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Abstract—Test generation for digital hardware is highly 
automated, scalable (in practice), and provides high test quality. In 
contrast, current software automatic test data generation 
approaches suffer from low test quality or high complexity. While 
mutation-oriented constraint-based test data generation for 
software was proposed to generate high quality test data for real 
program bugs, all existing approaches require symbolic analysis 
for the whole program, and hence are not scalable even for unit 
testing, i.e., testing the lowest-level software modules.  

We propose a new method inspired by hardware D-algorithm 
and divide and conquer for software test data generation. To 
reduce runtime complexity and improve scalability, we combine 
global structural analysis and a sequence of small reusable 
symbolic analyses of parts of the program, instead of symbolically 
executing each mutated version of the entire program. We also 
propose a multi-pass test generation system to further reduce 
runtime complexity and compact test data. We compare our tools 
with one of the best software test generation tools (EvoSuite[20], 
which won the SBST 2017 tool competition) and demonstrate that 
our approach generates higher quality unit tests in a scalable 
manner and provides a compact set of tests. 

Keywords—test data generation for software; D-Algorithm; 
ATPG; mutation testing; software testing 

I.  INTRODUCTION AND BACKGROUND 
A. Hardware Testing and Software Testing 

In industry practice, hardware (HW) test generation is highly 
automated. Several test generation algorithms were developed 
and refined via five decades of research. The most common 
algorithms used for HW test generation, like D-algorithm [1] and 
PODEM [2], are fault model based. Research and practice show 
that a test set with high coverage of faults typically also provides 
high coverage of real hardware defects. 

In software (SW) testing research, test generation automation 
is limited and less developed compared to HW, due to the 
complexities of data types and program structures. Test set 
quality is commonly measured by code coverage metrics [3], 
which capture the percentage of lines, branches, etc. covered by 
the test (also adapted for HW ATPG, e.g., [8]). However, their 
effectiveness as measure of test quality is doubtful [4], especially 
for real program errors deep within the program.  

Demillo et al. [5] proposed the concept of a program mutant, 
i.e., a modified program that diverges from the original program, 
usually by a change at one statement. A mutant is marked as 
killed if we have a test for which the program’s outcome (e.g., 
output values) for the mutant is different from that for the 
original program. Mutation score, i.e., the fraction of mutants 
killed from the complete set of mutants, captures test set quality. 
Research [6] shows a strong correlation between a high mutation 
score and a high coverage of real program bugs. (Mutation 
testing is also adapted for HW RTL design verification [19].) 
 HW fault-oriented testing and SW mutation testing are both 
based on abstract fault models and effective in identifying real 
defects/bugs. We find that they share many similarities and the 
major analogies between the two are listed in Table I. 
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 Further, in HW testing, shorter test sets are desired as they 
require smaller test application times and hence considerably 
decrease testing costs, since every fabricated chip needs to be 
tested. In contrast, SW testing is only performed once for a 
program, independent of how many copies are sold. Despite this, 
a compact test set is extremely important in SW testing for a very 
different reason. Since a golden model of the software usually 
does not exist (test oracle problem [21]), each test’s outcome 
must be manually checked for correctness. Since such manual 
checking is extremely expensive, a compact set of tests that 
provides high quality can considerably reduce costs. 

B. Test Generation for SW Mutant 
Although the initial purpose of SW mutation testing was to 

find a more accurate way for evaluating the quality of a given 
test set, mutation-oriented test generation has been pursued to 
generate high quality tests. Demillo et al. [7] proposed the first 
method to generate a test for a targeted mutant by converting the 
whole program into a constraint system and using a constraint 
solver to generate a test. On the other hand, search-based test data 
generation was first suggested by Bottaci [10]. It models the test 
generation task as a search problem guided by a fitness function. 
In this category, EvoSuite [20] is one of the best state-of-the-art 
tools. Search-based methods suffer from the limitations of the 
corresponding heuristics. 

In this paper, we focus on improving the constraint-based test 
generation approaches. All the existing methods in this category 
are not scalable even for unit testing (testing the lowest level SW 
modules), since they need to convert the entire program unit and 
conditions into constraints, which are then processed by a 
constraint solver. Further, the constraints are usually generated 
via symbolic execution [12], which is especially expensive. Also, 
the solver has high complexity since it faces long expressions. 
We address these shortcomings to make constraint-based test 
generation widely applicable for unit testing. 

II. MAIN IDEAS 

 We propose a new method for unit testing which makes 
mutation-oriented constraint-based test generation scalable yet 
accurate. 
 We use divide and conquer to reduce the complexity of 
constraint creation and solving. Specifically, we combine global 
structural analysis and a sequence of small local (for parts of the 
program) symbolic analysis, instead of performing symbolic 
analysis on the whole program. This reduces the load on 
constraint solver by deriving smaller constraint expressions. 
Also, structural analysis, which includes control flow analysis 
and data dependency analysis, is a low-complexity processes 
compared to symbolic analysis. The structural information it 
generates for the program under test connects the symbolic 
expressions for different parts of the program, thus significantly 

TABLE I.  ANALOGY BETWEEN HW TESTING AND SW MUTATION TESTING 
 HW testing SW mutation testing 

Descriptive language Netlist Lines of code 
Basic element Gate Statement(s) 

Interconnections Circuit line CFG path, DU path 
Defect/bug Fault Mutation 

Defective artifact Faulty circuit Mutant 
Common fault model Single stuck-at fault Single mutation 
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reduces runtime complexity compared to traditional methods, 
especially for large units and units with path explosion [22]. 
 In addition, inspired by the concept of HW D-algorithm [1], 
we develop SW D-algorithm to restrict the generation process to 
directed local search. HW D-algorithm was the first complete 
test generation algorithm which established a paradigm for 
completely searching the space of all possible tests. Its test 
generation subtasks (TGSTs) include fault excitation, fault effect 
propagation, and justification. Similarly, our new approach, SW 
D-algorithm, has three test generation subtasks: mutation effect 
excitation, mutation effect propagation, and justification.  
 Moreover, we propose a multi-pass test generation system, 
which uses random test generation to cheaply kill mutants before 
applying deterministic SW D-algorithm. After we generate tests 
using our SW D-algorithm, we use reverse order simulation 
(adapted from HW test generation) to compact SW test data. The 
details are presented in Section IV. 

III. REVIEW OF SW ANALYSIS METHODS 

Before presenting the details of SW D-algorithm, some basic 
methods used in SW analysis are introduced for completeness. 

A. Structural Analysis of Programs 
Structural analysis is a static method for identifying control 

flow and data dependency for a program. (Static analysis 
methods have significantly lower run time complexities 
compared to dynamic methods, which require analysis/ 
simulations for large numbers of specific input values.) Our 
algorithm requires two types of static information of the program: 
the control flow graph (CFG) and all define-use chains (DU 
chains) in the program. 

CFG is a directed graph, where each node represents a basic 
block, and each edge represents a path the control flow may 
follow. CFG is generated from program’s code by traversing 
every statement. Fig. 1 shows an example Java code and its CFG.  

During static analysis on CFG, following notions [13] are 
used: (1) Dominator – a node � dominates a node � if every path 
from the program’s entry node to � passes through �; we call � 
as �’s immediate dominator if �  is �’s closest dominator. (2) 
Post-dominator – a node � post-dominates a node � if every path 
from � to the program’s exit node passes through �; immediate 
post-dominator is defined analogously. In the CFG shown in Fig. 
1, node 2 is node 5’s immediate dominator, node 8 is node 5’s 
immediate post-dominator. 

In SW, a variable � is said to have a definition at statement � 
if � is assigned a value at �; � is said to have a use at statement 
� if � determines either the value of another variable defined at 

statement � or determines the program flow in the case where the 
statement � is a conditional statement. In addition, we consider 
that the definition of variable � at statement � reaches statement 
� (reaching definition) if there is a path in the CFG from � to � 
that does not pass through any other definitions of �. We use the 
form of “def/use (variable name, location where the variable is 
used/defined)” to represent a variable’s definition or use at the 
specified location. In Fig. 1, variable a defined at the entry node 
(a is a user input variable) is denoted as def(a,0); variable a is 
used at node 2 and node 8, we represent them as use(a,2) and 
use(a,8). Also, def(a,0) reaches use(a,2) and use(a,8). 

A DU chain consists of a definition of a variable and all its 
uses, which are reachable from that definition. In Fig. 1, def(a,0) 
and its uses, use(a,2) and use(a,8) form a DU chain of variable a. 

B. Symbolic Analysis of Programs 
In HW testing, BSF (Boolean switching function) is used to 

describe the relations between circuit’s input and output logic 
variables. In SW testing, the code behavior can be described 
using a symbolic expression generated by symbolic execution 
[12]. To model a program using symbolic expression, we need to 
identify program’s inputs and outputs. We use the notion of 
program’s I/O streams to describe program’s inputs from 
different sources and outputs to different destinations. These 
sources/destinations include disk files, user consoles, etc. The 
basic I/O streams, in JAVA for example [14], include byte 
streams, I/O from the command line, etc. In a program, we 
identify a set called program’s input definitions (PID) and a set 
called program’s output definitions (POD), which includes all 
definitions representing program’s I/O streams. We identify PID 
and POD from program’s specification. In Fig. 1, PID consists 
of def(a,0), def(b,0) and def(c,0); POD has the definition of the 
returned value at line 13, which is denoted as def(retVal,13). We 
note that the value of retVal equals to the value of x at use(x,13). 

IV. OUR METHOD: SW D-ALGORITHM 

SW D-algorithm is developed by building on the principles 
used in HW D-algorithm. But due to many differences between 
SW and HW, we must significantly extend several existing 
definitions and methods used in HW D-algorithm to adapt them 
to SW and develop new concepts and methods to capture special 
characteristics in SW. Due to the limited space, we cannot 
include all details and all possible cases; interested readers please 
refer to the following doctoral dissertation proposal [15]. 

A. SW Representation for SW D-algorithm 
We need to convert SW program to a form that is suitable for 

SW D-algorithm. Here we describe all essential components we 
use to represent a SW program. We note that currently we use 
loop unwinding to convert cyclic programs to acyclic. 

1) Basic Block in SW – Minimal region of analysis (mROA) 
In a HW digital circuit ATPG, each gate or line is treated as 

a basic block since its behavior can be captured strictly in terms 
of values at its input(s) and output(s), with or without any fault 
inserted within the block. In a SW, this is true for every 
individual non-conditional statement. However, the behavior of 
a conditional statement cannot be captured solely in terms of 
values at the conditional statement’s value-inputs/outputs alone, 
since the execution of the statement determines not only the 
values at its outputs, but also which branch is taken. 

To tackle this complication, we developed the new notion of 
minimal region of analysis (mROA) which must contain the 

      
Fig. 1. An example program under test and its CFG 

0  void function (int a, int b, int c) {
1    int x = 0;
2    if (a == b) {
3      x = x + 1;
4    } 
5    if (b == c) {
6      x = x + 1;
7    } 
8    if (a == c) {
9      x = x + 1;

10    } else {
11 x = x + 2;
12    }
13    return x;
14  }

entry

int x = 0

x = x + 1

if (a == b)

0

1

2

3

x = x + 1

if (b == c)5

x = x + 1

if (a == c)8

return x

exit

6

9

13

14

x = x + 211
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statement under study and a minimal number of additional 
statements. The goal is to confine any changes in the program 
flow (i.e., invocations) within the mROA. Here we use ����� 
to represent a minimal region of analysis for a statement s. The 
behavior of this part of the program - with or without a mutation 
in the statement s - must be captured only in terms of values at 
inputs and outputs (defined ahead) of the �����. 

We identify �����  for a statement s such that it has a 
unique entry node and a unique exit node on CFG and includes 
this statement. This allows us to capture �����’s behavior by 
only monitoring the value changes at its outputs, without 
considering any program flow changes from/to the scope of the 
�����. An ���� is represented using the line numbers of its 
entry and exit nodes. For example, ����  [� ,�)  contains all 
paths and nodes between node � and � on CFG except node � 
(parenthesis and square brackets are used, respectively, to denote 
whether the starting and ending line are included or excluded). 

There are two cases for identifying ����� of statement s: 
(1) s is a non-conditional statement; (2) s is a conditional 
statement. In the first case, �����  is simply s itself. In the 
second case, ����� contains all the nodes and paths between s 
and its immediate post-dominator (but exclusive of the 
immediate post-dominator) on CFG, since the mutation’s 
presence may change program flow across different branches 
from that conditional statement. For example, in Fig. 1, since the 
statement 2 is a conditional statement, ����� is [2,5). 

The behavior of an mROA is represented using symbolic 
expressions on its local inputs and outputs. Similar to the PID 
and POD of the whole program, we define a set called mROA’s 
input definitions (RID) as the set of all definitions used within 
the mROA but defined outside of the mROA, and a set called 
mROA’s output definitions (ROD) as the set of all definitions 
defined within the mROA that reach outside of the mROA. 
Symbolic execution is used to generate mROA’s symbolic 
expression, using variables in RID/ROD as input/output symbols. 

By obtaining such a model of mROA, all statements within 
mROA can be viewed as a “single” statement from outside and 
their behavior captured completely by mROA’s symbolic 
expression. For example, for the ����� [2, 5) for line 2 in Fig. 
1, symbolic execution will generate symbolic expression "� =
� && �_��� = � + 1 || � ! = � && �_��� = �" . (We use the 
"_���" suffix is to indicate that it is mROA’s output variable.) 

2) Interconnections in SW 
In HW circuits, gates are connected by circuit lines, which 

carry logic values and indicate flow of control via logic value 
transitions. Circuit lines are, hence, the sole interconnections in 
HW circuits, while in SW programs, there is no physical “line” 
between statements or between a DU pair in a DU chain. Instead, 
we use both control flow and data dependency information to 
fully capture the interconnections within SW.  

The first type of interconnections in SW is represented as a 
sequence of nodes and edges in its CFG. The second type of 
interconnections is represented as DU chains. In Fig. 1, def(x,1) 
and use(x,3) are connected not only in terms of the path between 
node 1 and node 3 in CFG (path 1-2-3), but also in terms of the 
DU path between def(x,1) and use(x,3). 

3) Mutation effect 
In HW D-algorithm, fault effect at a circuit line is denoted as 

�  or �  [1], which is based on multi-valued composite value 
system to describe different values in fault free and faulty 

versions of the circuit. Similarly, in SW D-algorithm, we define 
mutation effect as the presence of two different values for the 
same variable in the original program and its corresponding 
location in the mutant. The objective of test data generation is to 
excite the mutation effect, propagate the mutation effect to one or 
more program output, and ensure that all values are justified. 

The data type in SW is more complex compared to Boolean 
values used in digital circuits, thus we cannot use a composite 
value system to represent values of variables in different versions 
of code. For example, if an integer variable has mutation effect, 
we cannot use a simple composite value system to represent all 
possible value combinations since original and faulty values can 
both take a very large number of possibilities within the value 
range of integer. Instead, we can use a combined representation: 
“value of the variable in the original program / value of the 
variable in the mutant”. And mutation effect exists if the two 
values are different. In Fig.1, consider a mutant that changes the 
statement at line 3 from "� = � + 1" to "� = � − 1". We observe 
a mutation effect at this line if we assign x any integer, say 0. And 
the mutation effect can be denoted as def(x,3) = 1/-1. 

To find the corresponding variables used or defined in the 
original program and the mutant, we create a mapping function 
�  for the correspondences between the statements in original 
program and the mutant. Given a line p in original program, we 
can find its corresponding line in the mutant as �(�). 

4) Invocation status 
In HW, every element in a digital circuit is always invoked 

due to its inherent parallelism, while in a SW program, a node 
(statement) or an edge in program’s CFG is not automatically 
invoked until it is executed during runtime, because program 
flow branches after a conditional node, and only one branch is 
executed. The precondition of executing this branch is 
determined at runtime. We define edge condition (EC) as the 
precondition for a specific edge to be executed. If a statement is 
not invoked, any change induced by this statement, in control or 
data flow, must not be counted. This difference between HW and 
SW requires a completely new set of variables and algorithms.  

We define invocation status (IVS) of a node/edge in a 
program’s CFG to indicate whether this node/edge will be 
invoked during runtime. IVS is a new type of dynamic 
information proposed here, it is introduced to reflect the dynamic 
execution information of a node/edge during runtime. Thus, a 
DU path within a DU chain may be invalid when considering 
IVS values of edges/nodes along the DU path. Therefore, an 
active DU path is defined as a DU path such that all nodes/edges 
along this path are invoked or with unknown IVS, since we can 
set this IVS as invoked. An active DU chain is obtained by 
eliminating all inactive DU paths between definition and use 
pairs in the DU chain. Also, we say def(x) actively reaches use(x) 
if there exists at least one active DU path between def(x) and 
use(x), and def(x) is called an active reaching definition of use(x). 
In Fig. 1, static analysis shows use(x,6) has two reaching 
definitions: def(x,1) and def(x,3). But if the edge 2-3 is not 
invoked during runtime, only def(x,1) actively reaches use(x,6). 

B. Essential Procedures in SW D-algorithm 
We now outline essential procedures in SW D-algorithm. 

Although these procedures are conceptually similar to their 
counterparts in HW D-algorithm, they are markedly extended 
and reinvented to include special characteristics of SW. 

1) Implication  
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In general, implication is the process of determining some 
values as a consequence of the changes in some other values.  
Implication is performed to reduce the search space for the test, 
since it helps the algorithm assign as many known values as 
possible and hence refines existing possibilities.  

a) Value assignment implication 

We define value assignment implication as a process of 
determining the value defined or used at various locations of a 
program because of some other new value assignments. It can be 
performed backward or forward, i.e., from a definition to a use 
or from a use to a definition. It can also be performed for the 
variables used in an EC when the EC must or must not be 
satisfied. A conflict is identified if the implied value is not 
compatible with the current value. 

Here we show an example of value assignment implication. 
In Fig. 2(a), def(x,1) and def(x,3) are two actively reaching 
definitions of use(x,6). Consider a backward value assignment 
implication task for def(x,6) with a value of 2 is performed. We 
identify mROA for statement 6 and its symbolic expression 
"�_��� = � + 1", then we send this expression and "�_��� = 2" 
to solver, which gives us the unique solution of "� = 1". Thus, 1 
is assigned to use(x,6) and a backward value assignment 
implication task for use(x,6) is added to implication task list (ℐ). 
For this new task, we find use(x,6) has two actively reaching 
definitions, that means no value should be implied and use(x,6) 
is added to unjustified element list (�).  

b) IVS implication 

IVS implication is defined as a process of determining the 
values of IVS of nodes/edges of a program’s CFG as a result of 
the changes in value of IVS of other nodes/edges. A conflict is 
identified if the implied value is not compatible with the current 
value. IVS implication can be performed backward or forward, 
from node to edge or from edge to node.  

In Fig. 2(b), consider that node 13 is invoked and a backward 
IVS implication task is processed for this node. At least one of 
node 13’s incoming edges must be invoked but we do not know 
which. Hence, no value can be assigned and node 13 is added to 
� . Consider another case that a forward IVS implication is 
processed for the invoked edge 9-13 and the IVS values of edge 
11-13 and node 13 are both unknown. It first assigns true to the 
IVS of node 13 and adds a forward IVS implication task for this 
node to ℐ. Then, it assigns false to the IVS of edge 11-13 and 
adds a backward IVS implication task for this edge to ℐ. 

2) Mutation effect excitation (MEE) subtask 
MEE is performed at the location of the mutation for 

generating mutation effect. This is the necessary condition for 
killing the mutant. We first identify the mutation effect excitation 
mROA (MEEmROA) and its related information at the location 
of the mutated statement using the methods mentioned above. 
Since the mutation effect must be present at one or more outputs 
of MEEmROA’s ROD, we create MEE subtask for each variable 
in MEEmROA’s ROD.  

When MEE subtask is processed, MEEmROA’s symbolic 
expression for the corresponding ROD variable is generated for 
both original program and the mutant. Then we add the constraint 

that the values defined at the ROD in original program and the 
mutant are different. This ensures the excitation of the mutation 
effect. These constraints, along with all known values, are then 
sent to the solver to generate possible solutions. 

If a solution is found, mutation effect can be excited. Then, 
we assign values to the variables in MEEmROA’s RID and ROD. 
In addition, MEEmROA must be invoked to excite the mutation 
effect, thus, we assign true to the IVS of MEEmROA’s entry 
node and assign true to the IVS of MEEmROA’s exit node. 
Finally, we create implication tasks for all newly assigned values.  

3) Mutation effect propagation (MEP) subtask 
MEP is performed to propagate mutation effect until it is 

exposed at program’s POD. We first identify the mutation effect 
propagation mROA (MEPmROA) at the location of the 
statement where mutation effect presents (at a use of a variable). 
The remaining process of handling MEP subtask is similar to the 
MEE subtask, so we do not describe here due to space limit.  

4) Justification (JUST) subtask 
When any mutation effect is present at one or more of 

program’s PODs, we need to justify all unjustified elements, i.e., 
� must be empty. Several different cases need to be considered, 
including unjustified IVS of a node/edge, unjustified value 
assignment of a definition/use, and unjustified EC. In Fig. 2(a), 
if node 6 is invoked, and both of edge 1-6 and edge 3-6 are with 
unknown IVS, we can justify the IVS of node 6 by invoking edge 
1-6 and not invoking edge 3-6. Then, new backward IVS 
implication tasks are added to ℐ for all edges with changed IVS. 

5) Initialization 
At the beginning of SW D-algorithm, we need to create an 

implication task list (ℐ ), a subtask stack, and an unjustified 
element list (�). Also, any known IVS and value assignment 
need to be assigned, including the value true to the IVS of the 
entry/exit node, and all concrete definitions of variables. The 
corresponding implications tasks are then being added to ℐ. 

6) Backtrack and search space 
SW D-algorithm requires backtrack when a conflict is 

identified, all temporary information of the program must be 
erased, and the previous state must be restored. 

In HW digital circuit, the logic function of a gate can be 
represented using a truth table, which has limited number of 
entries. In SW program, we use constraint expressions to 
describe the behavior of an mROA. In most cases, it is difficult 
to list all solutions of the constraints because individual variables 
in SW can have extremely large value spaces (e.g., a variable 
with integer value). Therefore, it is crucial to set up a limit on 
how many solutions are explored for a constraint expression 
before it backtracks, we call this limit as backtrack limit.  

In practice, a small backtrack limit (3 to 5) is usually 
sufficient to achieving high mutation score, although the search 
space for SW D-algorithm is huge. This is because in most cases, 
there is potentially a large set of possible tests to kill a mutant. 

7) A running example 
Here we show an example to illustrate SW D-algorithm. Fig. 

4 shows the search tree for this process (VA means “value 
assignment”). Consider the mutant shown in Fig. 3, after we 
initialize the whole program and perform implication, IVS values 
of node 0, 1, and 2 are all true, def(x,1)=0/0, use(x,3)=0/0, and 
def(x,3)=1/1. Then, MEEmROA is identified and processed, we 
assign use(b)=0/0, use(c)=0/0, use(x)=0/0, and def(x)=1/0 to 
variables in MEEmROA’s RID and ROD. After implication 

                 
Fig. 2. Parts of the example program to show cases of implication 

int x = 0 x = x + 11 3

x = x + 16

(a)

x = x + 1

return x

9

13

x = x + 211

(b)
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procedure, node 8 is invoked, use(x,9)=1/0, def(x,9) = 2/1, 
use(x,11)=1/0 and def(x,11)=3/2. Therefore, two MEP subtasks, 
through use(x,9) or use(x,11) are created. We first try 
MEPmROA1 for use(x,9). During implication, a conflict is found 
at use(x) of MEEmROA’s RID, where the existing value is 0 and 
the newly implied value is 1. Therefore, the algorithm backtracks 
to the last option, which is to propagate mutation effect via 
MEPmROA2 of use(x,11), and the algorithm state is recovered. 
MEPmROA2 is then processed and all required implication tasks 
are performed afterwards without conflict, and the mutation 
effect is present at line 13 (the returned value) which belongs to 
program’s POD. Although, two unjustified elements, EC of edge 
8-11 and IVS of node 5, are still left in �. So, we push these 
justification subtasks to the subtask stack and process them. We 
first process justification for the unjustified EC of edge 8-11. 
Thus, we have a new value assignment of use(a,8)=1/1. 
Implication is performed afterwards and � is now empty. We 
generate a test: “a=1”, “b=0”, and “c=0” at program’s PID, and 
the mutation effect at program’s POD is “def(retVal,13)=3/2”. 

C. SW ATG (Automatic Test Generation) system 
We propose SW ATG system to perform a 2-pass test 

generation. In the first pass we use random test generation, and 
in the second pass we use the SW D-algorithm. In the third pass, 
inspired by HW testing, we perform reverse order simulation to 
eliminate redundant tests.  

The first pass cheaply kills many mutants and reduces the 
run-time complexity of our deterministic algorithm. Reverse 
order simulation makes test set compact by eliminating many 
random tests, keeping only tests that kill mutants not killed by 
deterministic tests simulated earlier. All steps of our SW ATG 
system are outlined below: 
i. Given a program, generate mutants by applying each 

mutation operator; store all mutants in the mutant list, ℳ. 
ii. Perform random test generation to obtain r tests, simulate all 

mutants in ℳ for these r tests. Eliminate all mutants killed 
from ℳ and only keep tests that kill at least one mutant. 

iii. While ℳ is not empty  

 SW D-algorithm: Select a mutant from ℳ , use our SW 
ATG to generate a deterministic test.  

 Mutant dropping: Perform mutation simulation (mutation 
testing) by applying the newly generated test, eliminate any 
mutant killed from ℳ. 

iv. Perform reverse order simulation, eliminate redundant tests 
to obtain a compact test set. 

V. IMPLEMENTATION 

Our tools are developed in Java, the tools can generate tests 
for Java programs with primitive data types (this is also the 
limitation of all existing constraint-based TG tools, we are now 
working to expand the scope to all data types). The symbolic 
analysis engine is based on JPF-SE [16], while we make many 
changes to accommodate all specific requirements on our new 
SW D-algorithm. The constraint solver used is Z3 [17], which is 
a commonly used powerful theorem prover. In addition, we use 
muJava [18] to generate/simulate mutants and use the method we 
proposed in [11] to eliminate equivalent mutants beforehand. We 
note that our SW D-algorithm works on Java bytecode, while 
here we use Java source code to illustrate our algorithm. 

VI. RESULTS 

We test our SW D-algorithm and SW ATG system on 
programs from Ammann and Offutt’s text [9], Demillo and 
Offutt’s paper [7], and from leetcode.com. These programs’ sizes 
range from 50 to 200 lines of code, which are typical sizes of the 
program modules for unit testing. Also, “triang” is a widely used 
testbench appears in many papers on mutation testing.  

The baseline approach uses global symbolic analysis. It 
generates constraint expressions for original program and the 
mutant and the constraint that at least one program output has 
different values across the original program and the mutant. Any 
solution satisfies these constraints is a test for the target mutant. 

We compare our method with EvoSuite [20], which is one of 
the best state-of-the-art SW test generation tools and won the 
SBST 2017 tool competition. In our experiments, two 
configurations for EvoSuite are used. Default configuration uses 
balanced weight of different metrics (e.g., line coverage, branch 
coverage, mutant, etc.) in the fitness function. Strong mutation 
configuration only includes strong mutation metrics in its fitness 
function. Also, we use two search time budgets (60s and 120s) 
for each configuration. 

Given a program under test, we use muJava [18] to generate 
all its mutants. Then we compare our methods with the baseline 
method and EvoSuite in three aspects: mutation score, number 
of tests generated, and runtime (in seconds). We first use the 
method described in another paper [11] from us to eliminate all 
equivalent mutants, which provides the “# of non-equivalent 
mutants” in Table II. For all non-equivalent mutants, we use the 
baseline approach, EvoSuite with different configurations and 
search time budgets, as well as our SW D-Algorithm and SW 
ATG to generate tests and obtain the statistics of interest. 

In Table II, although the baseline approach provides the best 
quality tests (100% in all cases), it is very time consuming 
compared to the other two methods, and it generates too many 
test cases. EvoSuite with default configuration obtains good 
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scores (i.e., coverage), but increasing the search time doesn’t 
improve score. Surprisingly, sometimes the scores decrease. This 
could be due to the local maxima problem of the search-based 
algorithm. EvoSuite with strong mutant configuration doesn’t 
perform as well as the default setting. One possible reason is that 
by using default setting, mutant coverage benefits from other 
components in the fitness function. For example, many mutants 
can be killed if the mutated line is covered. Thus, the line 
coverage metric automatically helps mutant coverage. 

Our SW ATG system obtains better mutation scores 
compared to EvoSuite for 7 out of 8 programs. Also, we achieve 
a significant speed-up by using our SW ATG system, compared 
to the baseline approach and EvoSuite in most cases. Also, our 
SW ATG system decreases the number of tests, compared to SW 
D-Algorithm. This is very important given that a compact test 
data is crucial in SW testing, since testers need to manually check 
the expected outputs for each test (test oracle problem [21]). 

Overall, our SW ATG system provides a higher mutation 
score with a shorter run-time and generates compact test. In 
summary, our new method is more scalable than the baseline and 
effective when high quality tests are required. 

VII. CONCLUSION 

In this paper, we propose a new method called SW D-
algorithm for mutation-oriented test generation for software unit 
testing. We define new concepts and methods to capture unique 
characteristics of SW and extend HW D-algorithm for SW test 
generation. Specifically, we define new concepts including IVS, 
active DU chains, mROA, and mutation effect. And we create a 
series of innovative approaches and procedures for SW D-
algorithm. In addition, we combine SW D-algorithm, random 
test generation, and reverse order simulation to build a more 
efficient SW ATG system. Compared with previous constraint-
based mutant-oriented test generation methods, our approach is 
more scalable and effective. Our tools also outperform EvoSuite, 
the state-of-the-art test generation tool, in terms of test quality.  

Our ongoing research includes implementing multiple 
heuristics to make our approach more scalable, expanding our 
method for handling programs with more complex data types and 
more complex structures. The details can be found in [15]. 
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TABLE II.  COMPARISON AMONG DIFFERENT APPROACHES 

Program name 
Program 

size 
# of 

mutants 

# of non-
equivalent 
mutants 

Baseline approach 
EvoSuite - default 

60s 
EvoSuite - default 

120s 
EvoSuite - strong 

mutant 60s 
EvoSuite - strong 

mutant 120s 
SW D-Algorithm SW ATG 

score size time score size Time score size time score size time score size time score size time score size time 
isPalindrome 97 230 161 100 161 732 64 6 60 63 6 120 31 5 60 40 5 120 84 10 91 88 6 72 

findLastEx 52 102 69 100 69 218 86 4 60 86 4 120 84 4 60 84 4 120 94 8 7 95 6 6 

countPositiveEx 68 166 104 100 104 749 92 3 60 91 5 120 93 4 60 99 5 120 95 17 9 100 9 6 

triang 166 315 265 100 265 960 89 21 60 92 21 120 82 18 60 84 18 120 98 22 74 98 19 114 

reachNumber 71 221 126 100 126 395 82 8 60 82 8 120 69 7 60 70 7 120 83 12 57 87 10 51 

numZeroEx 69 140 98 100 98 653 97 4 60 98 4 120 98 5 60 98 5 120 95 12 22 95 8 7 

switchButton 101 127 94 100 94 541 80 5 60 80 5 120 70 3 60 74 3 120 85 11 135 86 5 102 

reverseInteger 128 249 166 100 166 752 85 4 60 85 3 120 32 3 60 9 2 120 95 8 110 99 4 7 
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