A Privacy Negotiation Mechanism for loT

Khaled Alanezi
Computer Department
College of Basic Education, PAAET, Kuwait
kaa.alanezi@paaet.edu.kw

ABSTRACT

This paper presents a new privacy negotiation mechanism
for an IoT environment that is both efficient and practical to
cope with the IoT special need of seamlessness. This mecha-
nism allows IoT users to express and enforce their personal
privacy preferences in a seamless manner while interacting
with IoT deployments. In addition, the proposed mechanism
satisfies the privacy requirements of the IoT deployment
owner. Finally, the proposed privacy mechanism is agnos-
tic to the actual IoT architecture and can be used over a
user-managed, edge-managed or a cloud-managed IoT archi-
tecture. Prototypes of the proposed mechanism have been
implemented for each of these three architectures, and the re-
sults show the capability of the protocol to negotiate privacy
while adding insignificant time overhead.

1 INTRODUCTION

The Internet of Things (IoT) as a new revolutionary vision
in computing has emerged recently. An IoT infrastructure
is characterized by millions of devices or simply things that
are connected to the Internet. A myriad of Interesting appli-
cations can be built by enabling users to interact with this
infrastructure while navigating through spaces in their daily
life. Although this vision of 10T is not yet fully utilized, it
is typical nowadays to encounter different types of IoT de-
ployments in public places as well as in private households.
In addition, open communication standards are being inves-
tigated to communicate for these deployments that enable
users to access both IoT sensors and actuators. A remaining
challenging question is how to protect users’ privacy given
the ubiquitous nature of IoT deployments? Since traditional
privacy settings and privacy notice/choice screens are not
applicable as they hinder the seamless experience of the IoT,
it is important to come with a privacy negotiation mecha-
nism that is both efficient and practical to cope with this IoT
special need of seamlessness.

In this paper, we address this challenge by proposing a
privacy negotiation mechanism to allow IoT users to express
and enforce their personal privacy preferences while inter-
acting with IoT deployments. On one hand, the negotiation
mechanism is designed to be practical by allowing the user
device to negotiate with the IoT deployment in the back-
ground on behalf of the user. By using this scheme users can
control data collection activities of IoT deployments about

Shivakant Mishra
Computer Science Department
University of Colorado at Boulder, CO, USA
mishras@cs.colorado.edu

them without the burden of accessing the device to fill set-
ting screens or read a privacy notice. On the other hand,
this privacy negotiation mechanism is efficient as it is built
on top of existing IoT communication protocols and adds
only a negligible overhead to the ongoing communication
of IoT applications. A key novelty of this work comes from
demonstrating through practical experiments the viability
of automated privacy negotiation over IoT architectures.

It is important that the proposed negotiation mechanism
not only covers the privacy requirements of the IoT users (i.e.
IoT service consumers) but extends this coverage to negotiate
and satisfy the privacy requirements of the IoT deployment
owner (henceforth IoT owner) as well. The IoT owner is the
responsible party for setting up and maintaining the IoT in-
frastructure that provides services to IoT users. Generally,
providing services involves enabling the IoT user to access
sensory interfaces such as temperature, audio or camera sen-
sors. We envision that the IoT owners would like to manage
this access according to their privacy requirements since
every access to a sensor can be used to reveal information
about them. To cover the privacy requirements of IoT users
and owners, we model the problem as a utility-privacy trade-
off function in which sharing more information increases the
utility gained from the service but leads to more undesired
privacy exposure. We show that the negotiation protocol
can use multiphase negotiation efficiently to embark into an
agreement that satisfies the utility and privacy requirements
of IoT users and owner simultaneously.

Another important aspect that must be covered by the
negotiation protocol is the handling of current diverse IoT
infrastructures. IoT infrastructures are envisioned to act as
utility network for IoT users to use IoT services on the go
[12]. However, the gateway to access these services can be
either a central server, cloud server or edge server, or the
infrastructure may be accessed directly using M2M commu-
nication. An important feature of our negotiation protocol
is that it is architecture agnostic and can be used on cloud
based, edge-based or M2M types of infrastructure.

In summary, our contributions are as follows:

o We have designed a negotiation protocol to model and real-
ize privacy in an IoT ecosystem. The protocol takes a holistic
approach by covering the requirements of all involved par-
ties in an IoT interaction. The practicality of the protocol
stems from modeling privacy as a tradeoff function with the

DASC’18, August 2018, Athens, Greece

utility achieved from using/providing IoT services.

e We have developed and tested a prototype of the proposed
protocol over three different IoT infrastructure standards of
user-managed, edge-managed and cloud-managed IoT ar-
chitectures. Results show the capability of the protocol to
negotiate privacy while adding insignificant time overhead.

2 SCENARIOS

We identify three 10T scenarios that are common in litera-
ture namely user-managed IoT, edge-managed IoT and cloud-
managed IoT. In a user-managed IoT architecture, the IoT
owner’s mobile device, e.g. a smartphone or a tablet acts
as a gateway to the IoT infrastructure. All negotiation and
access must happen through this mobile device. This is anal-
ogous to an IoT infrastructure installed at home or a private
office. Consider a smarthome environment where a home
is equipped with a range of sensors such as a temperature
sensor, a carbon monooxide sensor, etc. These smarthome
sensors are designed to operate in a star topology network,
where each sensor is connected to a single gateway, e.g. home
owner’s smartphone, and sends its sensor data to that gate-
way at regular intervals. In this case, if another device, e.g.
a utility person’s smartphone needs to access this sensor
data, possibily for a limited time, the sensor data must be re-
trieved from the home owner’s smartphone. In this scenario,
the home owner’s smartphone must be involved in privacy
negotiation with the utility person’s smartphone.

For edge-managed and cloud-managed IoT, a server plays
the role of the gateway and carries all negotiation and access
requests. For the former, the server is within the same net-
work domain for the 10T infrastructure[5]. Whereas, for the
latter, the server is situated in a public cloud. For example, in
a smartcity, video feed from a security camera may be stored
at an edge server or a cloud server. If an agency such as a
law enforcement agency needs to access this video feed, the
egde or cloud server must be involved in privacy negotiation
with the law enforcement agency.

3 DESIGN
Privacy Requirements

The fact that the negotiation protocol operates in IoT en-
vironments imposes stringent practicality requirements on
our design. We describe below three of these requirements
that must be satisfied by the protocol design.

(1) No User Involvement: All negotiation communication
must take place in the background and without user inter-
vention. When users navigate through public or private
spaces, they will typically encounter IoT deployments
(i.e. IoT owners) and engage in a data exchange with
them to utilize a particular service. Due to the difficulty
in involving the IoT user in such situation, the IoT user’s

Khaled Alanezi and Shivakant Mishra

device that has the user privacy requirements should
act seamlessly to negotiate these privacy requirements
on behalf of the user with the IoT owner. Also, the IoT
owner’s privacy settings will be communicated to the
IoT user to ensure their adherence to these requirements.

(2) Minimal Overhead: The negotiation protocol must im-
pose minimal time and energy overhead to the IoT task.
IoT services are typically provided promptly to the users.
Therefore, these services are sensitive to any time delays,
which should be considered in the protocol design. Also,
since IoT devices are battery powered, the protocol must
be energy efficient to avoid draining the energy sources
of involved devices.

(3) Choice Flexibility: The protocol should avoid the cur-
rent privacy notice and choice model of either accepting
the service as a whole or abandoning it as we see that
this model is rigid and will not work with IoT situations
requiring more flexibility. Diverse options should be of-
fered to IoT users to enable them to continue to use the
service while not sacrificing their privacy requirements.

Privacy Model

The negotiation protocol presented here is in alignment with
the vision of achieving openness in [oT environments. Open-
ness envisions IoT networks to act as a utility infrastructure,
similar to electricity and water, that is accessed by IoT users
on the go [12]. Open environments as such requires that
the parties involved in information exchange specify their
privacy requirements to be negotiated on their behalf. This
is analogous to the P3P protocol [3] in which a browser ne-
gotiates the privacy requirements of users on their behalf
with visited websites to control the personal information
that the website can collect about the user. In our protocol,
the IoT user and IoT owner will store their privacy require-
ments in a policy file stored locally and written using XML
language. An example scenario for privacy policies for an
IoT owner and an IoT user is shown in Listing 1 and Listing
2 respectively.

Listing 1: IoT User Privacy Policy

<privacy —policy>
<data—in type="image" priority="1">
<retention>3-month</ retention »>
<shared>no</shared>
<inferred>yes</inferred>
</data—in>
<data—-out>
<data—out type="video" priority="1">
<retention>l-year</ retention >
<shared>no</shared>
<inferred>no</inferred>
</data—-out>
</privacy —policy>

A Privacy Negotiation Mechanism for loT

Listing 2: IoT Owner Privacy Policy

<privacy —policy>
<data—in type="video" priority="1">
<retention>l-year</ retention >
<shared>no</shared>
<inferred>yes</inferred>
</data—in>
<data—out type="face—detection" priority="1
<retention>l-year</ retention >
<shared>no</shared>
<inferred>no</inferred>
</data—out>
<data—out type="image" priority="1">
<retention>1-year</ retention >
<shared>no</shared>
<inferred>yes</inferred>
</data—out>
</privacy —policy>

As seen in Listing 1, the privacy policy for the IoT user
specifies <data-in> tags indicating the type of data that
the user would like to acquire from the IoT owner along
with child elements specifying the usage scenario for this
data. These <data-in> tags from the IoT user privacy pol-
icy will be matched against the <data-out> tags in the IoT
owner’s policy since the latter specifies the data collection
practices accepted by the IoT owner. Conversely, the <data-
in> tags specified in the IoT owner’s policy in Listing 2 will be
matched against the <data-out> tags in the IoT user privacy
policy to ensure that the level of data collection performed
by the IoT owner is acceptable by the IoT user. An interest-
ing research question is how to learn the privacy policy for
each user which could be different for different locations?
Other research [8] has shown that the privacy preferences
of a user can be predicted by observing few data collection
scenarios. Using prediction is beneficial to avoid the cumber-
some and error prone task of filling privacy settings screens.
One of our key design requirements is achieving flexibility
by allowing the protocol to negotiate multi-levels of service
with different scales of data collection scenarios. This is re-
quired due to the high cost of an unsuccessful negotiation as
it might require the user to leave the place to avoid the data
collection process altogether. To address this challenge, the
negotiation protocol models the relationship between data
collection and the 10T service as a utility-privacy tradeoff
function stated as Formula 1. This allows the IoT owner to
offer multiple choices of service levels, measured by the util-
ity, to the IoT user based on how much data they are willing
to share? We choose to employ four dimensions form factors
influencing privacy preferences in IoT environments from
[8] in this utility-privacy tradeoff function. These four fac-
tors are saved in the privacy policy XML representation as

DASC’18, August 2018, Athens, Greece

child elements inside each <data-in> and <data-out> tags.
The description for each of these four elements is as follows:

(1) Data Type (2). The type of sensor being accessed can
have varying degree of exposure to the privacy of the
owner of that sensor. Sensors such as the camera or the
microphone are inherently sensitive. Hence, allowing
access to those sensors must be handled with care. There
are techniques in literature to minimize the degree of
privacy exposure when accessing those sensors such as
blurring faces from the live video feed of a surveillance
camera [4] or carefully choosing audio features to avoid
construction of speech from captured audio data [13]. If
used, these techniques must be added to the XML file to
be part of the negotiation process.

(2) Retention. (r) Retention policy specifies time durations
for keeping logs of exchanged data. In real-time appli-
cations, where no data storage is required, this factor
can be used by the IoT owner or the IoT user to enforce
purging their data by leaving this element empty.

(3) Shared (s). Any third party recipient must be specified
in case the IoT owner or the IoT user is sharing the any
gathered data for the IoT task.

(4) Inferred (i). The recipient of the data must specify if
inference techniques will be used to gain further infor-
mation from the data. For example, accelerometer data
can be used to monitor exercising habits of a user for
health applications but can also be used in dead reckon-
ing techniques [10] to determine indoor user location.

Other form factors that can also be considered include the
location, purpose and the benefit of the data collection [8].
After learning the aforementioned privacy influencing fac-
tors in the negotiation exchange described next subsection,
both the IoT owner and IoT user will use them as part of a
privacy-utility calculation to ensure that the achieved utility
from the IoT service outweighs the degree of privacy expo-
sure. We adopted the privacy-utility function in [9], which
serves e-commerece sites, with modifications to fit to IoT ap-
plications scenario. This function is used by both the IoT user
and the IoT owner of the data to evaluate the privacy-utility
of the the data exchanged between them. The utility-privacy
function is as follows:

U = —y.P(t,r,s,i) + B(t,r,s,1) (1)

Explaining the notations used in the formula:

U denotes the total utility that will be achieved from pur-
suing the information exchange to run the IoT application.

B is the benefit from the data exchange as seen from the
perspective of the data owner. For the IoT owner, this could
be a monetary incentive or the social benefit from allowing
IoT applications to run on their premises. As for the IoT
user, the benefit would be the service provided by the IoT

DASC’18, August 2018, Athens, Greece

application. Notice that B is a function of privacy exposure
form factors as we expect the benefit to be proportional to
the selected policy for the data item.

P, is the degree of privacy exposure for the selected pri-
vacy policy. Different privacy policies will lead to different
levels of privacy exposure based on the chosen exposure
form factors chosen in the policy. For example, higher reten-
tion periods specified by r for highly sensitive data specified
by t will lead to higher values of P,.

Notice that the exact function for B and P, can be as sim-
ple as sum or product for predefined values reflecting the
degree of influence for each of the privacy factors. However,
choosing a personalized function to fit to the user’s own
preference is out of the scope of this paper.

y is an overall privacy sensitivity perception factor. This
factor can vary depending on the location or context of the
user. For example, users might be comfortable for taking
a picture for them in public places as opposed to being in
private places. y is multiplied by P, to either escalate or
deescalate the total privacy leakage for the specific data
sharing situation based on the context and/or location.

Note that the product term to the right of the equality
operator is negative so as to reconcile it with the benefit
term B. Thus, the utility U will be positive when the value
of the benefit B term outweighs the value of the negative
privacy exposure term and vice versa.

In summary, the presented privacy model uses XML to
store the privacy policies and use them without user inter-
vention. Also, it supports the requirement of choice flexibility
by modeling the utility of the service as a function of pri-
vacy exposure form factors. Section 5 demonstrates that the
model and the overall protocol satisfies the minimum over-
head requirement when implemented over well know IoT
architectures.

Privacy Negotiation

This section describes the flow of the negotiation activities
between the IoT user and the IoT owner. We have imple-
mented and evaluated the privacy negotiation protocol on
all three architecture scenarios described in Section 2. The
design of the negotiation protocol is made flexible by avoid-
ing the go/no-go scheme of current privacy/notice choice
mechanisms and replacing it with multi-phase negotiation.
This section describes 1-phase negotiation and 2-phases ne-
gotiation. We start by describing the 1-phase negotiation
scenario shown in Figure 1 (a). The scenario starts with the
IoT user sending an access request for specific type of data
(i.e. sensor) to the IoT owner. The IoT user will embed a
summary of their usage requirements for this data, which is
taken from the <data-in> element for this type of data in the
user policy. Upon receiving the access request, the IoT owner

Khaled Alanezi and Shivakant Mishra

checks the utility of the request by substituting it in the util-
ity function. Assuming that the utility of the request is equal
or higher than the utility achieved when substituting the
<data-out> element for the same data from the IoT owner
privacy policy, the owner accepts the request. After that, the
IoT owner connects to the IoT user and starts acting as a
relay by forwarding sensor information received from the
IoT infrastructure to the IoT user. The 2-phases negotiation
is shown in Figure 1 (b). This scenario starts in a similar way
by the IoT user sending an access request to the IoT owner.
However, in this scenario the utility of the request is deemed
unacceptable by the IoT owner. Accordingly, the IoT owner
will retrieve the <data-out> element for the requested data
item from their own privacy policy, which represents their
acceptable usage scenario for the data item and send it as a
proposal to the IoT user. This only happens after connecting
to the IoT user. The IoT user’s device then checks the utility
of this proposal against a second priority policy if one is
defined in their privacy policy file. Note that each <data-in>
and <data-out> tag in the privacy policy contains a priority
attribute to allow the IoT user and IoT owner define alterna-
tive policies to be used during negotiations. Only defining a
priority 1 policy for the data item means that the policy for
this data item is non-negotiable. Assuming the IoT user has
accepted the alternative proposal, the IoT owner will start
forwarding required data as soon as it is received from the
data source.

4 IMPLEMENTATION

In a user-managed architecture, the dominant communica-
tion protocol is BLE to conserve energy, while for the edge-
managed and cloud-managed architectures, a server acts as a
gateway and communication is done using WiFi. Hardware
used to simulate these infrastructures is shown in Table 1.

User-Managed loT Experiment

The picture in Figure 2a demonstrates the setup for the user-
managed IoT experiment. We used the breadboard to connect
a temperature sensor to the Arduino Uno. Then, we enabled
BLE connectivity functionality on the Arduino board by con-
necting it to an Adafruit Bluefruit BLE shield through the
breadboard. Using the Arduino IDE, a code was written to
enable the Arduino board to broadcast using BLE beacons its
availability in order for BLE clients to connect to it and read
the temperature sensor values. The two Android-based Moto
E smartphones were then used to simulate the IoT owner and
IoT user mobile devices. We wrote Android code to enable
the IoT owner to connect to the Arduino board and start
receiving temperature values as push notifications period-
ically. Meanwhile, the IoT owner registers a BLE search to
listen to any guest devices that might need a sensor reading
from the IoT environment they own. Note here that the BLE

A Privacy Negotiation Mechanism for loT DASC’18, August 2018, Athens, Greece

loT loT loT loT loT loT
User Owner Sensor User Owner Sensor
A Ongoing A Ongoing
Reoess access Re Cess access
QUest QUest
Evaluate Evaluate
g utility g utility
Accepted? Yes Accepted? No
nect
X O™
00““60 9(0905
PuSh(xO,to) Evaluate utility
M:@ Accepted? yes
?\e\a‘l\ Repiy
Pu
Pushix,t,) ot | <ol
\Q Re\a\l
b Push(x,t,)
58 Retaye -

(a) 1-Phase Negotiation (b) 2-Phases Negotiation

Figure 1: Privacy Negotiation Flow

Table 1: Hardware Testbed

Title Function Scenario Used
Arduino Uno R3 Microcontroller for the IoT device Both
LM35 Temperature Sensor Sensory interface to be accessed Both
Arduino Ethernet Shield Adds ethernet connectivity to the Arduino Uno | Edge-managed
Arduino BLE Shield Adds BLE connectivity to the Arduino Uno User-managed
D-Link Wireless Router Wireless LAN router Edge-managed
Motorola Moto E smartphone IoT user requesting access to a sensor Both
Motorola Moto E smartphone IoT owner User-managed
MacBook Air Computing node at the edge of the network Edge-managed
Amazon EC2 Micro Instance Computing node in the Cloud Cloud-managed

(a) User-managed experiment. (b) Cloud\Edge-managed experiment.

Figure 2: Hardware Setup.

DASC’18, August 2018, Athens, Greece

search is registered under a specific UUID designated for the
sensor sharing services. Searching for specific UUID using
BLE can happen in the background while the device is in
sleep mode thereby drastically reducing energy consump-
tion. This means that the cost of detecting collaborators for
the IoT owner is trivial.

Upon arriving to an environment an IoT owner who is
looking for a type of sensor reading to perform a particular
service sends a BLE advertisement broadcasting its inten-
tion to access a shared sensor. This BLE broadcast contains
the UUID for the sharing service and a vector containing
the request information as described in Section 3. The re-
quest information here is a summary from the <data-in>
tags describing the data that the device requires along with
the usage scenario. This broadcast will be captured by the
IoT owner as it contains the UUID of the sharing service. In
case the IoT owner accepts the request, it will connect to
the requesting device and starts relaying temperature read-
ings to it as soon as they arrive from the Arduino board.
Otherwise, as described in Section 3, the negotiation flow
requires a second round of negotiation. In this case, the IoT
owner’s device will connect to the IoT user’s device and
send a proposal containing it’s acceptable privacy policy for
the required sensor. The requester can now either accept
or reject this proposal. The requester will use the ongoing
BLE connection to reply. If the reply is accept, the owner
will start relaying temperature values to the IoT user. Notice
that in this situation the IoT owner is a hub for a BLE star
topology network with the IoT user and the Arduino board
acting as the hosts. We demonstrate the time efficiency for
the communication in the evaluation in Section 5. If the IoT
user rejected the proposal, the owner will simply teardown
the BLE connection and continue operating normally.

Edge-Managed and Cloud-Managed loT Experiments

We also show in Figure 2b the setup for the edge-managed
and cloud-managed IoT experiments.The Ethernet shield
is stacked on top of the Arduino board to provide it with
Ethernet capability. After that, an Ethernet cable is used
to connect the Arduino board to the wireless LAN router.
This allows the Arduino to get a local IP and is now able to
communicate with other devices within the same wireless
LAN. We used the Arduino IDE to write code to let the
Arduino Uno acts as web server providing an HTML page to
read the temperature sensor value. This setup is then used
to perform 1-phase negotiation and 2-phases negotiation for
the edge-managed and cloud-managed IoT scenarios. For the
former, we used a MacBook Air laptop to act as an edge server
by running Java code listening to network communication
at specific port within the same LAN. For the latter, the same
Java code was deployed to an Amazon EC2 instance that is
used as a cloud server. Then, port forwarding was used on

Khaled Alanezi and Shivakant Mishra

the wireless LAN router to enable communication between
the cloud server and the Arduino board over the Internet. For
both scenario, the server (i.e. [oT owner) receives a request
from a mobile device resembling the IoT user for sensory
data. This request contains a summary from the IoT user
policy. The server will answer with the sensor information
or with a proposal in case further negotiation is required.
The client will either accept or reject this proposal. If the
proposal was accepted, the server will perform an HTTP
GET to get the temperature and send the result.

5 EVALUATION
User-Managed loT

The negotiation protocol in user-managed IoT utilizes BLE
to communicate and serve requests for data sharing. A star
network is formed whenever an acceptable request arrives
from a IoT user in which the IoT owner becomes the central
node and the IoT user and any future IoT users will become
host nodes. The complexity and time\energy efficiency of
this process are reported in our previous work [1]. Note that
the IoT owner can serve simultaneous IoT users by simply
joining new users to this BLE star network. Also note that we
choose to implement this communication mechanism using
BLE as it is becoming a standard communication protocol
for 10T devices. Nevertheless, the negotiation protocol can
be implemented over other communication standards such
as ZigBee or NFC. Figure 3 shows the aggregate time taken
for every phase in the negotiation. The aggregate time is
calculated from the beginning of the request (i.e. sending
BLE broadcast embedded with data request information) and
involves the time taken for the previous phases. We per-
formed each experiment five times and report the average
with the standard error on each bar. The figure shows that,
after broadcasting a request in a BLE beacon, it takes around
800 ms to be connected to an IoT owner in the place who
is willing to support this request. Recall from the design
section that after establishing a connection two situations
might occur. First, The IoT owner accepts the utility of the
request and sends the required sensor data in what we call
1-phase negotiation. The total time for this situation is re-
ported in Figure 5 along with the total time for the other two
scenarios of no-privacy and 2-phases negotiation. Second,
the IoT owner might offer an alternative proposal that is
suitable for them. The total time for the IoT user to receive
the alternative proposal is 1400 ms on average. We note here
that the additional time of 600 ms is dominated by the time
required by the BLE to interrogate the IoT user’s device af-
ter connecting to it to be able to call its services. Assuming
that the proposal is accepted, replying to the proposal and
receiving the sensor value requires an additional 30 ms only.
Figure 4 reports aggregate time for the negotiation protocol

A Privacy Negotiation Mechanism for loT

DASC’18, August 2018, Athens, Greece

1800 1400
1600 1200 -
- 1400 - I — m
° T 1000 -
§ 1200 - — o
=3 o
& 1000 - I 2 800 -
E 800 - — E 600 |
o o
600 - —
E E 400 -
400 - —
200 | 200 +
0 s EE=_ 0 -
mConnect M Receive Receive B
. mConnect ® Discover
Time Proposal Sensor Value 3)
Time Services

1800
I I 1600
= 1400 I
|- T
c
S 1200
L
— E— @
£ 1000 -
=
1 — o 800 -
E
= 600
400 -
200
o0
Send Receive [] No = 1-Phase 2-Phases
Proposal Reply Negotiation Negotiation Negotiation

Figure 3: Aggregate time for major Figure 4: Aggregate time for major ne- Figure 5: Total time to receive sensor
negotiation milestones (IoT User\User- gotiation milestones (IocT Owner\User- reading for no-negotiation, 1-phase & 2-

Managed IoT.) Managed IoT.)

from the IoT owner’s perspective. The average total time
to connect to a device after detecting a supported request
in a BLE broadcast is 400 ms. This is followed by an almost
600 ms for discovering services on the IoT user’s device. We
report the connect time and the service discovery separately.
The time taken from the moment a beacon is detected to
sending an alternative proposal is around 1200 ms on on
average. It takes an additional 30 ms on average for the IoT
owner’s device to receive a reply to their proposal. Finally,
we report in Figure 5 the average overall time to receive the
sensor data for 1-phase communication and 2-phases com-
munication. This time is measured from the moment the IoT
user sends a beacon with embedded request information to
the moment they actually receives the required sensor data
(i.e. the temperature sensor reading). We also include a no-
negotiation scenario in which the sensor data is sent to the
requester immediately without matching the specification of
the request with the privacy requirements of the IoT owner.
As expected, the results show that the 1-phase negotiation
adds negligible time overhead compared to the negotiation
scenario as it only adds information to the beacon and pro-
cess them at the IoT owner’s side. On the other hand, the
2-phases negotiation adds on average 350 ms, which includes
the time required to receive an alternative proposal from the
IoT owner, reply by accepting the proposal, then receiving
the sensor value.

Edge-Managed and Cloud-Managed loT

In this subsection, we repeat the experiments in the previous
subsection but with the IoT now being managed by either
an edge or a cloud server. First, we begin by describing the
results of the edge-managed scenario. The IoT user needs
to negotiate with and access the IoT infrastructure through
the edge server and all communication is happening over
wireless LAN network. Figure 6 shows the major milestones

phases negotiation in user-managed IoT.

from the IoT user’s side in this negotiation situation. We note
two things in this experiment. First, as opposed to the user-
managed negotiation scenario, there is no connect phase
since the 10T owner is now a server that continuously lis-
tens to a network port to reply to requests from IoT users.
Hence, there is no connect phase per se. Second, unlike the
user-managed IoT experiment, we don’t report in this ex-
periment results from the IoT owner’s side since the owner
is now a server with presumably abundant resources. We
see from the figure that the time to receive an alternative
proposal from the IoT owner is now less than 400 ms. This
time includes the time to send a request to the edge server
with an unacceptable privacy settings and receiving back an
alternative proposal. Furthermore, the time to receive the
sensor value if the IoT user accepted the IoT owner’s pro-
posal is around 500 ms. We conclude that managing the IoT
infrastructure using an edge server provided much better
time efficiency than the user-managed IoT scenario using
BLE. We also report in Figure 7 a comparison between three
situations for negotiating privacy requirements. There are
two important lessons that can be learned from this figure.
First, when comparing the no-negotiation scenario with the
1-phase negotiation scenario, we see a difference of around
20 ms. This difference is negligible as it is attributed to the
variability of the performance of the wireless LAN, which
can be realized from the standard errors. Therefore, similar
to the results from the user-managed IoT, these two situa-
tions have similar time performance. Second, we see that
adding a second negotiation phase added an average of 200
ms attributed to sending the proposal from the IoT owner
and receiving a reply back before sending the required sen-
sor reading. Overall, the performance is still better than the
same scenario for the user-managed IoT. Finally, Figure 8
reports similar results for the previous figure but with a
cloud-based server now used to manage IoT as opposed to

DASC’18, August 2018, Athens, Greece

Khaled Alanezi and Shivakant Mishra

1400

I 1200
I

1000

600 600
500 I 500
« -
E E
§ 400 § 400
o o
] 2
E 300 T 300
= o
0
g 200 £ 500 |
= =
100 100 -
0 o0
H Receive Receive] No
Proposal Sensor Value Negotiation

H 1-Phase
Negotiation

Time (milliseconds)
(o2} o]
o o
o o
: :

400 -+ —

200 - —

2-Phases u No
Negotiation Negotiation

H 1-Phase
Negotiation

2-Phases
Negotiation

Figure 6: Aggregate time for major Figure 7: Total time to receive sensor Figure 8: Total time to receive sensor
negotiation milestones (IoT User\Edge- reading for no-negotiation, 1-phase & reading for no-negotiation, 1-phase &

Managed IoT.)
IoT.

an edge-based server. We notice from the figure that the la-
tency doubled in all three scenarios due the need of routing
the communication through the Internet. This result is in
harmony with other research [11] that highlighted the bene-
fits that cloudlets proximity brings for better management
of IoT infrastructure but highlighted various challenges for
this paradigm to become a reality.

6 RELATED WORK

There is a consensus among researchers that difficulty in
preserving user privacy is a major hurdle for wide adoption
of IoT. E.g. [8, 12]. The authors in [7] presented a framework
that allows the user to easily define their privacy require-
ments and enforce them at check points in the network. The
privacy coach [2] is another work aimed at protecting user
privacy in IoT that is geared towards RFID technology. It
follows the same approach of using an application running
on a mobile device to mediate between the user and the
deployment owner. The authors in [6] utilized Blockchain
technology to protect users from attacks on their privacy in
IoT environments. The position paper in [5] presented an
architecture based on edge computing to allow the user to
control access to their data in an IoT system.

7 CONCLUSION

This paper presented a privacy negotiation scheme to ad-
dress the privacy requirements of users in IoT environments.
The proposed approach is practical as it negotiates the pri-
vacy policy of the user with the IoT owner without user
intervention and supports the selection from among mul-
tiple predefined IoT user and owner privacy policies. The
feasibility of the negotiation protocol was demonstrated by
means of a thorough implementation and evaluation over
three widely accepted IoT scenarios.

2-phases negotiation in edge-managed 2-phases negotiation in cloud-managed

IoT.

8 ACKNOWLEDGEMENTS

The first author would like to thank the Kuwait Foundation
for the Advancement of Science for financially supporting his
trip to present this paper at the IEEE DASC 2018 conference.

REFERENCES

[1] K. Alanezi, R. Rafiq, L. Chen, and S. Mishra. 2017. Leveraging BLE and
social trust to enable mobile in situ collaborations. In IMCOM.

[2] G.Broenink, JH Hoepman, C. Hof, R. Van Kranenburg, D. Smits, and
T. Wisman. 2010. The privacy coach: Supporting customer privacy in
the internet of things. arXiv preprint arXiv:1001.4459 (2010).

[3] L. Cranor. 2002. Web privacy with P3P. " O’Reilly Media, Inc.".

[4] A. Das, M. Degeling, X. Wang, J. Wang, N. Sadeh, and M. Satya-
narayanan. 2017. Assisting Users in a World Full of Cameras: A
Privacy-Aware Infrastructure for Computer Vision Applications. In
CVPRW. IEEE, 1387-1396.

[5] N.Davies, N. Taft, M. Satyanarayanan, S. Clinch, and B. Amos. 2016.
Privacy mediators: Helping iot cross the chasm. In HotMobile. ACM,
39-44.

[6] A.Dorri, SS Kanhere, R. Jurdak, and P. Gauravaram. 2017. Blockchain
for IoT security and privacy: The case study of a smart home. In PerCom.
IEEE, 618-623.

[7] M. Henze, L. Hermerschmidt, D. Kerpen, R. Hauf3ling, B. Rumpe, and
K. Wehrle. 2014. User-driven privacy enforcement for cloud-based
services in the internet of things. In FiCloud. IEEE, 191-196.

[8] PE Naeini, S. Bhagavatula, H. Habib, M. Degeling, L. Bauer, L. Cranor,
and N. Sadeh. 2017. Privacy Expectations and Preferences in an IoT
World. In SOUPS.

[9] Séren P. 2006. Implementing privacy negotiations in e-commerce. In
Asia-Pacific Web Conference. Springer, 604-615.

[10] AR Pratama, R. Hidayat, et al. 2012. Smartphone-based pedestrian
dead reckoning as an indoor positioning system. In ICSET. IEEE, 1-6.

[11] M. Satyanarayanan. 2017. The emergence of edge computing. Com-
puter 50, 1 (2017), 30-39.

[12] JA Stankovic. 2014. Research directions for the internet of things. IEEE
Internet of Things Journal 1, 1 (2014), 3-9.

[13] D. Wyatt, T. Choudhury, and J. Bilmes. 2007. Conversation detection
and speaker segmentation in privacy-sensitive situated speech data.
In Interspeech.

