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CONTRIBUTION OF JUMPING NUMBERS BY
EXCEPTIONAL DIVISORS

HANS BAUMERS AND WILLEM VEYS

WITH AN APPENDIX BY KAREN E. SMITH AND KEVIN TUCKER

ABSTRACT. We investigate some necessary and sufficient conditions for
an exceptional divisor to contribute jumping numbers of an effective
divisor on a variety of arbitrary dimension, inspired by the results for
curves on surfaces by Smith and Thompson [ST07] and Tucker [Tucl0].
In particular, we construct an example of an exceptional divisor that is
not contracted in the log canonical model, and does not contribute any
jumping numbers.

1. INTRODUCTION

The multiplier ideals J (X, AD) associated to an effective divisor D on an
algebraic variety X encode subtle information about the singularities of the
pair (X, D). They form a chain of Ox-ideals J (X, AD), which decrease when
A increases, but remain the same after a slight increase of A\. The values of
A where the multiplier ideals change are called the jumping numbers of the
pair (X, D). These geometric invariants where first studied in [ELSV04],
but appeared earlier in different contexts, in [Lib83], [LV90], [Vaq92] and
[Vaq94]. The smallest jumping number is the log canonical threshold. It
has been studied thoroughly in e.g. [Kol97] and [Mus12].

The multiplier ideals, and hence the jumping numbers, are computed
using a log resolution of the pair (X, D), so it is not a surprise that the
exceptional divisors play an important role. Smith and Thompson [STO07],
and later Tucker [Tucl0], studied which exceptional divisors in an embedded
resolution of (X, D) are ‘relevant’ for the computation of jumping numbers,
introducing the notion ‘contribution of jumping numbers by exceptional di-
visors’. When C'is a curve on a surface X with at most rational singularities,
they found a geometrical characterization of exceptional divisors contribut-
ing jumping numbers by looking at the intersections with other components
of the total transform of C' in the minimal resolution of (X,C). They also
prove that, if an exceptional divisor E contributes a jumping number, it will
always contribute the number 1—1/a, where a is the multiplicity of F in the
total transform of C. It turns out that, in this dimension, the contributing
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divisors coincide with the ones that are not contracted in the log canonical
model of (X, D) (see Definition 3.6).

The goal of this paper is to study to what extent these results can be
generalized to higher dimensional varieties. In particular, we raise three
questions, and formulate answers to each of them.

The first, and, in our opinion, the most important question, treats the re-
lation between the exceptional divisors surviving in the log canonical model
and those contributing jumping numbers, which was suggested by Smith
and Thomspon in [ST07]. We construct an example where an exceptional
divisor does not contribute any jumping numbers, but survives in the log
canonical model.

The second question is whether or not we can make conclusions about
contribution of jumping numbers by a certain divisor, just by looking at
the intersections with the other components of the total transform of D in
a log resolution. We encounter a big difference with the two-dimensional
case here. In a log resolution of a curve on a surface with at most rational
singularities, all exceptional divisors are projective lines, but in higher di-
mensions, there is a wide range of possibilities. We will study some specific
cases where the intersection configuration contains enough information to
decide whether or not an exceptional divisor contributes jumping numbers,
and show that this does not hold in general by constructing a counterexam-
ple.

A final question we investigate is whether or not the number 1 — 1/a is
always a jumping number if E contributes. Here, a is the multiplicity of E
in the total transform of D. Also here, the answer will be negative.

We start in Section 2 with introducing our basic concepts, such as mul-
tiplier ideals, jumping numbers and the notion of contribution of jumping
numbers. Next, in Section 3, we recall some definitions in birational ge-
ometry, and prove a contraction criterion for exceptional divisors in the log
canonical model. In Section 4, we recall the results of Smith and Thompson
[ST07] and Tucker [TuclO] in the two-dimensional case. Also, we present
some preliminary results in arbitrary dimension, which we use in section 5 to
show that the results of [ST07] and [Tuc10] still hold in higher dimensions for
exceptional divisors that are not too complicated, for example exceptional
divisors isomorphic to the projective space. In Section 6, we show by exam-
ple that, in general, contribution of jumping numbers cannot be seen from
the intersection configuration on the exceptional divisor. Finally, in Section
7, we give an example of an exceptional divisor that is not contracted in the
log canonical model, and does not contribute any jumping numbers.

Acknowledgement. We would like to thank Christopher Hacon for his
valuable help concerning the part on birational geometry, and in particular
the contraction criterion (Lemma 3.12).
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2. BASIC NOTIONS

We start with some definitions that will be used throughout this paper.
Definition 2.1. A wariety is an integral scheme of finite type over C.

Definition 2.2. A Q-divisor on a variety X is an element of Div X ®7 Q.
Equivalently, a Q-divisor is of the form F' = Y " | a,F;, where the F; are
irreducible Weil divisors on X and the a; € Q. A Q-divisor F' is called
Q-Cartier if mF' is a Cartier divisor for some m € Z.

Definition 2.3. If F =) a;F; is a Q-divisor, then the round down of F' is
LF] =3 [ai] Fi

Definition 2.4. If X is a normal variety and D a Q-divisor on X, then a

log resolution of (X, D) is a proper, birational morphism 7 : Y — X, such
that

e Y is smooth,
° 77_1(D U Xging) is a strict normal crossings divisor,
e 7 defines an isomorphism outside 771 (D U Xgjng)-

Definition 2.5. The relative canonical divisor of a birational morphism of
smooth varieties 7 : Y — X is

K,=Ky —7"Kx,
where Kx and Ky are the canonical divisors of X and Y, respectively.

Remark 2.6. Although Ky and Kx are only defined as divisor classes, we
often consider K, as an effective divisor, since its divisor class contains a
unique effective divisor supported on the exceptional locus of .

Now we are ready to introduce multiplier ideals.

Definition 2.7. Let X be a smooth variety and D an effective divisor on
X. Let m: Y — X be a log resolution of (X, D). If ¢ is a positive rational
number, we define the multiplier ideal of (X, D) with coefficient ¢ as

J(X,eD) := 7,0y (Ky — |en*D)).
Note that, since 7Oy (K,) = Ox, we have J(X,cD) C Ox for all ¢ €
Q=0, which justifies the name multiplier ideal.

Proposition 2.8 ([EV92, Proposition 7.5]). The multiplier ideal is inde-
pendent of the chosen log resolution.

From the definition of multiplier ideals, it is easy to see that a small
increase of the coefficient ¢ does not affect the multiplier ideal. This gives
rise to the concept of jumping numbers.

Proposition-Definition 2.9. Let D be an effective divisor on a smooth
variety X. There exists a chain of rational numbers

0:>\0</\1</\2<"'<>\i<>\i+1<---
satisfying
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o for i € Z>¢ and ¢ € [A\j, A\i+1), we have J(X,cD) = J (X, \D),
e fori e ZZO’ j(X, )\ZD) 2 j()\H_lD)
The numbers \;, i > 1, are called the jumping numbers of (X, D).

If 7:Y — X is a log resolution of (X, D), we can denote 7°D = ), ; a; E;
and K = Y ..;kiE;, where E;, i € I, are the irreducible components of
771(D). Then it is easy to see that the jumping numbers are contained in

the set
ki +
a;

The numbers in this set are called the candidate jumping numbers. If
E1,..., E, are irreducible components of 771(D), we say that a candidate
jumping number X is a candidate for £ = """ | E; if \a; € Zfori=1,...,n.
In contrast to multiplier ideals and jumping numbers, the notion of candi-
date jumping numbers depends on the chosen log resolution.

The smallest candidate jumping number however, does not depend on the
chosen log resolution, and is always a jumping number. It is called the log
canonical threshold and we denote it by let(X, D).

iGI,n€Z>0}.

Now we list some basic properties. First note that if ¢ € Q~g, we have
J(X,(¢c+1)D) = 7,0y (K, — |en*D| — 7" D)
=J(X,eD)® Ox(—D)

by the projection formula. Therefore, ¢ is a jumping number if and only
if ¢+ 1 is a jumping number. This is actually a special case of Skoda’s
Theorem (see [Laz04b, 9.3.24]).

It is also easy to see that if ) is a candidate jumping number for the strict
transform of one of the components of D, it is always a jumping number.
In particular, the positive integers are always jumping numbers for the pair
(X, D).

The following theorem is a useful tool for proving statements about mul-
tiplier ideals.

Theorem 2.10 (Local Vanishing, [Laz04b, Theorem 9.4.1]). Let D be a
divisor on a smooth variety X, and w:Y — X a log resolution of (X, D).
Then for every c € Q we have

R'm.0y (K, — [cD]) =0 fori > 0.

Now we define contribution of jumping numbers by an exceptional divisor.
This is a notion that indicates which exceptional divisors are responsible for
the jumping numbers.

Definition 2.11 ([ST07, Definition 2.1]). Let D be an effective divisor
on a smooth variety X. Let E be a reduced exceptional divisor (possibly
reducible) in some log resolution 7 : Y — X of (X, D), and \ a candidate
jumping number for E. We say E contributes A as a jumping number if

J(X,\D) C 1,0y (K, — |\*D] + E).
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It is easy to see that this notion depends only on the valuations defined
by the components of E. In particular it is independent of the choice of log
resolution.

3. BIRATIONAL GEOMETRY AND THE LOG CANONICAL MODEL

Notation 3.1. If m : Y — X is a birational morphism of normal algebraic
varieties, and D = > a;D; a Q-divisor on X, where the D; are irreducible
divisors, then we denote D = Z%Di, where D; is the strict transform of
D; for every i.

Let X be a normal variety. Since the singular locus of X has codimension
at least 2, we can define the canonical divisor class Kx by extending the
canonical divisor on the non-singular locus of X to all of X. Let D be a
Q-divisor on X, such that Kx+ D is Q-Cartier, and consider a log resolution
m:Y — X of (X, D) with exceptional prime divisors E;, i € I. If we choose
appropriate representatives of Kx and Ky, then we can write

Ky +D+)Y Ei=n"(Kx+D)+ Y a(E;,X,D)E
icl iel

for some a(F;, X, D) € Q. The number a(E;, X, D) is called the log discrep-
ancy of E; with respect to (X, D). If E is a prime divisor in a log resolution
f:Y — X, and E’ is a prime divisor in an other resolution f’:Y’ — X
defining the same valuation, then a(F, X, D) = a(FE’, X, D), so we can say
that the discrepancy does not depend on the log resolution in which we
consider a divisor.

If D = > a;D;, then it will be useful to extend the definition of log
discrepancies to non-exceptional divisor by putting a(D;, X, D) = 1 — a; for
all i and a(F, X, D) =0 if F is a prime divisor on X different from the D;.

Definition 3.2 ([KM98, Definition 2.34]). Let X be a normal variety and
D a divisor on X such that Kx + D is Q-Cartier. We say that (X, D)
has log canonical singularities, or simply that (X, D) is log canonical if
a(E, X, D) > 0 for all exceptional divisors E in all log resolutions of (X, D).
By [KM98, Corollary 2.32|, this is equivalent to a(FE;, X,D) > 0 for all
exceptional divisors in a fixed resolution. Also, if (X,D = > a;D;) is log
canonical, then by [KM98, Corollary 2.31], a; < 1 for all i.

Definition 3.3 ([KM98, Definition 2.37]). If (X, D) is as in Definition 3.2,
and if D =3 a;D; with 0 < a; < 1 for all ¢, then we say that (X, D) is dlt
or divisorially log terminal if there is a closed subset Z C X such that X\Z
is smooth, D| x\z 1s a simple normal crossings divisor, and there exists a log

resolution 7 : Y — X of (X, D) such that 7—!(Z) has pure codimension one
and a(E, X, D) > 0 for every irreducible divisor E C 7~1(2).

Log canonical pairs can also be described using multiplier ideals (see
[Laz04b, Definition 9.3.9]).



6 HANS BAUMERS AND WILLEM VEYS

Proposition 3.4. If D is an effective divisor on a smooth variety X, then
(X, D) is log canonical if and only if

J(X,(1—¢)D)=0x forall0<e<1.
This happens if and only if lct(X, D) > 1.

Proof. If m : Y — X is a log resolution of (X, D), and 7*D = 3, ; a; E;,
one can see that

J(X,(1 —¢)D) = 1,0y (Z [a(E;, X, D) — 1+ ca;] E) ,
el
and then the statement follows easily. O

Definition 3.5 ([Xul6, Definition 2.4], [HX13]). If X is a normal variety
and D =Y a;D; a Q-divisor on X, where the D; are distinct prime divisors
and 0 < a; < 1, then a dit model of (X, D) is a proper birational morphism
Om : X — X such that

(1) the pair (X, D+ Eg, ) is dlt, where Ey, is the reduced exceptional
divisor of ¢,,, and
(2) Kx,, + D+ Ey,, is ¢pm-nef, i.e., its restriction to any fibre of ¢, is
nef.
If 7:Y — X is a log resolution of (X, D) and ¢, : X;, — X a dlt model,
then there is an induced birational map ¢ : Y --» X,,,. We say that X,, is
a minimal dlt model of (X, D) with respect to m if ¢~1 contracts no divisors,
and a(E,Y,D + E;) > a(E, X, D + Ey,,) for all ¢-exceptional divisors
E CY. Here, E, denotes the reduced exceptional divisor of 7.

Definition 3.6 ([OX12, Definition 2.1]). If X and D are as in Definition
3.5, then a log canonical model of (X, D) is a proper birational morphism
¢c : X. — X such that

(1) the pair (X.,D + Ej.) is log canonical, where Ej_ is the reduced
exceptional divisor of ¢, and

(2) Kx, + D+ Ey, is ¢.-ample, i.e., its restriction to any fibre of ¢, is
ample.

Theorem 3.7 ([OX12, Theorem 1.1, Proposition 2.1], [Kol13, Theorems
1.26, 1.32 and 1.34], [HX13, Lemma 2.4]). If X is a normal variety and
D =>"a;D; a Q-divisor on X, where the D; are distinct prime divisors and
0 < a; < 1, then there exists a unique log canonical model of (X, D). A dit
model exists, but is not unique. However, if m: Y — X is a log resolution of
(X, D), then different minimal dlt models with respect to 7 are isomorphic
in codimension one.

If X, is a dlt model and X, the log canonical model, then there exists a
morphism X,, — X..

Definition 3.8 (see for example [Laz04a]). Let 7 : Y — X be a morphism
of varieties, with X affine. If L is a Cartier divisor on Y, Oy (L) is the
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associated invertible sheaf, and V C H°(Y,Oy (L)) is a linear subspace,
then |V| = P(V) is a linear series on Y over X. If V.= H(Y, Oy (L)), then
we say |V is a complete linear series over X associated to L, also denoted
|L|.

Let |V be a linear series with V' C H(Y,Oy (L)), E C Y a subvariety
of Y, and i : E — Y the inclusion. The restricted linear series over X
associated to V', denoted |V |g, is P(i*(V')), where i* denotes the morphism
HO(Y, Oy (L)) - HO(E, *Oy (L)).

Remark 3.9. The general definition of a linear series over X is a subsheaf
of m,Oy (L) (see for example [Laz04b, Generalization 9.1.17]). However,
on affine schemes, quasi-coherent sheaves are determined by their global
sections. Therefore, this definition coincides with the classical definition of
a linear series, not considered relative to X. We restrict to the affine case
here, which is sufficient for us. The definition of the base locus below is
also the same as the classical definition if X is affine. However, the general
definition does depend on 7.

Definition 3.10. If 7 : ¥ — X is a morphism of normal varieties, with
X affine, and |V| is a linear series on Y over X, where V C H°(Y, Oy (L)),
then the base locus of |V| over X is

B([V]) = () Supp(div(s)),
seV
where div(s) denotes the divisor of zeroes of s. This equals the closed set
cut out by the image of

V ®o, Oy (—L) — Oy.

If L is a Cartier divisor on Y, then the stable base locus of |L| over X is

defined as
B(L)= () B(kLI).
k€Z>o
If D is a Q-divisor on Y, then we define B(D) = B(nD), where n € Z~( such
that nD is integral. This is independent of the choice of n since B(L) =

B(nL) for every Cartier divisor L and every n € Zsqo (see for example
[Laz04a, Proposition 2.1.21]).

Definition 3.11. Let 7 : Y — X be a morphism of algebraic varieties, with

X affine. We say that a complete linear series |L| on Y over X is big over

X if

hO(F, Oy (kL)|r)
fdim F

lim sup > 0,

k—o0
where F' is a general non-empty fibre of .
If E CY is asubvariety of Y, and i : F — Y is the embedding, then the
restricted linear series |L|g is big over X if
> dim im(H°(Y, Oy (kL)) — H°(F, Oy (kL)|r))
fdim F

lim su > 0,

k—o0
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where F' is a general non-empty fibre of the induced morphism F — X.
If D is a Q-divisor on Y, then we say |D|, resp. |D|g, is big over X if so
is [nD|, resp. |nD|g, where nD is an integral multiple of D.

Given a log resolution m : ¥ — X of (X, D), the following lemma tells
us which exceptional divisors are contracted in the log canonical model.
To the best of our knowledge, this result does not appear explicitly in the
literature. We think it is of independent interest. A more general statement
over a quasi-projective X should hold, but that would lead us beyond the
terminology and notation of the present paper. Both the statement and the
outline of the proof were kindly pointed out to us by Christopher Hacon.

Lemma 3.12. Let X be a normal affine variety and D = > a;D; a Q-
divisor on X, with 0 < a; <1 for all i, such that Kx + D is Q-Cartier. Let
m:Y — X be a log resolution of (X, D). Consider a minimal dlt model X,
of (X, D) with respect to w, and the log canonical model X. of (X, D), in a
diagram

Let A be the divisor A = D + Y E; on'Y, where the E; are the irreducible
exceptional divisors of .

Then the divisors contracted by ¢ are precisely the divisors E contained
in B(Ky + A), and the divisors contracted by v o ¢ are the divisors E such
that the restricted linear series |Ky + A|g is not big over X.

Remark 3.13. The condition that E is contained in B(Ky + A) is equivalent
to |k(Ky + A)|g = 0 for all sufficiently divisible k € Z~¢. Indeed, both

statements are equivalent to the vanishing of all sections of the H(Y, k(Ky +
A)) on E.

Proof. First note that by the proof of Theorem 1.1 in [OX12], and in par-
ticular Lemma 2.8, we can assume that (X,,, $+A) is a good minimal model
over (X, D), meaning that Ky, + ¢«A is my,-semiample. Then the first
part of the statement follows from [HX13, Lemma 2.4]. Indeed, (Y, A) is log
canonical because it is a log resolution of (X, D), hence it is dlt.

Note that if E C B(Ky + A), then |Ky + A|g cannot be big over X.
Indeed, if F' is a fibre of £ — X and k € Z~ is sufficiently divisible, then
every section of k(Ky + A) vanishes on F and hence on F, so the image of

HO(Y, Oy (k(Ky + A))) = H°(F, Oy (k(Ky + A))|r)
is always zero.

Now let F be a divisor that is not contracted by ¢, and denote ¢, FE =
E’' C X,,. Since by definition 7, (k(Ky + A)) = mms(k(Kx,, + ¢+A)) for all
sufficiently divisible k € Z~(, we know that |Ky + A|g is big over X if and
only if so is |Kx,, + ¢+A|g.
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Since Kx,, + ¢+ A is mp,-semiample, it follows that Kx, + ¢.A = ¢* A for
some me.-ample Q-divisor A on X.. Indeed, some multiple k(Kx, + ¢.A)
is integral and base-point free, so it is the pullback of the very ample sheaf
O(1) in Projx B,,>0 ™m+Ox,, (nk(Kx,, + ¢+A)), which is precisely X, (see
for example [KM98, Theorem 3.52(1)]).

Let F be a general non-empty fibre of the morphism E’ — X. We have
the following diagram:

F -2 s yF

b
X, — X,
This induces, for any sufficiently divisible k € Z+, the following diagram:

HO (X, ko* A) <" HO(X,, kA)

I b

HO(F, ki*p* A) <2 HO(WF, kj*A).

Note that j* is surjective for k£ > 0 by Serre vanishing, since the restriction
of A to ¢ F is ample. Also, ¢* is an isomorphism because ¥,Ox,, = Ox.,
using the projection formula. Finally, since p is surjective (and in particular
dominant), p* is injective.

The statement of [)* A| g being big over X is equivalent to

dim i* (HO (X, ko* A))

dim F > 0.

lim sup
k—o0
If E' is contracted by 1, i.e., dim(¢F) < dim F, we have im(i*) = im(i* o
Y*) = im(p* o 7*) C im(p*). This implies that the dimension of im(i*) is
at most h?(¢F, kj*A), which can grow with k only as k4™®F)  Therefore
|t)* A|gr is not big over X.

Otherwise, if E’ is not contracted by 1, then dim F' = dim(¢F). Since
A is ample, we can take n big enough such that dim HO(¢F, kj*nA) ~
kdim(F) — pdimF - Then  hecause p* is injective, it follows that |[¢* A|g is
big over X. O

The following result should be well-known. We include the proof for
completeness.

Lemma 3.14. Let (X, D) be a normal variety and D = a;D; a Q-divisor
on X, with 0 < a; < 1 for all i. Let m : Y — X be a log resolution
of (X,D) and E a w-exceptional prime divisor on Y. Suppose that some
Zariski open of E is covered by curves C whose classes belong to a fixed ray
in the numerical cone of curves, and

(Ky +A)-C <0, (resp. (Ky +A)-C<0),
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where A = D + E;. Then E is contracted in a dlt model with respect to T
(resp. the log canonical model) of (X, D).

Proof. Let ¢ : Y --+ X,,, be a dlt model with respect to 7, and ¢ : X, — X,
the morphism onto the log canonical model. By for example [KK10, 1.9] or
[Bir12, Remark 2.7], we know that ¢*(Kx, + ¢¥«¢.A) = Kx,, + ¢+A. Hence
if C is a curve on X,,, we have

(KXC + ZZ)*@*A) O = Tzz)*(KXc + T;Z)*QS*A) O = (KXm + ¢*A) -C.

Therefore, since Kx, + 1. ¢, A is ample over X, C' is contracted by v if and
only if (Kx,, + ¢<A)-C =0.

So by running the minimal model program, we only have to check that
after a flip or a divisorial contraction f : Y’ --» Y, either F is contracted, or
the transform of E is still covered by (Ky» + f.A)-negative curves. Indeed,
by [KM98, Lemma 3.38], the discrepancies of exceptional divisors over X do
not decrease after such a map, and hence the intersection with a movable
curve cannot increase. O

4. PRELIMINARY RESULTS

4.1. The two-dimensional case. When C' is a curve on a smooth surface
X, and FE is an exceptional prime divisor in its minimal embedded resolu-
tion, then contribution of jumping numbers by F was studied by Smith and
Thompson in [ST07], and more generally by Tucker in [Tucl0]. We have the
following result.

Theorem 4.1. Let C be a curve on a smooth surface X, and 7 :Y — X
the minimal embedded resolution of (X,C). Let E be an exceptional prime
divisor of w, and set d = E - E°, where E° = (7°C)yeq — E. Then the
following are equivalent:

(1) E contributes jumping numbers to the pair (X,C),

(2) E is not contracted in the log canonical model of (X, Cyreq),

(8) d > 3.
Moreover, in this case, E contributes the jumping number A =1 — %, where
a s the multiplicity of E in 7*C.

The equivalence 1 < 3 is the main result of [ST07] (Theorem 3.1). The
equivalence 2 < 3 is well known (see for example [Vey97, Proposition 2.5]).
The implication 1 = 2 holds in arbitrary dimension by Corollary 4.6 below.

In the rest of the paper, we study to what extent the other equivalences
can be generalized. We divide this problem in three questions.

Let E be an exceptional prime divisor in a log resolution 7 : ¥ — X of
an effective divisor D on a smooth variety X. Write 7*D = oFE + > a; F;,
where the E; are the irreducible components of 7~!(D) different from FE.

Question 1. Does E contribute jumping numbers if and only if it is not
contracted in the log canonical model of (X, D;.cq)?
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Question 2. Can we draw conclusions about contribution by only looking
at the intersection configuration on E with other components of 7*D, i.e.,
is contribution determined by the class of ((7*D);eq — F)|g in Pic E?

Question 3. If E contributes jumping numbers, does it always contribute
the number 1 — 1/a?

The answer to Question 3 is negative, as can be seen from the following
example.

Ezample 4.2. Let D be the divisor given by y(yz? — 22z + 23 +¢%)2 = 0 in
X = A3. Blowing up at the origin first, with exceptional divisor E, followed
by two line blow-ups, yields a resolution 7 : Y — X, with
K =2FE1 + Es 4+ 2F3, and
™D =D + 7B + 3B + 6E3,

where D = 2D1 + D5 for prime divisors Dy and Dy. One sees immediately
that % is the log canonical threshold, so it is a jumping number contributed
by F,. However, g is not a jumping number by the following argument. The
exceptional divisor E; is a projective plane, blown up at two infinitely near
points. The Picard group is generated by the class of the pullback of a line in
P2, say ¢, the pullback of the first exceptional divisor, say e;, and the second
exceptional divisor, say es. Then we have Kp, = —3(+e1 + e, E1|g, = —¢,
E2‘E1 = €1 — €9, E3‘E1 = €9, Dl‘E1 = 36—61—62 and DQ‘El = 6—61—62. So
Kg, — L%T*DJ |, = —ea, which is a class not containing an effective divisor.
Hence, by Proposition 4.3 below, g is not a jumping number contributed by
FE4. Since Ej is the only divisor for which g is a candidate jumping number,
we can even conclude that g is not a jumping number.

Using for example the algorithm of [BD16], we find that the complete list
of jumping numbers in (0, 1] is %, %, % and 1, which also yields the result.
4.2. Preliminary results in arbitrary dimension. Now we state some
results that will be useful to prove statements about contribution of jumping
numbers. An important tool is the following proposition, which appears for
the two-dimensional case in [ST07], and in the general case, with a similar
proof, in [BD16, Proposition 2.12]. We add the proof for completeness.

Proposition 4.3. Let D be an effective divisor on a smooth variety X, and
let E be an exceptional divisor in a log resolution = : Y — X of (X, D).
Denote by i : E — Y the embedding. Let A € Qs¢ be a candidate jumping
number for E. Then E contributes \ as a jumping number if and only if

Txlxd Oy (Kr — |AM*D| + E) # 0.

If n(E) is affine (for example when E contracts to a point), this is equivalent
to

HY(E,i*Oy(K; — |[A\M*D] + E)) # 0.
If E is prime, this means that Kg — | A\7* D] |g is equivalent to an effective
divisor on E.
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Proof. Let X\ be a candidate jumping number for E and consider the exact
sequence

0= Oy (Kx — [M*D]) = Oy (Kx — |\t*D] + E)
— i,i* Oy (K — |A\m*D] + E) = 0

of sheaves on Y. Pushing forward through =, we obtain

0 = J(X,AD) = Oy (Ky — |\t*D| + E)
— Ty Oy (Kz — [ A\*D] + E) — 0,

where the last term is 0 by local vanishing (Theorem 2.10). So we see that
A is a jumping number contributed by E if and only if m,i,i*Oy (K —
|IAm*D| + E) # 0. If E is prime, we have (K, + F)|g = Kg by adjunction,
so the statement follows. O

As a consequence of this proposition, we have the following necessary
condition for contributing jumping numbers.

Corollary 4.4. In the same setting as Proposition 4.3, suppose E is a prime
divisor which is contracted to a point, and suppose that a divisor on E is
effective if and only if it is effective as a Q-divisor. If EE contributes some
Jumping number X to (X, D), then K + E°|g is effective and non-zero in
Pic E, where E° = (1*D)yeq — E.

Proof. Denote 7*D = ), ;a;E; + aE, where E and the E; are different
prime divisors. If X is a candidate jumping number for F, then |A7*D] =
AT*D — 37 ci{dai} By, Hence, (E°+ [(AM*D]) g = > ,c;(1 = {Aa;})Ei|E
since 7*D|g = 0, and this is an effective Q-divisor on F, different from the
zero divisor, and hence an effective integral divisor.

If E contributes A as a jumping number, then Kg — |[A7*D| |g is effective
in Pic E. Adding E°|g + |[A\7*D] |g yields the result. O

The following theorem states that multiplier ideals can actually be com-
puted using log canonical models instead of log resolutions. It is a special
case of a theorem by Smith and Tucker, who have been so kind to provide
the statement and the proof in the appendix to this paper (see Theorem
A2).

Theorem 4.5. Let X be a smooth variety and D an effective divisor on X.
If ¢c : Xo — X is the log canonical model of (X, Dyeq), and A € Qsq, then

J(X,AD) = ¢ Ox,(Kg, — [ApeD]).

Corollary 4.6. If an exceptional divisor contributes jumping numbers to
the pair (X, D), not all of its irreducible components can be contracted in
the log canonical model.
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5. POSITIVE ANSWERS IN SPECIFIC SITUATIONS

The proof of Theorem 4.1 builds on the fact that in the resolution of a
curve on a smooth surface, every exceptional divisor is isomorphic to P!, and
hence has Picard group isomorphic to Z. In the higher dimensional case,
exceptional divisors can be more complicated. Therefore, a straightforward
generalization of the proof of Theorem 4.1 is very unlikely. However, if
we assume the exceptional divisor to be isomorphic to a specific, not too
complicated variety, we can recover similar results, and find positive answers
to our questions.

In the proofs in this section, we will use the results from [Vey91]. These
results are stated and proved for divisors on affine space, but this is used
only to ensure that the pullback of a divisor restricted to an exceptional
divisor F is trivial in Pic E. Therefore, these results also hold for prinicipal
divisors on smooth varieties, or when F is contracted to a point, which will
be the setting in our propositions.

Remark 5.1. We have to be careful in generalizing the statement of The-
orem 4.1, since a minimal resolution does not exist in higher dimensions.
Therefore, we will assume in all of our statements that the log resolution is
obtained by blowing up at centers that are either contained in the singular
locus of D, or in the intersection of several components of the total trans-
form of D. This does not give any limitations, because every pair has such
a resolution (see [Hir64]).

5.1. Contribution by an exceptional divisor isomorphic to P"~!.
The following proposition is the direct generalization of Theorem 4.1 to
arbitrary dimensions. It can also be seen as a very special case of Proposition
5.3 below.

Proposition 5.2. Let D be an effective divisor on a smooth n-dimensional
variety X, with n > 2, and w: Y — X a log resolution of (X, D). Let E be
an exceptional divisor of © isomorphic to P*~', and let d be the total degree
in E of the intersections of E with the other components of 7=1(D). Then
the following are equivalent:

(1) E contributes jumping numbers to the pair (X, D),
(2) E is not contracted in the log canonical model of (X, Dyeq),
(3) d>n+1.

Moreover, in this case, & contributes the jumping number A =1 — %, where
a 1s the multiplicity of E in ©*D.

Proof. The implication 1 = 2 is Corollary 4.6.

Write 7°D = ) ;. a;E; + aE, where {E; | i € I} are the components of
71(D) different from E. If C' is a line on E, then (Kg + Y ,c; Eilg) - C =
d —n. So by Lemma 3.14, if d < n, E is contracted in the log canonical
model. This proves 2 = 3.
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It remains to prove that E contributes A as a jumping number if d > n+1.
By Proposition 4.3, it suffices to prove that deg(Kg — |An*D]|g) > 0, or
equivalently, that deg(|A7*D| |g) < —n.

Let E}, j € J, be the irreducible components of the intersections of F
with the other components of 7~1(D). Denote d; = deg(E;-) for every j € J,
so that d = ZjeJ d;, and for every j € J denote a; = a;, where 7 € I is the
index such that E? is a component of E; N E. By [Vey91], we have

deg(aE|g) = Zaj s
jeJ

Zdjaj = 1 —i—Zdjmj a,

jeJ jeJ
where m; is the number of times that the strict transform of E; on FE has
been used as center of a blow-up in the resolution process. This implies that

deg (A" D] |p) = deg <Z Lai - %J Eilg+ (a — 1)E\E>
i€l
= Z Laj - %J dj + (a — 1) deg(E|Eg)
jed

== | 2] d; - deg(Ep)

S-Z ([

Now note that our assumptions on the resolution (Remark 5.1) imply that
a; > mja for every j € J, and hence [%ﬂ] —mj > 1. Therefore, if d > n+1,
we have deg(|A\7*D| |g) < —n. This completes the proof. O

5.2. P*~! blown up at some centers on a hyperplane. Throughout
this section, we prove the following proposition.

Proposition 5.3. Let D be an effective divisor on a smooth n-dimensional
variety X, with n > 2, and 7 : Y — X a log resolution of (X, D). Let E be
an exceptional divisor of ® isomorphic to P, blown up at some centers
Zy, 1 € L, all contained in the same hyperplane H. Assume that E is created
by a point blow-up, and denote dim Z; = k.

Denote by d the total degree of the intersections of E with other compo-
nents of the total transform of D at the moment of the creation of E, and
by w; the total multiplicity of these components at Z; for everyl € L. Then
the following are equivalent:

(1) E contributes jumping numbers to the pair (X, D),
(2) E is not contracted in the log canonical model of (X, Dyeq),
(8) d>n+1 andd— p; >k + 2 for every l € L.
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Moreover, in this case, EE contributes the jumping number A =1 — %, where
a 1s the multiplicity of E in ©*D.

Remark 5.4. An example of this situation is a projective plane blown up at
two points, or, more generally, at any number of points on a fixed line.

Note that 1 = 2 is Corollary 4.6. Before proving this proposition, we
introduce some notations. Denote 7*D = >, _; a;E;+aFE, where {E; | i € I}
are the components of 7—!(D) different from E.

The Picard group of E is isomorphic to Z @ €, Z, with generators h,
the pullback of a hyperplane in P!, and e;, | € L, the exceptional divisors
of the blow-ups at the Z;.

Let E;-, j € J, be the irreducible components of the intersections of F
with the other components of 7=1(D).

Since every exceptional divisor on FE, created by blowing up at the Z,
is the intersection of E with one of the other components of 7=(D) (see
[Vey91]), we can view L as a subset of J. Then, for j € J' := J\L and [ € L,
we can define d; and p;; so that we have the following equalities in Pic E:

E; =d;h — Zﬂjleh and
leL
El, = €.

Note that with these notations d = 3, ; d;j and w = >, pji for all

l € L. Also, as in the proof of Proposition 5.2, denote a; = a; for every

7 € J, where ¢ € I is the index such that E; is a component of F; N E.
The canonical divisor of F is given by

(1) Kp=—nh+Y (n—k —2)e.
leL

For every | € L, the blow-up at Z; on E arises from a blow-up in the
ambient space. Denote the center of this blow-up by Cj, such that ENC}; = Z;
(at this stage of the resolution).

5.2.1. Contraction in the log canonical model. Consider the family of strict
transforms or pullbacks of lines C' in P"~!, not intersecting any of the Z;.
Then we see by Lemma 3.14 that E is contracted in the log canonical model
if (Kg+>_,e7E7)-C <0, which is equivalent to d < n. (This follows from
h-C=1lande¢-C=0foralllelL.)

Now fix one of the centers Z; and consider the family of strict transforms
of lines C'in P"~! intersecting Z; transversally, and none of the other Z;. (If
Z; is a point, intersecting Z; transversally just means that the line contains
Z;.) Then we see that E is contracted in the log canonical model if (Kp +
> jes Ej) - C <0, which is equivalent to d — iy < k; + 1. (This follows from
h-C=1,¢-C=1,and ey -C =0 for I’ #1.) This proves 2 = 3.
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5.2.2. Contribution of jumping numbers. Now we show the implication 3 =
1, using Proposition 4.3. We have

— D) |p = ~(=" D)l + Y | =] Eils + Bl

i€l
a
ST
el
=Y [F] 5+ Ble
: a
jeJ
_ 4G @l ﬁw .
(2) —E!E—FZ{Cdeh—i—Z [CJ Z{a wi | e
jeJ’ leL jedJ’

Moreover, as in the proof of Proposition 5.2, from [Vey91] we have

(3) Z djaj = 1+ Z djmj a,

jedJ’ jedJ’
(4) a; = Z wyrag + [ my — Z ,ujlmg»l) 4+, |aforalll e L, and
jeJ’ jeJ’
aE|E:—ZajE§:— Zdjaj h—z al—z,ujlaj e,
jed jeJ’ leL jeJ’

O]
of E; on F has been usedj as the center of a blow up after the creation of E
(respectively after blowing up at C}), and §; = 1 if Z; = C; (or equivalently,
C; C E), and ¢; = 0 otherwise.

Hence, using (3) and (4) we obtain

where m; (respectively m_”) is the number of times that the strict transform

(5) E|E:— 1—|—Zdjmj h—z ml—z,u]'lmg-l)—Fé[ €]
JjeJ’ leL jedJ’

because Pic E is torsion free.
Combining (1), (2) and (5), we have

Kg—AeD)lp = —n+ Y [Z]dj= (143 dm; | | n
jeJ’ a jeJ’
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l
— ml—z,ujlmg-)—i-él e

jeJ’
= _n_l_‘_Z(’V% —mj)dj h
jed’ a
il Qs
D N T S
leL jeJ! jeJ’

using (4) to rewrite [4].

If H is the strict transform of H, we have H = h— > iep @ in Pic E. Then
we obtain

Kp—Dllp=|-n—-1+% (Pﬂ —m;)d; |

jedJ’
o
+y (—kl—3+z ([22] =ms) d;
IeL er @
s o
f ]y () e
jeJ’ jed’

So we see that E contributes A =1 — é as a jumping number if

Z ({%1 —mj) dj >n+1, and

jeJ’
ZU%W_mj)djzkl+3+2{%wujl— Z% (for all [).
jes! jeJ’ jeJ’

Since 2 > m; for all j € J', we have [2] > m; + 1 and {ZjeJ’ ”jflaj—‘ >
Zje g jimj + 1 for every [, which implies that A is a jumping number
contributed by FE if

> dj=n+1, and

jeJ’
S odizk+2+ > g (for all 1),
jeJ’ jeJ’

ie., if
d>n+1, and
d—p >k +2 (for all [).
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Indeed, if > d; > n+1, then

Z (’7%1 —mj)dj > Zd] Zn—i‘l,
jeJ’ jeJ’
and if . ;/(dj — pji) > ki + 2 for some [ € L, then

Z q% _mj> (dj = njr) 2 Z(dj — pj1) > ki + 2,

jeJ! jeJ’

jeJ’

and consequently

ZU%W mj)d>kl+2+2{ L‘ﬂ_z/‘]lmj

jed’ jed’ jeJ!
15104
Skt s 3 [ |3

jeJ’ JjeJ’

This finishes the proof of Proposition 5.3.

6. A COUNTEREXAMPLE TO QUESTION 2

If dim X = 3, then besides P2, and P? blown up at some distinct points
on a line, the easiest case is when FE is an exceptional divisor isomorphic to
P2, blown up at two infinitely near points.

So suppose we have such an E. Denote by d the degree of the intersections
of E/ with other components of the total transform of D after the moment
of its creation, and by w1 and uo the multiplicity of these intersections at
the first, respectively the second point.

As in the proof of Proposition 5.3, one can show that E contributes the
jumping number 1 —1/a if d > 4, d — py > 2 and 2d — py — po > 5, where
a is the multiplicity of E in the total transform of D. Also, using Lemma
3.14, E is contracted in the log canonical model if d < 3 (if we look at a
general line), d — u; < 1 (if we consider a line through the first point) or
2d— py — po < 3 (if we look at a degree 2 curve through both points). Hence,
in these cases, E' does not contribute any jumping numbers.

In contrast with the previous results, this does not cover all the possibil-
ities. Concretely, the cases where d > 4, d — 1 > 2 and 2d — pg — po = 4
are still open. Example 4.2 already shows that the case d =4, u; = g =2
cannot be classified in one of the two options listed above. The following
examples show even more: equal intersection configurations can lead to dif-
ferent statements about contribution (and contraction in the log canonical
model). Hence, the answer to Question 2 is negative in general.

Ezample 6.1. Let D be the divisor given by (xy?—22)(x+2z) = 0in X = A3,
We can construct a log resolution by blowing up at the origin first, with
exceptional divisor E7, followed by blowing up at the intersection of F7 with
the two components of D, with exceptional divisor F», further at the singular
line on the strict transform of the first component of D, with exceptional
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divisor F3, and then resolving the tangency of F7 with the strict transform
of the first component of D, using two more blow-ups, with exceptional
divisors F4 and E5. If 7 : Y — X is the composite of these blow-ups, we
have

7D = D + 3E) 4+ 6E5 + 2E3 + 4E, + 8F5,
[(7T = 2E1 + 4E2 + E3 + 3E4 + 6E5

One can see that Fs is a projective plane, blown up at two infinitely near
points. At the moment of its creation, the other components of the total
transform of D intersect Fy in a curve of degree 2, a line tangent to this
curve, and a line intersecting these curves transversally. This means we are
in the situation d = 4, u; = ps = 2. One can see immediately that % is the
log canonical threshold, contributed as a jumping number by FEs.

Example 6.2. Now consider the Ds-singularity, given by y22 + 22 — y* = 0.
We construct a resolution m : ¥ — X by blowing up at the origin, with
exceptional divisor F1, followed by blowing up at the origin of the second
chart, with exceptional divisor Fs, blowing up at the intersection of Fy, s
and the strict transform of Ds, with exceptional divisor E3, and then twice
at the intersection of Ej with the strict transform of Dj, with exceptional
divisors F4 and E5. Then FEj3 is a projective plane, blown up at two infinitely
near points, and the intersection configuration is the same as in the previous
example. However, since Dj is a log canonical singularity, it has no jumping
numbers in (0,1). (This can also be verified using the algorithm of [BD16].)
We can conclude that contribution of jumping numbers by an exceptional
divisor cannot be decided by only looking at the intersection configuration.

Remark 6.3. We can say even more. In Examples 6.1 and 6.2, the exceptional
divisors we considered are even created in a similar way, i.e., blowing up at
a point first, and then twice at a line intersecting the divisor transversally.

7. A COUNTEREXAMPLE TO QUESTION 1

Ezample 7.1. Consider the divisor D = {(zy +22)2 + 23y + a2y = 0} in
X = A3, We blow up at the origin first, and call the exceptional divisor
FEy. Then, after four additional blow-ups centered in a line, corresponding
to the minimal resolution of the singular curve D N Ey in Ey, we obtain a
log resolution 7 : Y — X. We have

K;=2FEy+ E1 +2FE; + 3F5 + 6Ey,
7D = D + 4Ey + 2E, 4+ 4E5 + 5E3 + 10Ey,
where D denotes the strict transform of D.
The only candidate jumping numbers for Ej in (0, 1] are % and 1. Using

Proposition 4.3, one can show that they are not contributed by FEy (simi-
larly as in Example 4.2). With for example the algorithm of [BD16], one
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can compute that the jumping numbers are in fact the numbers in the set
{%, %, 1} + Z>0, and then the statement for % also follows.

We show that Ej is not contracted in the log canonical model using
Lemma 3.12. Since D ~ 0 on X, we have 7*D ~ 0 on Y, and therefore

D~ —4Ey — 2E, — AEy — 5E5 — 10E4.

Hence,
4

Ki+D+Y Ej~—Ey— Ey— E3—3E.
i=0
If G is the strict transform of a general plane in X through the origin, we
have G ~ —Ejy. Similarly, if F' is the strict transform of the divisor {y = 0},
one can compute that
F~—FEy—FE| —2FEy, — 2FE3 — 4F},.
Therefore,

Lo 1. 3 3 1 1
KW+D+ZEZ-~@ZG+ZF+ZE1+§E2+§E3-
i=0

Now, for k € Z~y,

k42
W (Eo, k(G + 3F + 3E, + 2F5 + 2E3)|g,) > h°(Eo, kG|g,) = < Z >

hence ‘Ky +D+ Z?:o E; 5 is big over X, and FEj is not contracted in the
0

log canonical model.

APPENDIX A. MULTIPLIER IDEALS FROM AN LC-RESOLUTION
(BY KAREN E. SmiTa! AND KEVIN TUCKER?)

We denote by S a smooth complex variety, and C an effective divisor on

S.

Definition A.1. Suppose X is a normal complex variety, f : X — S a
proper birational morphism, and let A = (f*C)yeq. Then f: X — S is an
LC-resolution of (S,C) if Kx + A is Q-Cartier, and for some (equivalently
all) dominating log resolutions of (S, C)

f/
X — X S
6 f
we have
Ky + A" > 60" (Kx + A)
where A" = (f*C)eq-
IThe first author was partially supported by NSF Grant DMS #1501625.

2The second author was partially supported by NSF Grant DMS #1602070 and a
fellowship from the Sloan foundation.
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In other words, a proper birational morphism f: X — S is an LC-
resolution if and only if X is normal, (X, A = (f*C);eq) is log canonical pair,
and X \ A has canonical singularities. In practice, one generally restricts
to LC-resolutions which are an isomorphism outside C' (or even where C' is
singular), so that the last requirement is automatic. For more information
on the types of singularities involved and a number of related constructions,
see [Kol13] (particularly Section 1.4).

Theorem A.2. If f: X — S is an LC-resolution of (S,C) and X € Qx,
then

T (8,AC) = fxOx (Ky — [Af°C]).

In other words, the multiplier ideals of (S,C) can be computed from any
LC-resolution.

Proof. Choose a dominating resolution f': X’ — S as above. Let Ky denote
the (unique exceptionally supported) divisor Kx/ — f "*Kg. Since we have

0.(Kp — [N"C]) =Ky — [A\f*C],
it follows immediately that
T (8,7C) = f.0.0x/(Ky — [\f"C]) C fLOx(Ky — [Af*C]).

For the opposite inclusion, we may assume that S is affine. Suppose ¢ €
HO(X,K; — [Af*C]), so that ¢ € K(X) and

div(p) + K; — [Af*C] > 0.

Write f*(AC) = [Af*(AC)] +{\f*(AC)}, where {D} denotes the fractional
part of a divisor D, so that

(6) div(p) + Ky — [*(AC) + {Af*(AC)} = 0.

Choose a rational number € > 0 sufficiently small so that A’ —ef™*(\C) >
{Af*C}. Pushing forward by 6, this also implies A — ef*(AC') > {\f*C}.
Therefore, in light of (6),

div(p) — ffKs+ Kx +A— (1+¢€)f"(AC) >0
and hence also (recalling that Kx + A is Q-Cartier)
div(po ) — f*Ks +0*(Kx + A) — (1 +¢)f*(AC) > 0.
Since X is an LC-resolution, we have Ky, + A’ > 0*(Kx + A). Thus,
div(po ) — f*Ks+ Kx + A" — (1 +€)f*(A\C) >0
div(po0) + Ky — [ f*(AC)] + (A" = ef"(AC) = {Af"C}) = 0
Taking the integer part of the left side yields
div(p o) + Kp — [f*(AC)] =2 0,
so that ¢ € fiOx/(Kp— | f*(AC)]) = J(S,AC). The proof is complete. [
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Remark

HANS BAUMERS AND WILLEM VEYS

A.3 (Log Canonical Models). As a corollary to the established

results of the log minimal model program, Odaka and Xu [OX12] have
verified the existence of a unique LC-resolution fi.: Xjc — S so that if
Ajc = (f:C)rea then Kx 4+ Ay is fic-ample.
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