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Low-cost particulate matter (PM) air quality sensors are becoming widely available and are being
increasingly deployed in ambient and home/workplace environments due to their low cost, compactness,
and ability to provide more highly resolved spatiotemporal PM concentrations. However, the PM data
from these sensors are often of questionable quality, and the sensors need to be characterized individ-
ually for the environmental conditions under which they will be making measurements. In this study, we
designed and assessed a cost-effective (~$700) calibration chamber capable of continuously providing a
uniform PM concentration simultaneously to multiple low-cost PM sensors and robust calibration re-
lationships that are independent of sensor position. The chamber was designed and evaluated with a
Computational Fluid Dynamics (CFD) model and a rigorous experimental protocol. We then used this
new chamber to calibrate 242 Plantower PMS 3003 sensors from two production lots (Batches I and II)
with two aerosol types: ammonium nitrate (for Batches I and II) and alumina oxide (for Batch I). Our CFD
models and experiments demonstrated that the chamber is capable of providing uniform PM concen-
tration to 8 PM sensors at once within 6% error and with excellent reliability (intraclass correlation
coefficient > 0.771). The study identified two malfunctioning sensors and showed that the remaining
sensors had high linear correlations with a DustTrak monitor that was calibrated for each aerosol type
(R%>0.978). Finally, the results revealed statistically significant differences between the responses of
Batches I and II sensors to the same aerosol (P-value<0.001) and the Batch I sensors to the two different
aerosol types (P-value<0.001). This chamber design and evaluation protocol can provide a useful tool for
those interested in systematic laboratory characterization of low-cost PM sensors.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

with a greater reduction in life expectancy (approximately 1.2—1.9
years) in more polluted countries (Apte et al., 2018). PMy 5 con-

Human exposure to particulate matter (PM) is a major public
health issue, contributing to lung cancer, cardiovascular diseases
and premature mortality (Brook et al, 2010; Jensen, 2006;
Raaschou-Nielsen et al., 2013). In 2016, ambient exposure to PM; 5
(PM with an aerodynamic diameter less than 2.5 um) decreased
average global life expectancy at birth by approximately one year
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centration has conventionally been measured by expensive regu-
latory monitors. Although these regulatory monitors are highly
accurate, their high costs and maintenance requirements limit the
number of monitors that can be deployed. Consequently, these
regulatory monitors are sparsely distributed and cannot capture
intra-urban PM; 5 spatial variations resulting from local sources
(Bell et al., 2010; Steinle et al., 2013).

The emergence of low-cost light-scattering PM sensors (<$500)
has provided an opportunity to understand neighborhood-scale
differences in air pollution. A large number of such sensors have
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been deployed in various community air quality networks, such as
PurpleAir (2019), AirBox (Chen et al., 2017) and CAIRSENSE (Jiao
et al., 2016). However, data quality is a key concern for these PM
sensors (Rai et al., 2017). They are not as accurate or precise as
regulatory monitors (Shapiro et al.,, 2014). These sensors may be
affected by environmental factors, such as humidity (Wang et al.,
2015) and temperature (Gao et al,, 2015). They may also experi-
ence drift over time (Clements et al., 2017; Sayahi et al., 2019). Many
studies have relied on manufacturers’ performance data rather
than calibrating individual sensors under expected deployment
conditions (Ali et al., 2015; Arvind et al., 2016; Du Plessis et al.,
2016; Liu et al,, 2015; Van den Bossche et al., 2015; Zhang et al.,
2017). These studies assumed that their sensors' default calibra-
tion factors are appropriate for the conditions of use and that their
sensors do not exhibit intra-sensor variability. However, several
studies have demonstrated significant intra-sensor variability both
in the field and laboratory tests (Gao et al., 2015; Manikonda et al.,
2016; Sayahi et al., 2019; Wang et al., 2015). Therefore, it is
important to calibrate these inexpensive PM sensors before
deployment because unreliable data may lead to unnecessary
public alarm or complacency (Shapiro et al., 2014).

The performance of low-cost PM sensors is commonly charac-
terized using laboratory calibration. This type of calibration typi-
cally exposes the sensors and a research-grade/reference monitor
to PM inside a cubic chamber. Laboratory calibration allows the
sensors to experience a wide range of concentrations and envi-
ronmental conditions in a matter of hours (Sousan et al., 2016;
Vercellino et al., 2018). Conversely, field calibration may require
days or months, and even then, the sensors may not experience the
target PM concentration range, PM source or environmental con-
ditions. Moreover, it is logistically complicated to co-locate a large
number of sensors with a reference monitor in the field for weeks
or months.

Calibration chambers have been a crucial tool in assessing lab-
oratory low-cost air quality sensors because of their ability to
provide controlled conditions (Papapostolou et al, 2017).
Numerous studies have evaluated PM sensor performance in lab-
oratory chambers (Table S—1). Initial studies took place in cubic
chambers using decay tests; in these tests, an elevated particle
concentration is reached, and then particle generation ceases.
Subsequently, PM concentration decreases over time (Austin et al.,
2015; Wang et al.,, 2015). Although these chambers are relatively
inexpensive to build, they have difficulty generating stable PM
concentrations, making it challenging to evaluate whether a low-
cost PM sensor is capable of precise measurements because the
PM concentration in the chamber is constantly dropping in a decay
test. The time delay between the responses of PM sensors and the
reference monitor is another potential source of error when using a
decay test (Liu et al, 2017). To address the stability issue,
Papapostolou et al. (2017) developed a sophisticated environmental
chamber (cubic shaped) that can maintain a stable concentration
over a wide range of concentrations (0—300 pg/m> with less than
3.1% standard deviation).

However, cubic chambers can have two disadvantages: particle
loss at the edges and, more importantly, an uneven distribution of
particles (or lack of understanding of this potentially uneven dis-
tribution). For example, Wang et al. (2015) and Hapidin et al. (2018)
examined PM concentration uniformity by placing two low-cost
sensors (same model) on different faces of their cubic chambers,
and they suggested that PM concentration at these locations
differed by less than 15% and 10%, respectively. However, their
analysis relied on the assumption that their low-cost sensors' re-
sponses exhibited no intra-sensor variability. Liu et al. (2017)
developed a cylindrical chamber, in which the PM flows axially,
and this type of chamber addresses the weaknesses of cubic

chambers. They evaluated PM distribution in their chamber with
seven tubes mounted at the bottom of the chamber where low-cost
PM sensors are located. Sequential DustTrak measurements at
those seven tube locations suggested that the spatial differences in
concentration differed by less than 10%. However, this evaluation
relied on the assumption that the PM concentration remained
stable during the test. There is still a need for a cost-effective
chamber that provides stable and uniform PM concentrations to
the low-cost PM sensors as well as a strategy for evaluating spatial
uniformity of particles within the chamber. Such a chamber will
enable efficient evaluation and laboratory calibration of PM low-
cost sensors.

This study presents the development of a cylindrical calibration
chamber that allows for the calibration of 8 low-cost sensors at
once using continuous testing. The distribution of PM concentra-
tion was examined experimentally and computationally, resulting
in a robust strategy for assessing the spatial distribution PM con-
centration within the chamber. Finally, 242 Plantower PMS 3003
PM sensors from two different purchased batches were calibrated
with this new chamber with a goal of identifying malfunctioning
sensors and understanding intra-sensor variability.

2. Materials and methods

This study developed and evaluated a cost-effective calibration
chamber that can provide multiple low-cost PM sensors with a
uniform PM concentration, regardless of their position in the
chamber. The calibration system is shown in Fig. 1. This study
focused primarily on the chamber design and used commercially
available particles to evaluate the low-cost sensors. Several publi-
cations have discussed the aerosol generation and dilution strate-
gies (Castell et al., 2017; Li and Biswas, 2017; Liu et al., 2017;
Papapostolou et al., 2017; Sousan et al., 2017). We used a Compu-
tational Fluid Dynamics (CFD) model to refine the chamber design
before fabricating (described in Section 2.2). The CFD model and a
rigorous experimental and statistical approach were applied to
evaluate the spatial variability of PM concentrations within the
chamber.

2.1. Chamber design

The new chamber, with component costs of $692 (Table S—2), is
capable of evaluating eight low-cost PM sensors at once and has an
access port for a research-grade/reference monitor. It was designed
with several key features to encourage uniform particle concen-
tration at the inlets of the low-cost sensors (Fig. 1). These features
included the cylindrical shape, the tangentially positioned inlet, the
baffle, the outlet, and the anti-static design. The cylindrical shape
limited the particle loss due to edge effects and provided a more
uniform distribution of particles compared to conventional cubic
chambers (Section 3.1). The inlet had turbulent flow (turbulence
intensity of 4.51%—5.16% which falls in the medium to high tur-
bulence case (ANSYS, 2019)), with incoming and exit flow velocities
of 1—1.5 m/s. The outlet of the chamber was placed in the center of
the chamber to allow the aerosols that migrate to the edges of the
chamber to flow over the sensors while exiting. The chamber,
which was made of acrylic, also had an anti-static system, con-
sisting of a helical pattern of grounded copper strips and wire
(Fig. 1). An ohmmeter was used to verify all connections were
sufficiently grounded. Generated aerosols can have high electro-
static charges, and the anti-static system limited particle deposits
on the walls, thereby reducing the need for cleaning (Tian et al.,
2017).
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Fig. 1. Schematic of the calibration system. Note the dimensions are not to scale.

2.2. Computational fluid dynamics evaluation

CFD simulations using ANSYS FLUENT software predicted the
spatial distribution of aerosols within the cylindrical chamber and
permitted the iterative refinement of the chamber design. Using
the same conditions and chamber volume, this study also
compared CFD simulations of aerosol concentrations for a cubic
chamber. The CFD simulations employed a realizable K-¢ turbu-
lence model and Eulerian-based mixture model that treats each
interpenetrating phase as a continuous fluid, where the individual
particles are not tracked. This model provides accurate results
when the concentration of one of the phases is low and can be
assumed to be well mixed. The primary benefit of using this model
was that it had a much lower computational overhead than tradi-
tional Eulerian-Lagrangian coupled simulations, where each par-
ticle must be individually tracked and all collisions are resolved (Tu
et al., 2013). Table S—3 summarizes the simulation settings for the
newly developed cylindrical chamber and a cubic chamber with the
same volume.

2.3. Experimental evaluation

The experiments included three types of tests (stability,
repeatability, and rotation, described in Section 2.3.3) to assess the
spatial distribution of PM within the chamber. After the chamber
evaluation, this new chamber was used to evaluate the perfor-
mance of 242 low-cost sensors compared to a research-grade in-
strument (TSI DustTrak 8530) and to identify malfunctioning
sensors as well as to understand inter-sensor variability before
deploying them in the field.

2.3.1. Experimental system

The laboratory calibration system consisted of a particle gener-
ator, a diffusion drier (if needed), a dilution system, and the newly
designed cylindrical calibration chamber with 8-low cost PM sen-
sors and a research-grade monitor (Fig. 1).

Aerosol generation. Two different types of particles, alumina
oxide and ammonium nitrate, were utilized for calibrating the low-
cost sensors. Alumina oxide represented a dry and non-cohesive
dust, and this was generated by a Palas solid particle dispenser
(RBG 1000-C). The alumina oxide particles have a density of

4000 kg/m> (Duralum, Washington Mills, Niagara Falls, NY, USA)
and a mean mobility diameter of 470 nm (Fig. S-1-A). Ammonium
nitrate is a key component of PM, 5 concentration in Salt Lake City
where the sensors are being deployed. During winter in Salt Lake
City, ammonium nitrate contributes more than 50% of PM, 5 mass
(Baasandorj et al., 2018; Kelly et al., 2013; Sayahi et al., 2019). The
95% pure ammonium nitrate has a density of 1700 kg/m> (Alfa
Aesar, ThermoFisher SCIENTIFIC, ACS) and a mean mobility diam-
eter of 137 nm (Fig. S-1-B). The ammonium nitrate particles were
generated with a single-jet atomizer (TSI model 9302) and clean
dry air. A building compressor provided the clean, dry air, which
was further cleaned using an Enmet air filtration panel (5 pum, Ann
Arbor, Michigan) that included a water collector bowl, a coalescer
filter, a charcoal absorber, and an adsorber filter. Before introducing
the aerosol flow to the calibration chamber, a diffusion dryer (TSI
3062) filled with dry silica gel reduced the humidity of the aerosol
stream. The range of relative humidity inside the chamber during
the calibration tests was 7.3%—9.9%, measured with an Omegaette
temperature/humidity meter (Omega Engineering, model HH314).
The temperature of the chamber was similar to that of the labo-
ratory, which ranged from 21.7°C to 25.1°C (measured with
HH314). Some studies have reported that low-cost PM sensors may
be affected by environmental factors such as humidity (Wang et al.,
2015) and temperature (Gao et al., 2015), but several other studies
found negligible correlation between the sensors' responses and
those factors (Han et al., 2017; Holstius et al., 2014; Kelly et al.,
2017; Sayahi et al., 2019). The small differences in relative humid-
ity and temperature during the calibration tests were unlikely to
have affected the results although as discussed in Section 3.6 the
addition of temperature and humidity control would be beneficial
for systemically evaluating these environmental factors.
Research-grade monitor. A TSI DustTrak 8530 (Rivas et al.,
2017) was placed directly below the calibration chamber, and a
representative sample from the chamber flowed directly into the
DustTrak (3 L/min) via conductive tubing positioned at the height
of the low-cost sensors' inlets. The DustTrak was equipped with a
PM, 5 inlet, and its mass concentration estimate was corrected for
each type of aerosol with a calibration factor, developed from co-
located measurements with an AirMetrics MiniVol, which is a
filter-based monitor. The MiniVol was operated with a PM; 5 inlet
and a flow rate of 5 L/min. The MiniVol's filter was pre- and post-
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weighed, in triplicate, to obtain an average mass concentration,
which is used to develop a correction factor for each aerosol type.
The raw DustTrak readings were divided by an appropriate
correction factor for each aerosol type (1.78 or 0.959 for ammonium
nitrate and alumina oxide, respectively).

Low-Cost Sensors. The Plantower PM sensors (PMS 3003) were
evaluated in this study (Fig. S-2). In this light-scattering based
sensor, a fan with a rate of 0.1 L/min routes air past a tightly focused
laser beam. Each particle passes through two 90-degree turns
before passing the laser. The laser wavelength is 640 + 10 nm,
measured with a Lambda 35 spectrophotometer (PerkinElmer, Inc).
The manufacturer reported that the sensor's response time is less
than 10 s and its mean time to failure is more than three years. They
also reported that the sensor's effective PM, 5 concentration range
is 0—500 pg/m? and that the sensors have an accuracy of +10 pg/m>
(for concentrations between 0—100 pg/m>) and +10% (for concen-
trations between 100 and 500 pg/m?>).

The PMS sensor was integrated into an in-house sensing system
called AirU. In addition to the PMS 3003 sensor, AirU comprises a
custom-printed circuit board, a Texas Instruments HDC1080 tem-
perature and humidity sensor, and a MiCS-4514 reduction/oxida-
tion gas sensor. The PMS3003 sensors were connected directly to
the AirU circuit board, which in turn was powered through an FCC-
certified 120V AC input, 5V DC output power adapter with a 1A
current rating. The PMS3003 draws 60 mA, and the total current
draw of the AirU (including the PMS3003) is 120 mA. The PMS3003
sensor directly received this 5V source with minimal additional
filtering supplied by decoupling capacitors, which were also
mounted on the AirU circuit board. PM measurements were sent
once a second from the PMS3003 to the AirU. These measurements
were accumulated, and every 15 s the sum of the measurements
was divided by the number of measurements for the time period.
The result was sent to a private database over WiFi. No data filtering
was applied prior to the data collection/storage. The PMS sensors
were placed in a 56.1 mm diameter, circular sensor holder within
the chamber. Each sensor was placed at 45-degree intervals along
the circular holder (Fig. S-3), and the AirU boards were located
outside the chamber (Fig. 1).

2.3.2. Calibration test protocol

For each sensor calibration test, the calibration chamber was
allowed to reach a steady-state target concentration based on
DustTrak readings, and measurements at each concentration were
collected for 10 min. The calibration test for all 242 low-cost sensors
included 5 targets ranging from a PM,5 concentration <5 pg/m>
(except the stability test, Section 2.3.3) to approximately 150 pg/m>
(except Section 3.5). Finally, the performance of eight sensors was
also evaluated at 10 steady-state concentrations ranging from
<5 ug/m?> to 1000 pg/m? in a continuous test.

Both the DustTrak and the PMS sensors collected data at 15-s
intervals. The data were first time-matched and then averaged
over 1 min. A linear model was individually fit to the minute-by-
minute data of DustTrak and each sensor.
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2.3.3. Robustness of experimental calibration

The following three tests provided an estimate of particle dis-
tribution inside the newly designed calibration chamber.

Stability test. The stability test was performed once at 5 steady-
state target concentrations (10 min at each concentration), using
DustTrak measurements (Table 1). The stability of the chamber at
each concentration step was assessed using the standard deviation
(SD) of the DustTrak measurements and the relative percentage of
standard deviation (%RSD):

%RSD — (M) « 100

eSS

(1)

whereRef is the average of the DustTrak readings at each steady-
state concentration.

Repeatability test. To evaluate the ability of the chamber to
generate reproducible linear calibration curves for each of the
sensors, the 5-point calibration (described in Section 2.3.2) was
repeated three times for eight low-cost sensors. We used the
intraclass correlation coefficient (ICC), a widely used reliability in-
dex in test-retest analyses, to examine the repeatability (Cicchetti,
1994). More specifically, for each low-cost sensor, we calculated
the proportion of residual variance after calibration, which was not
caused by the repeated experiments. The calculated ICC ranges
from O to 1. A high ICC index indicates a lower impact of repeated
experiments on the calibration test and hence better repeatability
in the calibration model. We used the cluster bootstrap approach to
calculate the 95% confidence interval of ICC for each sensor. We
then followed the guideline developed by Cicchetti (1994), and
interpreted the ICC values less than 0.4, between 0.4 and 0.59,
between 0.60 and 0.74, and greater than 0.75 as poor, fair, good and
excellent, respectively.

Rotation test. The rotation test complemented the repeatability
test and examined the robustness of the calibration lines for each
sensor at different positions in the chamber. In the rotation test,
eight sensors were evaluated once at four different positions. In
other words, the test was repeated four times, and in each test, the
sensors were rotated 90-degrees in relation to the center of the
chamber (Fig. S-3). In this test, instead of reporting the concen-
tration differences of different sensors (of the same model) at
various positions as an indication of the particle distribution
(Hapidin et al., 2018; Wang et al., 2015), each sensor was compared
to its own calibration data in the different positions. This method
eliminated the errors associated with intra-sensor variability. We
used the same ICC approach in the reliability test, discussed above,
to examine the impact of sensor location/rotation.

2.3.4. Calibrating Plantower PMS 3003 sensors

This study calibrated 242 Plantower PMS 3003 sensors from two
different production lots (Batches I and II). The sensors had
consecutive numbers (PMS 1- PMS 242). Batches I and II included
154 (PMS 1-PMS 154) and 88 sensors (PMS 155-PMS 242),
respectively. They were purchased from Beijing Plantower Co., Ltd,

Table 1
Stability test results for ammonium nitrate and alumina oxide aerosols using SD and %RSD (Eq. (1)) parameters for five target concentrations.
Ammonium nitrate Alumina oxide
Target concentration pg/m> SD pg/m> %RSD Target concentration pg/m?> SD pg/m> %RSD
State 1 8.69 0.506 5.82 12.5 0.654 5.57
State 2 394 1.95 243 57.0 3.58 6.29
State 3 80.2 2.15 5.45 96.2 7.73 8.03
State 4 101 3.63 2.33 140 8.74 6.26
State 5 156 4.08 4.06 175 9.04 5.17

States 1-5 are the 5 steady-state concentrations for each stability test.
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in June 2017 and August 2018, respectively. Batch I was evaluated
using both ammonium nitrate and alumina oxide aerosols; how-
ever, Batch Il was evaluated only using ammonium nitrate particles.
This calibration provided the slope, coefficient of determination
(R?), intercept, and bias for all 242 sensors. Moreover, this study
assessed four low-cost sensors from each batch to investigate the
precision at five steady-state concentrations. In addition, the pair-
wise Spearman's correlation coefficient (SCC) was used to evaluate
the strength and direction of the correlation between each pair of
PMS sensors for each test of eight sensors for both Batch I and II.
The SCC ranges from —1 to 1, where the closer the SCC is to +1, the
stronger the association. SCC values greater than 0.80 indicate a
very strong association (Daniel, 1990).

It should be noted that the performance criteria for low-cost
sensors do not yet exist, but other studies have used these same
metrics (slope, intercept, R?, bias) for their evaluations of low-cost
PM sensors (Sousan et al., 2016, 2017). In addition, the Environ-
mental Protection Agency (EPA, 2006, 2018) also uses these metrics
as well as the coefficient of variation (CV) in their criteria for
continuous PM; 5 monitors and candidate equivalent methods, and
we discuss these criteria for comparison purposes.

The PMS sensor bias was calculated as the mean of the ratio of
each PMS sensor measurement at time t (PMS;) to the corre-
sponding reference reading at time t (Ref;):

. (PMS;
Bias; = (Ffr_ 1) x 100 (2)

Ref; measurements less than 1pg/m> were excluded from
calculating sensor bias.

The precision of the four low-cost sensors from each batch (a
total of eight sensors) was assessed at four steady-state concen-
trations (PMSs;) in comparison to a reference monitor using the CV:

_ /SD(PMSss)
V= (711_@“55 ) % 100 3)

where Refi; is the average of reference monitor at each steady-state
concentration.

3. Result and discussion
3.1. CFD simulation

This analysis investigated the ammonium nitrate particle con-
centration distribution in the cylindrical chamber at a flow rate of
15L/min. The boundary conditions and the settings for the CFD
model can be found in Table S—3. This model was tested for particle
sizes up to 10 um with no appreciable change in results. This CFD
analysis is valid for Knudsen numbers significantly less than one.
Fig. S-4 shows the fraction of the volume occupied by the particles
in the overall control volume (the chamber) as time progresses. It
takes the chamber about 10 min to reach steady-state. Fig. 2 rep-
resents the volume fraction profiles of the particles at the center of
the sensors' inlets within a +10 mm radial margin from the
centerline (called inlet location, Fig. S-5). The two smaller
concentric circles in the figure represent the inlet of the DustTrack.
The maximum concentration difference among all the sensor po-
sitions at the inlet location is 5.50% (Table S—4). This indicates that
the cylindrical chamber is capable of providing a uniform concen-
tration at the inlet location within 6% error. The difference in con-
centration on one side of the chamber is due to the inlet position
and angle of the inlet. The volume fraction is lowest at the point
where the DustTrak inlet is located. One potential reason is that the
DustTrack inlet pulls a negative pressure while the rest of the

3 35000 7000 (mm) /
—— m— )

\ 17500 EED

Fig. 2. Volume fraction distribution at the inlet location, +10 mm radial margin from
the centerline of the sensors' inlets. The two smaller concentric circles in the figure
represent the inlet of the DustTrack. The larger concentric circle indicates the chamber
outlet.

chamber is at atmospheric pressure.

This analysis also provided a comparison between a cubic
chamber and a cylindrical one at the same conditions. The CFD
simulation settings and boundary conditions for the cubic chamber
are summarized in Table S—3. Fig. S-6 shows the volume fraction
profiles at the six walls of the cubic chamber on which the sensors
were assumed to be located. Comparing the concentrations at the
center of each face of a cubic chamber showed that the smallest
difference was 7.48% and the largest difference was 16.4%
(Table S—4). Concentration differences could be even larger than
16.4% if one compared a center point on one face with a different
location on another face (not the center). The results indicate that
this cylindrical chamber can provide a more uniform distribution of
particles than a cubic chamber.

3.2. Effect of sensor location on calibration

Stability, repeatability and rotation experiments were per-
formed to evaluate the robustness of the sensor calibrations to
position inside the newly designed chamber.

3.2.1. Stability test
Table 1, Fig. 3 and Fig. S-7 show the results of the chamber
stability test for five different concentrations of ammonium nitrate

250

[unsteady state
DustTrak
& 200
£
> State 5
= 150 1k
o~ |
E State 4 |
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5
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50
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0 20 40 60 80 100
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Fig. 3. Concentration time-series for the ammonium nitrate stability tests.
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and alumina oxide. The shaded area in the figure shows the tran-
sition between the steady-state concentrations. The SD and %RSD
ranges for all target concentrations during the stability test of the
new chamber were low (Table 1) and in the same range as those
reported by Papapostolou et al. (2017) (SD=0.2—4.3, %
RSD = 1.4—3.1%). These low SD and %RSD indicate that the chamber
system has very good stability over the tested range of concentra-
tions. As shown in Table 1, higher PMy5 concentrations showed
larger standard deviations and relative standard deviations. The
same observation was reported by Papapostolou et al. (2017). It
should be noted that %RSD is independent of concentration, making
%RSD easier to compare with other studies (Eq. (1), Table 1).

Papapostolou et al. (2017) discussed that the stability of PM
concentrations in a chamber is mainly due to two factors: a) the
ability of the particle generator to provide aerosol concentrations,
and b) the uniform distribution of particles inside the chamber. In
this study, another source of error in creating a consistent aerosol
concentration could be the fluctuations in the clean air flow, which
was provided by the building's compressor. Our results indicated
that the Palas RGB-C's aerosol generation was less stable than the
TSI single-jet atomizer, as evidenced by the larger variations in the
alumina oxide tests. In order to reduce other sources of error and
focus on the ability of the chamber to provide uniform PM con-
centrations, the repeatability and the rotation tests (Section 3.2.3)
were only conducted with ammonium nitrate particles.

3.2.2. Repeatability and rotation tests

Table 2 summarizes the ICC index values calculated for eight
sensors (i.e., PMS1-PMSS8, Fig. S-2) compared to the DustTrak. The
ICC values for repeatability and rotation tests ranged from 0.961 to
0.999 and from 0.771 to 0.851, respectively, which indicate excel-
lent reliability of the calibration tests regardless of the repeat
number or the position of the sensors inside the chamber. For each
sensor, the ICC value for the repeatability test was consistently
higher than that for the rotation test. The estimated uncertainty
(i.e., the 95% CI) for repeatability was also consistently smaller than
that for the rotation test. Although the impact of rotating the sen-
sors inside the chamber on the linear calibration model was greater
than the impact of repeating the experiment, the ICC index values
(>0.75) of the sensors show that the calibration model results are
robust to both the repeatability and rotation tests.

The ICC approach was also used to describe the repeatability of
each sensor's response compared to itself in three repeated tests
(within-sensor variability) and the repeatability of one sensor
compared to the other seven sensors during the same test (be-
tween-sensor variability, three tests). The results showed that the
ICC for within-sensor variability reliability ranged from 0.955 to
0.980, and the ICC for between-sensor variability ranged from 0.969
to 0.991. These ranges of ICCs are indicative of excellent reliability
(Cicchetti, 1994).

Table 2
Results of repeatability and rotation tests.
Repeatability Rotation
ICC 95% CI ICC 95% CI
PMS1 0.987 (0.938, 1.000) 0.771 (0.528,0.964)
PMS2 0.965 (0.916, 0.999) 0.851 (0.647,0.997)
PMS3 0.999 (0.981, 1.000) 0.823 (0.555, 1.000)
PMS4 0.999 (0.978, 1.000) 0.809 (0.655, 0.968)
PMS5 0.999 (0.967, 1.000) 0.838 (0.649, 1.000)
PMS6 0.961 (0.841, 1.000) 0.833 (0.666, 0.998)
PMS7 0.985 (0.928, 1.000) 0.790 (0.597, 1.000)
PMS8 0.995 (0.978, 1.000) 0.843 (0.595, 0.977)

3.3. Effect of aerosol type

The evaluation of the PMS 3003 performance for two different
particle types (alumina oxide and ammonium nitrate) began with a
PM, 5 time-series evaluation of the DustTrak and four PMS sensors
at five steady-state concentrations (Fig. S-8). The figure illustrates
that the PMS sensors track the DustTrak PM, 5 concentrations. As
shown in Fig. S-8-A, the PMS sensors from Batch I overestimated
ammonium nitrate PM; 5 concentrations compared to the DustTrak
but underestimated alumina oxide concentrations compared to
DustTrak (Fig. S-8-B). Kelly et al. (2017) also reported that the PMS
3003 underestimated alumina oxide PM,5 concentrations in a
wind-tunnel test. Many studies suggested that the differences in
the response of light-scattering based sensors to different aerosol
types can be attributed to variations in aerosol optical properties
(Kelly et al., 2017; Liu et al., 2017; Sousan et al., 2016; Wang et al.,
2015).

A linear model was fit to each of the 242 sensors based on the 5-
point calibration curve. Fig. 4 shows the distribution of the slopes,
intercepts, and goodness of fit metrics (R?) of these fits as well as
bias measurements. For both aerosol types, the PM; 5 readings of
Batch I PMS sensors were highly correlated with the reference in-
strument, R?> of 0.995—0.999 for ammonium nitrate and R? of
0.978—0.998 for alumina oxide. Clements et al. (2017) suggested
that low-cost sensors can complement existing monitoring net-
works and enhance the spatial coverage of PM data if they have
R?> 0.4 with a federal reference/equivalent method. As discussed
in Section 2.3.4, performance standards for low-cost sensors do not
yet exist; for comparison purposes, we discussed EPA criteria for
continuous PM; 5 monitors and candidate equivalent methods. The
correlations between the PMS sensors and the DustTrak meet the
EPA's criteria for continuous PM5 5 monitors (r > 0.9 or R?>0.81;
EPA, 2018) and for candidate equivalent methods (r>0.97 or
R% > 0.94; EPA, 2006). However, the slopes of the linear model were
not generally within the EPA's criteria for continuous PM, 5 moni-
tors (1+0.1; EPA, 2018) and varied significantly for the two
different types of aerosols (Student t-test, p-value<0.001) from
0.414 to 0.645 (underestimation for alumina oxide) to 0.988—1.36
(overestimation for ammonium nitrate). The average of intercepts
of all Batch I sensors were —1.37 pg/m> (range of —3.88—2.47 g/
m?) and —1.94 pg/m> (range of —5.84—5.05 pg/m?>) for ammonium
nitrate and alumina oxide, respectively. The small intercepts for the
Batch I sensors for both aerosol types were generally within the EPA
(2906) acceptable range for candidate equivalent methods (+5 pg/
m>).

The average bias values for all the Batch I sensors for ammonium
nitrate and alumina oxide were 9.53% and —49.6%, respectively. The
small positive bias for Batch I sensors with ammonium nitrate
shows that the difference between the sensor and the reference
instrument is small and within the EPA (2018) criteria for contin-
uous PMj 5 monitors (+10%). However, the large negative bias for
alumina oxide exceeds EPA (2018) criteria. It is also an indication of
the underestimation of PM, 5 concentrations. Sousan et al. (2017)
also reported different bias values for the same sensor (Footbot)
in response to different aerosol types (—12% for Arizona air dust and
< —46% for salt and welding fume).

The precisions of the four representative PMS sensors were
between 1.96% and 10.2% (average of 5.06%) for ammonium nitrate
and between 1.17% and 5.91% (average of 3.65%) for alumina oxide.
The low precision values reflect the ability of the sensors in repli-
cating the concentration measurements (NIOSH, 2012). These CVs
are within EPA's acceptable measurement uncertainty for contin-
uous PM; 5 monitors (CV < 10%, Table S—5; EPA, 2018).
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Fig. 4. Frequency distribution of slopes, intercepts, coefficients of determination, and bias for 154 Batch I sensors for calibration with ammonium nitrate (A) and alumina oxide (B)

aerosols. Note that the scales in the x-axes are different.

3.4. Comparison of Batches I and II sensors

Comparing the response of Batches I and Il sensors revealed that
Batch I slightly overestimated ammonium nitrate PM, 5 concen-
trations (mean slope = 1.16 and bias = 9.53%), but Batch II slightly
underestimated ammonium nitrate PM;5 concentrations (mean
slope = 0.919 and bias = —4.52%, Fig. S-9). As with Batch |, the Batch
11 sensor responses were highly correlated with the DustTrak (R* of
0.968—-0.999). These slopes and correlations meet EPA (2018)
criteria for continuous PM; 5 monitors. All of these results in the
following sections excluded the two malfunctioning sensors, which
are further discussed below. As shown in Fig. S-10, the slopes of

Batch I sensors differed significantly from those of Batch I (Student
t-test, p-value<0.001). This result indicates that sensors purchased
at different times could have different responses. However, the
pairwise SCCs showed very strong positive correlation for each pair
of eight sensors in the same test (>0.972 for Batch I and >0.978 for
Batch II). Table S—6 shows the pairwise SCCs for one representative
test from each batch.

Eight sensors from Batch II have much lower slopes than the
mean slopes (0.5—0.7) and biases (—50% to —20%) although they
still have high R? values (0.995—0.997). This means that these
sensors underestimate the PM, 5 levels more than the other sen-
sors. However, they could still be deployed in the sensor network
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using proper correction factors. These results provide indications of
intra-sensor variability and the importance of calibration before
field deployment of the sensors. Possible explanations for the
different responses of the batches include manufacturer modifi-
cation of their software that converts the signal to PM concentra-
tion or manufacturing differences in the photodetector.

One of the goals of laboratory evaluation was to identify
defective sensors and avoid deploying them in the field. The mal-
functioning sensors were identified by a poor coefficient of deter-
mination (R? < 0.3, Moore et al., 2013). Two out of 242 evaluated
sensors were classified as malfunctioning (PMS 163 and PMS 242).
Neither sensor tracked the PM, 5 concentration measurements of
DustTrak. Sensor PMS 163 readings ranged from 0 to 24.3 ug/m>
with R? of 0.018 (Fig. S-11) while sensor PMS 242 constantly read
zero with R? of NaN (not a number), even though both sensors were
exposed to PM, 5 concentrations up to 150 pg/m>. Both sensors
were dismantled to find possible reasons for their behavior.
Nothing suspicious was found in sensor PMS 163; its low readings
could be due to laser misalignment or a manufacturing defect in the
sensor's laser, photodetector or electronics. Sensor PMS 242's laser
chamber was filled with small pieces of white paper (Fig. S-12)
preventing the laser light from reaching the particles or the
photodetector.

3.5. Sensor behavior at higher concentrations

Exposing eight PMS sensors to ammonium nitrate PMy 5 con-
centrations up to 1000 pg/m> showed that the sensors maintained a
linear response up to a concentration of 150 pg/m> (R?> of
0.995-0.999, Fig. S-13). However, the linearity deteriorated at
higher concentrations. The exact physical reason behind the non-
linear relationship of PMS 3003 sensors and the reference instru-
ment is unclear. A second-order polynomial fit all the data (R? of
0.998—0.999, range: 5—1000 pg/m?) better than a linear model (Fig
S-14). This non-linear behavior of low-cost PM sensors above a
certain concentration was also seen in other laboratory studies
(Austin et al., 2015; Hapidin et al., 2018; Sousan et al., 2017; Wang
et al.,, 2015).

3.6. Limitations

The focus of this paper was to develop, evaluate, and demon-
strate a cost-effective cylindrical chamber for calibration of low-
cost PM sensors. A number of refinements would enhance the us-
ability of this system. For example, using this chamber to calibrate
hundreds of PM sensors can be time-consuming. An improved
experimental design could streamline the calibration procedure
and/or potentially reduce the number of data points needed for
sensor calibration. Adding a neutralizer after the aerosol generation
system could prevent particle deposits in the lines prior to the
chamber; however, this would significantly add to the cost. Using
copper mesh instead of copper strip in the anti-static system is
another potential improvement. It would also be beneficial to
integrate temperature and humidity controls into the system for
future studies because some investigations have shown that tem-
perature and relative humidity can affect the responses of some
low-cost sensors (Gao et al., 2015; Wang et al., 2015).

A laboratory evaluation system is well suited for calibration of
sensors prior to field deployment, and it can complement, but not
replace, field calibration. Aerosols in the real word are heteroge-
nous, and their properties vary over time. A one-time lab calibra-
tion cannot represent the range of real-world conditions that a
sensor may experience, and it cannot ensure that measurements
are accurate in the real world. However, it does allow one to eval-
uate low-cost sensor performance (i.e., intra-sensor variability,

response over relevant concentration ranges), and aids with quality
assurance and quality control concerns, such as identifying mal-
functioning sensors. A mixture of lab and field calibrations along
with advanced statistical techniques is a likely path forward
(Johnson et al., 2018; Becnel et al., 2019.; Zimmerman et al., 2018).

4. Conclusion

This study developed and evaluated a cost-effective calibration
chamber that provided spatially uniform concentrations to multi-
ple PM sensors and calibration relationships that were robust to
sensor position in the chamber. The design and evaluation relied on
a CFD model and a rigorous experimental evaluation. The compu-
tational model showed that the chamber is capable of providing a
uniform PM concentration to calibrate eight sensors at one time
within 6% error, and the experimental results demonstrated the
robustness of the calibration model to the sensor position within
the chamber with excellent reliability (ICC>0.771). This new
chamber was then used to evaluate the performance of 242 Plan-
tower PMS 3003 sensors from two production lots using two
different particle types: ammonium nitrate (for Batches I and II)
and alumina oxide (for Batch I). The results identified two mal-
functioning sensors and demonstrated that all the sensors (except
the two malfunctioning sensors) were highly correlated with the
DustTrak reference monitor (R? > 0.978). The study also identified
significant response differences between Batches I and II. As in
several other studies, the PMS sensors exhibited a statistically
significant difference in their responses to the two different aerosol
types. This calibration chamber was able to identify manufacturer
differences in PM response and malfunctioning sensors. This
chamber can also be used to complement field observations and
help to eventually determine whether good laboratory perfor-
mance of a low-cost PM sensor indicates its good performance
under real-world conditions.
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