

A New Method for Software Test Data Generation Inspired by D-algorithm*

Jianwei Zhang, Sandeep K. Gupta, William G. J. Halfond
University of Southern California, Los Angeles, USA

Emails: {jianweiz, sandeep, halfond}@usc.edu

Abstract—Test generation for digital hardware is highly
automated, scalable (in practice), and provides high test quality. In
contrast, current software automatic test data generation
approaches suffer from low test quality or high complexity. While
mutation-oriented constraint-based test data generation for
software was proposed to generate high quality test data for real
program bugs, all existing approaches require symbolic analysis
for the whole program, and hence are not scalable even for unit
testing, i.e., testing the lowest-level software modules.

We propose a new method inspired by hardware D-algorithm
and divide and conquer for software test data generation. To
reduce runtime complexity and improve scalability, we combine
global structural analysis and a sequence of small reusable
symbolic analyses of parts of the program, instead of symbolically
executing each mutated version of the entire program. We also
propose a multi-pass test generation system to further reduce
runtime complexity and compact test data. We compare our tools
with one of the best software test generation tools (EvoSuite[20],
which won the SBST 2017 tool competition) and demonstrate that
our approach generates higher quality unit tests in a scalable
manner and provides a compact set of tests.

Keywords—test data generation for software; D-Algorithm;
ATPG; mutation testing; software testing

I. INTRODUCTION AND BACKGROUND
A. Hardware Testing and Software Testing

In industry practice, hardware (HW) test generation is highly
automated. Several test generation algorithms were developed
and refined via five decades of research. The most common
algorithms used for HW test generation, like D-algorithm [1] and
PODEM [2], are fault model based. Research and practice show
that a test set with high coverage of faults typically also provides
high coverage of real hardware defects.

In software (SW) testing research, test generation automation
is limited and less developed compared to HW, due to the
complexities of data types and program structures. Test set
quality is commonly measured by code coverage metrics [3],
which capture the percentage of lines, branches, etc. covered by
the test (also adapted for HW ATPG, e.g., [8]). However, their
effectiveness as measure of test quality is doubtful [4], especially
for real program errors deep within the program.

Demillo et al. [5] proposed the concept of a program mutant,
i.e., a modified program that diverges from the original program,
usually by a change at one statement. A mutant is marked as
killed if we have a test for which the program’s outcome (e.g.,
output values) for the mutant is different from that for the
original program. Mutation score, i.e., the fraction of mutants
killed from the complete set of mutants, captures test set quality.
Research [6] shows a strong correlation between a high mutation
score and a high coverage of real program bugs. (Mutation
testing is also adapted for HW RTL design verification [19].)
 HW fault-oriented testing and SW mutation testing are both
based on abstract fault models and effective in identifying real
defects/bugs. We find that they share many similarities and the
major analogies between the two are listed in Table I.

* Research funded by National Science Foundation

 Further, in HW testing, shorter test sets are desired as they
require smaller test application times and hence considerably
decrease testing costs, since every fabricated chip needs to be
tested. In contrast, SW testing is only performed once for a
program, independent of how many copies are sold. Despite this,
a compact test set is extremely important in SW testing for a very
different reason. Since a golden model of the software usually
does not exist (test oracle problem [21]), each test’s outcome
must be manually checked for correctness. Since such manual
checking is extremely expensive, a compact set of tests that
provides high quality can considerably reduce costs.

B. Test Generation for SW Mutant
Although the initial purpose of SW mutation testing was to

find a more accurate way for evaluating the quality of a given
test set, mutation-oriented test generation has been pursued to
generate high quality tests. Demillo et al. [7] proposed the first
method to generate a test for a targeted mutant by converting the
whole program into a constraint system and using a constraint
solver to generate a test. On the other hand, search-based test data
generation was first suggested by Bottaci [10]. It models the test
generation task as a search problem guided by a fitness function.
In this category, EvoSuite [20] is one of the best state-of-the-art
tools. Search-based methods suffer from the limitations of the
corresponding heuristics.

In this paper, we focus on improving the constraint-based test
generation approaches. All the existing methods in this category
are not scalable even for unit testing (testing the lowest level SW
modules), since they need to convert the entire program unit and
conditions into constraints, which are then processed by a
constraint solver. Further, the constraints are usually generated
via symbolic execution [12], which is especially expensive. Also,
the solver has high complexity since it faces long expressions.
We address these shortcomings to make constraint-based test
generation widely applicable for unit testing.

II. MAIN IDEAS

 We propose a new method for unit testing which makes
mutation-oriented constraint-based test generation scalable yet
accurate.
 We use divide and conquer to reduce the complexity of
constraint creation and solving. Specifically, we combine global
structural analysis and a sequence of small local (for parts of the
program) symbolic analysis, instead of performing symbolic
analysis on the whole program. This reduces the load on
constraint solver by deriving smaller constraint expressions.
Also, structural analysis, which includes control flow analysis
and data dependency analysis, is a low-complexity processes
compared to symbolic analysis. The structural information it
generates for the program under test connects the symbolic
expressions for different parts of the program, thus significantly

TABLE I. ANALOGY BETWEEN HW TESTING AND SW MUTATION TESTING
 HW testing SW mutation testing

Descriptive language Netlist Lines of code
Basic element Gate Statement(s)

Interconnections Circuit line CFG path, DU path
Defect/bug Fault Mutation

Defective artifact Faulty circuit Mutant
Common fault model Single stuck-at fault Single mutation

2019 IEEE 37th VLSI Test Symposium (VTS)



978-1-7281-1170-4/19/$31.00 ©2019 IEEE



reduces runtime complexity compared to traditional methods,
especially for large units and units with path explosion [22].
 In addition, inspired by the concept of HW D-algorithm [1],
we develop SW D-algorithm to restrict the generation process to
directed local search. HW D-algorithm was the first complete
test generation algorithm which established a paradigm for
completely searching the space of all possible tests. Its test
generation subtasks (TGSTs) include fault excitation, fault effect
propagation, and justification. Similarly, our new approach, SW
D-algorithm, has three test generation subtasks: mutation effect
excitation, mutation effect propagation, and justification.
 Moreover, we propose a multi-pass test generation system,
which uses random test generation to cheaply kill mutants before
applying deterministic SW D-algorithm. After we generate tests
using our SW D-algorithm, we use reverse order simulation
(adapted from HW test generation) to compact SW test data. The
details are presented in Section IV.

III. REVIEW OF SW ANALYSIS METHODS

Before presenting the details of SW D-algorithm, some basic
methods used in SW analysis are introduced for completeness.

A. Structural Analysis of Programs
Structural analysis is a static method for identifying control

flow and data dependency for a program. (Static analysis
methods have significantly lower run time complexities
compared to dynamic methods, which require analysis/
simulations for large numbers of specific input values.) Our
algorithm requires two types of static information of the program:
the control flow graph (CFG) and all define-use chains (DU
chains) in the program.

CFG is a directed graph, where each node represents a basic
block, and each edge represents a path the control flow may
follow. CFG is generated from program’s code by traversing
every statement. Fig. 1 shows an example Java code and its CFG.

During static analysis on CFG, following notions [13] are
used: (1) Dominator – a node � dominates a node � if every path
from the program’s entry node to � passes through �; we call �
as �’s immediate dominator if � is �’s closest dominator. (2)
Post-dominator – a node � post-dominates a node � if every path
from � to the program’s exit node passes through �; immediate
post-dominator is defined analogously. In the CFG shown in Fig.
1, node 2 is node 5’s immediate dominator, node 8 is node 5’s
immediate post-dominator.

In SW, a variable � is said to have a definition at statement �
if � is assigned a value at �; � is said to have a use at statement
� if � determines either the value of another variable defined at

statement � or determines the program flow in the case where the
statement � is a conditional statement. In addition, we consider
that the definition of variable � at statement � reaches statement
� (reaching definition) if there is a path in the CFG from � to �
that does not pass through any other definitions of �. We use the
form of “def/use (variable name, location where the variable is
used/defined)” to represent a variable’s definition or use at the
specified location. In Fig. 1, variable a defined at the entry node
(a is a user input variable) is denoted as def(a,0); variable a is
used at node 2 and node 8, we represent them as use(a,2) and
use(a,8). Also, def(a,0) reaches use(a,2) and use(a,8).

A DU chain consists of a definition of a variable and all its
uses, which are reachable from that definition. In Fig. 1, def(a,0)
and its uses, use(a,2) and use(a,8) form a DU chain of variable a.

B. Symbolic Analysis of Programs
In HW testing, BSF (Boolean switching function) is used to

describe the relations between circuit’s input and output logic
variables. In SW testing, the code behavior can be described
using a symbolic expression generated by symbolic execution
[12]. To model a program using symbolic expression, we need to
identify program’s inputs and outputs. We use the notion of
program’s I/O streams to describe program’s inputs from
different sources and outputs to different destinations. These
sources/destinations include disk files, user consoles, etc. The
basic I/O streams, in JAVA for example [14], include byte
streams, I/O from the command line, etc. In a program, we
identify a set called program’s input definitions (PID) and a set
called program’s output definitions (POD), which includes all
definitions representing program’s I/O streams. We identify PID
and POD from program’s specification. In Fig. 1, PID consists
of def(a,0), def(b,0) and def(c,0); POD has the definition of the
returned value at line 13, which is denoted as def(retVal,13). We
note that the value of retVal equals to the value of x at use(x,13).

IV. OUR METHOD: SW D-ALGORITHM

SW D-algorithm is developed by building on the principles
used in HW D-algorithm. But due to many differences between
SW and HW, we must significantly extend several existing
definitions and methods used in HW D-algorithm to adapt them
to SW and develop new concepts and methods to capture special
characteristics in SW. Due to the limited space, we cannot
include all details and all possible cases; interested readers please
refer to the following doctoral dissertation proposal [15].

A. SW Representation for SW D-algorithm
We need to convert SW program to a form that is suitable for

SW D-algorithm. Here we describe all essential components we
use to represent a SW program. We note that currently we use
loop unwinding to convert cyclic programs to acyclic.

1) Basic Block in SW – Minimal region of analysis (mROA)
In a HW digital circuit ATPG, each gate or line is treated as

a basic block since its behavior can be captured strictly in terms
of values at its input(s) and output(s), with or without any fault
inserted within the block. In a SW, this is true for every
individual non-conditional statement. However, the behavior of
a conditional statement cannot be captured solely in terms of
values at the conditional statement’s value-inputs/outputs alone,
since the execution of the statement determines not only the
values at its outputs, but also which branch is taken.

To tackle this complication, we developed the new notion of
minimal region of analysis (mROA) which must contain the

Fig. 1. An example program under test and its CFG

0 void function (int a, int b, int c) {
1 int x = 0;
2 if (a == b) {
3 x = x + 1;
4 }
5 if (b == c) {
6 x = x + 1;
7 }
8 if (a == c) {
9 x = x + 1;

10 } else {
11 x = x + 2;
12 }
13 return x;
14 }

entry

int x = 0

x = x + 1

if (a == b)

0

1

2

3

x = x + 1

if (b == c)5

x = x + 1

if (a == c)8

return x

exit

6

9

13

14

x = x + 211

!

!

statement under study and a minimal number of additional
statements. The goal is to confine any changes in the program
flow (i.e., invocations) within the mROA. Here we use �����
to represent a minimal region of analysis for a statement s. The
behavior of this part of the program - with or without a mutation
in the statement s - must be captured only in terms of values at
inputs and outputs (defined ahead) of the �����.

We identify ����� for a statement s such that it has a
unique entry node and a unique exit node on CFG and includes
this statement. This allows us to capture �����’s behavior by
only monitoring the value changes at its outputs, without
considering any program flow changes from/to the scope of the
�����. An ���� is represented using the line numbers of its
entry and exit nodes. For example, ���� [� ,�) contains all
paths and nodes between node � and � on CFG except node �
(parenthesis and square brackets are used, respectively, to denote
whether the starting and ending line are included or excluded).

There are two cases for identifying ����� of statement s:
(1) s is a non-conditional statement; (2) s is a conditional
statement. In the first case, ����� is simply s itself. In the
second case, ����� contains all the nodes and paths between s
and its immediate post-dominator (but exclusive of the
immediate post-dominator) on CFG, since the mutation’s
presence may change program flow across different branches
from that conditional statement. For example, in Fig. 1, since the
statement 2 is a conditional statement, ����� is [2,5).

The behavior of an mROA is represented using symbolic
expressions on its local inputs and outputs. Similar to the PID
and POD of the whole program, we define a set called mROA’s
input definitions (RID) as the set of all definitions used within
the mROA but defined outside of the mROA, and a set called
mROA’s output definitions (ROD) as the set of all definitions
defined within the mROA that reach outside of the mROA.
Symbolic execution is used to generate mROA’s symbolic
expression, using variables in RID/ROD as input/output symbols.

By obtaining such a model of mROA, all statements within
mROA can be viewed as a “single” statement from outside and
their behavior captured completely by mROA’s symbolic
expression. For example, for the ����� [2, 5) for line 2 in Fig.
1, symbolic execution will generate symbolic expression "� =
� && �_��� = � + 1 || � ! = � && �_��� = �" . (We use the
"_���" suffix is to indicate that it is mROA’s output variable.)

2) Interconnections in SW
In HW circuits, gates are connected by circuit lines, which

carry logic values and indicate flow of control via logic value
transitions. Circuit lines are, hence, the sole interconnections in
HW circuits, while in SW programs, there is no physical “line”
between statements or between a DU pair in a DU chain. Instead,
we use both control flow and data dependency information to
fully capture the interconnections within SW.

The first type of interconnections in SW is represented as a
sequence of nodes and edges in its CFG. The second type of
interconnections is represented as DU chains. In Fig. 1, def(x,1)
and use(x,3) are connected not only in terms of the path between
node 1 and node 3 in CFG (path 1-2-3), but also in terms of the
DU path between def(x,1) and use(x,3).

3) Mutation effect
In HW D-algorithm, fault effect at a circuit line is denoted as

� or � [1], which is based on multi-valued composite value
system to describe different values in fault free and faulty

versions of the circuit. Similarly, in SW D-algorithm, we define
mutation effect as the presence of two different values for the
same variable in the original program and its corresponding
location in the mutant. The objective of test data generation is to
excite the mutation effect, propagate the mutation effect to one or
more program output, and ensure that all values are justified.

The data type in SW is more complex compared to Boolean
values used in digital circuits, thus we cannot use a composite
value system to represent values of variables in different versions
of code. For example, if an integer variable has mutation effect,
we cannot use a simple composite value system to represent all
possible value combinations since original and faulty values can
both take a very large number of possibilities within the value
range of integer. Instead, we can use a combined representation:
“value of the variable in the original program / value of the
variable in the mutant”. And mutation effect exists if the two
values are different. In Fig.1, consider a mutant that changes the
statement at line 3 from "� = � + 1" to "� = � − 1". We observe
a mutation effect at this line if we assign x any integer, say 0. And
the mutation effect can be denoted as def(x,3) = 1/-1.

To find the corresponding variables used or defined in the
original program and the mutant, we create a mapping function
� for the correspondences between the statements in original
program and the mutant. Given a line p in original program, we
can find its corresponding line in the mutant as �(�).

4) Invocation status
In HW, every element in a digital circuit is always invoked

due to its inherent parallelism, while in a SW program, a node
(statement) or an edge in program’s CFG is not automatically
invoked until it is executed during runtime, because program
flow branches after a conditional node, and only one branch is
executed. The precondition of executing this branch is
determined at runtime. We define edge condition (EC) as the
precondition for a specific edge to be executed. If a statement is
not invoked, any change induced by this statement, in control or
data flow, must not be counted. This difference between HW and
SW requires a completely new set of variables and algorithms.

We define invocation status (IVS) of a node/edge in a
program’s CFG to indicate whether this node/edge will be
invoked during runtime. IVS is a new type of dynamic
information proposed here, it is introduced to reflect the dynamic
execution information of a node/edge during runtime. Thus, a
DU path within a DU chain may be invalid when considering
IVS values of edges/nodes along the DU path. Therefore, an
active DU path is defined as a DU path such that all nodes/edges
along this path are invoked or with unknown IVS, since we can
set this IVS as invoked. An active DU chain is obtained by
eliminating all inactive DU paths between definition and use
pairs in the DU chain. Also, we say def(x) actively reaches use(x)
if there exists at least one active DU path between def(x) and
use(x), and def(x) is called an active reaching definition of use(x).
In Fig. 1, static analysis shows use(x,6) has two reaching
definitions: def(x,1) and def(x,3). But if the edge 2-3 is not
invoked during runtime, only def(x,1) actively reaches use(x,6).

B. Essential Procedures in SW D-algorithm
We now outline essential procedures in SW D-algorithm.

Although these procedures are conceptually similar to their
counterparts in HW D-algorithm, they are markedly extended
and reinvented to include special characteristics of SW.

1) Implication

!

!

In general, implication is the process of determining some
values as a consequence of the changes in some other values.
Implication is performed to reduce the search space for the test,
since it helps the algorithm assign as many known values as
possible and hence refines existing possibilities.

a) Value assignment implication

We define value assignment implication as a process of
determining the value defined or used at various locations of a
program because of some other new value assignments. It can be
performed backward or forward, i.e., from a definition to a use
or from a use to a definition. It can also be performed for the
variables used in an EC when the EC must or must not be
satisfied. A conflict is identified if the implied value is not
compatible with the current value.

Here we show an example of value assignment implication.
In Fig. 2(a), def(x,1) and def(x,3) are two actively reaching
definitions of use(x,6). Consider a backward value assignment
implication task for def(x,6) with a value of 2 is performed. We
identify mROA for statement 6 and its symbolic expression
"�_��� = � + 1", then we send this expression and "�_��� = 2"
to solver, which gives us the unique solution of "� = 1". Thus, 1
is assigned to use(x,6) and a backward value assignment
implication task for use(x,6) is added to implication task list (ℐ).
For this new task, we find use(x,6) has two actively reaching
definitions, that means no value should be implied and use(x,6)
is added to unjustified element list (�).

b) IVS implication

IVS implication is defined as a process of determining the
values of IVS of nodes/edges of a program’s CFG as a result of
the changes in value of IVS of other nodes/edges. A conflict is
identified if the implied value is not compatible with the current
value. IVS implication can be performed backward or forward,
from node to edge or from edge to node.

In Fig. 2(b), consider that node 13 is invoked and a backward
IVS implication task is processed for this node. At least one of
node 13’s incoming edges must be invoked but we do not know
which. Hence, no value can be assigned and node 13 is added to
� . Consider another case that a forward IVS implication is
processed for the invoked edge 9-13 and the IVS values of edge
11-13 and node 13 are both unknown. It first assigns true to the
IVS of node 13 and adds a forward IVS implication task for this
node to ℐ. Then, it assigns false to the IVS of edge 11-13 and
adds a backward IVS implication task for this edge to ℐ.

2) Mutation effect excitation (MEE) subtask
MEE is performed at the location of the mutation for

generating mutation effect. This is the necessary condition for
killing the mutant. We first identify the mutation effect excitation
mROA (MEEmROA) and its related information at the location
of the mutated statement using the methods mentioned above.
Since the mutation effect must be present at one or more outputs
of MEEmROA’s ROD, we create MEE subtask for each variable
in MEEmROA’s ROD.

When MEE subtask is processed, MEEmROA’s symbolic
expression for the corresponding ROD variable is generated for
both original program and the mutant. Then we add the constraint

that the values defined at the ROD in original program and the
mutant are different. This ensures the excitation of the mutation
effect. These constraints, along with all known values, are then
sent to the solver to generate possible solutions.

If a solution is found, mutation effect can be excited. Then,
we assign values to the variables in MEEmROA’s RID and ROD.
In addition, MEEmROA must be invoked to excite the mutation
effect, thus, we assign true to the IVS of MEEmROA’s entry
node and assign true to the IVS of MEEmROA’s exit node.
Finally, we create implication tasks for all newly assigned values.

3) Mutation effect propagation (MEP) subtask
MEP is performed to propagate mutation effect until it is

exposed at program’s POD. We first identify the mutation effect
propagation mROA (MEPmROA) at the location of the
statement where mutation effect presents (at a use of a variable).
The remaining process of handling MEP subtask is similar to the
MEE subtask, so we do not describe here due to space limit.

4) Justification (JUST) subtask
When any mutation effect is present at one or more of

program’s PODs, we need to justify all unjustified elements, i.e.,
� must be empty. Several different cases need to be considered,
including unjustified IVS of a node/edge, unjustified value
assignment of a definition/use, and unjustified EC. In Fig. 2(a),
if node 6 is invoked, and both of edge 1-6 and edge 3-6 are with
unknown IVS, we can justify the IVS of node 6 by invoking edge
1-6 and not invoking edge 3-6. Then, new backward IVS
implication tasks are added to ℐ for all edges with changed IVS.

5) Initialization
At the beginning of SW D-algorithm, we need to create an

implication task list (ℐ), a subtask stack, and an unjustified
element list (�). Also, any known IVS and value assignment
need to be assigned, including the value true to the IVS of the
entry/exit node, and all concrete definitions of variables. The
corresponding implications tasks are then being added to ℐ.

6) Backtrack and search space
SW D-algorithm requires backtrack when a conflict is

identified, all temporary information of the program must be
erased, and the previous state must be restored.

In HW digital circuit, the logic function of a gate can be
represented using a truth table, which has limited number of
entries. In SW program, we use constraint expressions to
describe the behavior of an mROA. In most cases, it is difficult
to list all solutions of the constraints because individual variables
in SW can have extremely large value spaces (e.g., a variable
with integer value). Therefore, it is crucial to set up a limit on
how many solutions are explored for a constraint expression
before it backtracks, we call this limit as backtrack limit.

In practice, a small backtrack limit (3 to 5) is usually
sufficient to achieving high mutation score, although the search
space for SW D-algorithm is huge. This is because in most cases,
there is potentially a large set of possible tests to kill a mutant.

7) A running example
Here we show an example to illustrate SW D-algorithm. Fig.

4 shows the search tree for this process (VA means “value
assignment”). Consider the mutant shown in Fig. 3, after we
initialize the whole program and perform implication, IVS values
of node 0, 1, and 2 are all true, def(x,1)=0/0, use(x,3)=0/0, and
def(x,3)=1/1. Then, MEEmROA is identified and processed, we
assign use(b)=0/0, use(c)=0/0, use(x)=0/0, and def(x)=1/0 to
variables in MEEmROA’s RID and ROD. After implication

Fig. 2. Parts of the example program to show cases of implication

int x = 0 x = x + 11 3

x = x + 16

(a)

x = x + 1

return x

9

13

x = x + 211

(b)

!

!

procedure, node 8 is invoked, use(x,9)=1/0, def(x,9) = 2/1,
use(x,11)=1/0 and def(x,11)=3/2. Therefore, two MEP subtasks,
through use(x,9) or use(x,11) are created. We first try
MEPmROA1 for use(x,9). During implication, a conflict is found
at use(x) of MEEmROA’s RID, where the existing value is 0 and
the newly implied value is 1. Therefore, the algorithm backtracks
to the last option, which is to propagate mutation effect via
MEPmROA2 of use(x,11), and the algorithm state is recovered.
MEPmROA2 is then processed and all required implication tasks
are performed afterwards without conflict, and the mutation
effect is present at line 13 (the returned value) which belongs to
program’s POD. Although, two unjustified elements, EC of edge
8-11 and IVS of node 5, are still left in �. So, we push these
justification subtasks to the subtask stack and process them. We
first process justification for the unjustified EC of edge 8-11.
Thus, we have a new value assignment of use(a,8)=1/1.
Implication is performed afterwards and � is now empty. We
generate a test: “a=1”, “b=0”, and “c=0” at program’s PID, and
the mutation effect at program’s POD is “def(retVal,13)=3/2”.

C. SW ATG (Automatic Test Generation) system
We propose SW ATG system to perform a 2-pass test

generation. In the first pass we use random test generation, and
in the second pass we use the SW D-algorithm. In the third pass,
inspired by HW testing, we perform reverse order simulation to
eliminate redundant tests.

The first pass cheaply kills many mutants and reduces the
run-time complexity of our deterministic algorithm. Reverse
order simulation makes test set compact by eliminating many
random tests, keeping only tests that kill mutants not killed by
deterministic tests simulated earlier. All steps of our SW ATG
system are outlined below:
i. Given a program, generate mutants by applying each

mutation operator; store all mutants in the mutant list, ℳ.
ii. Perform random test generation to obtain r tests, simulate all

mutants in ℳ for these r tests. Eliminate all mutants killed
from ℳ and only keep tests that kill at least one mutant.

iii. While ℳ is not empty

 SW D-algorithm: Select a mutant from ℳ , use our SW
ATG to generate a deterministic test.

 Mutant dropping: Perform mutation simulation (mutation
testing) by applying the newly generated test, eliminate any
mutant killed from ℳ.

iv. Perform reverse order simulation, eliminate redundant tests
to obtain a compact test set.

V. IMPLEMENTATION

Our tools are developed in Java, the tools can generate tests
for Java programs with primitive data types (this is also the
limitation of all existing constraint-based TG tools, we are now
working to expand the scope to all data types). The symbolic
analysis engine is based on JPF-SE [16], while we make many
changes to accommodate all specific requirements on our new
SW D-algorithm. The constraint solver used is Z3 [17], which is
a commonly used powerful theorem prover. In addition, we use
muJava [18] to generate/simulate mutants and use the method we
proposed in [11] to eliminate equivalent mutants beforehand. We
note that our SW D-algorithm works on Java bytecode, while
here we use Java source code to illustrate our algorithm.

VI. RESULTS

We test our SW D-algorithm and SW ATG system on
programs from Ammann and Offutt’s text [9], Demillo and
Offutt’s paper [7], and from leetcode.com. These programs’ sizes
range from 50 to 200 lines of code, which are typical sizes of the
program modules for unit testing. Also, “triang” is a widely used
testbench appears in many papers on mutation testing.

The baseline approach uses global symbolic analysis. It
generates constraint expressions for original program and the
mutant and the constraint that at least one program output has
different values across the original program and the mutant. Any
solution satisfies these constraints is a test for the target mutant.

We compare our method with EvoSuite [20], which is one of
the best state-of-the-art SW test generation tools and won the
SBST 2017 tool competition. In our experiments, two
configurations for EvoSuite are used. Default configuration uses
balanced weight of different metrics (e.g., line coverage, branch
coverage, mutant, etc.) in the fitness function. Strong mutation
configuration only includes strong mutation metrics in its fitness
function. Also, we use two search time budgets (60s and 120s)
for each configuration.

Given a program under test, we use muJava [18] to generate
all its mutants. Then we compare our methods with the baseline
method and EvoSuite in three aspects: mutation score, number
of tests generated, and runtime (in seconds). We first use the
method described in another paper [11] from us to eliminate all
equivalent mutants, which provides the “# of non-equivalent
mutants” in Table II. For all non-equivalent mutants, we use the
baseline approach, EvoSuite with different configurations and
search time budgets, as well as our SW D-Algorithm and SW
ATG to generate tests and obtain the statistics of interest.

In Table II, although the baseline approach provides the best
quality tests (100% in all cases), it is very time consuming
compared to the other two methods, and it generates too many
test cases. EvoSuite with default configuration obtains good

Fig. 3. ��� of the original program and its mutant (at statement 5)

MEEmROA

MEPmROA1

entry

int x = 0

x = x + 1

if (a == b)

0

1

2

3

x = x + 1

if (b == c)5

x = x + 1

if (a == c)8

return x

exit

6

9

13

14

x = x + 211

MEPmROA2

entry

int x = 0

x = x + 1

if (a == b)

0

1

2

3

x = x + 1

if (b != c)5

x = x + 1

if (a == c)8

return x

exit

6

9

13

14

x = x + 211

Fig. 4. The search tree for the example execution of the SW D-algorithm

MEE at MEEmROA

MEP via MEPmROA1 MEP via MEPmROA2

VA: use(b) = 0/0, use(c) = 0/0
use(x) = 0/0, def(x) = 1/0

...

CONFLICT
(Backtrack)

Test Found

JUST for EC of edge 8-11

VA: use(a,8) = 1/1

...
JUST for IVS of node 5

!

!

scores (i.e., coverage), but increasing the search time doesn’t
improve score. Surprisingly, sometimes the scores decrease. This
could be due to the local maxima problem of the search-based
algorithm. EvoSuite with strong mutant configuration doesn’t
perform as well as the default setting. One possible reason is that
by using default setting, mutant coverage benefits from other
components in the fitness function. For example, many mutants
can be killed if the mutated line is covered. Thus, the line
coverage metric automatically helps mutant coverage.

Our SW ATG system obtains better mutation scores
compared to EvoSuite for 7 out of 8 programs. Also, we achieve
a significant speed-up by using our SW ATG system, compared
to the baseline approach and EvoSuite in most cases. Also, our
SW ATG system decreases the number of tests, compared to SW
D-Algorithm. This is very important given that a compact test
data is crucial in SW testing, since testers need to manually check
the expected outputs for each test (test oracle problem [21]).

Overall, our SW ATG system provides a higher mutation
score with a shorter run-time and generates compact test. In
summary, our new method is more scalable than the baseline and
effective when high quality tests are required.

VII. CONCLUSION

In this paper, we propose a new method called SW D-
algorithm for mutation-oriented test generation for software unit
testing. We define new concepts and methods to capture unique
characteristics of SW and extend HW D-algorithm for SW test
generation. Specifically, we define new concepts including IVS,
active DU chains, mROA, and mutation effect. And we create a
series of innovative approaches and procedures for SW D-
algorithm. In addition, we combine SW D-algorithm, random
test generation, and reverse order simulation to build a more
efficient SW ATG system. Compared with previous constraint-
based mutant-oriented test generation methods, our approach is
more scalable and effective. Our tools also outperform EvoSuite,
the state-of-the-art test generation tool, in terms of test quality.

Our ongoing research includes implementing multiple
heuristics to make our approach more scalable, expanding our
method for handling programs with more complex data types and
more complex structures. The details can be found in [15].

REFERENCES
[1] J.P. Roth, "Diagnosis of Automata Failures: A Calculus and a Method,"

IBM Journal of Research and Development, vol.10, no.4, pp.278,291, July
1966.

[2] P. Goel and B.C. Rosales, "PODEM-X: An Automatic Test Generation
System for VLSI Logic Structures," Design Automation, 1981. 18th
Conference on , vol., no., pp.260,268, 29-1 June 1981.

[3] F. Del Frate, P. Garg, A. P. Mathur and A. Pasquini, "On the correlation
between code coverage and software reliability," Software Reliability
Engineering, 1995. Proceedings., Sixth International Symposium on,
Toulouse, 1995, pp. 124-132.

[4] L. Inozemtseva, and R. Holmes. "Coverage is not strongly correlated with
test suite effectiveness." Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014.

[5] R.A. Demillo, R.J. Lipton and F.G. Sayward, "Hints on Test Data
Selection: Help for the Practicing Programmer," Computer, vol.11, no.4,
pp.34,41, April 1978.

[6] Just, René, et al. "Are mutants a valid substitute for real faults in software
testing?" Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014.

[7] R.A. Demillo and A.J. Offutt, "Constraint-based automatic test data
generation," Software Engineering, IEEE Transactions on, vol.17, no.9,
pp.900,910, Sep 1991.

[8] I. Ghosh and M. Fujita, "Automatic test pattern generation for functional
RTL circuits using assignment decision diagrams," Proceedings 37th
Design Automation Conference, Los Angeles, CA, USA, 2000, pp. 43-48.

[9] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
Univ. Press, 2008.

[10] L. Bottaci, "A Genetic Algorithm Fitness Function for Mutation Testing",
in Proceedings of the Software Engineering using Metaheuristic
innovative Algorithms workshop, April 2001, pp. 3-7.

[11] J. Zhang and S. K. Gupta, "Using hardware testing approaches to improve
software testing: Undetectable mutant identification," 2016 IEEE 34th
VLSI Test Symposium (VTS), Las Vegas, NV, 2016, pp. 1-6.

[12] King, C. James, "Symbolic execution and program testing."
Communications of the ACM 19, no. 7, pp. 385-394, 1976.

[13] T. Lengauer and R.E. Tarjan, "A fast algorithm for finding dominators in
a flowgraph," ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 1, pp. 121-141, 1979.

[14] ORACLE JAVA Documentation, Lesson: Basic I/O, Available:
https://docs.oracle.com/javase/tutorial/essential/io/index.html.

[15] J. Zhang, "Software Automatic Test Generation System," Ph.D.
Dissertation Proposal, available: https://bit.ly/2DKasWb

[16] S. Anand, C.S. Păsăreanu and W. Visser, "JPF–SE: A symbolic execution
extension to java pathfinder," in Tools and Algorithms for the
Construction and Analysis of Systems, Springer, pp. 134-138, 2007.

[17] L. de Moura and N. Bjørner, "Z3: An efficient SMT solver." International
conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer Berlin Heidelberg, 2008.

[18] Y. Ma, J. Offutt and Y.R. Kwon, "MuJava: an automated class mutation
system," Software Testing, Verification and Reliability, vol. 15, pp. 97-
133, 2005.

[19] Y. Serrestou, V. Beroulle and C. Robach, "Functional Verification of RTL
Designs driven by Mutation Testing metrics," 10th Euromicro Conference
on Digital System Design Architectures, Methods and Tools (DSD 2007),
Lubeck, 2007, pp. 222-227.

[20] EvoSuite, available: http://www.evosuite.org/

[21] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz and S. Yoo, "The Oracle
Problem in Software Testing: A Survey," in IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507-525, 1 May 2015.

[22] S. Krishnamoorthy, M. S. Hsiao and L. Lingappan, "Tackling the Path
Explosion Problem in Symbolic Execution-Driven Test Generation for
Programs," 2010 19th IEEE Asian Test Symposium, Shanghai, 2010, pp.
59-64.

TABLE II. COMPARISON AMONG DIFFERENT APPROACHES

Program name
Program

size
of

mutants

of non-
equivalent
mutants

Baseline approach
EvoSuite - default

60s
EvoSuite - default

120s
EvoSuite - strong

mutant 60s
EvoSuite - strong

mutant 120s
SW D-Algorithm SW ATG

score size time score size Time score size time score size time score size time score size time score size time
isPalindrome 97 230 161 100 161 732 64 6 60 63 6 120 31 5 60 40 5 120 84 10 91 88 6 72

findLastEx 52 102 69 100 69 218 86 4 60 86 4 120 84 4 60 84 4 120 94 8 7 95 6 6

countPositiveEx 68 166 104 100 104 749 92 3 60 91 5 120 93 4 60 99 5 120 95 17 9 100 9 6

triang 166 315 265 100 265 960 89 21 60 92 21 120 82 18 60 84 18 120 98 22 74 98 19 114

reachNumber 71 221 126 100 126 395 82 8 60 82 8 120 69 7 60 70 7 120 83 12 57 87 10 51

numZeroEx 69 140 98 100 98 653 97 4 60 98 4 120 98 5 60 98 5 120 95 12 22 95 8 7

switchButton 101 127 94 100 94 541 80 5 60 80 5 120 70 3 60 74 3 120 85 11 135 86 5 102

reverseInteger 128 249 166 100 166 752 85 4 60 85 3 120 32 3 60 9 2 120 95 8 110 99 4 7

!

!

