

Preparation of Colloidally Stable Positively Charged Hollow Silica Nanoparticles: Effect of Minimizing Hydrolysis on Zeta Potentials

Hyunho Kang, Davis J. Long, and Christy L. Haynes

Langmuir, Just Accepted Manuscript • Publication Date (Web): 22 May 2019

Downloaded from <http://pubs.acs.org> on May 22, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Preparation of Colloidally Stable Positively Charged Hollow Silica Nanoparticles: Effect of Minimizing Hydrolysis on Zeta Potentials

Hyunho Kang, Davis J. Long, and Christy L. Haynes*

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE,
Minneapolis, MN 55455, United States

*Corresponding author, chaynes@umn.edu

Abstract

Silica nanoparticles have received great attention as versatile nanomaterials in many fields such as drug delivery, sensing, and imaging due to their physical and chemical flexibility. Specifically, the silanol groups at the surface of silica nanoparticles have enabled various surface modifications and functionalization to tailor the nanoparticles for each application. Chemical tailoring to switch from negative to positive surface charge has been one important strategy to enhance cell internalization and biodistribution of the nanoparticles. However, efficient surface charge modification that is sustained upon dispersion is difficult to achieve and has not been well characterized, though it can be a critical requirement for successful nanoparticle performance. In this study, solid spherical silica nanoparticles and hollow spherical silica nanoparticles around 45 nm in diameters were synthesized, both possessing tunable positive zeta potentials in aqueous colloidal suspension, to investigate the relationship between time-dependent zeta potential changes and their morphologies. The set of three different particles showing varied zeta

1
2
3 potentials of approximately 5 mV, 20 mV, and > 30 mV in both morphologies were
4 prepared, and their colloidal surface electric potential fluctuations were measured. These
5 studies reveal that the hollow morphologies are much more effectively able to maintain
6 positive zeta potentials for seven days of aqueous incubation, whereas the magnitude of
7 the zeta potential of the solid silica spheres decreases uncontrollably, largely due to
8 hydrolysis of the interior siloxane bonds, resulting in adsorption of the released silicic acid
9 onto the nanoparticle surface.
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24 **Introduction**

25

26 Silica-based nanomaterials have been extensively studied and advanced in recent
27 years, and a variety of industrial fields are using silica nanomaterials for various purposes.
28 For example, silica-based nanosols play a crucial role in inks and coatings where many
29 functional applications have been commercialized for anticorrosion and antimicrobial
30 applications.¹ Organically modified silica materials enable efficient selective
31 hydrogenation of oils² or aerobic oxidation of alcohols.³ Silica nanocomposites with
32 polymers or metal nanoparticles have a diverse range of applications in catalysis,⁴ optics,⁵
33 and the automotive industry.⁶ Furthermore, in biomedical research, silica nanoparticles
34 have been heavily studied as drug delivery cargo agents,⁷ sensors,⁸ and imaging
35 nanocomposites.⁹ The form of the silica nanoparticles may take solid, mesoporous,
36 hollow, or core-shell morphologies.⁵ The size of the nanoparticles is generally tunable
37 during synthesis for any of these morphologies. Combined with tunable size and
38 morphology, the biocompatibility, low toxicity, and synthetic scalability of the silica
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 nanoparticles have made them excellent candidates for a variety of bio-related
4 applications. For example, Gao et al. recently demonstrated the application of
5 mesoporous silica shell-coated iron oxide nanoparticles in cryopreservation to enable
6 rewarming of vitrified tissues.¹⁰
7
8

9 The synthetic flexibility with silica nanoparticles can be largely attributed to the
10 development of two major synthesis strategies: gas-phase synthesis and liquid-phase
11 synthesis.¹¹ Due to the significantly lower energy cost and simpler required apparatus,
12 liquid-phase synthesis is the more common approach in most research fields. Sol-gel and
13 microemulsion syntheses, where the nanoparticles are produced through the
14 condensation polymerization of silica precursor molecules, are most popular. Depending
15 on the synthetic pH, temperature, precursor concentration, and other added chemicals,
16 the final nanoparticle product can display various sizes, morphologies, porosities, and
17 surface areas.
18
19

20 Among the different types of colloidal silica nanoparticles, one universal property is
21 the functionalizable silanol groups at the surface of the nanoparticles, where
22 alkoxysilanes can covalently modify the surface via hydrolysis-condensation
23 polymerization. These silanes grant the nanoparticle platform useful properties; for
24 example, modification with (3-aminopropyl)trimethoxysilane facilitates further
25 modification with linking moieties such as n-hydroxysuccinide-functionalized molecules,
26 isothiocyanates, maleimides, etc.¹² Also common, various polyethylene glycol silanes allow
27 for enhanced colloidal stability via steric repulsion.¹³ In addition, thiol-silane-functionalized
28 porous silica nanoparticles can react with polymers to form a hybrid, enabling
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 temperature-controlled uptake and release of small molecules from within their
4 mesopores.¹⁴
5
6

7 Display of a positive zeta potential in colloidal suspension is another important factor
8 for nanoparticles to function properly, especially during biological cell-nanoparticle
9 interactions. Thus, many studies have worked to understand and improve nanoparticle-
10 cell interactions via silane surface functionalization. In 2008, Yang and co-workers
11 developed trimethylammonium-silane functionalized mesoporous silica nanoparticles for
12 loading and release of anionic drug molecules.¹⁵ Upon pH change in the environment
13 around the nanoparticles, the drugs loaded via electrostatic attraction were released due
14 to deprotonation of the silanol groups. Shahabi et al. studied the effect of surface charge
15 and the presence of serum on nanoparticle uptake by human osteoblast cells by
16 synthesizing solid silica nanoparticles with different zeta potentials.¹⁶ The authors found
17 that the character of the surface functionalization induced different interactions between
18 the silica nanoparticles and the cells. The same researchers also investigated the
19 influence of mesoporous silica nanoparticles with silane-based functionalization on the
20 encapsulation and release of the anticancer drug doxorubicin as well as cancer cell
21 response.¹⁷ In this case, the nanoparticles were functionalized with sulfonate,
22 polyethylene glycol, or polyethylene imine, and nanoparticles with cationic surface
23 charges showed efficient uptake by cells. Wang and co-workers found that electrostatic
24 interaction between positively charged silica nanoparticle and negatively charged cancer
25 cells rendered much stronger and kinetically faster binding than was achieved via
26 immunological interaction with antibody-functionalized magnetic silica nanoparticles.¹⁸
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 As such, it is clear that display of positive surface charge is critical for biological
4 application of silica nanoparticles where cellular membrane-nanoparticle interaction and
5 penetration is key to enhancing the nanomaterial performance. For this reason, surface
6 modification has been applied to solid spherical nanoparticles, mesoporous silica, hollow
7 silica, and multifunctional nanocomposites using a variety of methods.¹⁹ However, the
8 resultant zeta potentials vary between studies, and the prepared nanoparticles often
9 display significant undesired polydispersity.²⁰ Though maintenance of this positive
10 surface charge is critical, most studies haven't reported how long the nanoparticles
11 maintain their positive zeta potential while in colloidal suspension. This maintenance of
12 positive zeta potential may be particularly challenging for silica nanoparticles with their
13 network of siloxane linkages and silanol groups. During colloidal dispersion in aqueous
14 systems, silica nanoparticles are likely to be hydrolyzed, resulting in more silanol groups
15 and an increasingly negative zeta potential. Further, maintenance of the electric potential
16 can be an essential requisite in biomedical research where the colloidal stability must be
17 maintained during blood circulation until approaching targeting sites.
18
19

20 The study reported in this paper started with a goal to prepare a series of silica
21 nanoparticles possessing varied positive zeta potentials in aqueous-based media and to
22 examine the influence of surface electric potentials on the interactions with cellular
23 membranes and organism systems. During the nanoparticle preparation, it quickly
24 became obvious that the prepared silica nanoparticles were not able to hold the intended
25 zeta potentials for a long time following dispersion. As such, we realized that it was
26 important to understand the cause of the nanoparticles' unsustained zeta potentials in
27 colloidal suspension to enable a fabrication path to prepare positively-charged silica
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 nanoparticles with consistent zeta potentials in aqueous media. We hypothesized that the
4 maintenance of the silica nanoparticles' zeta potentials was closely related to morphology
5 as the degree of condensation within the silica network should be dependent on bond
6 depth within the nanostructure. In this study, we prepared surface-modified solid silica
7 nanoparticles via reverse-micro emulsion. The surface of the silica nanoparticles was
8 modified during or after the micro emulsion via condensation of a quaternary ammonium
9 silane, and maintenance of zeta potential was investigated. We found that, even with
10 successful surface modification, the solid silica still displayed a large possibility of losing
11 the positive electric potentials during aqueous colloidal dispersion. Thus, to reveal the
12 main cause of the declining positive zeta potentials or charge reversal, surface-
13 functionalized hollow silica nanoparticles were prepared from solid silica nanoparticles as
14 a dissolving template. In this synthesis, no external materials except silica nanoparticles
15 and silanes are needed to produce hollow structures, where hydrolysis of the existing
16 siloxane network and condensation of the introduced silane on the surface occur at the
17 same time. The experimental results showed that the zeta potential changes in the
18 colloidal dispersion were induced mainly by the adsorption of silicic acid originating from
19 the dissolving inner regions of the solid silica, not from the loss of the functional silanes
20 on the surface. An improved resistance to hydrolysis and to zeta potential change was
21 achieved when the nanoparticles were tuned to have hollow structures and modified
22 further with a hydrophobic silane at high temperature. Maintenance of the electric
23 potential of the amorphous spherical silica nanoparticles in the colloidal state can be
24 achieved when nanoparticles are synthesized to possess a high degree of condensation,
25 as is the case with the hollow silica nanospheres. This research is expected to be
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 beneficial for silica nanoparticle preparation in various fields, such as drug delivery and
4 nanoparticle toxicity research, where the maintenance of the modified surface electric
5 potential in colloidal state can be critical for the expected performance of the particles.
6
7
8
9
10
11

12 Experimental Section

13

14 **Material Characterizations.** *Transmission Electron Microscopy (TEM).* TEM images
15 were taken with an FEI Tecnai T12 at 120 kV. The nanoparticles were dispersed in 99%
16 ethanol, and Formvar/carbon-coated copper grids (Ted Pella, INC, Redding, CA) were
17 dipped into the suspension to transfer the nanoparticles to the grids. The grids were then
18 dried in air. For the nanoparticle aging in water, the samples were prepared the same
19 way, but the grids were dried in air for 24 hours to prepare the sample.
20
21
22
23
24
25
26
27
28
29
30

31 *Dynamic Light Scattering (DLS) and ζ -Potential Measurements.* For hydrodynamic
32 diameter measurements, a Brookhaven 90Plus particle analyzer (Holtsville, NY)
33 equipped with a 35 mW red diode laser (660 nm) was used. The nanoparticles were
34 dispersed in ultrapure water, and DLS was measured after at least 10 minutes of
35 sonication for homogenous dispersion of the nanoparticles. Each value in this report
36 consists of the average of three measurements, and the error bars in this report represent
37 the standard deviations of the three measurements. The ζ -potential measurements were
38 conducted with a Brookhaven ZetaPALS Zeta-Potential Analyzer (Holtsville, NY); the
39 values were obtained from ten averaged runs, each consisting of ten cycles, and the error
40 bars in this report represent the standard deviations of the ten averaged runs.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

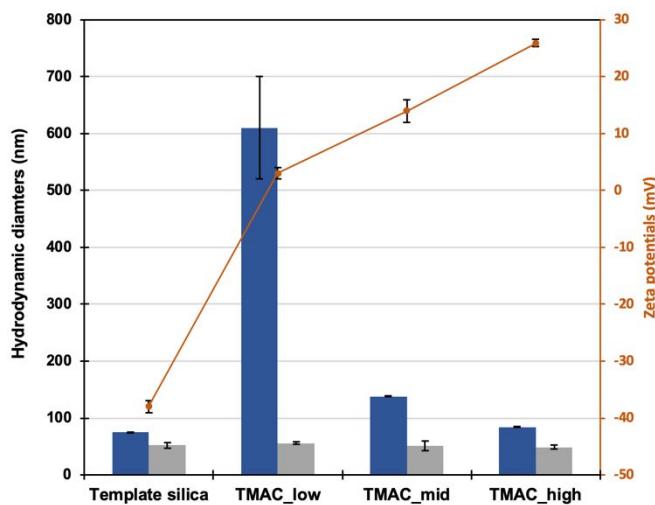
1
2
3 *UV-Vis Extinction Measurements.* UV-Vis extinction spectra were recorded using a DH-
4 2000 light source (Oceans Optics, Largo, FL). During the surface-modified hollow silica
5 nanoparticle preparation, extinction at 310 nm was measured before and after the TMAC
6 addition at various time points. To measure the extinction from the silica nanoparticles
7 accurately, the extinction from a 0.256 M NH₄OH solution with TMAC and without sSiO₂
8 was subtracted. The same experiment was performed without TMAC addition. Each value
9 was averaged from three independent measurements and the error bars represent the
10 standard deviations of the three measurements.
11
12
13
14
15
16
17
18
19
20
21
22
23

24 *X-ray Photoelectron Spectroscopy Measurements.* The surface elemental analysis of
25 TMAC-modified sSiO₂ (sSiO₂_TMAC) were conducted via PHI 5000 Versa Probe III
26 (Physical Electronics, Chanhassen, MN). Each nanoparticle was dried via rotary
27 evaporator to remove ethanol. The ethanolic suspensions of particles were dried in
28 scintillation vials with a rotary evaporator. The dried and powdered nanoparticles were
29 transferred onto the sample holder using double-sided tape. For each sample, less than
30 2 mg was used for surface elemental analysis.
31
32
33
34
35
36
37
38
39
40
41

42 *Surface Area Measurements.* The surface areas of the solid and hollow silica
43 nanoparticles were measured using Brunauer-Emmett-Teller (BET) analysis of nitrogen
44 adsorption-desorption isotherms via Micromeritics ASAP 2020 system at 77K (Norcross,
45 GA). Each dried and powdered sample was degassed at a pressure of 10 μ m Hg at
46 120 °C for at least 24 hours before the measurement.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Discussion and Results

The original solid silica nanoparticles (sSiO_2) for these surface modification studies were synthesized via reverse-micro emulsion, with slight modifications from previous reports.²¹ In this method, each emulsion acts as an individual micro reactor where a single silica nanoparticle is generated. The synthesized nanoparticles show monodisperse morphology and size based on TEM images, and their hydrodynamic diameters and zeta potentials were stable in pure water for 7 days or longer (Figure S1ab). Though mesoporous silica nanoparticles (MSNs) are of particular interest, this work makes use of solid silica because it is more straightforward to observe any changes induced following surface modification, such as changes in size or morphology. For example, when the primary amine silane (APTES) was added to MSNs, depending on the amount of the silane, the synthesized MSNs showed significant morphology changes (Figure S1cd).


The quaternary ammonium silane N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAC) was used in this work to imbue a positive surface charge, rather than the more typical APTES, since these quaternary ammonium cations are permanently charged and not affected by pH (Figure S2b). In our first attempt, TMAC was added during the reverse-micro emulsion state, but after the silica nanoparticles had already been generated inside the emulsion (Figure S2a). This was based on the initial speculation that TMAC would form a coating on the silica nanoparticles so that mono-disperse silica nanoparticles with quaternary ammonium groups on the surface would yield positively charged silica nanoparticles. However, as shown in TEM images, the silica nanoparticles showed a great degree of polydispersity, depending on the amounts of TMAC added (Figure S2cd). Also, even when an excess of TMAC was added, the zeta potentials were

1
2
3 still not positive (data not shown). The reason for the enlarged silica nanoparticles is
4 presumably due to Ostwald ripening.²³ In the reverse-micro emulsion, TritonX-100 and 1-
5 hexanol serve as a soft shell which contain a water droplet surrounded by cyclohexane
6 as an organic solvent. As hydrophobic TEOS is added, it dissolves into the organic solvent
7 first. The ammonium hydroxide hydrolyzes TEOS to silicic acid (SiO_4^{4-}), the silicic acid
8 moves into the water droplet, and condensation/nucleation generates the silica
9 nanoparticles in the water droplet. This softly-confined nanoreactor space then
10 experiences the coalescence kinetics which determine the nanoparticle size. When two
11 emulsion droplets collide, they might fuse into a larger droplet or repulse each other. This
12 force should be dependent on the surface energy of the droplets, which is affected by
13 chemical composition, temperature, and solubility of the monomer in the two different
14 phases.⁶ The coalescence and fusion are likely to occur when the droplet needs to lower
15 the surface energy. TMAC is innately amphiphilic and more likely to reside at the interface
16 between the oil and water of the droplet.²⁴ In this case, TMAC might break the stable
17 surface energy state defined by hexanol and TritonX-100, and the droplet collisions
18 induce coalescence so that the smaller droplets fuse into the larger droplets to lower the
19 surface energy, resulting in heterogeneous nanoparticle size.
20
21

22 To obtain monodisperse and effectively surface-modified silica nanoparticles, TMAC
23 was added after the nanoparticles were prepared in a two-step nanoparticle preparation.
24 The as-synthesized sSiO_2 nanoparticles were dried, and the powdered nanoparticles
25 were redispersed in an ethanol/water mixture containing ammonium hydroxide along with
26 TMAC in reflux (see SI for the detailed procedure). The amount of TMAC used was
27 chosen based on estimation of the number of silanol groups on the surface to attain
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 varied positive charges (see calculations in Additional Supporting Information and Table
4
5 S1 and S2).²² Figure S3a and b show representative TEM images of the nanoparticles
6 without surface modification and those modified to display the highest positive zeta
7 potentials. The surface-modified nanoparticles (sSiO₂_TMAC) show no observable
8 morphology changes or diameter increments compared to the unmodified nanoparticles.
9
10 Figure S3b shows the TEM image of the sSiO₂_TMAC, and from the image it is clear that
11 the density of the modified solid nanoparticles is less than that of sSiO₂ in Figure S3a,
12 indicating that during the surface modification there was some hydrolysis of siloxane
13 bonds and, thus, dissolution to silicic acid. We attempted to avoid this small change by
14 refluxing the nanoparticles in an ethanol-only solution, but this did not allow for the
15 necessary hydrolysis and condensation of TMAC. In Figure 1, the TEM diameters, the
16 hydrodynamic diameters, and zeta potentials of four solid silica nanoparticles (an
17 unmodified one and three surface-modified ones with varied zeta potentials via reflux in
18 H₂O/EtOH mixture). It is clear that as the positive zeta potential values increased, the
19 hydrodynamic diameters also decreased, even though TEM images indicated no
20 significant differences among the four sets of primary nanoparticles. This indicates that
21 the nanoparticles formed a flocculation when the electrostatic repulsion among
22 nanoparticles were not sufficiently large to achieve colloidal stability. Thus, it is
23 straightforward to reason that DLS measurements of the particles with low positive zeta
24 potentials do not reveal the primary nanoparticle hydrodynamic size, but rather represents
25 the size of agglomerates due to the insufficient electrostatic repulsion among particles. It
26 is reasonable to speculate that both silanol groups and quaternary ammonium groups
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

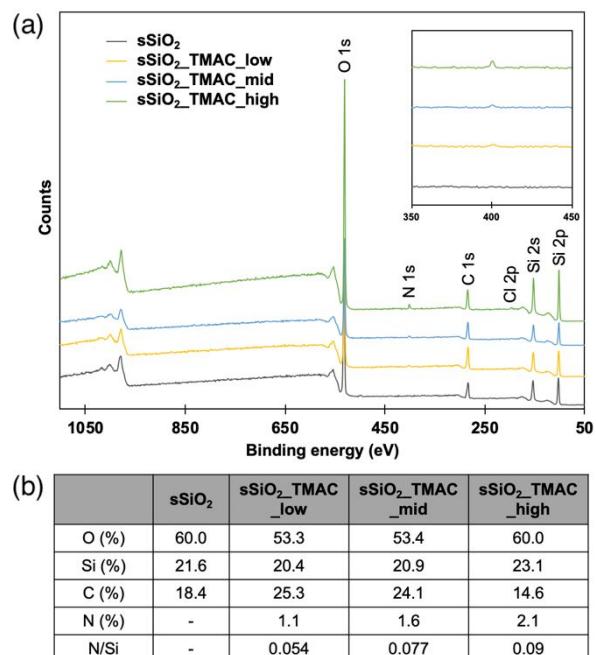
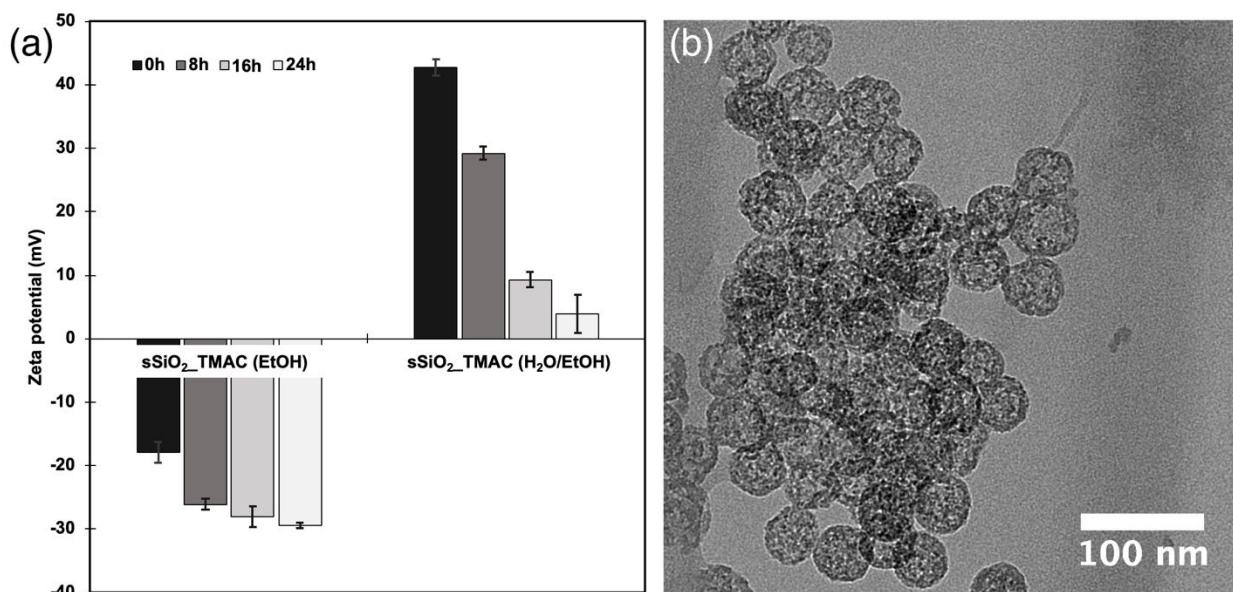
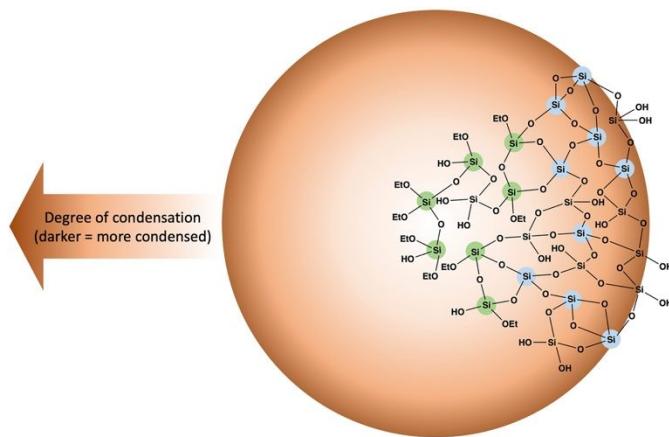

exist on the nanoparticle surface and that the varying ratio between the two groups cause different net charges upon colloidal dispersion.

Figure 1. Hydrodynamic diameters of four different silica nanoparticles (blue); TEM diameters ($n=300$) of the four different silica nanoparticles (grey); and zeta potentials of four different silica nanoparticles in pure water (orange). The concentrations of the aqueous suspensions were 0.2 mg/mL for all nanoparticles.

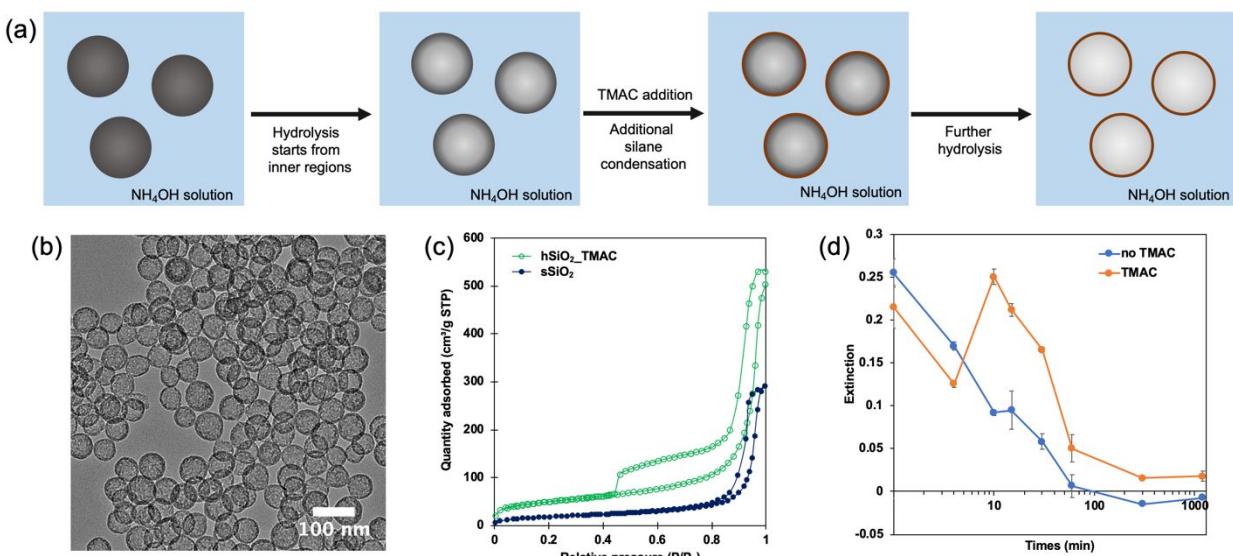
The surface elemental compositions of the three nanoparticles with different positive zeta potentials were analyzed via XPS. In Figure 2a, from all nanoparticles except the unmodified nanoparticle (sSiO_2), nitrogen was detected along with oxygen, carbon, and silicon. In Figure S4, a high-resolution nitrogen XPS spectrum from the nanoparticles with the highest zeta potential ($\text{sSiO}_2\text{-TMAC_high}$) shows two peaks at 402.6 eV and 399.5 eV; these are attributed to cationic species and neutral species, respectively. From the nanoparticles, a very small amount of chloride ion has been detected, so it is likely that the neutralized quaternary ammonium nitrogen peak comes from the silanes with chloride ions still adsorbed. In Figure 2b, the atomic percentages of each element from each nanoparticle are provided. As the zeta potential increases, the percentages of nitrogen from the nanoparticles also increases. However, these percentage values were relative within each sample, and inter-nanoparticle comparisons may not be relevant because


carbon contamination in environmental air may affect the measured values. Thus, we focused on the percentage ratios between Si and N in each sample as both elements should come only from the nanoparticles and TMAC. These data show that a higher ratio of N to Si gives rise to higher zeta potentials in colloidal suspensions, which confirms that higher TMAC surface coverage induces more surface electric potential reversal from negative to positive without significant change in the nanoparticles' physical properties in this two-step synthesis.


Figure 2. (a) XPS spectra of four silica nanoparticles (template silica and sSiO₂_TMAC prepared from reflux with different amounts of TMAC). (b) XPS atomic percentage results from four silica nanoparticles (Template silica and sSiO₂_TMAC prepared from reflux in a water/ethanol mixture with different amounts of TMAC). The bottom row shows the atomic ratio between nitrogen and silicon from three sSiO₂_TMAC particles.

The nanoparticles (sSiO₂_TMAC) prepared by the two-step method were incubated for 24 hours in pure water, and the zeta potentials were measured every 8 hours to track their stabilities. However, the positive zeta potentials of the sSiO₂_TMAC kept decreasing

1
2
3 during the incubation, and the zeta potential of sSiO₂_TMAC refluxed in ethanol only,
4 which initially showed a negative potential, became more negative (Figure 3a). Figure 3b
5 shows a TEM image of the sSiO₂_TMAC (refluxed in H₂O/EtOH) after 5 days of aqueous
6 incubation. From the image, it is obvious that the interior regions of the nanoparticles have
7 been changed more than the outer regions. Based on the changes in both the zeta
8 potential and nanoparticle morphology, we hypothesized that the change in zeta
9 potentials for the sSiO₂_TMAC is related to the dissolved and released silicic acid from
10 the interior regions adsorbing onto the surface of the silica, rather than loss of the TMAC
11 ligand. Several researchers have studied the degree of condensation of silica precursors
12 located in different parts of the silica nanoparticle.^{25–27} Generally, it is accepted that the
13 core region of a silica sphere has a lower degree of condensation and are thus more likely
14 to be hydrolyzed and dissolved when incubated in water (Scheme 1). Thus, we reasoned
15 that the TMAC on the surface of the nanoparticle could remain even though the zeta
16 potential decreased, as the charge from the TMAC is screened by the silicic acid, resulting
17 in colloidal instability of the nanoparticles.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

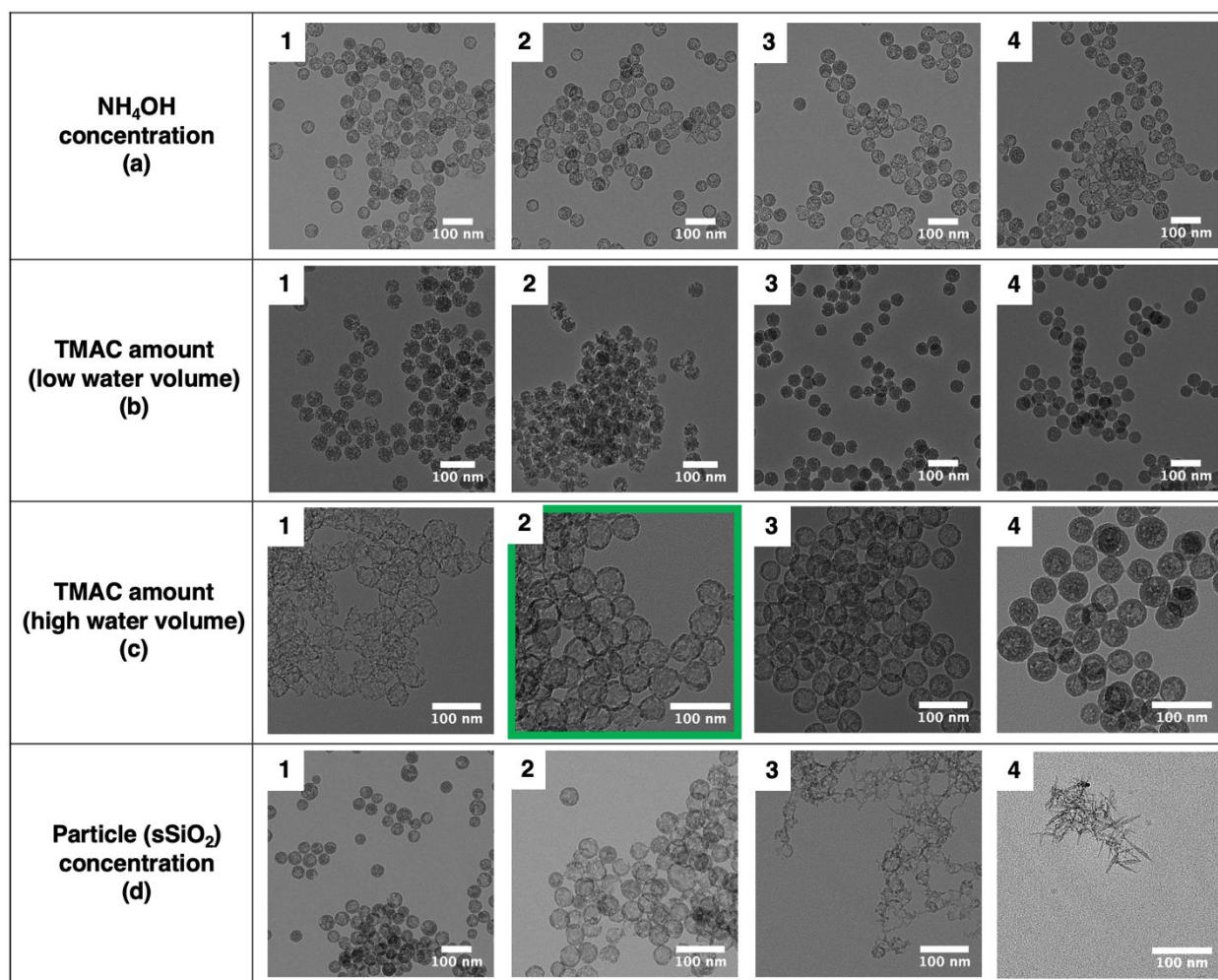

Figure 3. (a) Zeta potentials of *sSiO₂_TMAC* suspended in pure water for 24 hours. Reflux in two different conditions (in ethanol only and in water/ethanol mixture) were used to produce two different nanoparticles. (b) TEM image of *sSiO₂_TMAC (H₂O/EtOH)* after the nanoparticles were suspended in water for 5 days.

Scheme 1. Schematic description of the local degree of condensation of the amorphous silica spheres synthesized via reverse-micro emulsion. The silicon atoms highlighted in green possess the ethoxy groups which are not hydrolyzed from TEOS. The silicon atoms highlighted in blue show the fully condensed silicates. This schematic is not drawn to scale.

To estimate the relationship between the core region dissolution and zeta potential maintenance, another synthetic protocol was considered. The method (Figure 4a) uses as-synthesized *sSiO₂* as a dissolving template to condense a newly introduced silane.

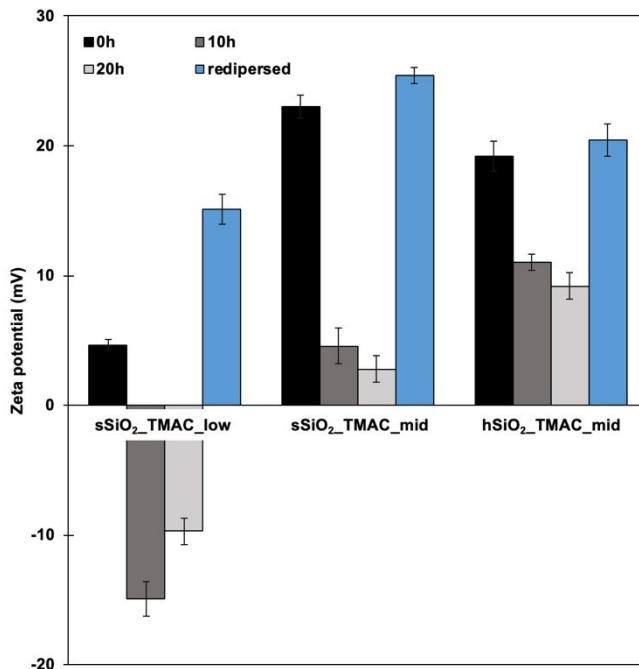
The goal of this synthesis was to condense TMAC on the surface and dissolve the weakly condensed silica precursors at the same time, generating a hollow structure with a greater overall percentage of fully condensed silica (see SI for the detailed procedure). Different from the previously reported methods where a foreign template such as polystyrene bead needs to be calcined at a high temperature,^{28,29} the as-synthesized solid silica template can be removed in the same solution without placing the nanoparticles in harsh conditions. The ammonium hydroxide solution with elevated temperature catalyzed both this hydrolysis and the condensation reaction, and TEM images (Figure 4b) clearly show the hollow structure of the final product (hSiO₂_TMAC). Nitrogen adsorption-desorption analysis was conducted to confirm the hollow structures, and the surface area increased by 176% due to the hollow shell formation (Figure 4c). The hollow silica nanoparticles show much less turbidity upon colloidal dispersion compared to the solid sphere at the same concentration (Figure S5). All these results indicate that, in a basic aqueous condition, the mixture of the silica template and the silane can produce hollow structures via simultaneous hydrolysis and condensation.

Figure 4. (a) Schematic description of hollow silica nanoparticle formation by using sSiO₂ as a dissolving template. (b) TEM image of the as-synthesized hSiO₂_TMAC. (c) Nitrogen adsorption-desorption plots, and (d) Time-dependent extinction (at 310 nm) of silica nanoparticle suspensions during hollow silica formation comparing when TMAC was absent (blue) and present (orange).

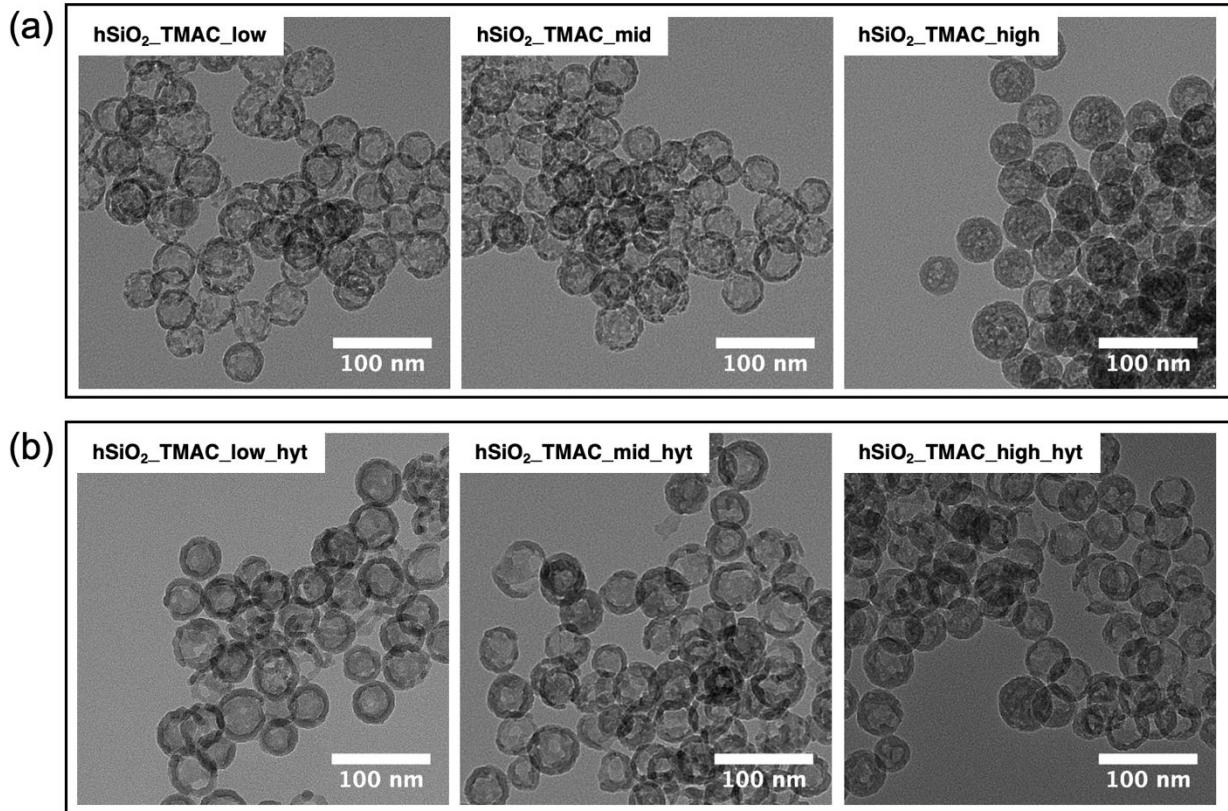

Dynamic observation of the transformation from the solid to the hollow structure was conducted via UV-Vis extinction spectra of the silica nanoparticle suspensions. The silica nanoparticles don't have a specific extinction wavelength, but a broad extinction in the range of 200 to 400 nm.³⁰ As shown in Figure 4d, the nanoparticles dispersed in NH₄OH solution without TMAC showed a gradual decrease in extinction optical density (OD) at 310 nm, and eventually the value went to zero, indicating that no nanoparticles remained. However, 5 minutes after TMAC addition, the nanoparticles with TMAC showed an abrupt OD increase (at 10 minutes in Figure 4d) due to the rapid hydrolysis and condensation of TMAC on the surface. After that, the OD decreased in the same manner the template solid silica had, but the value remained positive, reflecting the hollow silica nanoparticles still in suspension (Figure 4d). This observation reveals that the initial TMAC condensation on the surface of the nanoparticles is a critical factor for the hollow structure formation and preventing the complete dissolution of the template silica. This is not just

1
2
3 the specific behavior of TMAC, the same trends were seen when PEG or TEOS were
4 added instead, and the same hollow structures were obtained (Figure S6).
5
6

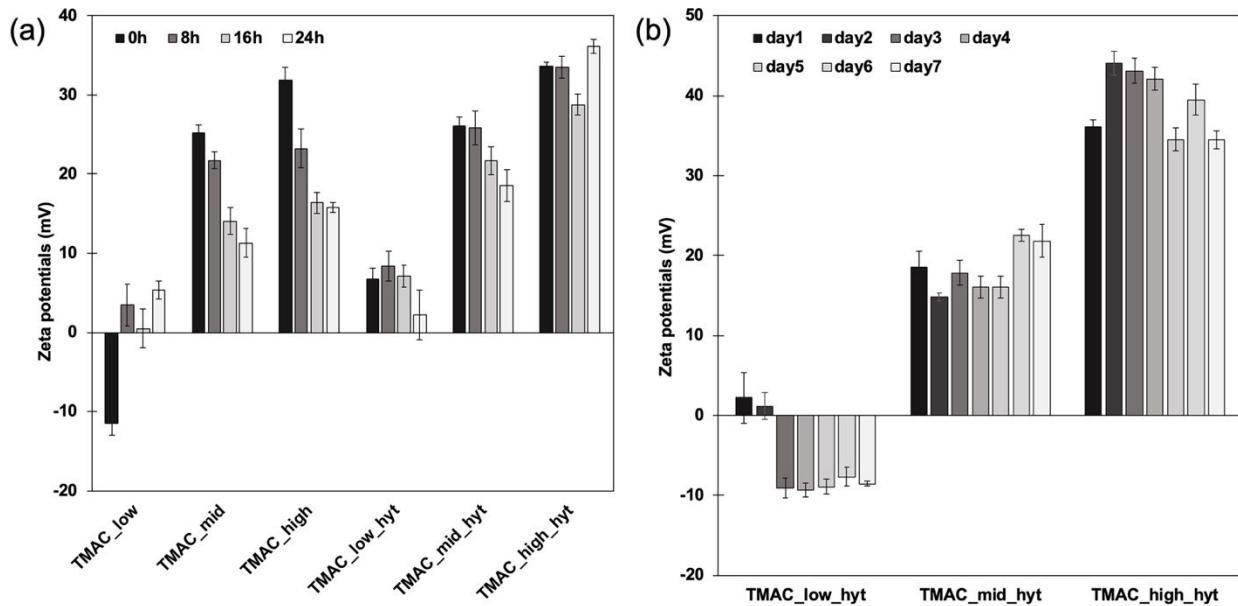
7 During hollow silica formation, several factors can affect the silica dissolution and the
8 final morphology, including temperature, nanoparticle/silane concentration, and pH. We
9 varied each parameter to evaluate its impact. Figure 5 shows the TEM images of the final
10 nanoparticles synthesized in each condition. It is clear that the pH had little impact on the
11 formation of hollow nanostructures; the same is true of the amount of TMAC as long as
12 the NH₄OH solution volume was low (Figure 5ab). The most drastic morphological
13 changes were found when the solution volume was large enough to dissolve the entire
14 suspended silica nanoparticle. In these cases, the amount of TMAC added plays an
15 important role in hollow structure formation. If the amount of TMAC is too high, hollow
16 silica wasn't formed as uniformly or effectively as in the suspensions with the lower
17 amounts of TMAC (Figure 5c). Also, if the template silica concentration was too low, even
18 with excess TMAC, no hollow nanoparticles were formed (Figure 5d). Overall, this series
19 of experiments showed that there are two critical factors determining the formation of
20 hollow silica nanoparticles: (1) the amount of additional silane introduced and (2) the
21 original solid silica template concentration. It is widely known that the hydrolysis and
22 condensation of the alkoxy silane is strongly influenced by the ratio of water to silane and
23 alkoxide, the nature of the R groups, and the types of catalysts.³¹ In the synthesis process
24 of the hollow silica nanoparticles, the molar amount of water versus the mass
25 concentration of the silica template nanoparticles determines a final equilibrium state in
26 regard to the hydrolysis, and thus dissolution of the nanoparticles. It is also well-known
27 that the aqueous solubility of the amorphous silica nanoparticles involves an equilibrium
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 between the colloidal nanoparticles and a monomeric or polymeric silicic acid.³² It is
4 generally thought that the monosilicic acid, presumably Si(OH)_4 , is the most common
5 product of silica dissolution. When it is assumed that the dissolved silicic acid doesn't
6 change the pH, the equilibrium state is mainly governed by the water volume, pH, and
7 temperature. Previous reports have shown that the effect of the pH on the final equilibrium
8 state is not as strong as its effect on the rate of the dissolution.^{33,34} Thus, the hollow
9 structure wasn't formed when the water amount wasn't sufficient to dissolve the solid
10 silica in Figure 5ab, regardless of the pH and amount of TMAC. When the water volumes
11 reach a level where the suspended silica nanoparticles can be dissolved to a significant
12 degree, the TMAC added afterwards seems to impact hollow structure formation by
13 changing the equilibrium state. This newly introduced silane in the solution can delay
14 dissolution and decrease the amount of released silicic acid from the nanoparticles by
15 establishing a new equilibrium state. The hollow silica structure is attributed to the
16 different degrees of condensation of the silica in different portions of the original solid
17 silica template. Though it may seem to be counterintuitive that the inner regions of the
18 silica nanoparticles are "softer" than outer regions, several studies have shown that the
19 inner parts of the silica nanoparticles possess fewer fully condensed silicon atoms than
20 the outer parts, resulting in harder and more compact cross-linking of silica on the
21 surface.^{35,36} It can thus be reasoned that during the synthesis, the hydrolysis and
22 condensation of TEOS, the silica precursor, initiate the nucleation of the silica
23 nanoparticles, and the core is where the condensation occurs at the beginning of the
24 synthesis with nanoparticles growing as the condensation continues. Thus, the inner
25 regions are more likely to have the partially hydrolyzed precursors and ethoxy groups
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(OC₂H₅), making these parts softer and more susceptible to dissolution. The TMAC can support the hollow structure formation by not only establishing a new equilibrium state but also by acting as a protective layer on the surface, as in a previous report where PVP protected a silica surface against NaOH etching.³⁷ TMAC could increase the condensation degree at the surface by producing more siloxane bonds among silanol groups on the surface, resulting in a more dissolution-resistant silica surface. However, when the silica template concentration is much lower than the standard experimental condition, TMAC wasn't able to maintain the special structure of the original template, and it seems that TMAC barely retained the morphological vestige of the template nanoparticle or was hydrolyzed and condensed itself (Figure 5d). Thus, it is clear that carefully manipulated synthetic conditions can be exploited to dissolve the silica template and condense the silane simultaneously to produce hollow silica spheres.


Figure 5. TEM images of the synthesized silica nanoparticles intended to produce hollow silica nanoparticles ($\text{hSiO}_2\text{-TMAC}$) in various conditions. The image in the green box (c-2) contains the $\text{hSiO}_2\text{-TMAC}$ synthesized from the standard condition as described in the Methods section. Every other image includes the nanoparticles synthesized with modified parameters. For (a), the NH_4OH volumes were 15 mL for all samples and concentrations were tuned to (a-1) 0.128 M, (a-2) 0.256 M, (a-3) 0.384 M, and (a-4) 0.512 M. For (b), the NH_4OH volumes were 10 mL for all samples, and the volumes of the diluted TMAC were varied to (b-1) 10 μL , (b-2) 50 μL , (b-3) 100 μL and (b-4) 300 μL . For (c), the NH_4OH volumes were 15 mL for all samples, and the volumes of the diluted TMAC were varied to (c-1) 10 μL , (c-2) 100 μL , (c-3) 200 μL and (c-4) 300 μL . For (d), the volumes of the 20 mg/mL sSiO_2 ethanolic suspensions added were tuned to (d-1) 1.4 mL, (d-2) 1.2 mL, (d-3) 0.7 mL, (d-4) 0.35 mL. For (d-4), the volume of the diluted TMAC was an excess as well. All parameters not mentioned here explicitly were the same as in the standard condition introduced in SI.

1
2
3 The hollow structures, however, still present the zeta potential decrease shown in
4
5 Figure 6. The solid silica with lower zeta potential, with higher zeta potential
6
7 (sSiO₂_TMAC_low and sSiO₂_TMAC_high, respectively), and the hollow silica
8
9 (hSiO₂_TMAC) all showed drops in the magnitude of their positive zeta potentials upon
10
11 incubation in water, though the rate of the decrease was the slowest for the hSiO₂_TMAC
12
13 (suggesting the effect of the particular morphology on maintaining the surface electric
14
15 potentials). Interestingly, when all three nanoparticles were centrifuged and re-dispersed
16
17 in pure water again, the initial zeta potentials recovered, reflecting that TMAC remained
18
19 condensed on the surface, and the zeta potential changes had occurred due to the
20
21 dissolved inner silica of the nanoparticles. For all three nanoparticles, especially the solid
22
23 silica with lower zeta potential (sSiO₂_TMAC_low), higher zeta potentials than the
24
25 previous values (Figure 1) were achieved. This occurred because the small degree of
26
27 core region dissolution and charge screening due to the released silicic acid took place
28
29 during the first incubation of powdered nanoparticles upon sonication. In the redispersion,
30
31 this effect is weaker since the silica precursors which were the most susceptible to
32
33 hydrolysis had already been released during the first dispersion and incubation, resulting
34
35 in higher zeta potentials.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


Figure 6. Zeta potentials of three different TMAC-modified silica nanoparticles incubated in water at concentrations of 0.5 mg/mL. After 20 hours of the incubation, all nanoparticles were centrifuged and redispersing in the same volume of water to removed released silicic acid in solution and adsorbed on the nanoparticles.

Taking one more step toward obtaining nanoparticles possessing and maintaining a stable positive zeta potential, chlorotrimethylsilane (TMS) was also added during the synthesis after TMAC addition. TMS has a small hydrophobic trimethyl group which has been proven to delay the hydrolysis of silica nanoparticle.³⁸ The nanoparticles after TMS modification were incubated in higher temperature (95 °C) as well, to expedite more complete hydrolysis of the inner regions and condensation on the shells. Figure 7 shows three positively charged hollow silica nanoparticle preparations before/after TMS addition and hydrothermal treatment. All nanoparticles showed more dense and thicker shells after the additional modification, mainly due to the TMS condensation on the surface. The hSiO₂_TMAC_high nanoparticles, which had incomplete hollow structures before the hydrothermal treatment, showed improved hollow character after the treatment.

Figure 7. TEM images of silica nanoparticles (a) without hydrothermal treatment and TMS addition (hSiO₂_TMAC) and (b) with hydrothermal treatment and TMS addition (hSiO₂_TMAC_hyt). During the synthesis, the volumes of the diluted TMAC were varied to 20 μ L, 100 μ L, and 270 μ L for low, mid, and high concentrations, respectively.

The effects of the two additional modifications during the synthesis on the zeta potential maintenance were evaluated, and all three nanoparticles showed more stable potential in water for 24 hours compared to non-TMS/hydrothermal treatment hollow nanoparticles (Figure 8a), and the hSiO₂_TMAC_hyt nanoparticles even showed improved consistent positive zeta potentials for 7 days (Figure 8b), which couldn't be achieved with solid silica nanoparticles. Clearly, the morphology, and the concordant extent of condensation, of the silica nanoparticles impacts the surface electric potential maintenance, especially when the silane used for surface modification has the opposite charge as common silanol groups.

Figure 8. (a) Zeta potentials of TMAC-functionalized hollow silica without either TMS addition or hydrothermal treatment (no “hyt” in their labels) and with the TMS addition and the hydrothermal treatment (with “hyt” in their labels) for 24 hours of incubation in pure water. (b) Zeta potentials of TMAC-functionalized hollow silica with TMS addition and hydrothermal treatment for 7 days of incubation in water. The concentrations were 0.5 mg/mL for all samples.

Conclusion

In this work, quaternary ammonium silane-modified silica nanoparticles of around 45 nm in diameters were synthesized via reverse microemulsion to explore the impact of amorphous silica nanoparticle morphology on their electric potential maintenance in colloidal dispersion. The monodisperse silica with TMAC condensed on the surface was obtained when the nanoparticles were extracted from the emulsion and redispersed in solution for further silane condensation. In this case, even though TMAC was condensed on the surface of the nanoparticles with varying coverage to induce different positive potentials, nanoparticles showed time-dependent potential loss in aqueous colloidal suspension with the change in zeta potentials from > 40 mV to nearly 0 mV within 24

1
2
3 hours. It was concluded that this occurred not from the surface TMAC hydrolysis but from
4 the adsorption of silicic acid dissolved from the inner regions where silica precursors exist
5 with incomplete condensation. To mitigate the possibility of core region hydrolysis, the
6 template solid silica was post-treated in basic solution with TMAC introduction, where the
7 template nanoparticle dissolution from the cores and the TMAC condensation on the
8 surface occur at the same time. With tuned concentrations of nanoparticles and TMAC,
9 a hollow structure was achieved with a set of varied zeta potentials of approximately 5
10 mV, 20 mV, and > 30 mV in aqueous dispersion, and these hollow nanoparticles were
11 further modified with a hydrophobic silane in a higher temperature to enhance their
12 resistance against hydrolysis during aqueous suspension by showing much more
13 improved consistent zeta potentials values for seven days of incubation. The hollow
14 structure clearly showed improved positive zeta potential maintenance, making these
15 nanoparticles excellent candidates for a variety of biological and biomedical applications.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40 Acknowledgement 41

42 This work was supported by National Science Foundation under the Center for
43 Sustainable Nanotechnology (CSN), CHE-1503408. The CSN is part of the Centers for
44 Chemical Innovation Program. Parts of this work were carried out in the Characterization
45 Facility, University of Minnesota, which receives partial support from NSF through the
46 MRSEC program.
47
48
49
50
51
52

1
2
3 **References**
4

5 (1) Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L. M.; Pagliaro, M.
6 The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications.
7 *Chem. Rev.* **2013**, *113* (8), 6592–6620.

8 (2) Pandarus, V.; Gingras, G.; Béland, F.; Ciriminna, R.; Pagliaro, M. Selective
9 Hydrogenation of Vegetable Oils over Silia Cat Pd(0). *Org. Process Res. Dev.*
10 **2012**, *16* (7), 1307–1311.

11 (3) Ciriminna, R.; Pagliaro, M. Tailoring the Catalytic Performance of Sol–Gel-
12 Encapsulated Tetra-n-Propylammonium Perruthenate (TPAP) in Aerobic
13 Oxidation of Alcohols. *Chem. - Eur. J.* **2003**, *9* (20), 5067–5073.

14 (4) Pagliaro, M.; Hutchings, G. J. Heterogeneous Catalysis for Fine Chemicals. *Catal. Sci. Technol.* **2011**, *1* (9), 1543.

15 (5) Wei, L.; Hu, N.; Zhang, Y. Synthesis of Polymer—Mesoporous Silica
16 Nanocomposites. *Materials* **2010**, *3* (7), 4066–4079.

17 (6) Ilharco, L. M.; Fidalgo, A.; Farinha, J. P. S.; Martinho, J. M. G.; Rosa, M. E.
18 Nanostructured Silica/Polymer Subcritical Aerogels. *J. Mater. Chem.* **2007**, *17*
19 (21), 2195.

20 (7) Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I. Mesoporous Silica
21 Nanoparticles in Biomedical Applications. *Chem. Soc. Rev.* **2012**, *41* (7), 2590.

22 (8) Li, J.-F.; Zhang, Y.-J.; Ding, S.-Y.; Panneerselvam, R.; Tian, Z.-Q. Core–Shell
23 Nanoparticle-Enhanced Raman Spectroscopy. *Chem. Rev.* **2017**, *117* (7), 5002–
24 5069.

25 (9) Xie, M.; Shi, H.; Ma, K.; Shen, H.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Hybrid
26 Nanoparticles for Drug Delivery and Bioimaging: Mesoporous Silica Nanoparticles
27 Functionalized with Carboxyl Groups and a near-Infrared Fluorescent Dye. *J. Colloid Interface Sci.* **2013**, *395*, 306–314.

28 (10) Manuchehrabadi, N.; Gao, Z.; Zhang, J.; Ring, H. L.; Shao, Q.; Liu, F.;
29 McDermott, M.; Fok, A.; Rabin, Y.; Brockbank, K. G. M.; et al. Improved Tissue
30 Cryopreservation Using Inductive Heating of Magnetic Nanoparticles. *Sci. Transl. Med.* **2017**, *9* (379), eaah4586.

31 (11) Hyde, E. D. E. R.; Seyfaee, A.; Neville, F.; Moreno-Atanasio, R. Colloidal Silica
32 Particle Synthesis and Future Industrial Manufacturing Pathways: A Review. *Ind. Eng. Chem. Res.* **2016**, *55* (33), 8891–8913.

33 (12) Liberman, A.; Mendez, N.; Trogler, W. C.; Kummel, A. C. Synthesis and Surface
34 Functionalization of Silica Nanoparticles for Nanomedicine. *Surf. Sci. Rep.* **2014**,
35 *69* (2–3), 132–158.

36 (13) Sun, Y.; Sai, H.; von Stein, F.; Riccio, M.; Wiesner, U. Water-Based Synthesis of
37 Ultrasmall PEGylated Gold–Silica Core–Shell Nanoparticles with Long-Term
38 Stability. *Chem. Mater.* **2014**, *26* (18), 5201–5207.

39 (14) Li, G. L.; Wan, D.; Neoh, K. G.; Kang, E. T. Binary Polymer Brushes on
40 Silica@Polymer Hybrid Nanospheres and Hollow Polymer Nanospheres by
41 Combined Alkyne–Azide and Thiol–Ene Surface Click Reactions.
42 *Macromolecules* **2010**, *43* (24), 10275–10282.

43 (15) Lee, C.-H.; Lo, L.-W.; Mou, C.-Y.; Yang, C.-S. Synthesis and Characterization of
44 Positive-Charge Functionalized Mesoporous Silica Nanoparticles for Oral Drug

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1

2

3 Delivery of an Anti-Inflammatory Drug. *Adv. Funct. Mater.* **2008**, *18* (20), 3283–3292.

4

5 (16) Shahabi, S.; Treccani, L.; Dringen, R.; Rezwan, K. Modulation of Silica

6 Nanoparticle Uptake into Human Osteoblast Cells by Variation of the Ratio of

7 Amino and Sulfonate Surface Groups: Effects of Serum. *ACS Appl. Mater.*

8 *Interfaces* **2015**, *7* (25), 13821–13833.

9

10 (17) Shahabi, S.; Döscher, S.; Bollhorst, T.; Treccani, L.; Maas, M.; Dringen, R.;

11 Rezwan, K. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous

12 Silica Nanoparticles via Surface Functionalization: Effects of Serum. *ACS Appl.*

13 *Mater. Interfaces* **2015**, *7* (48), 26880–26891.

14

15 (18) Zhao, J.; Wu, S.; Qin, J.; Shi, D.; Wang, Y. Electrical-Charge-Mediated Cancer

16 Cell Targeting via Protein Corona-Decorated Superparamagnetic Nanoparticles in

17 a Simulated Physiological Environment. *ACS Appl. Mater. Interfaces* **2018**, *10*

18 (49), 41986–41998.

19

20 (19) Wang, J.; Xu, D.; Deng, T.; Li, Y.; Xue, L.; Yan, T.; Huang, D.; Deng, D. Self-

21 Decomposable Mesoporous Doxorubicin@Silica Nanocomposites for Nuclear

22 Targeted Chemo-Photodynamic Combination Therapy. *ACS Appl. Nano Mater.*

23 **2018**, *1* (4), 1976–1984.

24

25 (20) Cao, L.; Zhou, Z.; Niu, S.; Cao, C.; Li, X.; Shan, Y.; Huang, Q. Positive-Charge

26 Functionalized Mesoporous Silica Nanoparticles as Nanocarriers for Controlled

27 2,4-Dichlorophenoxy Acetic Acid Sodium Salt Release. *J. Agric. Food Chem.*

28 **2018**, *66* (26), 6594–6603.

29

30 (21) Finnie, K. S.; Bartlett, J. R.; Barbé, C. J. A.; Kong, L. Formation of Silica

31 Nanoparticles in Microemulsions. *Langmuir* **2007**, *23* (6), 3017–3024.

32

33 (22) Jung, H.-S.; Moon, D.-S.; Lee, J.-K. Quantitative Analysis and Efficient Surface

34 Modification of Silica Nanoparticles. *J. Nanomater.* **2012**, *2012*, 1–8.

35

36 (23) Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and

37 Growth of Nanoparticles in Solution. *Chem. Rev.* **2014**, *114* (15), 7610–7630.

38

39 (24) Lin, C.-H.; Chang, J.-H.; Yeh, Y.-Q.; Wu, S.-H.; Liu, Y.-H.; Mou, C.-Y. Formation

40 of Hollow Silica Nanospheres by Reverse Microemulsion. *Nanoscale* **2015**, *7* (21),

41 9614–9626.

42

43 (25) Yu, Q.; Wang, P.; Hu, S.; Hui, J.; Zhuang, J.; Wang, X. Hydrothermal Synthesis of

44 Hollow Silica Spheres under Acidic Conditions. *Langmuir* **2011**, *27* (11), 7185–7191.

45

46 (26) Zhang, T.; Zhang, Q.; Ge, J.; Goebel, J.; Sun, M.; Yan, Y.; Liu, Y.; Chang, C.; Guo,

47 J.; Yin, Y. A Self-Templated Route to Hollow Silica Microspheres. *J. Phys. Chem.*

48 *C* **2009**, *113* (8), 3168–3175.

49

50 (27) Chen, Y.; Chen, H.; Guo, L.; He, Q.; Chen, F.; Zhou, J.; Feng, J.; Shi, J.

51 Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based

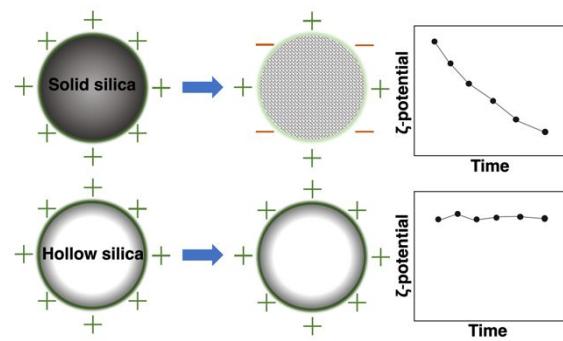
52 Selective Etching Strategy. *ACS Nano* **2010**, *4* (1), 529–539.

53

54 (28) Hu, H.; Zhou, H.; Liang, J.; An, L.; Dai, A.; Li, X.; Yang, H.; Yang, S.; Wu, H.

55 Facile Synthesis of Amino-Functionalized Hollow Silica Microspheres and Their

56 Potential Application for Ultrasound Imaging. *J. Colloid Interface Sci.* **2011**, *358*


57 (2), 392–398.

58

59

60

1
2
3 (29) Nandiyanto, A. B. D.; Akane, Y.; Ogi, T.; Okuyama, K. Mesopore-Free Hollow
4 Silica Particles with Controllable Diameter and Shell Thickness via Additive-Free
5 Synthesis. *Langmuir* **2012**, *28* (23), 8616–8624.
6 (30) Metin, C. O.; Baran, J. R.; Nguyen, Q. P. Adsorption of Surface Functionalized
7 Silica Nanoparticles onto Mineral Surfaces and Decane/Water Interface. *J.
8 Nanoparticle Res.* **2012**, *14* (11).
9 (31) Danks, A. E.; Hall, S. R.; Schnepp, Z. The Evolution of ‘Sol–Gel’ Chemistry as a
10 Technique for Materials Synthesis. *Mater. Horiz.* **2016**, *3* (2), 91–112.
11 (32) Alexander, G. B.; Heston, W. M.; Iler, R. K. The Solubility of Amorphous Silica in
12 Water. *J. Phys. Chem.* **1954**, *58* (6), 453–455.
13 (33) Crundwell, F. K. On the Mechanism of the Dissolution of Quartz and Silica in
14 Aqueous Solutions. *ACS Omega* **2017**, *2* (3), 1116–1127.
15 (34) Kajihara, K. Recent Advances in Sol–Gel Synthesis of Monolithic Silica and Silica-
16 Based Glasses. *J. Asian Ceram. Soc.* **2013**, *1* (2), 121–133.
17 (35) Wong, Y. J.; Zhu, L.; Teo, W. S.; Tan, Y. W.; Yang, Y.; Wang, C.; Chen, H.
18 Revisiting the Stöber Method: Inhomogeneity in Silica Shells. *J. Am. Chem. Soc.*
19 **2011**, *133* (30), 11422–11425.
20 (36) Teng, Z.; Su, X.; Zheng, Y.; Sun, J.; Chen, G.; Tian, C.; Wang, J.; Li, H.; Zhao, Y.;
21 Lu, G. Mesoporous Silica Hollow Spheres with Ordered Radial Mesochannels by
22 a Spontaneous Self-Transformation Approach. *Chem. Mater.* **2013**, *25* (1), 98–
23 105.
24 (37) Zhang, Q.; Zhang, T.; Ge, J.; Yin, Y. Permeable Silica Shell through Surface-
25 Protected Etching. *Nano Lett.* **2008**, *8* (9), 2867–2871.
26 (38) Lin, Y.-S.; Abadeer, N.; Hurley, K. R.; Haynes, C. L. Ultrastable, Redispersible,
27 Small, and Highly Organomodified Mesoporous Silica Nanotherapeutics. *J. Am.
28 Chem. Soc.* **2011**, *133* (50), 20444–20457.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table of Contents