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Let X
f−→ S be a morphism of Noetherian schemes, with S

reduced. For any closed subscheme Z of X finite over S, 
let j denote the open immersion X \ Z ↪→ X. Then for 
any coherent sheaf F on X \ Z and any index r ≥ 1, the 
sheaf f∗(Rrj∗F) is generically free on S and commutes with 
base change. We prove this by proving a related statement 
about local cohomology: Let R be Noetherian algebra over a 
Noetherian domain A, and let I ⊂ R be an ideal such that 
R/I is finitely generated as an A-module. Let M be a finitely 
generated R-module. Then there exists a non-zero g ∈ A such 
that the local cohomology modules Hr

I (M) ⊗A Ag are free 
over Ag and for any ring map A → L factoring through Ag , 
we have Hr

I (M) ⊗A L ∼= Hr
I⊗AL(M ⊗A L) for all r.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In his work on maps between local Picard groups, Kollár was led to investigate the 
behavior of certain cohomological functors under base change [12]. The following theorem 
directly answers a question he had posed:
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Theorem 1.1. Let X f→ S be a morphism of Noetherian schemes, with S reduced. Suppose 
that Z ⊂ X is closed subscheme finite over S, and let j denote the open embedding of 
its complement U . Then for any coherent sheaf F on U , the sheaves f∗(Rrj∗F) are 
generically free and commute with base change for all r ≥ 1.

Our purpose in this note is to prove this general statement. Kollár himself had proved 
a special case of this result in a more restricted setting [12, Thm. 78].

We pause to say precisely what is meant by generically free and commutes with base 
change. Suppose H is a functor which, for every morphism of schemes X → S and every 
quasi-coherent sheaf F on X, produces a quasi-coherent sheaf H(F) on S. We say H(F)
is generically free if there exists a dense open set S0 of S over which the OS-module 
H(F) is free. If in addition, for every change of base T

p−→ S0, the natural map

p∗H(F) → H(p∗
XF)

of quasi-coherent sheaves on T is an isomorphism (where pX is the induced morphism 
X ×S T → X), then we say that H(F) is generically free and commutes with base change. 
See [12, §72].

Remark 1.2. We do not claim the r = 0 case of Theorem 1.1; in fact, it is false. For 
a counterexample, consider the ring homomorphism splitting Z ↪→ Z × Q � Z. The 
corresponding morphism of Noetherian schemes

Z = Spec(Z) ↪→ X = Spec(Z × Q) → S = SpecZ

satisfies the hypothesis of Theorem 1.1. The open set U = X \ Z is the component 
SpecQ of X. The coherent sheaf determined by the module Q on U is not generically 
free over Z, since there is no open affine subset SpecZ[ 1

n ] over which Q is a free module. 
[In this case, the map j is affine, so the higher direct image sheaves Rpj∗F all vanish for 
p > 0.]

On the other hand, if f is a map of finite type, then the r = 0 case of Theorem 1.1
can be deduced from Grothendiecks’s Lemma on Generic freeness; see Lemma 4.1.

For the commutative algebraists, we record the following version of the main result, 
which is essentially just the statement in the affine case:

Corollary 1.3. Let A be a reduced Noetherian ring. Let R be a Noetherian A-algebra with 
ideal I ⊂ R such that the induced map A → R/I is finite. Then for any Noetherian R
module M , the local cohomology modules Hi

I(M) are generically free and commute with 
base change over A for all i ≥ 0. Explicitly, this means that there exists an element g
not in any minimal prime of A such that the modules Hi

I(M) ⊗A Ag are free over Ag, 
and that for any algebra L over Ag, the natural map
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Hi
I(M) ⊗A L → Hi

I(M ⊗A L)

is an isomorphism.

Some version of Theorem 1.1 may follow from known statements in the literature, but 
looking through works of Grothendieck ([8], [7], [6]) and [3], I am not able to find it; nor 
presumably could Kollár. After this paper was written, I did find a related statement 
due to Hochster and Roberts [11, Thm. 3.4] in a special case, not quite strong enough to 
directly answer Kollár’s original question; furthermore, my proof is different and possibly 
of independent interest. In any case, there may be value in the self-contained proof here, 
which uses a relative form of Matlis duality proved here using only basic results about 
local cohomology well-known to most commutative algebraists.

2. Restatement of the problem

In this section, we show that Theorem 1.1 reduces to the following special statement:

Theorem 2.1. Let A be a Noetherian domain. Let R = A[[x1, . . . , xn]] be a power 
series ring over A, and M a finitely generated R-module. Denote by I the ideal 
(x1, . . . , xn) ⊂ R. Then the local cohomology modules

Hi
I(M)

are generically free over A and commute with base change for all i.

For basic definitions and properties of local cohomology modules, we refer to [7].
For the remainder of this section, we show how Theorem 1.1 and Corollary 1.3 follow 

from Theorem 2.1.
First, Theorem 1.1 is local on the base. Because the scheme S is reduced, it is the 

finite union of its irreducible components, each of which is reduced and irreducible, so 
it suffices to prove the result on each of them. Thus we can immediately reduce to the 
case where S = Spec A, for some Noetherian domain A. Because Z is finite over S, we 
have that Z is affine too.

We now reduce to the case where X is affine as well. There is no loss of generality 
in assuming Z is a proper closed subset of X. The coherent sheaf F on the non-empty 
open set U extends to a coherent sheaf on X, which we also denote by F . To simplify 
notation, let us denote the sheaf Rrj∗F by H, which we observe vanishes outside the 
closed set Z. Thus each section is annihilated by a power of the ideal IZ of Z, which 
means H has the structure of a module over the sheaf of rings ÔX,Z = lim←−−t

OX

It
Z

; put 
differently, the quasi-coherent OX -module H can be viewed as a sheaf on the formal 
scheme X̂Z (whose underlying topological space is the affine closed set Z, finite over S). 
The sheaf of abelian groups H = Rrj∗F (for r ≥ 1) is supported on and defined locally 
on Z, which means that to check whether H is generically free and commutes with base 
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change over S, we can restrict to any open set X0 containing all the generic points of 
the components of Z. In particular, we can choose such X0 to be affine, thus reducing 
the proof of Theorem 1.1 to the case where both X and S are affine.

We can now assume that X → S is the affine map of affine schemes corresponding 
to a ring homomorphism A → T . In this case the closed set Z is defined by some ideal 
I of T . Because Z is finite over S = Spec A, the composition A → T → T/I is a finite 
integral extension of A. The coherent sheaf F on U extends to a coherent sheaf F on X, 
which corresponds to a finitely generated T -module M . Since X = Spec T is affine, we 
have natural identifications for r ≥ 1

Rrj∗F = Hr(X \ Z, F) = Hr+1
I (M)

of modules over T [7, Cor. 1.9]. Thus we have reduced Theorem 1.1 to showing that if 
T is a Noetherian algebra over a Noetherian domain A and I is any ideal such that T/I

is finitely generated as an A-module, then for any finitely generated T -module M , the 
modules Hr+1

I (M) are generically free and commute with base change over A for r ≥ 1. 
In fact, we will be able to show this for all indices r ≥ −1.

To get to the power series case, we first observe that for all i, every element of Hi
I(M)

is annihilated by some power of I. This means that Hi
I(M) has the structure of a module 

over the I-adic completion T̂ I . There is no loss of generality in replacing T and M by 
their I-adic completions T̂ I and M̂ I—the module Hi

I(M) is canonically identified with 
Hi

IT̂ I
(M̂ I). So without loss of generality, we assume that T is I-adically complete.

Now, Lemma 2.2 below guarantees that T is a module-finite algebra over a power 
series ring A[[x1, . . . , xn]]. So the finitely generated T -module M is also a finitely gener-
ated module over A[[x1, . . . , xn]], and the computation of local cohomology is the same 
viewed over either ring. This means that to prove Theorem 1.1, it would suffice to prove 
Theorem 2.1. It only remains to prove Lemma 2.2.

Lemma 2.2. Let A be a Noetherian ring. Let T be a Noetherian A-algebra containing an 
ideal I such that the composition of natural maps A → T � T/I is finite. Then there is 
a natural ring homomorphism from a power series ring

A[[x1, . . . , xn]] → T̂ I := lim←−−
t

T/It

which is also finite.

Proof of Lemma. Fix generators y1, . . . , yn for the ideal I of T . Consider the A-algebra 
homomorphism

A[x1, . . . , xn] → T xi �→ yi.

We will show that this map induces a ring homomorphism
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A[[x1, . . . , xn]] → T̂ I

which is finite. First note that for each natural number t, there is a naturally induced 
ring homomorphism

A[x1, . . . , xn]
(x1, . . . , xn)t

→ T

It
(1)

sending the class xi to the class yi.

Claim. For every t, the map (1) is finite. Indeed, if t1, . . . , td are elements of T whose 
classes modulo I are A-module generators for T/I, then the classes of t1, . . . , td modulo 
It are generators for T/It as a module over A[x1, . . . , xn]/(x1, . . . , xn)t.

The claim is straightforward to prove using induction on t and the exact sequence

0 → It/It+1 → T/It+1 → T/It → 0.

We leave these details to the reader.
Now to prove the lemma, we take the direct limit of the maps (1). Since at every 

stage, the target is generated over the source by the classes of t1, . . . , td, also in the limit, 
T̂ I will be generated over A[[x1, . . . , xn]] by the images of t1, . . . , td. So the induced ring 
homomorphism A[[x1, . . . , xn]] → T is finite. �

Having reduced the proof of the main results discussed in the introduction to Theo-
rem 2.1, the rest of the paper focuses on the local cohomology statement in the special 
case. Our proof of Theorem 2.1 uses an A-relative version of Matlis duality to convert 
the problem to an analogous one for finitely generated modules over a power series ring, 
where it will follow from the theorem on generic freeness. This relative version of Matlis 
duality might be of interest to commutative algebraists in other contexts, and holds in 
greater generality than what we develop here. To keep the paper as straightforward and 
readable as possible, we have chosen to present it only in the case we need to prove the 
main result. Some related duality is worked out in [4].

3. A relative Matlis dual functor

3.1. Matlis duality

We first recall the classical Matlis duality in the complete local (Noetherian) case.
Let (R, m) be a complete local ring, and let E be an injective hull of its residue 

field R/m. The Matlis dual functor HomR(−, E) is an exact contravariant functor on 
the category of R-modules. It takes each Noetherian R-module (i.e., one satisfying the 
ascending chain condition) to an Artinian R-module (i.e., one satisfying the descending 
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chain condition) and vice-versa. Moreover, for any Artinian or Noetherian R-module H, 
we have a natural isomorphism H → HomR(HomR(H, E), E). That is, the Matlis dual 
functor defines an equivalence of categories between the category of Noetherian and the 
category of Artinian R-modules. See [7], [2, Thm. 3.2.13] or [10] for more on Matlis 
duality.

3.2. A relative version of Matlis duality

Let A be a domain. Let R be an A-algebra, with ideal I ⊂ R such that R/I is finitely 
generated as an A-module. Define the relative Matlis dual functor to be the functor

{R − modules} → {R − modules}
M �→ M∨A := lim−−→

t

HomA(M/ItM, A).

We also denote M∨A by Homcts
A (M, A), since it is the submodule of HomA(M, A)

consisting of maps continuous in the I-adic topology. That is, Homcts
A (M, A) is the 

R-submodule of HomA(M, A) consisting of maps φ : M → A satisfying φ(ItM) = 0 for 
some t.

Proposition 3.1. Let R be a Noetherian algebra over a Noetherian domain A, with ideal 
I ⊂ R such that R/I is finitely generated as an A-module.

(1) The functor Homcts
A (−, A) is naturally equivalent to the functor

M �→ HomR(M, Homcts
A (R, A)).

(2) The functor preserves exactness of sequences

0 → M1 → M2 → M3 → 0

of finitely generated R-modules, provided that the modules M3/InM3 are (locally) 
free A-modules for all n � 0.

Remark 3.2. If A = R/I is a field, then the relative Matlis dual specializes to the usual 
Matlis dual functor HomR(−, E), where E is the injective hull of the residue field of R at 
the maximal ideal I (denoted here now m). Indeed, one easily checks that Homcts

A (R, A)
is an injective hull of R/m. To wit, the R-module homomorphism

R/m → Homcts
A (R, A) sending r mod m �→

{
R → A

s �→ rs mod m

is a maximal essential extension of R/m.
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Proof of Proposition. Statement (1) follows from the adjointness of tensor and Hom, 
which is easily observed to restrict to the corresponding statement for modules of con-
tinuous maps.

For (2), we need to show the sequence remains exact after applying the relative Matlis 
dual functor. The functor HomA(−, A) preserves left exactness: that is,

0 → HomA(M3, A) → HomA(M2, A) → HomA(M1, A) (2)

is exact. We want to show that, restricting to the submodules of continuous maps, we 
also have exactness at the right. That is, we need the exactness of

0 → Homcts
A (M3, A) → Homcts

A (M2, A) → Homcts
A (M1, A) → 0. (3)

The exactness of (3) at all spots except the right is easy to verify using the description 
of a continuous map as one annihilated by a power of I.

To check exactness of (3) at the right, we use the Artin Rees Lemma [1, 10.10]. Take 
φ ∈ Homcts

A (M1, A). By definition of continuous, we know φ is annihilated by In for 
sufficiently large n. By the Artin–Rees Lemma, there exists t such that for all n ≥ t, we 
have In+tM2 ∩ M1 ⊂ InM1. This means we have a surjection

M1/(In+tM2 ∩ M1) � M1/InM1.

Therefore the composition

M1/In+tM2 ∩ M1 � M1/InM1 → A

gives a lifting of φ to an element φ′ in HomA(M1/In+tM2 ∩ M1, A).
Now note that for n � 0, we have exact sequences

0 → M1/M1 ∩ In+tM2 → M2/In+tM2 → M3/In+tM3 → 0,

which are split over A by our assumption that M3/In+tM3 is projective. Thus

0 → HomA(M3/In+tM3, A) → HomA(M2/In+tM2, A)

→ HomA(M1/M1 ∩ In+tM2, A) → 0 (4)

is also split exact. This means we can pull φ′ ∈ HomA(M1/In+tM2 ∩ M1, A) back to 

some element φ̃ in HomA(M2/In+tM2, A). So our original continuous map M1
φ→ A is 

the restriction of some map M2
φ̃→ A which satisfies φ̃(In+tM2) = 0. This exactly says 

the continuous map φ on M1 extends to a continuous map φ̃ of M2. That is, the sequence 
(3) is exact. �
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Remark 3.3. If M3 is a Noetherian module over a Noetherian algebra R over the Noethe-
rian domain A, then the assumption that M3/InM3 is locally free for all n holds 
generically on A—that is, after inverting a single element of A. See Lemma 4.2.

4. Generic freeness

We briefly review Grothendieck’s idea of generic freeness, and use it to prove that the 
relative Matlis dual of a Noetherian R-module is generically free over A (under suitable 
Noetherian hypothesis on R and A).

Let M be a module over a commutative domain A. We say that M is generically 
free over A if there exists a non-zero g ∈ A, such that M ⊗A Ag is a free Ag-module, 
where Ag denotes the localization of A at the element g. Likewise, a collection M of 
A-modules is simultaneously generically free over A if there exists a non-zero g ∈ A, 
such that M ⊗A Ag is a free for all modules M ∈ M. Note that any finite collection of 
generically free modules is always simultaneously generically free, since we can take g to 
be the product the gi that work for each of the Mi.

Of course, finitely generated A-modules are always generically free. Grothendieck’s 
famous Lemma on Generic Freeness ensures that many other modules are as well:

Lemma 4.1 ([5, 6.9.2]). Let A be a Noetherian domain. Let M be any finitely generated 
module over a finitely generated A-algebra T . Then M is generically free over A.

We need a version of Generic Freeness for certain infinite families of modules over 
more general A-algebras:

Lemma 4.2. Let A be any domain. Let T be any Noetherian A-algebra, and I ⊂ T any 
ideal such that T/I is finite over A. Then for any Noetherian T -module M , the family 
of modules

{M/InM | n ≥ 1}

is simultaneously generically free over A. That is, after inverting a single element of A, 
the modules M/InM for all n ≥ 1 become free over A.

Remark 4.3. We will make use of Lemma 4.2 in the case where T = A[[x1, . . . , xn]].

Proof. If M is finitely generated over T , then the associated graded module

grIM = M/IM ⊕ IM/I2M ⊕ I2M/I3M ⊕ . . .

is finitely generated over the associated graded ring grIT = T/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . , 
which is a homomorphic image of a polynomial ring over T/I. Hence grIT is a finitely 
generated A-algebra. Applying the Lemma of generic freeness to the grIT -module grIM , 
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we see that after inverting a single non-zero element of g of A, the module grIM becomes 
A-free. Since grIM is graded over grIT and A acts in degree zero, clearly its graded pieces 
are also free after tensoring with Ag. We can thus replace A by Ag for suitable g, and 
assume that the InM/In+1M are Ag-free for all n ≥ 0.

Now consider the short exact sequences

0 → InM/In+1M → M/In+1M → M/InM → 0, (5)

for each n ≥ 1. We already know that M/I1M and InM/In+1M for all n ≥ 1 are free 
(over Ag), so by induction, we conclude that the sequences (5) are all split over Ag for 
every n. In particular, the modules M/InM are also free over Ag for all n ≥ 1. The 
lemma is proved. �
Proposition 4.4. Let A be a Noetherian domain. Let R be any Noetherian A-algebra with 
ideal I ⊂ R such that R/I is a finitely generated A-module. Then for any Noetherian 
R-module M , the relative Matlis dual

Homcts
A (M, A)

is a generically free A-module. Furthermore, if g ∈ A is a non-zero element such 
that Ag ⊗A Homcts

A (M, A) is free over Ag, then for any base change A → L factoring 
through Ag, the natural map

Homcts
A (M, A) ⊗A L → Homcts

L (M ⊗A L, L)

is an isomorphism of R ⊗A L-modules, functorial in M .

Proof. We can invert one element of A so that each M/ItM is free over A; replace A by 
this localization. We now claim that the A-module

Homcts
A (M, A) = lim−−→

t

HomA

(
M

ItM
, A

)
is free. Indeed, since each M/ItM is free and has finite rank over A, its A-dual 
HomA

(
M

ItM , A
)

is also free of finite rank. The direct limit is also A-free because the 
maps in the limit system are all split over A and injective. Indeed, if some finite A-linear 
combination of fi ∈ Homcts

A (M, A) is zero, then that same combination is zero considered 
as elements of the free-submodule HomA

(
M

ItM , A
)

of homomorphisms in Homcts
A (M, A)

killed by a large power of I. It follows that Homcts
A (M, A) is free over A, as desired.

The result on base change follows as well, since tensor commutes with direct limits 
and with dualizing a finitely generated free module. �
Remark 4.5. We can interpret Proposition 4.4 as saying that generically on A, the relative 
Matlis dual functor (applied to Noetherian R-modules) is exact and commutes with base 
change.
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5. Relative local duality and the proof of the main theorem

The proof Theorem 2.1 and therefore of our main result answering Kollár’s question, 
follows from a relative version of Local Duality:

Theorem 5.1. Let R be a power series ring A[[x1, . . . , xn]] over a Noetherian domain A, 
and let M be a finitely generated R-module. Set I ⊂ R to be the ideal generated by 
x1, . . . , xn. Then, after replacing A by its localization at one element, there is a functorial 
isomorphism for all i

Hi
I(M) ∼= [Extn−i

R (M, R)]∨A .

To prove Theorem 5.1, we need the following lemma.

Lemma 5.2. Let R be a power series ring A[[x1, . . . , xn]] over a ring A. There is a natural 
R-module isomorphism Homcts

A (R, A) ∼= Hn
I (R), where I = (x1, . . . , xn). In particular, 

the relative Matlis dual functor can also be expressed

M �→ HomR(M, Hn
I (R)).

Proof. We recall that Hi
I(R) is the i-th cohomology of the extended Čech complex K•

on the elements x1, . . . , xn. This is the complex

0 → R
δ1→ Rx1 ⊕ Rx2 · · · ⊕ Rxn

→
⊕
i<j

Rxixj
→ · · · δn−→ Rx1x2···xn

→ 0

where the maps are (sums of) suitably signed localization maps. In particular, Hn
I (R) is 

the cokernel of δn, which can be checked to be the free A-module on (the classes of) the 
monomials xa1

1 . . . xan
n with all ai < 0.1

Now define an explicit R-module isomorphism Φ from Hn
I (R) to Homcts

A (R, A) by 
sending the (class of the) monomial xα to the map φα ∈ Homcts

A (R, A):

R
φα−→ A

xb1
1 . . . xbn

n �→
{

1 if αi + bi = −1 for all i

0 otherwise

Since {xβ | β ∈ Nn} is an A-basis for R, the map φα is a well-defined A-module map from 
R to A, and since it sends all but finitely many xβ to zero, φα is I-adically continuous. 
Thus the map Hn

I (R) Φ−→ Homcts
A (R, A) is an A-module homomorphism; in fact, Φ is an 

1 See page 226 of [9], although I have included one extra map δ1 : R →
⊕

Rxi
sending f �→ ( f

1 , . . . , f
1 )

in order to make the complex exact on the left, and my ring is a power series ring over A instead of a 
polynomial rings over a field. This is also discussed in [7] page 22.
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A-module isomorphism, since it defines a bijection between the A-basis {xα | αi < 0} for 
Hn

I (R) and the dual basis for Homcts
A (R, A) corresponding to the free basis of monomials 

for R over A. It is easy to check that Φ is also R-linear. Thus Φ identifies the R-modules 
Hn

I (R) and Homcts
A (R, A). �

Proof of Theorem 5.1. We proceed by proving that both modules are generically iso-
morphic to a third, namely TorR

n−i(M, Hn
I (R)).

First, recall how to compute Hi
I(M). Let K• be the extended Čech complex on the 

elements x1, . . . , xn

0 → R
δ1→ Rx1 ⊕ Rx2 · · · ⊕ Rxn

→
⊕
i<j

Rxixj
→ · · · δn−→ Rx1x2···xn

→ 0.

This is a complex of flat R-modules, all free over A, exact at every spot except the right 
end. Thus it is a flat R-module resolution of the local cohomology module Hn

I (R). The 
local cohomology module Hi

I(M) is the cohomology of this complex after tensoring over 
R with M , that is

Hi
I(M) = TorR

n−i(M, Hn
I (R)).

On the other hand, let us compute the relative Matlis dual of Extn−i
R (M, R). Let P•

be a free resolution of M over R. The module Ext•
R(M, R) is the cohomology of the 

complex HomR(P•, R). We would like to say that the computation of the cohomology of 
this complex commutes with the relative Matlis dual functor, but the best we can say is 
that this is true generically on A. To see this, we will apply Lemma 4.2 to the following 
finite set of R-modules:

• For i = 0, . . . , n, the image Di of the i-th map of the complex HomR(P•, R);
• For i = 0, . . . , n, the cohomology Extn−i

R (M, R) of the same complex.

Lemma 4.2 guarantees that the modules

Di/ItDi and Extn−i
R (M, R)/ItExtn−i

R (M, R)

are all simultaneously generically free over A for all t ≥ 1. This allows us to break up 
the complex Ag ⊗A HomR(P•, R) into many short exact sequences, split over Ag, which 
satisfy the hypothesis of Proposition 3.1(2) (using Ag in place of A and Ag ⊗A R in place 
of R). It follows that the computation of cohomology of HomR(P•, R) commutes with 
the relative Matlis dual functor (generically on A).

Thus, after replacing A by a localization at one element, Extn−i
R (M, R)]∨A is the 

cohomology of the complex

HomR(HomR(P•, R), Hn
I (R)).
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In general, for any finitely generated projective module P and any module H (over any 
Noetherian ring R), the natural map

P ⊗ H → Hom(Hom(P, R), H)

sending a simple tensor x ⊗ h to the map which sends f ∈ Hom(P, R) to f(x)h, is an 
isomorphism, functorially in P and H. Thus we have a natural isomorphism of complexes

P• ⊗ Hn
I (R) ∼= HomR(HomR(P•, R), Hn

I (R)),

and so [Extn−i(M, R)]∨A is identified with Torn−i(M, Hn
I (R)), which as we saw is iden-

tified with Hi
I(M).

Since all identifications are functorial, we have proven the relative local duality 
Hi

I(M) ∼= [Extn−i(M, R)]∨A , generically on A. �
We can finally finish the proof of Theorem 1.1, and hence the main result:

Proof of Theorem 2.1. Let R be a power series ring over a Noetherian domain A, and let 
M be any Noetherian R-module. We need to show that the local cohomology modules 
Hi

I(M) are generically free and commute with base change over A.
In light of Proposition 4.4, we can accomplish this by showing that Hi

I(M) is the 
relative Matlis dual of a Noetherian R-module, generically on A. But this is guaranteed 
by the relative local duality theorem Theorem 5.1, which guarantees that

Hi
I(M) ∼= Extn−i

R (M, R)∨A

generically on A. �
Remark 5.3. One could obviously develop the theory of relative Matlis duality, especially 
Theorem 5.1, further; I wrote down only the simplest possible case and the simplest 
possible statements needed to answer Kollár’s question as directly as possible.
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