

1 **Interactions between Silica-coated Gold Nanorods Substrates and Hydrophobic**
2 **Analytes in Colloidal Surface-enhanced Raman Spectroscopy**

3 *Hyunho Kang and Christy Haynes**

4 Department of Chemistry, University of Minnesota, 207 Pleasant Street SE,
5 Minneapolis, MN 55455, United States

6 *Corresponding author, chaynes@umn.edu

7
8 **Abstract**

9 Surface-enhanced Raman scattering (SERS)-based detection of suspension phase
10 analytes holds great promise for a variety of applications; however, plasmonic colloidal
11 SERS substrates are not stable in many solution conditions unless they are protected by
12 a stabilizing shell. Mesoporous silica shells on plasmonic nanoparticle cores have been
13 demonstrated to perform well in a variety of liquid matrices. However, this silica shell can
14 be seen as barrier from the perspective of the analyte, as the analyte molecules need to
15 reach the plasmonic core after they pass through the shell. In this work, mesoporous
16 silica-coated gold nanorods have been synthesized and characterized as aqueous
17 colloidal SERS substrates systematically considering how SERS performance is
18 impacted by three different factors: adsorbed molecules, the silica shell, and bulk solvent
19 media. The results show that SERS signal intensities from the model hydrophobic
20 analyte, trans-1,2-bis(4-pyridyl) ethylene (BPE), is enhanced when the pore size,
21 hydrophobicity of the shell, and ionic strength are increased, indicating more favorable
22 interaction between the substrates and the analyte. The silica shell presented herein
23 facilitates efficient adsorption of the analyte to the gold core and enhanced sensitivity to

24 environmental refractive index changes. This efficient adsorption can be further enhanced
25 by controlling the incubation temperature. Overall, this work reveals how substrate
26 exposure conditions can be tuned to maximize analyte SERS signals without
27 compromising the silica shell that protects the plasmonic properties of the SERS-
28 enhancing core.

29

30 **Introduction**

31 In recent years, researchers have exploited nanoscience to pioneer and develop
32 various technologies in fields such as manufacturing materials, biomedicine, and optics.^{1–}
33 ⁴ The tremendous demand for advanced nanomaterials has prompted research into a
34 variety of nanoparticle platforms; among the most investigated since the early 1990s is
35 the core-shell nanoparticle.^{5–7} The core-shell structure often enhances the functional
36 properties of nanomaterials by modifying the constituent materials, morphologies, or the
37 ratio of core to shell.⁸ Often, this core-shell structure yields enhanced stability of the inner
38 core material, conserving critical physical and chemical properties and expanding the
39 potential applications of these nanoparticles into many fields.^{9,10}

40 Surface-enhanced Raman scattering (SERS) spectroscopy, a detection method that
41 shows great potential in chemical sensing, can benefit greatly from the core-shell
42 nanoparticle structure. SERS was discovered when Van Duyne et al. recognized the
43 enhanced Raman scattering signals of adsorbed pyridine molecules on roughened silver
44 electrodes in 1977.¹¹ This discovery generated significant interest to understand the
45 electromagnetic and chemical mechanisms of SERS enhancement and in the
46 development of materials to maximize enhancement factors. Over 40 years of debate and

47 research have shown that far-field SERS enhancement is largely governed by the
48 localized surface plasmon resonance (LSPR), the coherent oscillation of conduction band
49 electrons at the surface of plasmonic nanostructures that generates electromagnetic
50 fields; these fields enhance the induced dipole in molecules near the plasmonic structure,
51 thus enhancing the Raman scattering signals.¹² The LSPR is strongly dependent on the
52 nanostructures' material properties and morphologies.^{13,14} Regardless of the plasmonic
53 material chosen, from gold or silver to copper or palladium,¹⁵ the molecule to be
54 enhanced must dwell within a few nanometers of the nanostructure surface; this
55 requirement leads to an obvious tension between having molecules near to or adsorbed
56 at a nanostructure surface and the need for stable plasmonic nanostructures. As such,
57 the stabilization of the plasmonic properties of metals has been a critical challenge for
58 researchers to design effective SERS platforms. For example, in 2010 Tian and co-
59 workers fabricated the shell-isolated nanoparticle-enhanced Raman spectroscopy
60 (SHINERS) platform by coating gold nanoparticles with thin shells of alumina or silica.¹⁶
61 Many researchers have expanded and diversified this SHINERS platform by synthesizing
62 ultrathin shell-coated gold or silver nanoparticles with different materials such as silica,
63 carbon, alumina, and manganese oxide.¹⁷⁻²⁰ Recently, iodide-coated silver and liposome-
64 based, protein-coated gold nanoparticle substrates have also been developed as
65 biocompatible SERS substrate platforms.^{21,22}

66 For the purpose of stabilization and isolation of metal nanoparticle cores from the
67 external environment, silica has much potential as a shell and has been studied in many
68 laboratories with distinct synthetic approaches.¹⁰ The biocompatibility of silica has been
69 demonstrated; this highly condensed dielectric shell is generally much more robust than

70 other bio-friendly molecular coating materials such as chitosan or dextran.²³ Furthermore,
71 to enhance colloidal stability and modify the chemical properties of the silica shell,
72 different types of silanes, such as those with polyethylene glycol functionality, can easily
73 be condensed onto the surface of the shell in one pot syntheses.²⁴ The particle size can
74 be tuned and recent studies show the clear scalability to produce a large amount of
75 particles from a synthetic standpoint.^{25,26} Thus, for colloidal SERS, addition of a silica
76 shell to promote maintenance of the plasmonic core shape and LSPR can be used to
77 obtain stable and consistent SERS performance. Clearly, it is also critical that the silica
78 shell present porosity so that the target analytes can reach the core surface. Several
79 research groups have developed and studied mesoporous silica-coated AuNRs
80 (AuNRs@mSiO₂) for various applications such as imaging, biosensing, and cancer
81 theragnostic platforms.²⁷⁻²⁹ In 2016, we investigated the ability of AuNRs@mSiO₂ as an
82 in-solution SERS substrate.³⁰ In that initial work, cetyltrimethylammonium bromide
83 (CTAB) micelle formation was used during the coating process to generate mesoporous
84 structures within the silica shell. These mesopore structures afforded analyte access to
85 the gold cores and acted as a physical cut-off filter, limiting the molecular size of analytes
86 that could reach the plasmonic core.

87 Herein, we probe further into the chemical and physical characteristics that control
88 access of hydrophobic analytes, in this case trans-1,2-bis(4-pyridyl)ethylene (BPE), to the
89 substrate of AuNRs@mSiO₂ for aqueous colloidal SERS. The results demonstrate that
90 the hydrophobicity of and pore size within the silica shell influence access of the analyte
91 molecules to the enhancing core. The bulk solution environmental parameters, such as
92 ionic strength and temperature were tuned to observe the diffusion and adsorption

93 behaviors of the analytes in varying conditions. Further, extreme solvent mixture
94 conditions were prepared to see if the viscosity, which is related to the diffusion rate of
95 the analytes and substrates, affects the time-dependent SERS signal magnitude
96 significantly. Overall, this work demonstrates that the interaction between BPE and
97 AuNRs@mSiO₂ can be affected by the physical and chemical state of the silica shells as
98 well as bulk environmental conditions. Importantly, the silica shell of the substrate
99 successfully maintained plasmonic properties of the gold cores in all conditions
100 considered, allowing stable diffusion and adsorption of BPE and thus, strong Raman
101 signals. Overall, this systematic investigation will benefit all those working to exploit
102 suspension-phase SERS sensing of hydrophobic analytes as well as those using core-
103 shell nanostructure-based sensors with other signal transduction mechanisms.

104

105 **Materials and methods**

106 **Materials**

107 CTAB-stabilized AuNRs (LSPR $\lambda_{\text{max}} = 798$ nm) were purchased from Nanohybrids.
108 Tetraethylorthosilicate (TEOS, 98%), hexadecyltrimethylammonium bromide (CTAB,
109 98%), chlorotrimethylsilane (TMS, 98%), 1,2-di(4-pyridyl)ethylene (BPE, 97%), and
110 glycerol were purchased from Sigma Aldrich. 2-[methoxy(polyethyleneoxy)₉-
111 ₁₂propyl]trimethoxysilane (PEG, molecular weight 591-723 g/mol) was purchased from
112 Gelest. All chemicals were used without further purification.

113

114 **Synthesis of silica-coated gold nanorods**

115 A modified Stöber method was used to synthesize mesoporous silica-coated gold

116 nanorods (AuNRs@mSiO₂).³¹ Powdered CTAB and decane were added to water to yield
117 concentrations of 1.0 mM CTAB and 1.5 mM of decane; the solution was then sonicated
118 for one hour before further use. After sonication, the micelle suspension was formed and
119 had a slightly blue hue. The suspension was then removed from the sonication bath and
120 allowed to cool undisturbed at room temperature. Next, 10 mL of the as-purchased AuNR
121 suspensions from Nanohybrids (1 mM CTAB-stabilized in water, OD = 1.1, 0.045 mg/mL
122 of Au) was centrifuged at 8000 rcf for 30 min to lower the CTAB concentration. Any
123 additional centrifugation resulted in destabilization and aggregation among the
124 suspended AuNRs. The supernatant was removed, and the pellets were resuspended in
125 1 mL of the CTAB-decane micelle suspension to yield a concentration of 1 nM AuNRs.
126 This suspension was transferred to 15 × 34 mm vials containing a magnetic stirring bar
127 that stirred the suspension for at least 3 hours at room temperature. Then, 5 µL of 0.1 M
128 NaOH was added to adjust the pH to >10.0, and the suspension was further stirred for 30
129 min. Next, 4 µL of 20% TEOS in ethanol was added, and the suspension was stirred again
130 for 24 hours.

131
132 For non-surface-modified AuNRs@mSiO₂, the silica-coated nanorods were transferred to
133 centrifuge tubes and centrifuged at 8000 rcf for 20 min. To remove the surfactant, the
134 supernatant was removed, and the pellets were re-suspended in 6 mL of ethanolic
135 ammonium nitrate solution (6 g of NH₄NO₃ in 1 L ethanol) and refluxed twice for 30 min
136 at 60°C. After reflux, the suspension was washed three times via centrifugation in 99%
137 ethanol. For TMS-modified AuNRs@mSiO₂, after 24 hours of hydrolysis and
138 condensation of TEOS to form silica shells, 5 µL of 0.1 M NaOH was added again and

139 stirred for 30 min. 4 μ L of TMS was then added to the suspension, and the suspension
140 was stirred for 48 hours. The purification method was the same as described above, and
141 the final products were stored in 99% ethanol until use.

142

143 **Material Characterization**

144 *Transmission Electron Microscopy (TEM)*. TEM images were taken with FEI Tecnai T12
145 at 120 kV. The purified nanoparticles were dispersed in ethanol, and Formvar/carbon-
146 coated copper grids (Ted Pella, INC, Redding, CA) were dipped into the ethanolic
147 suspensions. The grids were then dried in air to prepare the TEM samples.

148 *Dynamic Light Scattering (DLS) and ζ -Potential Measurements*. A Brookhaven 90Plus
149 particle analyzer (Holtsville, NY) equipped with a 35 mW red diode laser (660 nm) was
150 used to measure the hydrodynamic diameters of the nanoparticles. The AuNRs@mSiO₂
151 nanoparticles were suspended in water at a AuNR concentration of 0.2 mg/mL. For each
152 measurement, a one-minute run was performed three times and averaged. To eliminate
153 any possible interference (e.g. from dust), the suspensions were filtered with 0.45 μ m
154 GHP filter before measuring. For the ζ -potential measurements, the same concentration
155 of nanoparticles was used, and a Brookhaven ZetaPALS Zeta-Potential Analyzer
156 (Holtsville, NY) was utilized for the measurement. Five runs, each consisting of ten cycles,
157 were run for each measurement. In each case, the ten measured zeta potentials were
158 averaged, and then the five runs were further averaged.

159 *UV-Vis Spectroscopy measurement*. UV-Vis extinction spectra were measured with DH-
160 2000 light source (Oceans Optics, Largo, FL). For the measurement, 300 μ L of pure water
161 or varying concentration of aqueous BPE solution was added into disposable micro UV

162 cuvettes. Then, 20 μ L of concentrated (15 mg/mL, AuNR concentration) CTAB-stabilized
163 or AuNRs@mSiO₂ were added to the cuvettes and mixed well before UV-Vis spectra
164 measurement.

165

166 **SERS measurement**

167 1,2-di(4-pyridyl)ethylene (BPE) was chosen as the model hydrophobic analyte for this
168 work based on being well-characterized for SERS and similar in size to many small
169 molecules that are important SERS targets (Figure S1). The BPE was dissolved in 10 mL
170 of DI-water at a concentration of 100 ppm with sonication. The analyte solution was then
171 filtered to remove any undissolved BPE and serially diluted to achieve different
172 concentrations. Concentrated nanoparticle substrate suspensions were prepared by
173 transferring AuNRs@mSiO₂ (or AuNRs@mSiO₂-TMS) in ethanol to water at a final
174 concentration of 1.0 to 6.0 mg/mL of AuNRs. Next, 10 μ L of this concentrated substrate
175 suspension was transferred to centrifuge tubes containing 110 μ L of the analyte solution.

176 After a brief vortexing, 8 μ L of the analyte-substrate mixture was transferred to a plastic
177 chip well. The well contents remained inside the well due to capillary forces despite the
178 chip being held upright for SERS measurement (Figure S2a). The Snowy Range Sierra
179 spectrometer used in this work has a laser excitation wavelength of 785 nm, and the
180 parameters used for the experiments were 9 mW power and 30 second integration times.

181

182 For incubation in high ionic strength solutions, BPE aqueous solutions of 200 mM sodium
183 chloride, ammonium acetate, and lithium perchlorate were prepared along with BPE salt-
184 free aqueous solution. After the concentrated substrate suspensions were added in the

185 same way described above, SERS spectra were measured immediately after mixing and
186 then after 30 and 60 minutes of incubation at room temperature.

187

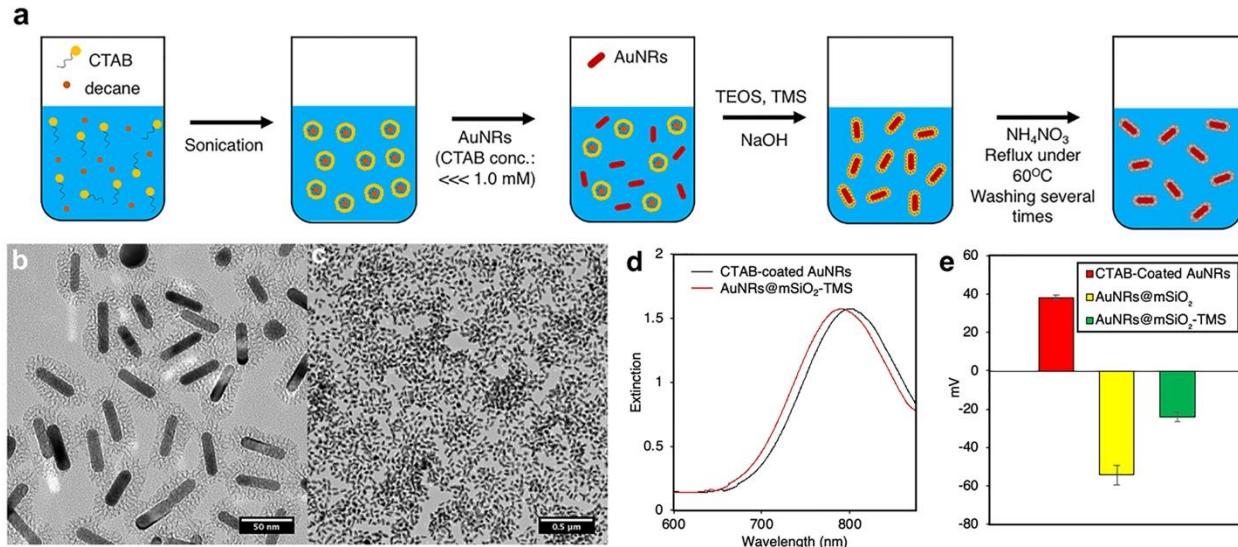
188 For SERS experiments with varying parameters, the basic procedure was the same with
189 slight modifications. For each different type of experiment, the analyte-substrate mixtures
190 were incubated under slightly different conditions to test the importance of each condition.

191 For the experiment varying incubation temperatures, 4 aqueous mixtures of BPE and
192 AuNRs@mSiO₂-TMS were prepared, and each solution was incubated at a different
193 temperature for 10 minutes after the addition of the substrates. SERS spectra were
194 measured every hour for each mixture.

195

196 For the SERS measurement with glycerol mixtures, two different experiments were
197 performed. In the first experiment, 20 µL of concentrated AuNRs@mSiO₂ in glycerol (6.0
198 mg/mL) was added to the vial first. Then, 1 mL of aqueous 50 ppb BPE solution were
199 added to the vial. Each vial of the same concentration of the substrate and the analyte
200 was then incubated at different temperatures as described earlier with/without stirring for
201 10 minutes. In the second experiment, 50 ppb of BPE solution in different glycerol/water
202 mixtures (no glycerol, 30, 50, 70, and 90% glycerol by volume%) were prepared first.
203 Then, into 110 µL of each mixture, 10 µL of concentrated AuNRs@mSiO₂ (1.0 mg/mL) in
204 water were added to each mixture, and SERS spectra were measured at different time
205 points.

206


207

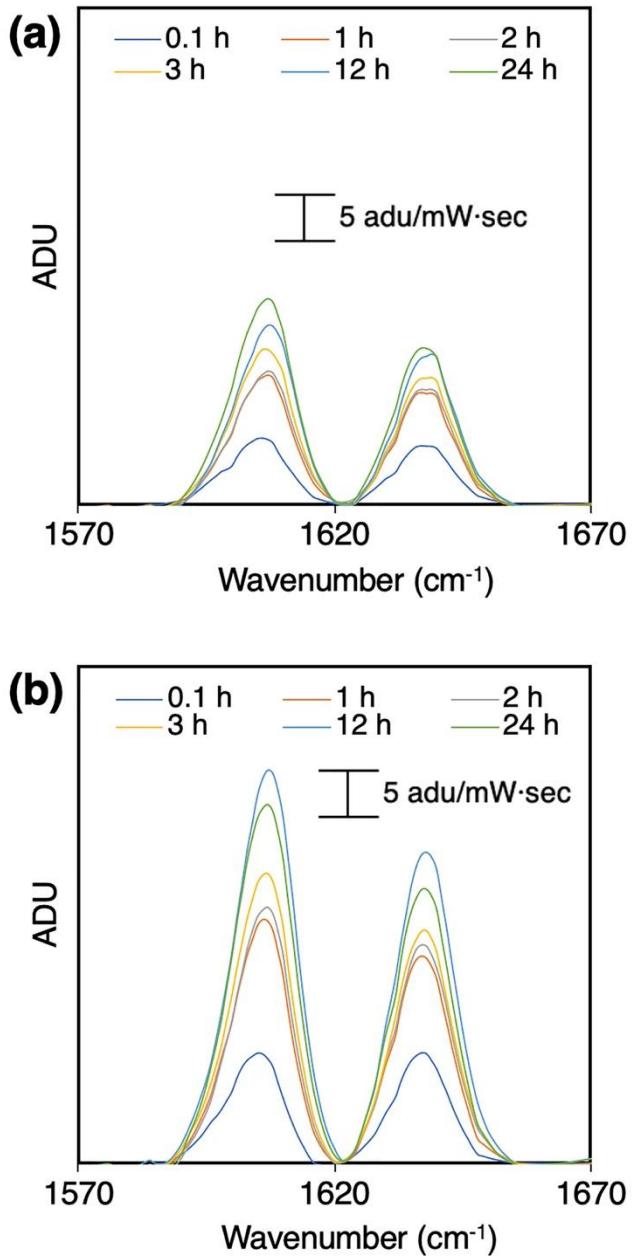
208 **Results and Discussion**

209 **Synthesis of Colloidal SERS AuNRs@mSiO₂ Substrates**

210 The synthetic scheme to make AuNRs@mSiO₂-TMS is described in Figure 1a. The
211 as-purchased AuNRs arrived suspended in 1 mM CTAB, so the AuNRs were centrifuged
212 once to lower the CTAB concentration. Any further centrifugation or use of the centrifuge
213 at higher relative centrifugal forces resulted in AuNR aggregation. After centrifuging,
214 particles were re-suspended in aqueous CTAB-decane solution, where the molar ratio of
215 decane to CTAB was 1.5 to generate a swelled micelle formation.³² Under basic
216 conditions, hydrolysis and condensation of TEOS around AuNR cores generate a
217 mesoporous silica shell with pore diameters of roughly 4 to 5 nm and silica thickness of
218 roughly 15 nm. More complete studies of nanoparticle pore structure and silica shell
219 thickness, and the effects of these parameters on analyte diffusion through the pores, can
220 be found in previous work.^{34,36} After the silica coating, the resultant nanoparticles were
221 suspended in ethanolic NH₄NO₃ under reflux to remove any residual CTAB. Considering
222 the well-established exponential decay of the plasmonic electromagnetic fields from the
223 gold surfaces (i.e. a decay length of roughly 2 nm³³), we hypothesized that this CTAB-
224 removal step via ion-exchange is critical for efficient analyte adsorption and SERS signal
225 appearance. The UV-vis extinction spectra in Figure 1d show a ~23 nm blue-shift of the
226 LSPR after purification. Previous literature suggests that addition of the silica shell on
227 gold induces a red-shift in LSPR extinction, because the refractive index of silica is higher
228 than that of standard solvents.^{25,34} However, in most of these published studies, extinction
229 measurements were made without complete CTAB removal, as we accomplished via ion-
230 exchange, and it is likely that residual CTAB remained within the nanoparticle mesopores.

231 Thus, we assume that the literature-reported red-shift in LSPR extinction is attributable to
232 the collective refractive index change of residual CTAB and the silica coating. Like the
233 work presented herein, there are previous studies showing a blue-shift in LSPR extinction
234 after CTAB removal.^{35,36} Furthermore, a recent study demonstrated that enlarged
235 mesopores within a silica shell enable more aqueous solvent to permeate the shell, and
236 thus surround the gold core.³⁷ From these observations, we infer that the lower density of
237 the silica in our substrate and the ion-exchange step during purification enable efficient
238 removal of CTAB molecules and more access of bulk aqueous media near the gold,
239 resulting in a blue-shift in LSPR extinction compared to CTAB-stabilized AuNRs. This
240 complete CTAB removal and the added silica shell with large pores results in a
241 comparatively large LSPR red-shift upon adsorption of a new organic molecule (BPE),
242 which will be discussed in the following section. Figure 1b and 1c show TEM images of
243 synthesized and purified AuNRs@mSiO₂-TMS. Both images reveal monodisperse
244 particles with obvious mesoporous silica shell structures. In some cases, the silica shell
245 was further modified with a small hydrophobic molecule, chlorotrimethylsilane (TMS). The
246 zeta potentials of AuNRs@mSiO₂ and AuNRs@mSiO₂-TMS are depicted in Figure 1e.
247 Before coating, AuNRs have a zeta potential of ~ +40 mV imbued by the CTAB bilayers.
248 After coating with silica, both nanoparticles present negative zeta potentials, attributable
249 to the silanol groups on the silica surface. Nanoparticles modified with TMS display a less
250 negative zeta potential, shifted from -50 to -24 mV, indicating that condensation of
251 hydrophobic silanes reduces the number of silanol groups at the surface.

252 **Figure. 1** AuNRs@mSiO₂-TMS scheme for synthesis and characterization. (a) The
253 synthetic pathway for AuNRs@mSiO₂-TMS. (b-c) Representative TEM images of
254 AuNRs@mSiO₂-TMS. (d) UV-vis spectra of the aqueous suspensions of CTAB-coated
255 AuNRs (black) and AuNRs@mSiO₂-TMS (red) after synthesis and purification. (e) Zeta
256 potentials of CTAB-coated AuNRs, AuNRs@mSiO₂, and AuNRs@mSiO₂-TMS. The error
257 bars represent the standard deviation from 5 replicate measurements.
258


259

260 **Effect of silica shell property in colloidal SERS system**

261 The environment around the gold core in AuNRs@mSiO₂-TMS can be divided into 3
262 different regions: the silica shell, the molecules adsorbed onto the gold, and the bulk
263 solvent. We hypothesized that all 3 components would affect the access and adsorption
264 of BPE onto the metal core. To investigate the effect of molecular functionalization of the
265 mesoporous silica shell first, a series of SERS experiments were performed using 1,2-
266 di(4-pyridyl)ethylene (BPE) as an analyte. First, 10 μ L of 1.5 mg/mL substrate
267 suspensions were added to 110 μ L of 1 ppm BPE solution, and the aliquots of the
268 mixtures were transferred for SERS measurement at various time points (Figure S2).
269 Three characteristic vibrational modes of BPE were monitored throughout these
270 experiments, including those at 1201, 1608 and 1638 cm^{-1} shift, corresponding to a C=C

271 stretching mode, an aromatic ring stretching mode, and an in-plane ring mode,
272 respectively.^{38,39} As shown in Figure S2, the two spectral features at 1608 and 1638 cm⁻¹
273 shifts are of particular interest throughout this research as these features are far from
274 any other non-BPE background Raman signals in our experimental set up. In Figure 2, it
275 is clear that the SERS signal intensities from BPE increase as incubation time increases.
276 The Raman bands approach their maximum intensity after approximately 12 hours of
277 incubation and likely decreases after that based on small shifts in substrate plasmonic
278 properties. Even though neither mixture was shaken or sonicated, both substrates
279 showed time-dependent signal enhancement behaviors. Not only did signals from
280 AuNRs@mSiO₂-TMS demonstrate more intensity increments between each
281 measurement time, but the maximum intensities from AuNRs@mSiO₂-TMS were about
282 2-fold higher than those of AuNRs@mSiO₂. This result suggests that the total amount of
283 BPE on the gold surface for AuNRs@mSiO₂-TMS was higher than that of AuNRs@mSiO₂.
284 It is likely that these improved signals from AuNRs@mSiO₂-TMS can be attributed to the
285 added small hydrophobic trimethylsilyl groups, which are condensed not only on the outer
286 surfaces of the shells, but also on the inner walls of the silica shell pores. Clearly, with
287 more favorable hydrophobic interaction between the substrate and analyte,^{40,41} the TMS
288 surface modification impacted the equilibrium by preconcentrating BPE molecules close
289 to gold core.

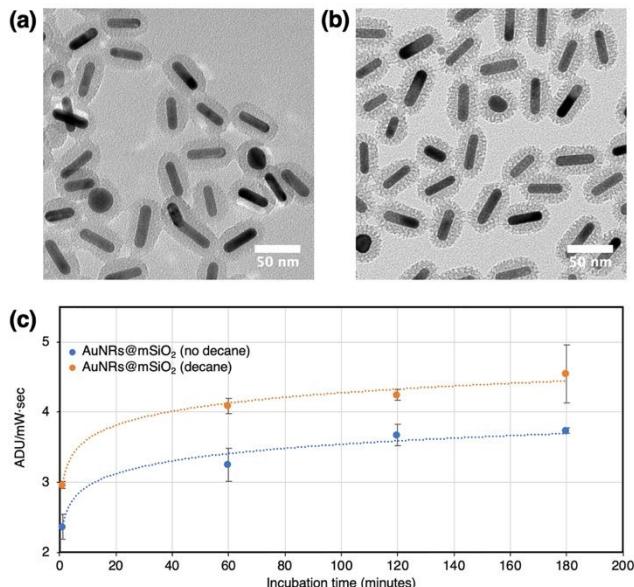
290

291

292 **Figure 2.** Colloidal SERS spectra of mixtures of 10 μ L 1.5 mg/ml substrates and 110 μ L
 293 of 1 ppm of BPE in water as a function of incubation time (final mixture BPE concentration:
 294 5.0×10^{-6} M). No shaking or stirring was performed over the time course of the experiment.
 295 The spectra were baseline corrected. (a) AuNRs@mSiO₂ substrate and (b)
 296 AuNRs@mSiO₂-TMS substrate.

297

298 Not only the chemical functionalities, but also the physical properties of the silica shell
 299 can be tuned to enhance the accessibility of the analytes to the metal cores. In previous
 300 work, our group found that mesopore size can significantly affect the resulting Raman


signals, as only molecules small enough to pass through the pores in the silica shell were able to adsorb on the plasmonic cores.³⁰ In a similar way, we were curious if the change in pore size can affect the overall SERS signal magnitude for a given analyte. Because the pores in the silica shell are the passage for analyte access to the gold core, a larger pore size might enable more BPE access and adsorption. However, the detailed directional morphology of the pores and available LSPR surface upon the change in pore size were not obvious. Even if the pore size become larger, the possibility that an altered pore direction limits access and that the final available metal surface area doesn't change, must be considered. As shown in Figure 3, two types of AuNRs@mSiO₂-TMS (with/without decane) were prepared and added into the same BPE concentration solution separately. TEM images clearly show enlarged pore sizes when decane was added during micelle formation. The decane can function as an oil phase in aqueous media, and the small amount of decane can be surrounded by CTAB surfactant, resulting in enlarged micelle formation compared to CTAB-only micelles.³² The BPE Raman signal intensities were always higher for the mixture of the substrate with enlarged pores at all measured time points. From this result, we can conclude that, at least within this size regime, the pore size within the silica shell directly impacts the amount of analyte that has access to the substrate cores. However, from this experiment it is not possible to determine if the enhanced signal is due to increased area of the adsorption-available Au surface, more efficient through-mesopore transport, or both. It is possible that BPE molecules passing through the shell might adsorb on the pore wall, blocking access for other BPE molecules; this situation would be more likely to occur with the smaller pore size. Thus, the enhanced SERS signal magnitude with the larger diameter pore substrates could be due to

324 mitigating that blocking process.

325

326

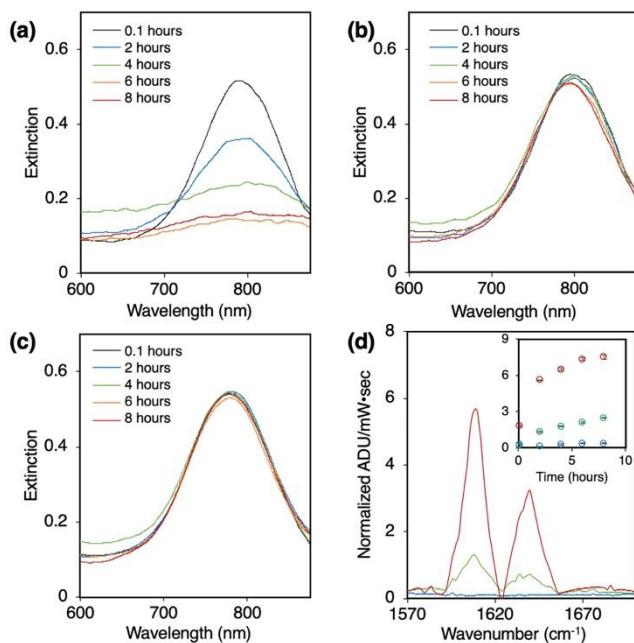
327

328

329 **Figure 3.** (a) TEM images of AuNRs@mSiO₂-TMS (no decane added, smaller
330 mesopores) (b) TEM images of AuNRs@mSiO₂-TMS (decane added, larger mesopores)
331 (c) Time-dependent SERS signal intensities at 1608 cm⁻¹ shift from the mixtures of
332 BPE/AuNRs@mSiO₂-TMS (no decane added: blue) BPE-AuNRs@mSiO₂-TMS(decane
333 added: orange). The SERS was measured with the mixture of 10 μ L 1.0 mg/mL substrates
334 and 110 μ L of 100 ppb of BPE in water (final mixture BPE concentration: 5.0×10^{-7} M).
335 The full spectra are available in Figure S3. The dotted lines show the logarithmic fitted
336 lines for the data points of each mixture. The error bars represent the standard deviation
337 from three independent measurements.

338

339


340 **Effect of CTAB molecules in colloidal SERS system**

341 We also considered that the presence/absence of the structure-directing CTAB
342 molecules within the shell pores or adsorbed on gold could impact the performance of the
343 colloidal SERS system. To evaluate the impact of CTAB, we dissolved BPE in pure water,

344 and three different concentrated substrate suspensions were prepared: 1mM CTAB-
345 stabilized AuNRs, 10 mM CTAB-stabilized AuNRs, and CTAB-free AuNRs@mSiO₂-TMS.
346 Then, each suspension was mixed into a BPE solution of the same concentration, and
347 UV-Vis extinction and SERS spectra were measured at different time points during
348 incubation. The purpose of the extinction measurements was to observe any LSPR
349 change due to the adsorption of BPE. As shown in Figure 4a, the concentrated 1mM
350 CTAB-stabilized AuNRs suspension showed a drastic decrease in extinction at 798 nm
351 after the suspension was added to the BPE solution. In the BPE-AuNRs mixtures, the
352 CTAB concentration dropped from 1 mM to 67 μ M. In such a case, the AuNRs would be
353 de-stabilized, and this destabilization was accelerated upon the BPE adsorption, as the
354 sites occupied by BPE will disturb the CTAB bilayer. Compared to this dramatic change
355 in LSPR, the UV-Vis spectra from 10 mM CTAB-stabilized AuNRs didn't show such
356 change in LSPR, but maintained the original extinction from the gold core (Figure 4b). In
357 this case, the CTAB concentration decreased from 10 mM to 670 μ M, and this
358 concentration was still high enough to protect the gold from dissolution or aggregation.
359 For the BPE/AuNRs@mSiO₂-TMS mixture, even though there was no CTAB present, the
360 silica shell maintained the LSPR extinction as in the 10 mM CTAB-stabilized AuNR
361 mixture (Figure 4c). However, in the SERS spectra, the two apparently stable mixtures
362 showed significant spectral differences (Figure 4d). Unlike the 10 mM CTAB-stabilized
363 AuNR mixture where very low magnitude BPE Raman signals are measured even after
364 long incubation, the BPE/AuNRs@mSiO₂-TMS mixture showed clear and high intensity
365 SERS BPE signals, even higher than that of the BPE/1mM CTAB-stabilized AuNR
366 mixture. Furthermore, when the BPE concentration was high, only the AuNRs@mSiO₂-

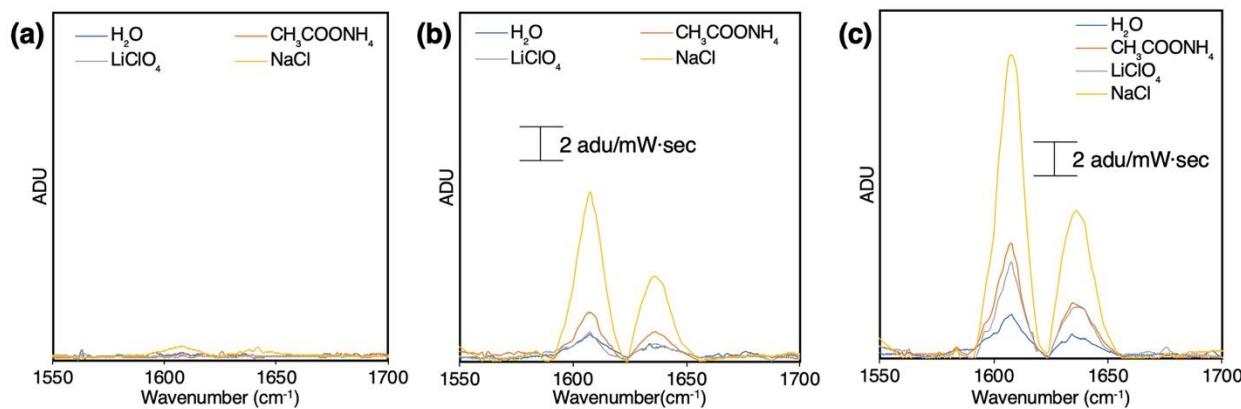
367 TMS mixture showed a significant LSPR red-shift from 775 nm to 798 nm ($\Delta \lambda = 23$ nm,
 368 Figure S4). This red-shift is due to the high concentration and adsorption of BPE to gold
 369 cores, resulting in a significant change in local refractive index,⁴² indicating much more
 370 enhanced accessibility of BPE to the gold core when CTAB has been removed by
 371 purification. This experiment shows that the silica shell not only promotes colloidal stability,
 372 but also facilitates aqueous BPE access compared to AuNRs with CTAB bilayer-based
 373 protection.

374

375
 376 **Figure 4.** (a) Time-dependent extinction spectra of the mixtures of an aliquot of the
 377 concentrated suspensions of 1 mM CTAB-coated AuNRs and 50 ppb BPE solution. (b)
 378 Time-dependent extinction spectra of the mixtures of an aliquot of the concentrated
 379 suspensions of 10 mM CTAB-coated AuNRs and 50 ppb BPE solution. (c) Time-
 380 dependent extinction spectra of the mixtures of an aliquot of the concentrated
 381 suspensions of AuNRs@mSiO₂-TMS and 50 ppb BPE solution. (d) SERS spectra of
 382 BPE/AuNR mixtures: (red) AuNRs@mSiO₂-TMS, (green) 1 mM CTAB-coated AuNRs,
 383 and (blue) 10 mM CTAB-coated AuNRs after 2 hours of incubation. For all mixtures, BPE
 384 concentration was 50 ppb and AuNR concentration was 2.0 mg/mL. (Final mixture BPE
 385 concentration: 2.5×10^{-7} M, Inset: the time dependent SERS signal intensities from three
 386 mixtures at 1608 cm⁻¹ shift.)

387

388


389

390 **Effect of bulk solvent property on colloidal SERS system: ionic strength**

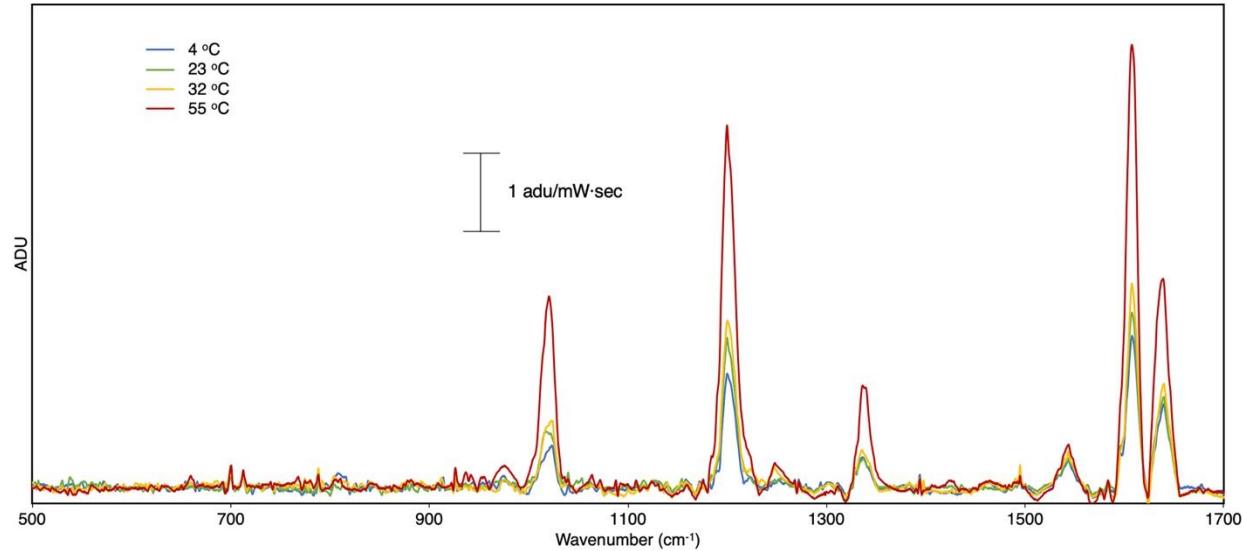
391 As can be seen in Figures 3 and 4, the chemical and physical properties of the silica
392 shell can affect the intensity of SERS signals and enable more efficient interaction
393 between BPE and AuNRs than conventional CTAB layers in colloidal state. With this in
394 mind, we wanted to explore how the properties of the solvent can influence analyte-
395 substrate interaction. In our colloidal SERS system, both substrates and analytes were
396 dispersed, and the characteristics of the bulk solvent can impact their colloidal properties
397 and thus, SERS signals. Previously (in Figure 1e), we saw that TMS modification induced
398 a change in the zeta potential toward less negative values. This change might enable
399 more favorable approach of hydrophobic BPE to the shell. As an alternate approach to
400 achieve the same goal, we considered the widely known fact that increasing the aqueous
401 ionic strength screens the zeta potential of the silica shell. To investigate the zeta potential
402 screening effect explicitly, BPE molecules were dissolved in aqueous solutions of 200
403 mM sodium chloride, ammonium acetate, or lithium perchlorate, and salt-free water to
404 obtain four different 50 ppb BPE solutions. The colloidal SERS spectra from these
405 solutions were measured with AuNRs@mSiO₂-TMS as SERS substrates. Figure 5 shows
406 SERS spectra of BPE scattering features in the 1550 to 1700 cm⁻¹ shift range at three
407 different incubation time points. No observable signals were measured immediately
408 following dispersion in any of the four mixtures, but after 30 mins and 60 mins of
409 incubation, it was clear that BPE in all three aqueous solutions with higher ionic strengths

410 showed more enhanced signal intensities than BPE in salt-free water. Interestingly,
411 Raman signals in the NaCl solution were much more intense than the signals from other
412 salt solutions, likely due to chloride activation; chloride anion is known to adsorb onto the
413 colloidal metal surface and enhance the Raman signal intensities of certain single
414 molecules, such as pyridine.⁴³⁻⁴⁵ However, considering that other anions are not known
415 for the similar activation, and that perchlorate especially has extremely weak affinity for
416 gold surfaces,^{46,47} the zeta potential screening effect that draws hydrophobic molecules
417 appears influential on enhancing Raman signal intensities in this colloidal SERS system.

418

419 **Figure 5.** (a) SERS spectra of BPE and AuNRs@mSiO₂-TMS mixtures, focused on
420 scattering features at 1608 and 1638 cm⁻¹ shift. Each mixture had 200 mM of the identified
421 salt during incubation, except for the salt-free water control. The spectra were taken right
422 after 10 μ L of 1.5 mg/mL AuNR@SiO₂-TMS was added to each 110 μ L 50 ppb aqueous
423 BPE solution. (b) 30 mins after mixing. (c) 60 mins after mixing (final mixture BPE
424 concentration: 2.5×10^{-7} M).

426


427

428 **Effect of bulk solvent on colloidal SERS system: temperature and solvent**

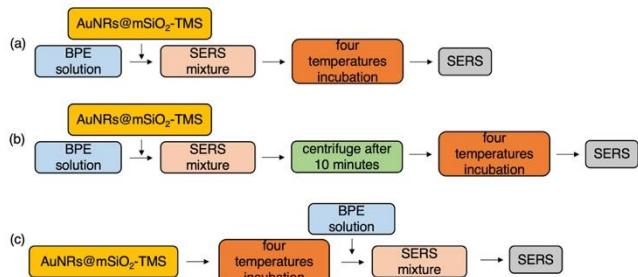
429 We also investigated how varying temperature of the bulk solvent impacted the
430 performance of the colloidal SERS system. Initially, we wanted to observe the diffusion

431 and adsorption behaviors of the BPE separately to characterize which was the more
432 critical step for achieving high intensity SERS spectra. First, we systematically studied
433 the effects of incubation temperature. We hypothesized that more rapid Brownian motion
434 of the substrates and analytes would result in more effective diffusion of the analyte to
435 the substrate cores. BPE/colloidal substrate mixtures were prepared as they were in the
436 previous experiment. Each mixture was then incubated at a different temperature: 6, 23,
437 32, or 55 °C for 10 minutes. The incubation time was limited to several minutes as the
438 high temperature might affect the properties of the AuNRs with longer incubation times.
439 From our UV-Vis spectra, we concluded that the LSPR change due to 10 minute
440 incubation is minimal at all temperatures (Figure S7). As shown in Figure 6, the Raman
441 spectra clearly display more enhanced signal intensities when the mixtures were
442 incubated at higher temperatures. Compared to the sample kept at room temperature for
443 incubation, incubation at lower temperature might lead to slower diffusion while higher
444 temperature induced more rapid diffusion and increased interactions between the
445 substrates and the analytes. However, attributing enhanced Raman intensities only to
446 rapid diffusion might be too simplified an answer, as temperature can affect many factors
447 such as adsorbed analyte arrangement and mutual interactions, metal-adsorbate
448 interactions, and Fermi distribution of electrons.^{48,49}

449

450
 451 **Figure 6.** SERS spectra of BPE and AuNRs@mSiO₂-TMS mixtures, incubated in four
 452 different temperatures for 10 minutes after the mixing. The mixture was formed by mixing
 453 10 μ L of AuNRs (1.5 mg/mL) to 110 μ L of 50 ppb BPE solution (final mixture BPE
 454 concentration: 2.5×10^{-7} M).

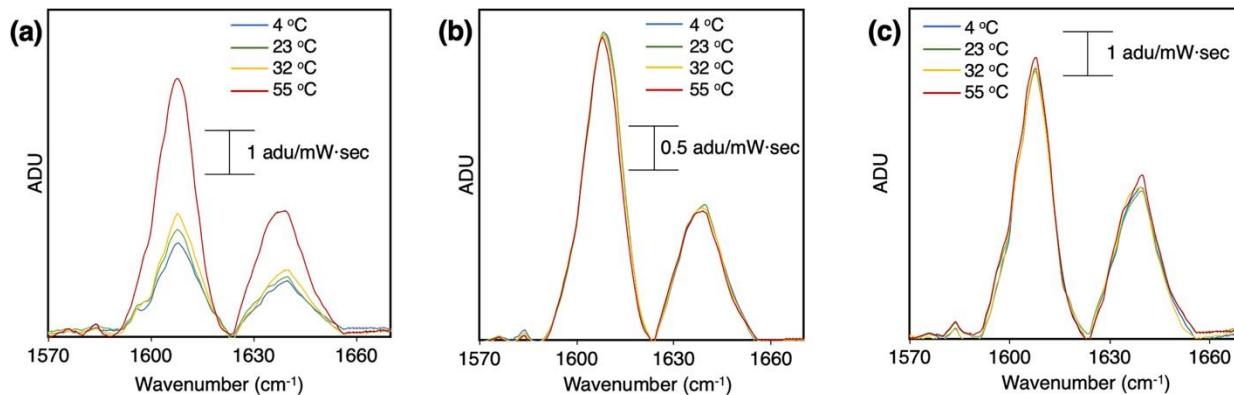
455
 456


457

458 To follow up, we used the same four temperatures but modified the procedure
 459 (Scheme 1a). First, we centrifuged and re-dispersed the mixtures before the incubation
 460 in different temperatures to remove residual BPE in solution (Scheme 1b). Thus, no
 461 further diffusion through the pores occurred during incubation in different temperature.
 462 Second, only AuNRs@mSiO₂-TMS suspensions were incubated in different
 463 temperatures before being mixed with BPE to see if any change in gold cores affect the
 464 measured SERS spectra (Scheme 1c). As shown in Figure 7b and 7c, compared to the
 465 control experiment in Figure 7a, no Raman signal magnitude difference among different
 466 incubation temperatures was observed. This result reveals that the enhanced SERS
 467 intensity in higher temperature wasn't from any change in the gold surface. More
 468 importantly, from Figure 7b, it is clear that the BPE molecules already adsorbed onto the

469 metal didn't make a difference in Raman signal intensity even though the mixtures were
470 incubated in different temperatures. However, it still wasn't clear at this point whether the
471 higher SERS signal intensity was mainly caused by more rapid diffusion or more facile
472 adsorption of BPE.

473


474

475
476 **Scheme 1.** Three experimental schemes to confirm that the enhanced SERS signal
477 intensities in higher temperature incubation were caused by increased amount of BPE
478 adsorbed on the surface rather than by different chemical interaction between substrate
479 and analyte or change in the substrate itself.

480

481

482
483 **Figure 7.** (a) SERS spectra of BPE and AuNRs@mSiO₂-TMS mixtures, focused on
484 scattering features at 1608 and 1638 cm^{-1} shift from Scheme 1a. (b) SERS spectra of
485 BPE and AuNRs@mSiO₂-TMS mixtures, focused on scattering features at 1608 and
486 1638 cm^{-1} shift from Scheme 1b. (c) SERS spectra of BPE and AuNRs@mSiO₂-TMS
487 mixtures, focused on scattering features at 1608 and 1638 cm^{-1} shift from Scheme 1c. All
488 samples were formed by mixing 10 μL of AuNRs (1.5 mg/mL) to 110 μL of 50 ppb BPE

489 solution (final mixture BPE concentration: 2.5×10^{-7} M).

490

491

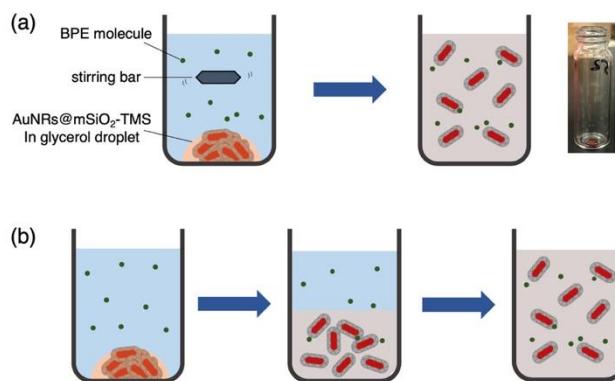
492

493

494

495 To observe the effect of diffusion more clearly, we used the binary solvent system of
496 glycerol and water. The two solvents are miscible but possess very different viscosity of
497 934×10^{-3} Pa·s and 0.89×10^{-3} Pa·s, respectively. Correspondingly, the two solvents
498 show very different diffusion coefficients: 0.014×10^{-9} m²/s for glycerol and 1.025×10^{-9}
499 m²/s for water (the values were obtained from mutual diffusion coefficient calculation and
500 extrapolation from previous literature).⁵⁰ We expected that both BPE and
501 AuNRs@mSiO₂-TMS would diffuse much more slowly in glycerol than water, and this
502 would give us more insight regarding the relationship between the diffusion behavior of
503 BPE and the SERS signal intensity. First, we assessed whether or not mechanical
504 agitation could expedite diffusion. In one experiment, two of the same BPE and
505 AuNR@SiO₂-TMS mixtures in pure water were prepared, and one of the mixtures was
506 stirred with a magnetic bar. In Figure S6, the plots of the time-dependent SERS signal
507 intensities at 1608 cm⁻¹ shift from the two mixtures were nearly identical, and this indicates
508 that in pure water, mechanical agitation didn't improve the diffusion. The result was
509 expected, as in water, both the analytes and the substrates were homogeneously
510 dispersed in our colloidal SERS system, and this homogeneous dispersion in bulk
511 solution would be maintained even with the agitation. Thus, the stirring would move the
512 entire analyte and substrate and not alter the rate of diffusion through the pores.

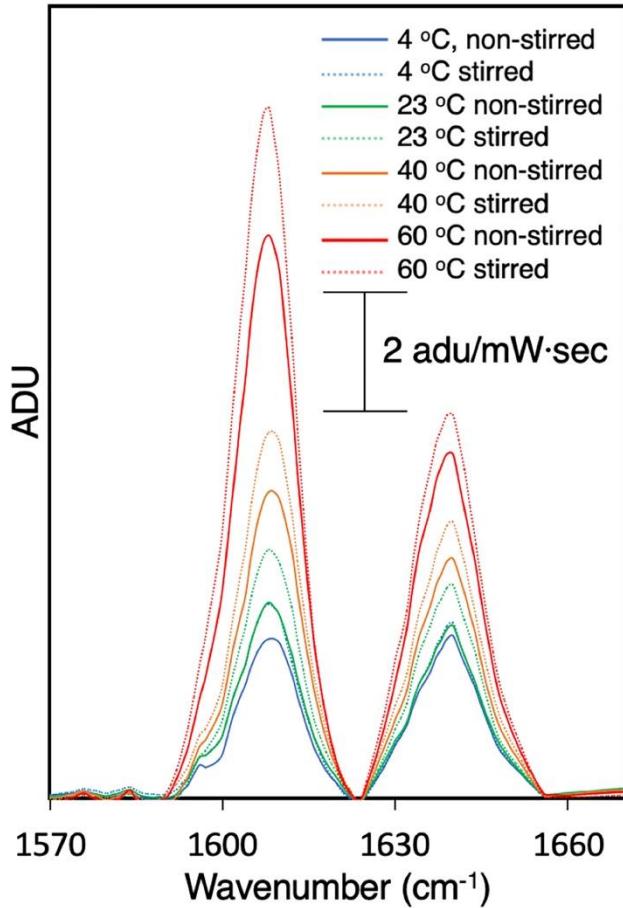
513

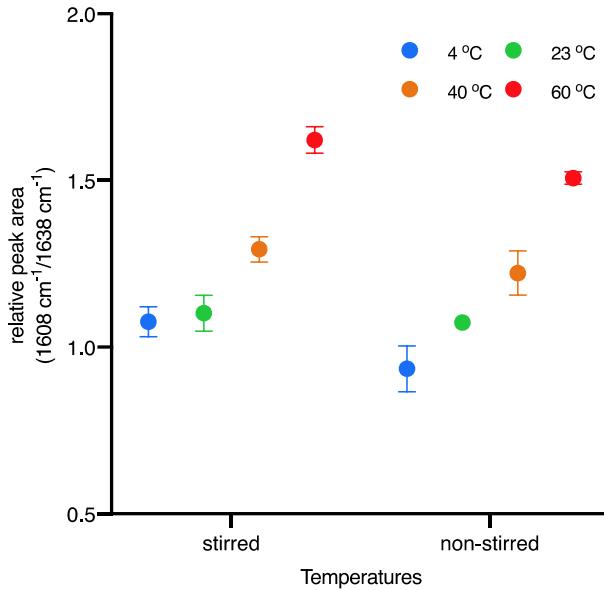

514 To observe the diffusion behaviors of the substrates and analytes more clearly, we
515 generated an extreme solution condition by preparing a binary system. In this experiment,
516 we prepared a concentrated AuNRs@mSiO₂-TMS suspension in glycerol, and these
517 suspensions were added to several vials first (Scheme 2 inset photo). Then, aqueous
518 BPE solutions were added to the vials. We found that upon the BPE solution addition,
519 due to the miscibility between glycerol and water, the mixtures became visually
520 homogenous quickly. For half of the prepared vials, we added stir bars and stirred the
521 mixtures for 10 minutes of incubation, and the rest of the vials remained unstirred while
522 the mixtures were incubated at four different temperatures. The results in Figure 8 show
523 that in all temperature conditions, the BPE SERS signal magnitudes for the stirred
524 mixtures were higher than that of the non-stirred mixtures. The agitation in this set-up
525 helped more rapid diffusion of glycerol into water, resulting in faster diffusion of
526 AuNRs@mSiO₂-TMS to the BPE solution and more frequent contact between the analyte
527 and the substrate. When comparing the mixtures incubated in varied temperatures, the
528 stirring condition induced more significant changes in the SERS signal intensity compared
529 to those that were not stirred. Because of the high viscosity of glycerol, one would expect
530 the stirring to have a larger impact than temperature change in terms of expediting
531 diffusion. In a previous experiment, Tripathi et al. showed that in a low temperature
532 environment, where diffusion is limited, stirring significantly enhanced the SERS signal
533 intensity for thiophenol adsorbed on gold, and the saturation occurred roughly 25 times
534 faster than in an unstirred solution.⁵¹ It is important to note, however, that in their SERS
535 system, the gold substrate was stationary so the stirring would be more impactful for the

536 contact between the analyte and substrate. Similarly, in our experimental condition, the
537 signal intensities from the unstirred mixtures in each condition were still higher than those
538 of the stirred mixtures in the next lower temperatures. Considering the high viscosity of
539 the glycerol and effect of mechanical agitation in this binary condition, it is sensible that
540 the agitation should affect the diffusion rates more than temperature. Thus, we speculate
541 that rather than diffusion, a thermodynamic factor is more critical for acquiring higher
542 SERS intensities. With the results measured here, it is reasonable to argue that in our
543 colloidal substrate-analyte interaction, the diffusion of BPE through the silica mesopores
544 is not likely a critical step for the SERS signal production compared to adsorption.
545 Concurrently, the higher SERS signal magnitude for the mixtures incubated in higher
546 temperature is more likely to be related to more efficient adsorption (physisorption) and
547 the activation energy of chemisorption. Based on the results shown here, it is fair to argue
548 that the higher temperature helped BPE to overcome the activation energy required to
549 chemically adsorb onto the gold surface, resulting in increased SERS signal intensities.⁵¹
550 Thus, the hypothesized delayed diffusion rates due to the silica shell intervention between
551 BPE and the gold core seems minimal or negligible, compared to the chemical adsorption
552 of BPE for the production of the SERS signal.

553 To support our hypothesis, we've analyzed the peak area ratio of the peak at 1608 cm⁻¹
554 ¹ shift to the peak at 1638 cm⁻¹ shift at each temperature. A previous study shows that
555 this ratio depends on the fraction of BPE molecules bound to the gold surface.⁵² The
556 authors state that the BPE vibrational mode at 1608 cm⁻¹ shift exhibits a larger
557 deformation potential and a stronger chemical coupling to the metal, and it is enhanced
558 more than the 1638 cm⁻¹ shift mode. Thus, the increased ratio values indicate an

559 increased molar fraction of BPE molecules bound to the gold over total BPE molecules
560 observed in Raman spectra. The experimentally obtained ratios from our results show
561 that the ratio is temperature-dependent: higher temperature induced a higher ratio. Thus,
562 it is reasonable to argue that the binding between BPE molecules and the gold cores
563 were favored at higher temperatures, where the chemical interaction is favored. It appears
564 that chemical binding between BPE molecules and the gold surface is the more critical
565 factor for achieving improved Raman intensity, compared to simply locating BPE
566 molecules near the gold surface via diffusion through silica shell pores. The unstirred
567 mixtures showed smallled ratio values than the stirred samples but this difference was not
568 statistically significant.


569


570
571 **Scheme 2.** Schematic description of the mixtures of aqueous BPE solution and
572 AuNRs@mSiO₂-TMS in glycerol incubation with (a) stirring (rapid diffusion) and (b) non-
573 stirring (slow diffusion).

574

575

576
 577 **Figure 8.** SERS spectra of the mixture of aqueous BPE solution and AuNRs@mSiO₂-
 578 TMS glycerol droplet, focusing on scattering features at 1608 and 1638 cm⁻¹ shift after 10
 579 minute incubation in four different temperatures. For each temperature, the mixtures were
 580 not stirred (solid line) or stirred (dotted line) during the incubation. The spectra were
 581 measured after 10 minutes of incubation, following the mixing of 20 μ L of 6.0 mg/mL
 582 AuNR@SiO₂-TMS in glycerol and 1 mL 50 ppb aqueous BPE solution (final mixture BPE
 583 concentration: 2.7×10^{-7} M).
 584

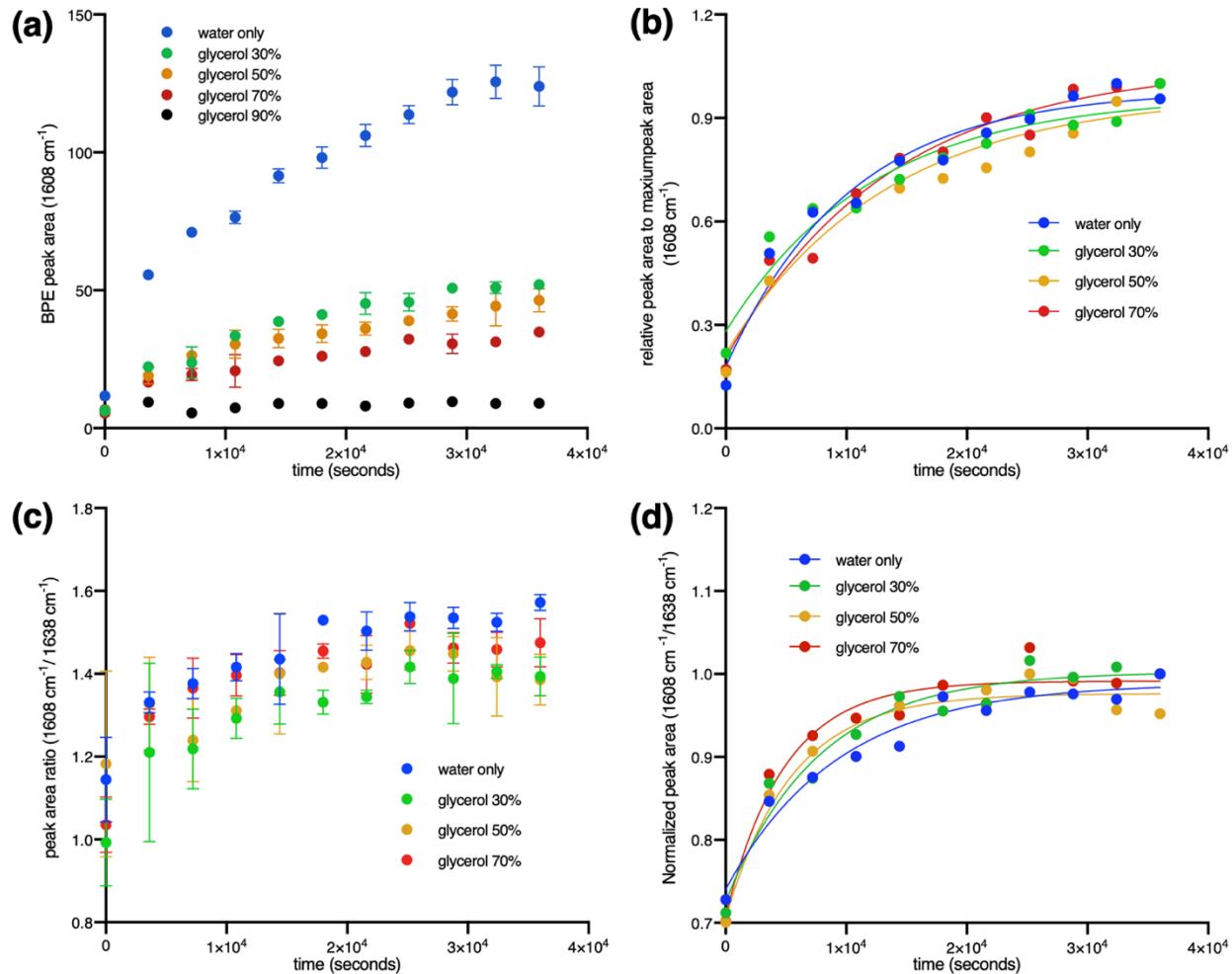
585
586
587
588
589
590
591

Figure 9. Relative peak area ratios ($1608 / 1638 \text{ cm}^{-1}$ shift) of the mixtures of aqueous BPE solution and AuNRs@mSiO₂-TMS in glycerol droplets after 10-minute incubation in four different temperatures. The experimental conditions were the same as in Figure 8. The error bars represent the standard deviation from three independent measurements.

592 From the previous experiment, it appeared that the adsorption of BPE onto the gold
593 surface was more critical than diffusion. To verify this deduction, we hypothesized that
594 even in a set of solvents with varying volume ratio of glycerol in water at a given
595 temperature, where both the analyte and substrates would diffuse more slowly with
596 increasing volume percentage of glycerol, we would still measure similar SERS signal
597 magnitudes for all samples. This binary system, depending on the volume percentage of
598 glycerol, has different diffusion coefficient values.⁵³ We prepared five different solvent
599 conditions (water only, 30% glycerol, 50% glycerol, 70% glycerol, and 90% glycerol by
600 volume) to investigate if the solvent conditions and varied viscosities affect the molecular
601 diffusion behaviors and resulting SERS intensities. We focused on the peak area at 1608 cm^{-1}
602 shift from each mixture, and the data were collected at different time points for 10

603 hours. The absolute peak area showed that increased volume of glycerol in the solvent
604 caused lower BPE signal intensities (Figure 10a). This phenomenon can be explained by
605 three factors. First, the increased viscosities and the resulting diffusion rates limited the
606 number of BPE molecules on the gold surface in each solvent condition. Second, the
607 solvents with more glycerol have higher solubility for BPE than water, thus more BPE
608 molecules will be dissolved in the solvent than on the substrate surface in final equilibrium
609 state. Last, adsorbed glycerol on the gold surface resulted in a less BPE adsorption on
610 the surface. Our interest was the effect of diffusion on the time-dependent SERS spectra,
611 not the absolute peak intensities. Thus, the peak area at different time points was divided
612 by the maximum peak area in each condition. The normalized relative peak area for 10
613 hours showed the adsorption behaviors of the analytes on the substrates (Figure 10b).
614 The mixture of 90% glycerol was omitted as no relevant BPE peaks were observed during
615 the measurement. In previous literature, researchers have investigated the diffusion
616 behaviors of small molecules through mesoporous silica in different conditions, such as
617 varied solvents,⁵⁴ varied pH of media,⁵⁵ varied hydrophobicity of the molecules,⁵⁶ and in
618 a hybrid microsphere structure⁵⁷ with appropriate transport models. Herein, we assume
619 that the BPE molecules occupy each site on the gold surface via chemical binding. We
620 used a simplified Prout–Tompkins model to evaluate the first-order chemical kinetics:⁵¹

621


622
$$y = (1 - e^{-k(t)}) \quad (1)$$

623 where y is fraction of bound BPE, t is the incubation time, and k is the binding
624 association rate constant.

625 Thus, when the temporal data points were fitted using equation (1), all mixtures

626 showed Langmuir-type association plots. The acquired rate constants can be found in
627 Table 1. The trend in rate constants among different solvent conditions shows that the
628 higher glycerol percentage led to lower rate constant values, even though the differences
629 were small, especially when the viscosities for different solvents were considered. This
630 indicates that the contribution of diffusion rates on the Raman signal intensity in this
631 colloidal SERS platform is minimal. We were also curious if there is a difference in the
632 rate for the chemical binding when BPE is dispersed in different solvents. Similar to Figure
633 9, the peak area ratio of 1608 cm^{-1} shift to 1638 cm^{-1} shift at each time point was obtained
634 and normalized by the maximum ratio in all conditions (Figure 10c and 10d). Interestingly,
635 the trend was opposite to Figure 10b: the acquired rate constants increased as the
636 glycerol percentage went up. This result suggests that when there is more glycerol, the
637 system more rapidly reaches the equilibrium state for BPE binding to the gold surface.
638 We speculate that this occurs because the solubility of BPE is higher in glycerol than in
639 water, thus among BPE molecules near the gold surface, the molar fraction of BPE
640 adsorbed on gold is lower with higher glycerol percentages in the glycerol/water mixture.
641 When the results from Figure 10b and Figure 10d are combined, it is clear that the effect
642 of diffusion rates varied via solvent composition is not substantial for determining the
643 Raman signal magnitude.

644

645
646 **Figure 10.** (a) Time-dependent absolute BPE SERS peak area at 1608 cm^{-1} shift for each
647 mixture of BPE and AuNRs@mSiO₂-TMS in glycerol-water mixtures of varying volume
648 ratio. (b) Time-dependent relative SERS signal peak area to that of maximum area at
649 1608 cm^{-1} shift in each mixture. The fitted lines for each mixture were obtained by fitting
650 the data to equation (1). (C) Time-dependent relative peak area ratios ($1608 / 1638 \text{ cm}^{-1}$
651 shift) of the mixtures. (d) Time-dependent relative SERS signal peak area ratios ($1608 / 1638 \text{ cm}^{-1}$
652 shift) to that of the maximum area ratios for each mixture. The fitted lines for
653 each mixture were obtained by fitting the data to equation (1).
654

655

656

657

	Viscosity (mPa·s) ⁵⁸	Rate constant of association (s ⁻¹) (Figure 10b)	Coefficient of determination, R ² (Figure 10b)	Rate constant of association (s ⁻¹) (Figure 10d)	Coefficient of determination, R ² (Figure 10d)
Water only	1.00	9.74 x 10 ⁻⁵	0.9630	1.07 x 10 ⁻⁴	0.9635
Glycerol 30%	2.50	8.29 x 10 ⁻⁵	0.9412	1.31 x 10 ⁻⁴	0.9517
Glycerol 50%	6.00	7.56 x 10 ⁻⁵	0.9375	1.84 x 10 ⁻⁴	0.9468
Glycerol 70%	22.50	7.37 x 10 ⁻⁵	0.9706	2.01 x 10 ⁻⁴	0.9523
Glycerol 90%	219.0	-	0.3164	-	-

658 **Table 1.** Solvent compositions, viscosities, the rate constants of associations and
 659 corresponding coefficients of determinations for each fitted line in Figure 10b and 10d.
 660 The rate constants for mixtures of 90% glycerol were not calculated due to the poor values
 661 of R².

662

663

664

665

666

667 **Conclusion**

668 The mesoporous silica shell coating the plasmonic metal core has proven to be an
 669 excellent protecting agent against dissolution or aggregation of the metal in colloidal
 670 SERS systems. The silica shell, however, can also be considered a potential physical
 671 barrier, hindering analyte approach to the LSPR-enhanced surface. In this work, we
 672 considered the shell as the intermediate region between the bulk solvent and the surface
 673 of the metal, and investigated the interaction between the analyte and substrates,
 674 focusing on the diffusion and adsorption through the shell. The results show that the

675 physical/chemical characteristics of the shell can be controlled to allow more analyte
676 approach to the gold surface, resulting in improved SERS signal magnitudes. Compared
677 to CTAB-based stabilizing layers, the silica shells allowed more efficient adsorption of
678 BPE and more direct exposure of the core surface to the bulk solvent while successfully
679 maintaining the plasmonic properties. Systematic experiments in different environmental
680 conditions showed that the hydrophobic surface modification of the silica shell
681 preconcentrated the analytes around the substrates via setting new equilibrium state and
682 the screening of electric potentials on the substrates enhanced the access of the
683 hydrophobic analytes to the gold core. In addition, variation of temperature and solvent
684 composition strongly suggest that in colloidal SERS systems, the diffusion rate of BPE
685 through the shells to cores is not as impactful as the adsorption process on the metal
686 surface for the production of SERS signals.

687

688 **Supporting Information**

689 Molecular information (structure, solubility, size) of BPE, the description of SERS
690 experimental set up, full SERS spectra of the analyte-substrate mixtures in colloidal
691 SERS, UV-Vis extinction spectra of the analyte-substrate mixtures in different BPE
692 concentrations and the types of the substrates, time-dependent SERS signal intensities
693 of BPE with/without mechanical agitation, UV-Vis extinction spectra of the analyte-
694 substrate mixtures incubated in different temperatures.

695

696

697

698 **Acknowledgements**

699 We would like to acknowledge 3M for their collaboration and funding. This work was
700 supported by National Science Foundation under the Center for Sustainable
701 Nanotechnology (CSN), CHE-1503408. The CSN is part of the Centers for Chemical
702 Innovation Program. We acknowledge helpful discussion from Prof. Theresa M. Reineke
703 and Victoria Szlag. We thank Joshua G. Hinman and Catherine J. Murphy for providing
704 Au nanorods used in preliminary experiments for this work. Parts of this work, especially
705 TEM characterization, were carried out in the Characterization Facility at the University
706 of Minnesota, which receives partial support from NSF through the MRSEC program
707 (DMR-1420013).

708 **Reference**

- 709 (1) West, J. L.; Halas, N. J. Engineered Nanomaterials for Biophotonics Applications:
710 Improving Sensing, Imaging, and Therapeutics. *Annu. Rev. Biomed. Eng.* **2003**, 5
711 (1), 285–292.
- 712 (2) Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as Recyclable Catalysts: The
713 Frontier between Homogeneous and Heterogeneous Catalysis. *Angew. Chem. Int.*
714 *Ed.* **2005**, 44 (48), 7852–7872.
- 715 (3) Lee, K.-S.; El-Sayed, M. A. Gold and Silver Nanoparticles in Sensing and Imaging:
716 Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. *J. Phys.*
717 *Chem. B* **2006**, 110 (39), 19220–19225.
- 718 (4) Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M.
719 Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources.
720 *Nature* **2007**, 449 (7164), 885–889.
- 721 (5) Hoener, C. F.; Allan, K. A.; Bard, A. J.; Campion, A.; Fox, M. A.; Mallouk, T. E.;
722 Webber, S. E.; White, J. M. Demonstration of a Shell-Core Structure in Layered
723 Cadmium Selenide-Zinc Selenide Small Particles by x-Ray Photoelectron and
724 Auger Spectroscopies. *J. Phys. Chem.* **1992**, 96 (9), 3812–3817.
- 725 (6) Honma, I.; Sano, T.; Komiyama, H. Surface-Enhanced Raman Scattering (SERS)
726 for Semiconductor Microcrystallites Observed in Silver-Cadmium Sulfide Hybrid
727 Particles. *J. Phys. Chem.* **1993**, 97 (25), 6692–6695.
- 728 (7) Zhou, H. S.; Sasahara, H.; Honma, I.; Komiyama, H.; Haus, J. W. Coated
729 Semiconductor Nanoparticles: The CdS/PbS System's Photoluminescence
730 Properties. *Chem. Mater.* **1994**, 6 (9), 1534–1541.
- 731 (8) Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J. Nanoengineering of
732 Optical Resonances. *Chem. Phys. Lett.* **1998**, 288 (2–4), 243–247.

733 (9) Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N.
734 Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization,
735 Physicochemical Characterizations, and Biological Applications. *Chem. Rev.* **2008**,
736 108 (6), 2064–2110.

737 (10) Ghosh Chaudhuri, R.; Paria, S. Core/Shell Nanoparticles: Classes, Properties,
738 Synthesis Mechanisms, Characterization, and Applications. *Chem. Rev.* **2012**, 112
739 (4), 2373–2433.

740 (11) Jeanmaire, D. Surface Raman Spectroelectrochemistry Part I. Heterocyclic,
741 Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. *J.
742 Electroanal. Chem.* **1977**, 84 (1), 1–20.

743 (12) Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P. SERS:
744 Materials, Applications, and the Future. *Mater. Today* **2012**, 15 (1–2), 16–25.

745 (13) Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Noble Metals on the
746 Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging,
747 Sensing, Biology, and Medicine. *Acc. Chem. Res.* **2008**, 41 (12), 1578–1586.

748 (14) Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A.
749 Tempted Techniques for the Synthesis and Assembly of Plasmonic
750 Nanostructures. *Chem. Rev.* **2011**, 111 (6), 3736–3827.

751 (15) Gaspar, D.; Pimentel, A. C.; Mateus, T.; Leitão, J. P.; Soares, J.; Falcão, B. P.;
752 Araújo, A.; Vicente, A.; Filonovich, S. A.; Águas, H.; et al. Influence of the Layer
753 Thickness in Plasmonic Gold Nanoparticles Produced by Thermal Evaporation. *Sci.
754 Rep.* **2013**, 3 (1).

755 (16) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang,
756 W.; Zhou, Z. Y.; Wu, D. Y.; et al. Shell-Isolated Nanoparticle-Enhanced Raman
757 Spectroscopy. *Nature* **2010**, 464 (7287), 392–395.

758 (17) Lin, X.-D.; Uzayisenga, V.; Li, J.-F.; Fang, P.-P.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q.
759 Synthesis of Ultrathin and Compact Au@MnO₂ Nanoparticles for Shell-Isolated
760 Nanoparticle-Enhanced Raman Spectroscopy (SHINERS). *J. Raman Spectrosc.*
761 **2012**, 43 (1), 40–45.

762 (18) Ma, L.; Huang, Y.; Hou, M.; Li, J.; Xie, Z.; Zhang, Z. Pinhole-Containing,
763 Subnanometer-Thick Al₂O₃ Shell-Coated Ag Nanorods as Practical Substrates
764 for Quantitative Surface-Enhanced Raman Scattering. *J. Phys. Chem. C* **2016**, 120
765 (1), 606–615.

766 (19) Yang, D.; Xia, L.; Zhao, H.; Hu, X.; Liu, Y.; Li, J.; Wan, X. Preparation and
767 Characterization of an Ultrathin Carbon Shell Coating a Silver Core for Shell-
768 Isolated Nanoparticle-Enhanced Raman Spectroscopy. *Chem. Commun.* **2011**, 47
769 (20), 5873.

770 (20) Fan, W.; Lee, Y. H.; Pedireddy, S.; Zhang, Q.; Liu, T.; Ling, X. Y. Graphene Oxide
771 and Shape-Controlled Silver Nanoparticle Hybrids for Ultrasensitive Single-Particle
772 Surface-Enhanced Raman Scattering (SERS) Sensing. *Nanoscale* **2014**, 6 (9),
773 4843–4851.

774 (21) Lum, W.; Bruzas, I.; Gorunmez, Z.; Unser, S.; Beck, T.; Sagle, L. Novel Liposome-
775 Based Surface-Enhanced Raman Spectroscopy (SERS) Substrate. *J. Phys. Chem.
776 Lett.* **2017**, 8 (12), 2639–2646.

777 (22) Xu, L.-J.; Zong, C.; Zheng, X.-S.; Hu, P.; Feng, J.-M.; Ren, B. Label-Free Detection
778 of Native Proteins by Surface-Enhanced Raman Spectroscopy Using Iodide-
779 Modified Nanoparticles. *Anal. Chem.* **2014**, *86* (4), 2238–2245.

780 (23) Amstad, E.; Textor, M.; Reimhult, E. Stabilization and Functionalization of Iron
781 Oxide Nanoparticles for Biomedical Applications. *Nanoscale* **2011**, *3* (7), 2819.

782 (24) Lin, Y.-S.; Abadeer, N.; Hurley, K. R.; Haynes, C. L. Ultrastable, Redispersible,
783 Small, and Highly Organomodified Mesoporous Silica Nanotherapeutics. *J. Am.
784 Chem. Soc.* **2011**, *133* (50), 20444–20457.

785 (25) Wu, W.-C.; Tracy, J. B. Large-Scale Silica Overcoating of Gold Nanorods with
786 Tunable Shell Thicknesses. *Chem. Mater.* **2015**, *27* (8), 2888–2894.

787 (26) Gao, Z.; Ring, H. L.; Sharma, A.; Namsrai, B.; Tran, N.; Finger, E. B.; Garwood, M.;
788 Haynes, C. L.; Bischof, J. C. Scalable Silica-Coated Iron Oxide Nanoparticles for
789 Nanowarming in Regenerative Medicine. *submitted*.

790 (27) Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. Distance and Plasmon
791 Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold
792 Nanorods. *ACS Nano* **2014**, *8* (8), 8392–8406.

793 (28) Zhang, Z.; Wang, L.; Wang, J.; Jiang, X.; Li, X.; Hu, Z.; Ji, Y.; Wu, X.; Chen, C.
794 Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional
795 Theranostic Platform for Cancer Treatment. *Adv. Mater.* **2012**, *24* (11), 1418–1423.

796 (29) Wang, Z.; Zong, S.; Yang, J.; Li, J.; Cui, Y. Dual-Mode Probe Based on Mesoporous
797 Silica Coated Gold Nanorods for Targeting Cancer Cells. *Biosens. Bioelectron.*
798 **2011**, *26* (6), 2883–2889.

799 (30) Gao, Z.; Burrows, N. D.; Valley, N. A.; Schatz, G. C.; Murphy, C. J.; Haynes, C. L.
800 In Solution SERS Sensing Using Mesoporous Silica-Coated Gold Nanorods. *The
801 Analyst* **2016**, *141* (17), 5088–5095.

802 (31) Gorelikov, I.; Matsuura, N. Single-Step Coating of Mesoporous Silica on
803 Cetyltrimethyl Ammonium Bromide-Capped Nanoparticles. *Nano Lett.* **2008**, *8* (1),
804 369–373.

805 (32) Egger, S. M.; Hurley, K. R.; Datt, A.; Swindlehurst, G.; Haynes, C. L. Ultraporous
806 Mesostructured Silica Nanoparticles. *Chem. Mater.* **2015**, *27* (9), 3193–3196.

807 (33) Taylor, A. B.; Michaux, P.; Mohsin, A. S. M.; Chon, J. W. M. Electron-Beam
808 Lithography of Plasmonic Nanorod Arrays for Multilayered Optical Storage. *Opt.
809 Express* **2014**, *22* (11), 13234.

810 (34) Yoon, S.; Lee, B.; Kim, C.; Lee, J. H. Controlled Heterogeneous Nucleation for
811 Synthesis of Uniform Mesoporous Silica-Coated Gold Nanorods with Tailorable
812 Rotational Diffusion and 1 Nm-Scale Size Tunability. *Cryst. Growth Des.* **2018**, *18*
813 (8), 4731–4736.

814 (35) Rowe, L. R.; Chapman, B. S.; Tracy, J. B. Understanding and Controlling the
815 Morphology of Silica Shells on Gold Nanorods. *Chem. Mater.* **2018**, *30* (18), 6249–
816 6258.

817 (36) Wu, C.; Xu, Q.-H. Stable and Functionable Mesoporous Silica-Coated Gold
818 Nanorods as Sensitive Localized Surface Plasmon Resonance (LSPR)
819 Nanosensors. *Langmuir* **2009**, *25* (16), 9441–9446.

820 (37) Keller, E. L.; Kang, H.; Haynes, C. L.; Frontiera, R. R. Effect of Silica Supports on
821 Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-

822 Enhanced Raman Thermometry. *ACS Appl. Mater. Interfaces* **2018**, *10* (47),
823 40577–40584.

824 (38) Keating, M.; Chen, Y.; Larmour, I. A.; Faulds, K.; Graham, D. Growth and Surface-
825 Enhanced Raman Scattering of Ag Nanoparticle Assembly in Agarose Gel. *Meas. Sci. Technol.* **2012**, *23* (8), 084006.

826 (39) Liu, Y.-J.; Zhang, Z.-Y.; Dluhy, R. A.; Zhao, Y.-P. The SERS Response of
827 Semiordered Ag Nanorod Arrays Fabricated by Template Oblique Angle Deposition.
828 *J. Raman Spectrosc.* **2010**, *41* (10), 1112–1118.

829 (40) Gu, X.; Tian, S.; Zhou, Q.; Adkins, J.; Gu, Z.; Li, X.; Zheng, J. SERS Detection of
830 Polycyclic Aromatic Hydrocarbons on a Bowl-Shaped Silver Cavity Substrate. *RSC Adv.* **2013**, *3* (48), 25989.

831 (41) Gu, H.-X.; Hu, K.; Li, D.-W.; Long, Y.-T. SERS Detection of Polycyclic Aromatic
832 Hydrocarbons Using a Bare Gold Nanoparticles Coupled Film System. *The Analyst*
833 **2016**, *141* (14), 4359–4365.

834 (42) Pastoriza-Santos, I.; Sánchez-Iglesias, A.; García de Abajo, F. J.; Liz-Marzán, L. M.
835 Environmental Optical Sensitivity of Gold Nanodecahedra. *Adv. Funct. Mater.* **2007**,
836 *17* (9), 1443–1450..

837 (43) Otto, A.; Bruckbauer, A.; Chen, Y. X. On the Chloride Activation in SERS and Single
838 Molecule SERS. *J. Mol. Struct.* **2003**, *661*–662, 501–514.

839 (44) Liu, F.; Gu, H.; Yuan, X.; Lin, Y.; Dong, X. Chloride Ion-Dependent Surface-
840 Enhanced Raman Scattering Study of Biotin on the Silver Surface. *J. Phys. Conf. Ser.* **2011**, *277*, 012025.

841 (45) Liu, Y.; Lu, Z.; Zhu, H.; Hasi, W. Characterization of a Chloride-Activated Surface
842 Complex and Corresponding Enhancement Mechanism by SERS Saturation Effect.
843 *J. Phys. Chem. C* **2017**, *121* (1), 950–957.

844 (46) Hao, J.; Meng, X. Recent Advances in SERS Detection of Perchlorate. *Front. Chem.*
845 *Sci. Eng.* **2017**, *11* (3), 448–464.

846 (47) Mosier-Boss, P. A.; Lieberman, S. H. Detection of Anions by Normal Raman
847 Spectroscopy and Surface-Enhanced Raman Spectroscopy of Cationic-Coated
848 Substrates. *Appl. Spectrosc.* **2003**, *57* (9), 1129–1137.

849 (48) Kokaislova, A.; Parchansky, V.; Matejka, P. Surface-Enhanced Infrared Spectra of
850 Nicotinic Acid and Pyridoxine on Copper Substrates: What Is the Effect of
851 Temperature and Deposition Conditions? *J. Phys. Chem. C* **2015**, *119* (47), 26526–
852 26539.

853 (49) Xu, X.-H. N.; Huang, S.; Brownlow, W.; Salaita, K.; Jeffers, R. B. Size and
854 Temperature Dependence of Surface Plasmon Absorption of Gold Nanoparticles
855 Induced by Tris(2,2'-Bipyridine)Ruthenium(II). *J. Phys. Chem. B* **2004**, *108* (40),
856 15543–15551.

857 (50) D'Errico, G.; Ortona, O.; Capuano, F.; Vitagliano, V. Diffusion Coefficients for the
858 Binary System Glycerol + Water at 25 °C. A Velocity Correlation Study. *J. Chem.*
859 *Eng. Data* **2004**, *49* (6), 1665–1670.

860 (51) Tripathi, A.; Emmons, E. D.; Christesen, S. D.; Fountain, A. W.; Guicheteau, J. A.
861 Kinetics and Reaction Mechanisms of Thiophenol Adsorption on Gold Studied by
862 Surface-Enhanced Raman Spectroscopy. *J. Phys. Chem. C* **2013**, *117* (44),
863 22834–22842.

864

865

866

867 (52) Zayak, A. T.; Choo, H.; Hu, Y. S.; Gargas, D. J.; Cabrini, S.; Bokor, J.; Schuck, P.
868 J.; Neaton, J. B. Harnessing Chemical Raman Enhancement for Understanding
869 Organic Adsorbate Binding on Metal Surfaces. *J. Phys. Chem. Lett.* **2012**, 3 (10),
870 1357–1362.

871 (53) Rausch, M. H.; Heller, A.; Fröba, A. P. Binary Diffusion Coefficients of Glycerol–
872 Water Mixtures for Temperatures from 323 to 448 K by Dynamic Light Scattering.
873 *J. Chem. Eng. Data* **2017**, 62 (12), 4364–4370.

874 (54) Kievsky, Y. Y.; Carey, B.; Naik, S.; Mangan, N.; ben-Avraham, D.; Sokolov, I.
875 Dynamics of Molecular Diffusion of Rhodamine 6G in Silica Nanochannels. *J. Chem.*
876 *Phys.* **2008**, 128 (15), 151102.

877 (55) Phan, H. T.; Haes, A. J. Impacts of PH and Intermolecular Interactions on Surface-
878 Enhanced Raman Scattering Chemical Enhancements. *J. Phys. Chem. C* **2018**,
879 122 (26), 14846–14856.

880 (56) Yamaguchi, A.; Mekawy, M. M.; Chen, Y.; Suzuki, S.; Morita, K.; Teramae, N.
881 Diffusion of Metal Complexes Inside of Silica–Surfactant Nanochannels within a
882 Porous Alumina Membrane. *J. Phys. Chem. B* **2008**, 112 (7), 2024–2030.

883 (57) Son, H. Y.; Kim, K. R.; Lee, J. B.; Le Kim, T. H.; Jang, J.; Kim, S. J.; Yoon, M. S.;
884 Kim, J. W.; Nam, Y. S. Bioinspired Synthesis of Mesoporous Gold–Silica Hybrid
885 Microspheres as Recyclable Colloidal SERS Substrates. *Sci. Rep.* **2017**, 7 (1),
886 14728.

887 (58) Segur, J. B.; Oberstar, H. E. Viscosity of Glycerol and Its Aqueous Solutions. *Ind.*
888 *Eng. Chem.* **1951**, 43 (9), 2117–2120.

890

891

892

893

894

895

896

897

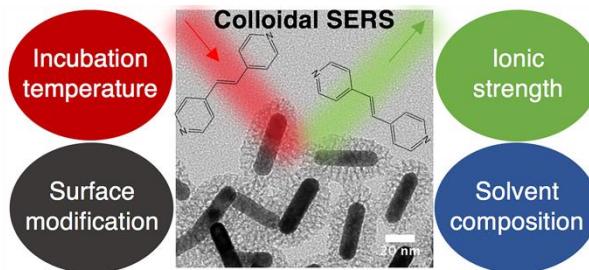
898

899

900

901

902


903

904

905

906

907

TOC Graphics