity defined using pure maps instead of split maps) are natural and robust
properties. We have also seen that the conditions of Frobenius splitting and split F-regularity
are more subtle, and that even regular rings can fail to satisfy these.

For Noetherian valuation rings in F-finite fields, we have seen that the Frobenius split-
ting property is equivalent to F-finiteness and also to excellence, but we do not know what
happens in the non-Noetherian case: does there exist an example of a (necessarily non-
Noetherian) Frobenius split valuation ring of an F-finite field that is not F-finite? By
Corollary 5.2, a possible strategy could be to construct a Frobenius split valuation ring
in a function field whose value group is infinitely generated. For example, can one construct
an F-split valuation in Fp(x, y) with value group Q? On the other hand, perhaps Frobenius
splitting is equivalent to F-finiteness (just as in the Noetherian case). One might then ask
whether a generalized version of Theorem 4.1.1 holds for arbitrary fields: is a valuation ring
Frobenius split if and only if Frobenius is free?

We propose that F-pure regularity is a more natural generalization of strong F-regularity
to the non-F-finite case than a suggested generalization of strong F-regularity using tight
closure due to Hochster. We have seen that F-pure regularity implies Hochster’s notion, and
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that they are equivalent for local Noetherian rings. However, we do not know whether F-pure
regularity is a local notion: if Rm is F-pure regular for all maximal ideals, does it follow that
R is F-pure regular? We expect this to be true but the standard arguments are insufficient
to prove it. (In the Noetherian F-finite case, this is well known; C.f. [23, Theorem 5.5(a)].
Furthermore, the answer is affirmative for excellent rings with F-finite total quotient rings by
Proposition 2.6.1.) If true, then F-pure regularity would be equivalent to all modules being
tightly closed in the Noetherian case. More generally, might F-pure regularity be equivalent
to the property that all modules are tightly closed even in the non-Noetherian case? Or even
that all ideals are tightly closed? An affirmative answer to this last question would imply
that strong and weak F-regularity are equivalent.
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ERRATUM TO FROBENIUS AND VALUATION RINGS

RANKEYA DATTA AND KAREN E. SMITH

Abstract. Theorem 5.1 is corrected in the paper Frobenius and valuations rings, DOI:
10.2140/ant.2016.10.1057.

The characterization of F-finite valuation rings of function fields (Theorem 5.1) is in-
correct. The corrected characterization is

Theorem 0.1. Let K be a finitely generated extension of an F-finite ground field k. Let V
be any non-trivial valuation ring of K/k. Then V is F-finite if and only if V is divisorial.

A proof of this corrected theorem follows a complete accounting of affected statements
in the paper. Notation, Theorem and page numbers are as in [2].

1. List of Affected Statements

The source of the error is Proposition 2.2.1 (pg. 1061), which is misquoted from the
original source, [1]. Specifically, the last sentence in the statement of Proposition 2.2.1
should read: Furthermore, equality holds if the integral closure of Rν in L is a finitely
generated Rν-module, not if and only if. The statement is correct, however, under the
additional assumption that the valuation ring Rν is Noetherian [1, VI, §8.5, Remark (1)].

This error has consequences in the following statements from the paper:

Theorem 4.3.1 should read: Let V be a valuation ring of an F-finite field K of prime
characteristic p. If V is F-finite, then

[Γ : pΓ][κ : κp] = [K : Kp],

where Γ is the value group and κ is the residue field of V .

The paper had incorrectly stated the converse, which does hold if the valuation ring is
Noetherian [1, VI, §8.5, Remark (1)].

Corollary 4.3.2 should read: With hypotheses as in Thm 4.3.1, if [K : Kp] = [κ : κp],
then V is F-finite. See Section 2 for the proof. The original statement holds as stated if
V is Noetherian.

Examples 4.4.1 and 4.4.2 (pg. 1069): The computations here are correct but the
conclusions are not. Rather, Theorem 0.1 ensures these valuation rings are not F-finite.

Example 4.5.1 (pg. 1070) is correct as stated, as it follows from the correct implication
of Theorem 4.3.1.

The first author was partially supported by the Juha Heinonen Memorial Graduate Fellowship at the
University of Michigan. The second author was partially supported by NSF grant DMS-1501625.
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Proposition 4.6.1 (pg. 1071): This statement is correct. However, the proof of (iii) is
not, because it cited the incorrect implication of Proposition 2.2.1. The corrected proof
is in Section 3 below.

Theorem 5.1 (pg. 1072): The equivalence of (ii) and (iii) is correct, and both imply (i).
Under the additional assumption that the valuation is discrete, also (i) implies (ii) and
(iii). The proof of Theorem 5.1 in the paper proves:

Theorem 1.1. Let K be a finitely generated field extension of an F-finite ground field k
of characteristic p. The following are equivalent for a valuation v on K/k:

(i) The valuation v is Abhyankar.
(ii) [Γ : pΓ][κ : κp] = [K : Kp]

where Γ is the value group, and κ is the residue field of v.

Corollary 5.2 (pg. 1072) is correct as stated; it is a consequence of Theorem 0.1.

Corollary 6.6.3 (pg. 1086) is correct as stated; the proof should invoke Theorem 0.1
instead of Theorem 5.1.

The remaining statements in Section 5 (Remark 5.3, Proposition 5.4, Lemma 5.5,
Proposition 5.6, Lemma 5.7, Lemma 5.8) and Section 6 are correct, because they do
not rely on Lemma 2.2.1 or its consequences.

2. Proof of Theorem 0.1

Lemma 2.1. Let (V,m) be a valuation ring of prime characteristic p. If m is not principal,
then

m = m
[p].

Proof. Take any x ∈ m. It suffices to show that there exists y ∈ m such that yp|x. Note
that since m is not principal, the value group Γ of the corresponding valuation v does not
have a smallest element > 0. This means we can choose β0 ∈ Γ such that 0 < β0 < v(x),
and then also choose β1 ∈ Γ such that

0 < β1 < min{β0, v(x)− β0}.

Let y1 ∈ m such that v(y1) = β1. Then

v(y21) = 2β1 < β0 + (v(x)− β0) = v(x).

Thus, y21|x. Repeating this argument inductively, we can find yn ∈ m such that y2n|yn−1

for all n ∈ N. For n > log2 p, we have y2
n

n , and hence ypn, divides x. �

Lemma 2.2. Let (V,m, κ) be valuation ring of characteristic p. Then the dimension of
V/m[p] over κp is

(a) [κ : κp] if m is not finitely generated.
(b) p[κ : κp] if m is finitely generated.

2



Proof. Consider the short exact sequence of κp-vector spaces

(1) 0 → m/m[p] → V/m[p] → κ → 0.

If m is not finitely generated, then Lemma 2.1 implies that m/m[p] = 0, and (a) follows.
Otherwise, m is principal, so m

[p] = m
p and we have a filtration

m ) m
2 ) · · · ) m

p−1 ) m
[p] = m

p.

Since m
i/mi+1 ∼= κ, we see that

dimκp(m/m[p]) = (p− 1)[κ : κp].

From the short exact sequence (1), dimκp(V/m[p]) = p[κ : κp], proving (b). �

Proof of Theorem 0.1. If V is divisorial, it is a localization of a finitely generated algebra
over the F -finite ground field k, hence it is F-finite.

For the converse, let m be the maximal ideal and κ the residue field of V . Since V is
F-finite, by (the corrected) Theorem 4.3.1

(2) [Γ : pΓ][κ : κp] = [K : Kp],

where Γ is the value group of V . Thus, the valuation is Abhyankar by Theorem 1.1 above.
To show it is divisorial, we need to show it is discrete.

Because the value group of an Abhyankar valuation is finitely generated, Γ ∼= Z⊕s, for
some integer s ≥ 1. Hence it suffices to show that s = 1.

Since V is F-finite, we know V is free over V p of rank [K : Kp]. Tensoring with the
residue field κp of V p, we have that V/m[p] is also a free κp-module of rank [K : Kp]. Thus
from (2), we have

(3) dimκp V/m[p] = [K : Kp] = [Γ : pΓ][κ : κp] = |Z⊕s/pZ⊕s|[κ : κp] = ps[κ : κp].

But now since ps 6= 1, Lemma 2.2 forces s = 1, and the proof is complete. �

Remark 2.3. Theorem 0.1 does not hold without some assumption on the field K. For
instance, if K is perfect, Frobenius will be an isomorphism (hence a finite map) for any
valuation ring. The proof of Theorem 0.1 does show that an F-finite valuation ring with
finitely generated value group must be Noetherian (hence discrete), without any restriction
on its fraction field. Furthermore, the proof also shows that a valuation ring cannot be
F-finite if its value group Γ satisfies [Γ : pΓ] > p.

Proof of Revised Corollary 4.3.2: In general, [Γ : pΓ][κ : κp] ≤ [K : Kp] by [1, VI,
§8.1, Lemma 2]. Hence our hypothesis forces [Γ : pΓ] = 1. Thus Γ = pΓ, so that Γ can
not have a smallest positive element, which means that the maximal ideal m of V is not
finitely generated. Lemma 2.2(a) now ensures dimκp(V/m[p]) = [κ : κp] = [K : Kp]. Then
V is F-finite by [1, VI, §8.5, Theorem 2(c)]. �
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3. Proof of Proposition 4.6.1(iii):

We recall Proposition 4.6.1(iii): Let K →֒ L be a finite extension of F-finite fields of
characteristic p. Let w be a valuation on L and v its restriction to K. Then the valuation
ring of v is F-finite if and only if the valuation ring of w is F-finite.

Lemma 3.1. With notation as in Proposition 4.6.1(iii), the maximal ideal of the valuation
ring of v is finitely generated if and only if the maximal ideal of the valuation ring of w
is finitely generated.

Proof. For ideals in a valuation ring, finite generation is the same being principal. Prin-
cipality of the maximal ideal is equivalent to the value group having a smallest element
> 0. Thus, it suffices to show that the value group Γv of v has this property if and only
if Γw does.

Assume Γw has a smallest element g > 0. We claim that for each t ∈ N, the only
positive elements of Γw less than tg are g, 2g, . . . , (t − 1)g. Indeed, suppose 0 < h < tg.
Since g is smallest, g ≤ h < tg, whence 0 ≤ h− g < (t− 1)g. So by induction, g − h = ig
for some i ∈ {0, 1, . . . , t− 2}, and hence h is among g, 2g, . . . , (t− 1)g.

Now, because [Γw : Γv] ≤ [L : K] < ∞ by [1, VI, §8.1, Lemma 2], every element of
Γw/Γv is torsion. Let n be the smallest positive integer such that ng ∈ Γv. We claim that
ng is the smallest positive element of Γv. Indeed, the only positive elements smaller than
ng in Γw are g, 2g, . . . , (n− 1)g, and none of these are in Γv by our choice of n.

Conversely, if Γv has a smallest element h > 0, then the set

S := {g ∈ Γw : 0 < g < h}

is finite because for distinct g1, g2 in this set, their classes in Γw/Γv are also distinct, while
Γw/Γv is a finite group. Then the smallest positive element of Γw is the smallest element
of S, or h if S is empty. �

Proof of Proposition 4.6.1(iii). A necessary and sufficient condition for the F-finiteness
of a valuation ring (V,m, κ) with F-finite fraction field K is, by [1, VI, §8.5, Theorem
2(c)], that

(4) dimκp(V/m[p]) = [K : Kp].

Lemma 2.2 gives a formula for dimκp(V/m[p]) in terms of [κ : κp] that depends on whether
the maximal ideal is finitely generated, which is the same for v and w by Lemma 3.1.
Proposition 4.6.1 (i) and (ii) tells us that both [K : Kp] = [L : Lp] and [κv : κ

p
v] = [κw : κp

w].
Thus Lemma 2.2 and Equation 4 guarantee that the valuation ring of v is F-finite if and
only if the valuation ring of w is F-finite. �
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