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Abstract— Electromagnetic scattering from electrically large
objects with multiscale features is an increasingly important
problem in computational electromagnetics. A conventional
approach is to use an integral equation-based solver that is then
augmented with an accelerator, a popular choice being a parallel
multilevel fast multipole algorithm (MLFMA). One consequence
of multiscale features is locally dense discretization, which leads
to low-frequency breakdown and requires nonuniform trees.
To the authors’ knowledge, the literature on parallel MLFMA
for such multiscale distributions capable of arbitrary accuracy
is sparse; this paper aims to fill this niche. We prescribe an
algorithm that overcomes this bottleneck. We demonstrate the
accuracy (with respect to analytical data) and performance of
the algorithm for both PEC scatterers and point clouds as large
as 755λ with several hundred million unknowns and nonuniform
trees as deep as 16 levels.

Index Terms— Adaptive algorithms, computational electro-
magnetics, method of moments (MoM), multilevel fast multipole
algorithm (MLFMA), parallel algorithms.

I. INTRODUCTION

OVER the past several decades, computer simulation has
become an indispensable tool for designing and pro-

totyping in electromagnetic (EM) engineering. This includes
designing microwave/RF circuits and antennas, EM interfer-
ence mitigation, stealth aircraft profile reduction, and THz
devices. Many of these problems, however, pose significant
challenges for existing computational methods. The confluence
of several factors, namely, steady increase in frequencies of
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engineering interest, the widespread availability of powerful
computational resources, and the demand for realism in com-
puter models is driving a massive increase in the number of
degrees of freedom, Ns , required to solve these problems.

While the literature is filled with means to tackle these
problems, over the years, surface integral equations have
emerged as a principal tool of analysis [1]–[3]. The main
bottleneck to widespread use of these methods was their
computational complexity; since the 1990s, this has largely
been overcome thanks to accelerators such as the multilevel
fast multipole algorithm (MLFMA) that have reduced the
computational complexity from O(N2

s ) to O(Ns log Ns ) for
surfaces. As a result of these significant benefits, research
into advancing nuances and application of these approaches
is extensive and perhaps too numerous to enumerate; a partial
list can be found in [4] and [5] and references therein. As is
evident from these citations, there is still considerable interest
in exploring and expanding the range of these techniques at
either end, i.e., extending these methods to problems with high
disparity in discretization scales that are then embedded in
electrically large objects. At the same time, there has been
a concerted effort to develop parallel algorithms to further
exploit the capabilities of these algorithms. Both these issues
are explored in more detail next.

The literature is rich with efforts to bridge the
length scale between the Helmholtz regime and the low-
frequency or Laplace regime. The principal challenge is
the low-frequency breakdown of the classical MLFMA. The
earliest work on this problem was done by Greengard and
Rokhlin [6] and Greengard et al. [7]. Soon after,
Zhao and Chew [8] introduced a modification of the original
addition theorem to stabilize the MLFMA at low frequencies.
Since these, other methods have emerged, including [9]–[13].
Another method introduced in 2007 based on accelerated
Cartesian expansions (ACEs) [14], [15] blends seamlessly
and intuitively with the MLFMA and is error-controllable to
arbitrary accuracy with no bound on the discretization density.

It is apparent that to extend the reach of fast multipole
methods (FMMs), the development of parallel algorithms
is a necessity [16]. The earliest efforts were based on
extending methods developed for the Laplace (electrostatic)
FMM to MLFMA with little success. Recent effort focused
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on building algorithms based on hierarchical partitioning
(HiP-MLFMA) [17] and more recently, its block-wise variant
B-HiP-MLFMA [18]. This approach works by transitioning
from partitioning in space at lower levels to directions at higher
levels; B-HiP-MLFMA optimizes the manner, in which the
directions are partitioned. In these methods, one uses a number
of processors that is either a power of 2 (for HiP-MLFMA) or a
power of 4 (for B-HiP-MLFMA).

Another algorithm [19] that has also shown excellent scal-
ability and performance takes a different approach; using
postorder traversal, the resulting self-similarity of the tree
as well as direction partitioning yields an algorithm that
scales very well [19]. The salient features of this algorithm
are: 1) wideband MLFMA for analysis from low to high
frequencies; 2) global (exact) interpolation and anterpolation;
3) demonstrated error control (L2 error norm against analytical
data); and 4) adaptive direction partitioning that is dictated
by the number of duplicate nodes; for the purposes of this
discussion, it will be referred to as AP-MLFMA, for “adaptive
partitioning.” It was shown that the matrix vector product
(matvec) times of AP-MLFMA are highly competitive with
others. To a large extent, each of these methods assume a
uniform tree.

Despite this progress, several open problems remain, partic-
ularly for wideband and multiscale MLFMA systems. These
can be summarized as accuracy in deep nonuniform trees
and their relative tradeoffs in developing efficient parallel
algorithms. To wit, both HiP- and AP-MLFMA offer a solution
to a portion of the problem. The former relies on local
inter/anterpolation, which has linear asymptotic complexity
but requires significant oversampling, resulting in an increase
in cost. It is also inaccurate, as one needs a filter at the
anterpolation stage [9], [20], [21]. On the positive side,
HiP-MLFMA is easier to parallelize. The AP-MLFMA uses
global (exact) inter/anterpolations so the accuracy can be well
controlled, and the sampling is optimal and predetermined.
However, developing parallel algorithms for this approach is a
challenge; in addition, memory costs required to store matrices
for inter/anterpolation on each node limit the height of the tree.
Both HiP- and AP-MLFMA do not include nonuniform trees
within their parallel frameworks. Algorithms that address both
wideband and multiscale nature of the problems implies that
one needs both the capability of handling low frequencies as
well as adaptive nonuniform trees [9], [15], [22]; while such
algorithms exist in serial, the literature on parallelization is
extremely sparse with each [19], [23] addressing a portion of
the problem.

The principal contribution of this paper is to address these
extant deficiencies; our objective is to provide a parallel
computational framework for computing fields arising from
realistic distributions with the following properties.

1) It is a methodology whose accuracy can be controlled
to desired precision.

2) It includes transitions to low frequencies and nonuniform
distributions.

3) The sampling of the spectrum is optimal and over-
comes memory bottlenecks associated with global
inter/anterpolations.

4) It is efficient in terms of scalability and execution times.
We present a number of results to demonstrate the accuracy
of the numerical methods and the performance of the paral-
lel algorithms presented here. The methodology extensively
extends the work [15], [19] on ACE-AP-MLFMA.

The rest of this paper is organized as follows. Section II lays
out the EM scattering problem to be solved. In Section III,
we review the wideband MLFMA, establish the need for
filters for anterpolation, develop transitions between spherical
harmonics and Fourier series for interpolation/anterpolation,
nonuniform trees for multiscale features, and an interpolation
method for saving memory. Section IV outlines the parallel
algorithm, and finally, Section V demonstrates the error control
and performance of the serial and parallel algorithms.

II. PROBLEM STATEMENT

Consider an object residing in a region D ∈ R
3 bounded by

the surface ∂D, the perfectly conducting portion of which is
denoted by S. Let {Ei (r), Hi (r)} denote electric and magnetic
fields that are incident on this object, µ and ε denote the
magnetic permeability and electric permittivity of the medium,
respectively, and k = ω

√
µε denote the wavenumber for

frequency ω. The intrinsic impedance of the medium is
denoted by η = √

µ/ε. The field scattered by the object may
be obtained using a combined field integral equation (CFIE)
formulated in terms of the unknown electric surface current
density J(r) on S. For r ∈ S

αn̂ × n̂ × Ei (r) + (1 − α)n̂ × Hi (r)

= −αL{J}(r) + (1 − α)K{J}(r) (1)

L{J}(r) .= n̂ ×
(

n̂ ×
∫

S

G(r − r′) · J(r′) d S′
)

(2)

K{J}(r) .= n̂ × 1

jkη

(

∇ ×
∫

S

G(r − r′) · J(r′) d S′
)

(3)

G(r − r′)
.= − jkη

[

I + ∇∇
k2

]

g(r − r′) (4)

where

g(r − r′)
.= e− j k|r−r′ |

4π |r − r′| (5)

is the scalar Helmholtz Green’s function and n̂
.= n̂(r) denotes

the unit normal to S at the point r. Solving for J via the
method of moments (MoM) involves the discretization of (1),
typically by expansion and testing with the classic RWG
basis functions [24] defined on a triangular mesh. To do so,
we expand the unknown surface current as

J(r) =
Ns
∑

n=1

Infn(r) (6)

where fn(r) denotes the RWG function associated with the nth
edge, and Ns is the total number of edges in the mesh. The
Ns × Ns matrix equation resulting from the MoM procedure
may be expressed as

Z I = V (7)
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where I = {I1, . . . , INs }T is the vector of unknown coeffi-
cients, and the elements of the matrix Z and vector V are
given by Galerkin testing (1).

Solutions to (7) are typically effected using an itera-
tive solver, for instance, the generalized minimal residual
(GMRES) method. Coupling this equation with an accelerator
amortizes the cost of the matvec; the most popular of the
accelerators being the MLFMA method [25]. Next, we discuss
challenges and their resolution when these methods are applied
for multiscale analysis.

III. CHALLENGES AND REMEDIES FOR

PARALLEL MULTISCALE ANALYSIS

All acceleration methods for accelerating the solution of
(7) rely on the fact that the matrix Z may be partitioned into
a matrix Z N F of near interactions and a matrix Z F F of far
interactions, or

Z = Z N F + Z F F . (8)

This partitioning is founded on the notion that matvecs with
Z F F can be computed in O(Ns log Ns ) time, and those with
Z N F can be computed in O(Ns ) time. Developing crite-
ria for such a partitioning for multiscale problems poses
challenges from both computational and parallelization per-
spectives. These challenges arise from the nonuniformity of
discretization and their distribution. To set the stage, assume
that the spatial distribution of unknowns can be mapped onto
a uniform octree data structure. The root of the tree contains
all unknowns, and the leaves of the tree correspond to clusters
of unknowns, serving as the interface between the tree and
the unknowns. The matvec with Z F F is effected by using
appropriate operators to traverse up, down, and across the
tree. Assume that the minimum size of a leaf is around 0.2λ.
In a multiscale scenario, a leaf box may contain too many
unknowns, thus dramatically increasing computational costs of
near-field interactions and overwhelming the cost complexity
of the MLFMA. This can be overcome using a judicious
choice of representations for the Green’s function that enables
a low-frequency stable decomposition, as in [7], [9], and [11];
here, we employ the ACE method [14], [15]. Enabling this
results in a tree that could potentially have MLFMA leaves
that are then roots of subtrees that extend downward. From
a computational perspective, one needs to develop operators
to efficiently transfer information between nodes (both at the
same level and between levels).

Another bottleneck is accurate traversal up and down the
tree. As will be shown later, a provably accurate approach
is to use a global representation of radiated field or use
a local bandlimited representation [26]–[28]. For the latter,
the price paid is the oversampling required for the same
accuracy. However, the downside of using global methods is
the challenges it poses in terms of memory requirements for
storing interpolation coefficients at higher levels in the tree
as well as parallelization. As a result, an efficient strategy
for deep trees would use a spherical filter that uses spherical
sampling up to a certain level, switches to a fast Fourier
transform (FFT)-based filter using uniform sampling [29] to

Fig. 1. Illustration of the target computational strategy for representing
interactions in a general multiscale geometry. Each T represents operations
performed with the subscripted method, e.g., ACE, spherical and uniform
interpolation/anterpolation, and local band-limited interpolation/anterpolation.

save on memory, and then a local bandlimited filter with linear
complexity to leverage parallelism. This concept is illustrated
in Fig. 1. While we leave the discussion of local bandlimited
interpolation and modification of parallel algorithms to [30],
we shall extensively discuss spherical and uniform sampling,
transitions between the two, and parallelization strategies that
one can employ. In what follows, we will explore each of these
issues in greater detail. Note that, the exposition will focus on
evaluation of the scalar Green’s function; changes necessary
to effect these operations for the dyadic Green’s function are
well-known and only those subtleties that are not well-known
are elaborated upon.

A. Nonuniform Trees

MLFMA relies on construction of octrees to partition near
and far interactions. Here, we briefly discuss creating such lists
for nonuniform distributions. Consider a box b at any level in
the tree; we denote its parent by P(b) and its grandparent by
P2(b) and so on up the tree. Boxes that share a spatial location
(vertex, edge, or face) with b are identified as being in its near
field. If two boxes are of the same size and share a spatial
location, they belong to each other’s U -lists. Likewise, if two
boxes are of the same size, do not share a spatial location, and
their parents are in the near field of each other, they are in each
other’s far-field or V -lists. To handle nonuniform distributions,
we develop an adaptive tree [22] starting with a uniform tree
representation, where all leaf boxes reside precisely at the
same level, merging siblings subject to the rule that their parent
does not contain more than some specified smax DoF.

An important consequence of adaptive methods is the intro-
duction of far-field interactions between boxes at different
levels of the tree, or cross-level interactions. These interac-
tions, deemed the X- and W -lists, are discovered during the
construction of the near and far interaction lists in the fol-
lowing manner. Consider a box b. To construct its interaction
lists, we generate all hypothetically interacting boxes with b

at the same level according to the scheme described earlier,
and we perform a top-down search of the octree to locate
each such hypothetical box h. If h itself is found in the tree,
it is obviously added to the appropriate U - or V -list. If the
search for h dead-ends on an ancestor Pn(h) that is not a leaf,
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the interaction pair (b, h) is discarded; however, if Pn(h) is a
leaf and it satisfies the conditions of the present interaction list,
we retain (b, Pn(h)) in the X-list and its reciprocal interaction
pair (Pn(h), b) in the W -list.

The computational procedure is as follows.
1) Construct the nonuniform tree and delineate near and

far-field interactions.
2) Precompute and store near field interactions.
3) For any matvec,

a) Compute contributions due to the near field.
b) Compute contributions due to the far field:

i) For all leaves, compute charge to multipole
(C2M).

ii) Construct multipole information for all boxes
from those of their children [multipole-to-
multipole (M2M)]. This operation is level
dependent, and one needs the following oper-
ators: MAC E −→ MAC E , MAC E −→ Msph ,
Msph −→ Msph , Msph −→ Muni and
Muni −→ Muni .

iii) Translate from multipole to local (M2L) expan-
sion. For nonuniform trees, this would involve
constructing operators for both in- and across-
level translations.

iv) Construct local expansions for all boxes from
those of its parent [local-to-local (L2L)]. This
is a conceptual inverse of the M2M operation
and one needs to develop identical operators to
traverse down the tree.

v) From local expansions at leaves, construct far-
field information at all observers [local-to-
observer (L2O)].

c) Sum the contributions of near and far fields.

B. Low-Frequency Analysis

Over distances or length scales which are small relative to a
wavelength (< 0.25λ or so), the oscillatory behavior of g over
larger distances gives way to quasi-static behavior which can
be accurately modeled using Taylor series expansions. This
is the foundation of the ACE method [14], [15] for the low-
frequency Helmholtz problem.

Consider the evaluation of the potential 9(r) due to a source
distribution u(r)

9(r) =
Ns
∑

n=1

un g(r − r′
n). (9)

To compute the potentials between regions that are sufficiently
separated, ACE [14], [15] dictates that the potential due to s′

sources with location and strength {rm, um}, m = 1, . . . , s′

within the region �s centered at rc
s can be written as

9F F (r) =
∞
∑

n=0

M(n)
(

rc
s

)

· n · ∇(n)g
(

r − rc
s

)

(10)

where ·n· denotes an n-fold tensor contraction, M(n) is
the multipole tensor representing the sources within �s ,
and the tensor ∇(n)g(r − rc

s ) is an n-fold tensor operand

Fig. 2. Graphical illustration of the addition theorem and some notation.

on the Green’s function. Details for these expressions,
as well as aggregation operators MAC E −→ MAC E and
MAC E −→ Msph and their counterparts for disaggregation,
are available in [15]. Operators addressing translations across
levels are presented later in this section.

C. MLFMA

The derivation of MLFMA and its multilevel variant are
well-known [25], [29], [31], [32]. Given the wealth of papers
in this area over the past few decades, it seems somewhat
presumptuous to contend that there is significant new infor-
mation to be added to the literature. The purpose of this
section is somewhat different. In keeping with our goal of
controllable accuracy, we will describe methods that permit
both better understanding and error control. We start with a
2-level description of MLFMA that is based on the integral
representation of the Green’s function

g(X + d) ≈ − jk

(4π)2

∫

S2
e− jk·(ds+do)T (k, X)d2k̂ (11)

where the translation operator T is given by

T (k, X)
.=

∞
∑

n=0

(− j)n(2n + 1)h(2)
n (k X)Pn(k̂ · X̂) (12)

with k = kk̂. Here, S2 denotes the unit sphere, parametrized
by (θ, φ) ∈ [0, π] × [0, 2π]. We note that k = k(θ, φ),
and use these notations interchangeably. Fig. 2 illustrates
the decomposition of |r − r′| into |X + d(1)|, where d(l)

denotes the sum of particle-to-center vectors at level l with
l = 1 being the leaf level. We denote the centers of boxes
containing r′ and r as rc

s (1) and rc
o(1), respectively. It follows

that d = r − rc
o(1) + rc

s (1) − r′. The rules to evaluate the
spectral integral are well-understood and in place [9], [15],
[20], [29], [32]. The far-field part of the potential (9) is
evaluated using

9F F (r) ≈ − jk

(4π)2

∫

S2
e− jk·do(1)U1(θ, φ)d2k̂ (13)

where the local expansion U1 of the observer box is

U1(θ, φ)
.= T (k, X)V1(k) (14)

and V1 denotes the multipole expansion of the source box

V1(θ, φ) =
s ′

∑

i=1

ui e
− jk·

(

rc
s (1)−r′

i

)

. (15)
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In what follows, we discuss the intimate connection between
integration, interpolation (Vl(θ, φ) −→ Vl+1(θ, φ)), and anter-
polation (Ul+1(θ, φ) −→ Ul(θ, φ)).

1) Inter/Anterpolation and Spectral Integration: Let us
revisit (11). It is well-known that the plane wave expansion
gives us

e− jk·(ds(1)+do(1)) ≈ S(kd, θ, φ)

=
Nh (1)
∑

n=0

n
∑

m=−n

anmYnm (θ, φ) (16)

where d = |d(1)| = |ds(1)+do(1)|, and anm are known coeffi-
cients of the normalized spherical harmonics, Ynm(θ, φ), used
to represent the plane wave. Given that T (k, X) can be written
as T (k, X) =

∑∞
n=0

∑n
m=−n bnm(k|X|)Y ∗

nm(θ, φ), it follows
that (16) filters the above representation via (11), i.e.,
∫

S2
S(kd, θ, φ)T (k, X)d2k̂

=
∫

S2
d2k̂

⎡

⎣

Nh (1)
∑

n=0

n
∑

m=−n

anmYnm(θ, φ)

⎤

⎦

×
[ ∞
∑

n=0

n
∑

m=−n

bnmY ∗
nm(θ, φ)

]

=
∫

S2
d2k̂ S(kd, θ, φ) ·

⎡

⎣

✚∞Nh (1)
∑

n=0

n
∑

m=−n

bnmY ∗
nm(θ, φ)

⎤

⎦. (17)

The filter due to S(kd, θ, φ) follows from the fact that if higher
order terms (n > Nh (1)) are present, they integrate to zero
analytically. In other words, S(kd, θ, φ) effectively band-limits
the spectrum of the incoming wave. As a result, the integration
rules (and the number of harmonics of the translation operator)
are chosen to exactly integrate polynomials of order 2Nh (1)

present in (11). If polynomials of order higher than 2Nh (1)

were present, then while they should theoretically integrate to
zero, they would not do so numerically if the integration rule
is not chosen appropriately.

Given the bandwidth of S(kd, θ, φ), the number of
quadrature points/samples required to completely represent
S(kd, θ, φ), i.e, obtain all coefficients anm , is (Nh (1) + 1) ×
(2Nh (1) + 1). To evaluate the integral (11) numerically, one
should be able to recover bnm from samples of T (k, X), and
vice-versa. An integration rule to be used can be defined using
Nh (1) = ⌈χsk D(1)⌉, Nθ (1) = Nh (1) + 1, and Nφ(1) =
2 Nh (1) + 1, where D(1) is the diameter of a sphere that
encloses the leaf box, and χs ≥ 1 is a factor controlling the
accuracy of the approximation of g.

In a multilevel scenario, the same logic holds at every
level. That is, both the contributions from that level and
those from its parents should be representable in terms of
spherical harmonics up to a chosen order. This implies that
one needs to develop an anterpolation operator to effect a
filter of the incoming spectra to enable a transition from parent
to child, or in terms of representation, reduce the maximum
degree of spherical harmonics used from Nh(i +1) −→ Nh (i).
To control errors arising from this transition, it is necessary
to understand the spectral properties of the anterpolation

operator used; local algebraic inter-/anterpolation operators do
not accomplish the necessary filtering, and errors accrued due
to lack of a proper filter are exacerbated in deep trees. For this
reason, we will use bandlimited anterpolants. As discussed in
Section IV, using such global operations poses bottlenecks in
parallelization.

Thus far, we have established the need for filters to perform
interpolation on outgoing expansions (Vl(θ, φ)) and more
importantly, anterpolation on incoming expansions Ul(θ, φ).
In order to treat both expeditiously, we denote both using
3l(θ, φ). The two variations that we have used are spherical
harmonics and Fourier transforms. Spherical filters as used
in [21] and [33] result in optimal sampling of the far-field data.
An alternative approach is to use Fourier transforms in both
angular directions [29], requiring uniformly spaced samples.
Obviously, the tradeoff is O(Nh (l)3) memory required to effect
the Legendre transforms versus doubling of the sample count
required for the latter. The approach we espouse is to choose
a transition level at which the representation switches from
spherical to uniform sampling.

a) Spherical filters: Spherical filters are based on project-
ing an incoming or outgoing field pattern 3l onto spherical
harmonics as

3l(θ, φ) =
Nh (l)
∑

n=0

n
∑

m=−n

λl,nm Ynm(θ, φ) (18)

and then performing the various down- and up-sampling
operations. We shall not delve into details, as these are well-
known and obtainable from [33].

b) Fourier filters: The concept of using Fourier trans-
forms was first introduced into the FMM literature by Sar-
vas [29]. The key to this approach was the realization that the
angular domain of the associated Legendre function can be
extended from [0, π] → [0, 2π] [34]. To summarize, 3l(θ, φ)

can be extended to the entire sphere as

3̃l(θ, φ) =

⎧

⎪

⎨

⎪

⎩

3(θ, φ) (θ, φ) ∈ [0, π] × [0, 2π]
3(2π − θ, φ + π) (θ, φ) ∈ [π, 2π] × [0, π]
3(2π − θ, φ − π) (θ, φ) ∈ [π, 2π]2.

(19)

If the spectrum of 3l(θ, φ) is bandlimited to Nh(l) harmonics,
then, it can be written as

3̃l(θ, φ) =
Nh (l)
∑

n=−Nh (l)

Nh (l)
∑

m=−Nh (l)

λ̃l,nme− j nθe− jmφ. (20)

It follows that one needs to sample at (2 Nh (l) + 1) ×
(2 Nh (l) + 1) uniformly on the sphere to recover the coef-
ficients λ̃l,nm . Using the above representation, we can write
(13) as

9F F (r) ≈ − jk

32π2

∫ 2π

0
dθ | sin θ |

∫ 2π

0
dφe− jk·do(1)3̃1(θ, φ).

(21)

In (21), | sin θ | is not bandlimited. But as discussed earlier,
3̃1 filters the rest of the integrand such that one can represent
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| sin θ | in terms of a finite Fourier series. Specifically,

| sin θ | ≈ s̃(θ) =
Nh (1)
∑

n=−Nh (1)

sne− j nθ . (22)

As a result, it follows that the highest order of harmonics in θ

is 2 Nh(1), and the integration rules must be designed such that
one can evaluate (21) using (4 Nh (1)+1)×(2 Nh (1)+1). This
is done using uniform sampling in both θ and φ directions;
reduction of this number by about a factor of two can be
accomplished by leveraging symmetries [29]. Furthermore,
we note that as is the usual practice, we can embed | sin θ |
within the translation operator; we can also filter this expres-
sion [35]. As a result, one needs to evaluate an integral of the
form

9F F (r) ≈ − jk

32π2

∫ 2π

0
dθ

∫ 2π

0
dφe− jk·do(1)ϒ̃1(θ, φ)

(23)

where ϒ̃1(θ, φ) = s̃(θ)T (k, X). As before, these ideas can be
trivially extended to a multilevel setting.

c) Spherical to uniform and vice-versa: Both spherical
and uniform interpolation have their drawbacks in terms of
costs. Transitioning from one method to the other yields a
computationally efficient scheme. To facilitate this, in what
follows, we present the means to do so. Consider the transi-
tion from spherical to uniform. The procedure is straightfor-
ward, i.e.,

3l(θ, φ)
sph−−→ λl,nm

uni−−→ 3̃l+1(θ, φ) (24)

where the stacked symbols indicate the sampling regimes and
embed a shift operation for upward traversal. Equation (24)
indicates that one obtains from the spherical samples of
3l(θ, φ) coefficients λl,nm and then uses these to construct
the requisite samples at uniform points in the [0, 2π]×[0, 2π]
grid, and then shift these from the center of the child box to
that of its parent. Note that, one can exploit symmetry to store
field samples only in the [0, π]×[0, 2π] grid by using an even
number of samples in φ.

Next, to effect the transition from uniform to nonuniform
sampling, we consider (23)

9F F (r) ≈ − jk

32π2

∫ 2π

0
dθ

∫ 2π

0
dφe− jk·do(1)ϒ̃1(θ, φ)

= − jk

(4π)2

∫ π

0
sin θdθ

∫ 2π

0
dφe− jk·do(1) ϒ̃1(θ, φ)

sin θ
.

(25)

As is evident from (25), the integration has been reduced back
to the unit sphere. However, the integration is challenging
as ϒ̃1(θ, φ)/ sin θ is not bandlimited in terms of spherical
harmonics. To effect the integral, we have to resort to the
notion that the the effective bandwidth of e− jk·do filters the
rest of the integrand. That is,

1

sin θ
ϒ̃1(θ, φ) =

Nh (1)
∑

n=0

n
∑

m=−n

υ1,nmYnm(θ, φ). (26)

To obtain υ1,nm we evaluate

υ1,nm =
∫ π

0
dθ

∫ 2π

0
dφϒ̃1(θ, φ)Y ∗

nm(θ, φ). (27)

Equation (27) can be evaluated exactly by defining an extended
spherical harmonic as

Ŷnm(θ, φ)

=

⎧

⎪

⎨

⎪

⎩

Ynm(θ, φ) (θ, φ) ∈ [0, π] × [0, 2π]
Ynm(2π − θ, φ + π) (θ, φ) ∈ [π, 2π] × [0, π]
Ynm(2π − θ, φ − π) (θ, φ) ∈ [π, 2π]2.

(28)

The periodic extension of the normalized spherical harmonics
can be represented in terms of a Fourier series, and as a result,
the integral

υ1,nm = 1

2

∫ 2π

0
dθ

∫ 2π

0
dφϒ̃1(θ, φ)Ŷ ∗

nm(θ, φ) (29)

can evaluated exactly using uniform samples of ϒ̃1(θ, φ) that
are available to us with a trapezoid rule in both dimensions.

2) Subtleties for Vector Fields: The algorithm of this paper
uses four trees: one each for component of the magnetic vector
potential and one for the scalar potential. This is the point form
of MLFMA that addresses integration issues [36]. Alterna-
tively, one can develop MLFMA with either two or three trees.
The two tree version is the usual dyadic MLFMA and requires
either vector spherical harmonics [21] or the Fourier method
modified to account for the antisymmetry of the transverse
fields [37], whereas the three tree version requires mapping
onto the three components of electric fields, Ex , Ey, Ez , and
employing the scalar filters espoused here. Multiplication of
fields of the form (18) by the dyad θ̂ θ̂ + φ̂φ̂ increases the
polynomial order by two, requiring a commensurate increase
in the size of the integration rule.

D. Cross-Level Interactions

Cross-level interactions, e.g., interactions between boxes of
different sizes, occur as a consequence of a nonuniform tree.
The addition theorems used to derive either MLFMA or ACE
are generally not valid for such interactions. To circumvent
this issue, we subsume either do or ds , depending on the
interaction, into the translation heading X. If the source box
�s is smaller than the observer box �o, i.e., |�s | < |�o|,
the source multipole expansion is valid everywhere within �o,
implying X ← X + do. The source multipole expansion is
consequently translated from its expansion center rc

s directly
to each particle within �o. Such interactions are tabulated in
the X-list. Conversely, if |�s | > |�o|, we take X ← X + ds ,
translating each particle within �s to the center rc

o of �o,
adding to the local expansion. These interactions are tabulated
in the W -list. Both of these forms of the addition theorem
are always valid for well-separated interactions. The essential
criterion is that the two boxes are separated by at least one
box of the same size as the smaller interacting box.

The interaction “type” is determined by the field represen-
tation (ACE or MLFMA) of the smaller of the two boxes.
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Consider evaluation of (9) between source and observation
points in �s and �o, respectively. Let M(n) be the ACE
multipole tensor representing the sources within �s centered
at rc

s . Then, we may write

9(r) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∞
∑

n=0

M(n) · n · ∇ng
(

r − rc
s

)

, |�o| > |�s |
∞
∑

n=0

(

r − rc
o

)n · n · L(n), |�o| < |�s |
(30)

where

L(n) =
N

∑

i=1

ui

n!∇
n g

(

rc
o − ri

)

. (31)

In the MLFMA, we have

9(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫

S2
T

(

k, r − rc
s

)

V
(

k, rc
s

)

d2k̂, |�o| > |�s |
∫

S2
e
− jk·

(

r−rc
o

)

U
(

k, rc
o

)

d2k̂, |�o| < |�s |
(32)

where V (k, rc
s ) is the source multipole expansion, and

U
(

k, rc
o

)

=
N

∑

i=1

ui T
(

k, rc
o − ri

)

(33)

represents the local expansion within �o of the sources.
As with the interaction type, the band limit for the translation
operator T is determined by the smaller of the two boxes.

It should be noted that the ACE translation operator is valid
only over electrically small distances [15], so care should be
taken to ensure that translations from a box at the coarsest
ACE level to points within MLFMA boxes fall within this
radius. For this purpose, 2:1 balancing of the octree [38] at
this level suffices.

E. Interpolation of MLFMA Translation Operators

To reduce the storage overhead associated with translation
operators, interpolation in k̂ · X̂ may be used [39]. However,
this scheme is untenable for large numbers of X- and W -list
interactions, as it requires the number of unique translation
distances to be small. To ameliorate this cost, we can also
interpolate in the argument of the spherical Hankel function
to further reduce the storage without significantly reducing
the accuracy of the MLFMA. It is well-known that we may
pull out a phase–magnitude term independent of n, obtaining
h

(2)
n (z) = (e− j z/z)h̃

(2)
n (z). It is then common to all elements

of the series T , and we may implicitly define a smoother,
phase- and amplitude-compensated translation operator T̃

T (k, X) = e− j k X

k X
T̃ (k, X). (34)

We employ the Lagrange interpolating polynomials `n(x) of
order p. For a given level, let k Xmin , k Xmax denote the
minimum and maximum translation distances, respectively.
The interpolation nodes are chosen to give a high density near
k Xmin and a lower density near k Xmax because the function
to be interpolated goes as O((k X)−m), m = 0, . . . , Nh (l) + 1.
The nodes are chosen as follows. Let a = k Xmin − 11 and

TABLE I

COMPARISON OF L2 RELATIVE ERROR DATA FOR

TRANSLATION OPERATOR INTERPOLATION

WITH AND WITHOUT COMPENSATION

b = k Xmax + 12 be the beginning and end of the sampling
interval, respectively, where 11,12 are small extensions of
the interval, and J be the number of k X values to interpolate
over. Then, for j = 1, . . . , J , we let

x j = a + (b − a)

[

1 − cos

(

( j − 1)π

2(J − 1)

)]

(35)

denote the j th interpolation node. Let p denote the order of
interpolation polynomials used. The interval extensions are
chosen as

11 = p(k Xmax − k Xmin)

[

1 − cos

(

π

2(J − 1)

)]

12 = p(k Xmax − k Xmin) cos

(

(J − 2)π

2(J − 1)

)

(36)

so that the extensions are the size of only p subintervals
at the beginning and end. This prevents extension of the
interpolation interval into the explosion zone of the spherical
Hankel functions.

We store samples of the compensated translator T̃ for level
l in a matrix Tl defined as

[Tl ]mn
.= T̃

(

cos βm ,
xn

k

)

(37)

where {βm} is a set of uniformly spaced samples on
[−q1β, π +q1β ], with interpolation order q and spacing 1β .
Then, for each translation distance k X in the interaction list
at level l, we precompute the interpolation weights {w j =
` j (k X)}, j = 0, . . . , p for reconstructing the compensated
translator T̃ from the columns of Tl as

T̃ (cos βm , k X) ≈
p

∑

j=0

w j [Tl ]m(Q+ j ) (38)

where Q is the index of the first-occurring sample xQ used
in the interpolation, determined by binary search. During the
evaluation phase, (38) is evaluated to obtain the samples for
the interpolation in k̂ · X̂ . The result of this interpolation is
then multiplied by the phase–magnitude factor e− j k X/k X to
complete the process. The complexity is, therefore, increased
only by a constant factor of (p + 1) ∼ O(1). Table I
summarizes the reconstruction error over a range of translation
distances normalized by box size using 2Nh (l) samples and
p = 3. The average error is reduced by a factor of two
when switching from uniform sampling to cosine sampling,
and another factor of two is gained by phase–amplitude
compensation. The maximum error at any point within the
interval is reduced significantly by the approach described
here.
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IV. SUMMARY OF PARALLEL WIDEBAND

MLFMA ALGORITHM

In this section, we provide a brief outline of the parallel
ACE-AP-MLFMA algorithm used to obtain the numerical
results presented in Section V (more details will be provided
in [30]). The parallel algorithm we use is based on that
presented in [19] with a number of important improvements.
We would like to point out that this algorithm is effectively a
bottom-up tree construction/partitioning algorithm, and com-
pared to the top-down HiP schemes used in [17] and [40],
it gives us important advantages in terms of data partitioning
and load balancing (LB) for nonuniform trees as discussed in
the following.

A. Tree Construction

Our bottom-up tree construction starts by assigning points to
leaf boxes according to a prescribed leaf level box size (essen-
tially creating a uniform tree to begin with). Using a parallel
bucket-sort algorithm, these leaf boxes are then partitioned into
contiguous chunks with the objective of balancing the number
of points assigned to different processes. After this initial
partitioning, each process constructs the upper levels of its
own tree based on its leaf boxes. This scheme will obviously
result in sparsely populated leaf nodes given the nonuniform
particle distributions in our target problems. Therefore, starting
at the leaf level and working up the tree, each process merges
its sparsely populated tree nodes. To be precise, if the total
number of particles owned by the children of an internal tree
node is below a predetermined threshold smax , then those leaf
nodes are merged at the parent node, making the parent a
new leaf node. Since the octree is distributed across processes,
such merge operations are performed recursively at the higher
levels in coordination with neighboring processes. Interaction
lists are subsequently computed on the merged tree.

B. Load Balancing

Even distribution of the computational work is crucial to
achieve scaling to a large number of processes. Two major
issues make LB for the MLFMA algorithm challenging:
1) electrically large objects result in deep trees that contain
a significant amount of work across a small number of high-
level tree nodes and 2) the nonuniform octree structure has a
work profile with high variability.

We address the first issue by inheriting the adaptive direc-
tion partitioning idea, first presented in [19]. Note that, the
bottom-up partitioning approach described above results in
overlapped tree regions between processes, i.e., internal tree
nodes at process boundaries may appear in the partial trees of
multiple processes. We call such nodes as duplicate nodes, and
to balance the load in deep trees, we distribute the multipole
expansion data for these nodes as well as the computations
(inter/anterpolations and translations) associated with them
evenly across all duplicating processes. As discussed in [30],
this paper significantly improves the implementation of the
basic direction partitioning idea by leveraging better paral-
lelism, nonblocking collective communication primitives, and
an efficient distributed execution schedule.

The LB issue associated with nonuniform trees is addressed
using an empirical cost evaluation technique. Specifically, each

process computes the interaction lists for nonduplicate nodes
within its own partial tree and evaluates how much time
it takes to perform a sample set of kernel operations
(inter/anterpolations and translations) on the given hardware.
It then assigns a computational load to each tree node, starting
from the highest level by taking into account the empirical
kernel costs and the number of interactions each tree node has.
These costs are then percolated all the way down to the leaf
nodes. Finally, the nonuniform MLFMA tree is repartitioned
such that the empirical costs of the contiguous chunks of leaf
nodes assigned to each process are evenly distributed.

Algorithm 1 Parallel MLFMA matvec

1) Near-field matvec

2) Charge/Multipole-to-multipole (C2M/M2M)

• Compute multipole expansions for unique interior
nodes in post-order sequence.

• Initiate asynchronous reduce-scatters for direction
partitioned duplicate nodes

3) Parallel update and interpolation

• Complete reduce-scatters
• Interpolate/shift duplicate node expansions using

coarse-grained parallelism at ACE & spherically
sampled levels and fine-grained parallelism at uni-
formly sampled levels

4) Multipole-to-local (M2L):

• Initiate asynchronous communications for multipole
expansions of source/observer node pairs located at
different processes

• Apply M2L operations for local source/observer
nodes located on same process

• Complete communications for non-local source
multipole expansion data & perform M2L

5) Parallel update and anterpolation

• Gather complete local expansion for each duplicate
node from all its users

• Shift/anterpolate duplicate node expansions using
fine-grained parallelism at uniformly sampled levels
and coarse-grained parallelism at ACE & spherically
sampled levels

6) Local-to-local/observer (L2L/L2O)

• Shift and anterpolate local expansions for unique
interior nodes in pre-order sequence

• Compute fields from local expansions

C. Parallel Evaluation

Algorithm 1 provides a broad overview of the parallel
matvec. Parallelism is applied in three different forms in the
M2M phase. Each process first performs the serial computa-
tions for their own unique interior nodes, which are nodes
that strictly belong to a single process. Second, duplicate
nodes in the ACE and spherically sampled levels are handled
using coarse-grained parallelism, where all processes sharing a
duplicate node compute the interpolations for the children they
own sequentially and reduce or reduce-scatter, for ACE and
MLFMA, respectively, the results among all sharing processes
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using nonblocking message passing interface (MPI) collec-
tives. As the third form of parallelism, duplicate nodes above
the spherical-to-uniform transition level are interpolated using
a fine-grained parallel version of the FFT-based interpolation
algorithm. The partial multipole data for each duplicate node
in this category is shifted, summed, and partitioned over the
duplicating processes in parallel.

Translations in the M2L phase follow a similar strategy as
above, where all processes begin with sequentially computing
translations within their own trees, then exchange multipole
data with neighboring processes and process them as they
arrive—effectively overlapping computation and communi-
cation. Due to the presence of cross-level interactions in
nonuniform trees, these computations are organized into three
subphases corresponding to X, V , and W lists. We note
that one important shortcoming of the present parallel M2L
implementation is that all translation data for duplicate nodes
need to be communicated to the resident process, i.e., the
designated receiving process for each duplicate node, which
then applies them one by one—this can potentially create
performance bottlenecks for high-level nodes in deep trees.

Finally, the L2L phase is performed by essentially mim-
icking M2M in the reverse order. As an artifact of the
limited parallelization of duplicate nodes mentioned above,
L2L phase starts with broadcasting the local expansions of
duplicate nodes from the resident process to the duplicating
processes. After this initial communication, anterpolation and
disaggregation of the duplicate nodes above the spherical-to-
uniform transition level are performed in distributed fashion.
Once all parallel anterpolations are completed, all processes
can independently perform the sequential L2L operations for
their internal nodes.

V. NUMERICAL RESULTS

A. Accuracy Analysis

In this section, we demonstrate the controllable accuracy
of each interpolation/anterpolation method discussed in this
paper, namely, spherical, uniform, and hybrid. We also discuss
tradeoffs between these methods in terms of memory and run-
time. The examples in this section were run using a single core
on a desktop computer with an Intel Xeon E5-2630 CPU with
a clock speed of 2.3 GHz and 64 GB RAM. All computations
use double precision arithmetic, and FFTW 3.3.5 is used for
performing FFTs in the interpolation and anterpolation stages.

1) Hybrid Sampling MLFMA Error Control: To illustrate
the accuracy of the proposed hybrid sampling and interpola-
tion/anterpolation method, we consider a uniformly random
distribution of 256 000 randomly oriented dipoles of unit
strength within an 8λ×8λ×8λ cubical domain. The box size
is chosen to be 0.25λ, resulting in a six-level uniform octree.
Neither ACE nor interpolation of the MLFMA translation
operator is used in this experiment. For the upper levels of
the tree, a cap was enforced on the bandwidth to prevent
numerical breakdown of the translation operator. Using three
buffer boxes, we study the error convergence of the far-
field contributions for each of the spherical, uniform, and
hybrid methods outlined in Section IV. For the hybrid scheme,

Fig. 3. (a) Error convergence and (b) matvec timings versus oversampling
parameter χ for each sampling/interpolation method in the 8λ cube geometry.

TABLE II

MEMORY CONSUMPTION AND TIMINGS FOR DIFFERENT

HYBRID SAMPLING TRANSITIONS

the transition was chosen so that only the bottom two levels
use the spherical scheme. These data are shown in Fig. 3(a).
As the oversampling parameter χ is increased, each method
converges in a nearly identical manner, demonstrating that
the hybrid method introduces no error. Fig. 3(b) shows the
time taken per matvec for each method. The hybrid scheme
only adds a few seconds to the baseline time taken by the
purely spherical scheme, while the uniform-only scheme takes
roughly twice as long on average, as expected. For contrast,
direct evaluation of the far field matvec takes 5128.029 s on
the same machine.

2) Tradeoffs for Hybrid Sampling: We have already seen
the effect of purely uniform sampling on runtime due to the
doubled sampling rate throughout the tree. The results for the
hybrid sampling scheme suggest that the extra cost of fully
uniform sampling comes principally from performing M2L
operations while oversampling at the finest levels of the tree
where most boxes exist, as expected. Conversely, the optimal
sampling rate for the spherical scheme gives the best runtime,
but at the expense of precomputing and storing samples of
associated Legendre functions Pm

n to perform interpolation and
anterpolation via the spherical harmonics transform. To study
the tradeoffs, we examine the case of 256 000 dipoles distrib-
uted on a 256λ×256λ square in the xy plane. Using leaf-level
boxes of diameter λ/4, the uniform tree is 11 levels deep, and
a one-buffer box rule is used. The oversampling rate is fixed
at χ = 1.0.

We examine memory consumption and matvec time for
different values of the finest spherical sampling level Lsu .
Table II shows the memory required for storing Pm

n samples,
multipole and local expansions, and M2L operators, and the
serial matvec time versus Lsu .

While these data are collected using a serial kernel, we must
emphasize that in a parallel setting, the multipole and local
data, which consume the majority of the overall memory,
is distributed across processes in a largely nonredundant
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Fig. 4. Error convergence versus oversampling parameter χ for (a) uniform
tree ACE-MLFMA for 64 000 dipoles in a flattened box, and (b) nonuniform
tree cone-sphere. The number next to each data point indicates the order P of
ACE expansions used. Note that, the example in (a) uses three buffer boxes
for the far-field, while that in (b) uses only one.

TABLE III

COMPARISON OF UNIFORM AND NONUNIFORM

TREES FOR THE CONESPHERE GEOMETRY

fashion, while the Pm
n storage is duplicated on every process.

A set of M2L operators specific to each process’ partial
tree must also be stored. In contemporary high-performance
computing environments, the maximum amount of RAM per
core is typically around 4 GB, underscoring the importance of
finding an acceptable balance between memory consumption
and runtime to make most efficient use of computational
resources.

3) Uniform-Tree Wideband MLFMA Error Control:

We now examine the error in the hybrid-sampling MLFMA
with ACE, using a uniform tree. We consider the case
of 64 000 dipoles distributed nonuniformly within an 8λ ×
8λ × 1/16λ box. The point locations were generated using
(x, y, z) = (8r1.5

1 , 8r1.5
2 , r3/16), where r1, r2, r3 are random

numbers on [0, 1]. The smallest box was chosen as λ/16,
yielding an eight-level tree with two levels of ACE, two levels
of spherical MLFMA, and two levels of uniform MLFMA.
Fig. 4(a) shows the error convergence of the far field as both
χ, P are increased, demonstrating fine-grained control over
accuracy over both the low- and mid-frequency regimes.

4) Nonuniform-Tree Wideband MLFMA Error Control:

We now examine the error convergence for the nonuni-
form wideband ACE-MLFMA applied to a multiscale object
and compare with the uniform-tree algorithm. Consider a
“cone-sphere” surface geometry comprising a long cone ter-
minated on its wide end by a hemispherical surface. The cone
portion is 36.33λ long, and the spherical portion has a radius
of 4.49λ. The mesh contains 47 367 triangles, and we placed
six randomly oriented dipoles within each triangle, totaling
284 202 dipoles. The smallest box size is chosen to be λ/128,
and the tree is merged using smax = 30, yielding a 14-level
tree with five levels of ACE, three levels of spherical MLFMA,
and four levels of uniform MLFMA.

Table III summarizes some of the stark differences
between the uniform and nonuniform trees. Notably, the
precomputation time required for computing interaction lists
decreases by a factor of over 45 as a consequence of the 97%
reduction in overall tree nodes. Fig. 4(b) shows convergence
in the relative L2 error of the far-field using the nonuniform
tree with a single buffer box rule.

B. Parallel Kernel Evaluation

Having demonstrated the accuracy of the proposed numeri-
cal methods, we turn now to the demonstration of the parallel
algorithm on electrically large, multiscale objects. In this
section, we focus on the parallel N-body evaluation of the
Helmholtz potential 9 , given by

9(rm) =
N

∑

n=1

g(rm − rn)un, m = 1, . . . , N (39)

where rn is the location of the nth source/observer point,
and un ≡ 1 is the source strength. Results in this section
and in Section V-C were run on the Cori supercomputer at
the National Energy Research Scientific Computing Center,
Berkeley, CA, USA. Each computational node contains two
sockets, each populated with a 16-core Intel Xeon E5-2698 v3
(“Haswell”) with a clock speed of 2.3 GHz, and 128 GB
DDR4 RAM. FFTW 3.3.4.11 was used for all FFTs. Again,
all computations employ double precision arithmetic. Both
the N-body and solver codes are parallelized using MPI
with no shared memory parallelism. We now consider an
aircraft-shaped distribution comprising 175 764 666 points on
the surface, which fits into a bounding box of dimensions
693.5λ×200.2λ×754.8λ. The minimum leaf box diameter was
set to λ/32 resulting in a 16-level tree, and the densest box
contains 56 points. The four coarsest levels of computation
use uniform sampling, and the remaining seven MLFMA
levels use spherical sampling. ACE is used for boxes of
diameter smaller than λ/4. The nonuniform tree is merged
with smax = 40, resulting in leaves containing 20 points on
average distributed over the bottom five levels of the tree, and
an almost 20-fold reduction in leaf boxes. For accuracy on the
order of 10−3, we set χ = 1.0, P = 3 [15]. This supposition
is backed up by randomly selecting a point on each process to
ensure good spatial distribution, computing the exact observed
field, and comparing with the computed value; the average
relative error at these observers is 3.98 × 10−3.

With this setup, we examine the tradeoffs for nonuniform
trees versus uniform trees and the beneficial effects of LB for
parallel matvecs. Fig. 5(a) shows the time taken per process
for the far-field matvec using 1024 processes using a uniform
tree and a nonuniform tree. The time drops from 61 s on
average for the uniform tree to 38 s for the nonuniform tree.
Load balancing is employed in both instances. Much of the
speedup is achieved in the translation stages. The flatness of
portions of the M2L timings for the uniform tree are caused
by synchronization barriers. Fig. 5(b) details the effectiveness
of LB, showing per-process timings for the tree traversal
(M2M+L2L) and translation (V , W,andX−lists) both with
and without LB with exactly the same parameters. Without
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Fig. 5. Per-process timings for far-field matvec stages for the airplane
geometry (a) with uniform versus nonuniform tree and (b) with and without
LB for nonuniform tree on 1024 processes.

Fig. 6. Parallel efficiency of the complete matvec for the 286M-point arrow
geometry with reference to 256 processes. Colorization of geometry solely to
illustrate depth.

LB, the translation stage alone takes 10 s longer than the entire
matvec with LB.

Next, we consider a collection of 286 312 650 points dis-
tributed uniformly on a surface geometry with an arrow-like
shape, yielding high variation in point density over the surface.
The bounding box for the arrow measures 234.9λ × 77λ ×
39.32λ, and we choose the minimum box size to be λ/64,
resulting in a 15-level tree. As always, ACE is used for
boxes smaller than λ/4. The three coarsest MLFMA levels of
computation employ uniform sampling, while the rest employ
spherical sampling. The tree is merged using smax = 25,
resulting in nine points per leaf box on average.

A common metric for measuring the scalability of a parallel
algorithm is the parallel efficiency η, defined by

η(t, Np)(%)
.= tre f Np,re f

t Np

× 100% (40)

where t is the time taken using Np processes and tre f is
the time taken for the reference run using Np,re f processes.
The parallel efficiency of the complete matvec (both near-
and far-field together) is given in Fig. 6 with reference to
256 processes. Memory limitations prevented us from running
the code under the same memory-per-core conditions beneath
256 processes. Up to 1024 processes, the matvec exhibits
good scaling, but drops precipitously for 2048 processes. This
appears to be associated with (as Amdahl’s law suggests)

Fig. 7. Comparison of bistatic RCS calculated by parallel MLFMA versus
analytical for a sphere of diameter 256λ within ±5◦ of the main lobe.

communication steps, particularly within the parallel interpo-
lation/anterpolations, and decreasing work to processor ratio.

C. Parallel CFIE Solver Evaluation

In this section, the kernel evaluation is wrapped in a parallel
MoM solver for the CFIE (1), and we present results demon-
strating its capabilities, all with α = 0.5. Parallel GMRES is
used as the iterative solver. We note that our use of a four-tree
mixed-potential MLFMA as opposed to a two- or three-tree
dyadic MLFMA directly results in an increase in runtime.

1) Uniform Tree: First, we consider the evaluation of
the radar cross section (RCS) of an electrically large
conducting sphere of diameter 256λ, discretized with
84 934 656 unknowns. A seven-point integration rule within
each patch was used for both source and testing far-field
integrals. The leaf-level box is chosen as 0.25λ, resulting in an
11-level tree. The bottom six levels employ spherical sampling
before transitioning to uniform sampling, and χ = 1.0. The
incident plane wave is polarized along the x̂ direction and
traveling in the +z direction. Parallel GMRES with tolerance
10−3 and a restart value of 30 is used to solve the resulting
matrix system, converging within two outer iterations. The
solve took 31 min using 2048 processes, requiring 27.8 s per
matvec. The calculated RCS is shown in Fig. 7 along with
the analytical Mie series solution, with which the agreement
is very good.

2) Nonuniform Trees: Finally, we consider the evaluation
of RCS from geometries with nonuniform distributions using
nonuniform trees.

First, we consider electrically large objects with sharp
corners or other features with regions of high density
of unknowns. Our first example is an arrowhead-shaped
geometry measuring 470λ × 154λ × 79λ, discretized using
77 257 728 unknowns. A 14-level nonuniform tree is used with
minimum leaf box size of 0.0574λ and smax = 35, resulting
in 10 unknowns per leaf, on average. The RCS is shown
in Fig. 8, along with an illustration of the geometry. The
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Fig. 8. RCS calculated with parallel MLFMA for 470λ arrowhead geometry.

Fig. 9. RCS calculated with parallel MLFMA for 755λ airplane geometry.

incident electric field is given by Ei = x̂e j kz . Solution with
tolerance 5×10−3 took 19.3 min on 2048 processes, at 23.6 s
per matvec. Our last example concerns scattering from the
755λ airplane geometry depicted in the inset of Fig. 9. A λ/10
discretization of the surface yields 285 425 664 unknowns. The
incident field is given as Ei = x̂e− j kz . Using a minimum leaf
size of 0.0231λ, the nonuniform tree spans 16 levels and is
merged with smax = 35, increasing the average number of
unknowns per box from 1 to 18 and distributing leaves across
the bottom four tree levels. ACE (P = 3) is used for boxes
smaller than λ/4, and uniform MLFMA is used at the three
uppermost levels. The densest box at the finest level contains
40 unknowns. Using GMRES with a tolerance of 5 × 10−3,
the solution on 2048 processes took 3.17 h, using 1 min 8 s per
matvec. The RCS in the φ = 0◦, 90◦ cuts is shown in Fig. 9.

VI. CONCLUSION

In this paper, we have presented an extremely wide-band
parallel MLFMA with fine-grained control over the error
in field evaluation and methods for reducing both storage
and computational cost while sacrificing nothing in terms of

accuracy. We introduced rigorous operators for computing
interactions at any level on a nonuniform octree which is
adapted in parallel to fit to the geometry. We also introduced
a rigorous method for transitioning from spherical harmonics-
based to Fourier-based inter/anterpolation of multipole expan-
sions to optimize storage and solution time. An array of
numerical examples demonstrates the accuracy and efficiency
of the algorithm, and several scattering examples demonstrate
the ability of the solver to accurately solve problems on large,
complicated objects with nonuniform spatial distributions of
unknowns.

ACKNOWLEDGMENT

This research used resources of the National Energy
Research Scientific Computing Center, Berkeley, CA, USA,
a DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract
DE-AC02-05CH11231.

REFERENCES

[1] A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for
Electromagnetics. New York, NY, USA: IEEE Press, 1998.

[2] W. C. Chew, E. Michielssen, J. Song, and J.-M. Jin, Fast and Efficient

Algorithms in Computational Electromagnetics. Norwood, MA, USA:
Artech House, 2001.

[3] J.-M. Jin, Theory and Computation of Electromagnetic Fields. Hoboken,
NJ, USA: Wiley, 2011.

[4] M. Vikram and B. Shanker, “An incomplete review of fast multipole
methods-from static to wideband-as applied to problems in computa-
tional electromagnetics,” Appl. Comput. Electromagn. Soc. J., vol. 24,
no. 2, pp. 79–108, 2009.

[5] N. Nishimura, “Fast multipole accelerated boundary integral equation
methods,” Appl. Mech. Rev., vol. 55, no. 4, pp. 299–324, 2002.

[6] L. Greengard and V. Rokhlin, “A new version of the fast multipole
method for the Laplace equation in three dimensions,” Acta Numer.,
vol. 6, pp. 229–269, Jan. 1997.

[7] L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, “Accelerating
fast multipole methods for the Helmholtz equation at low frequencies,”
IEEE Comput. Sci. Eng., vol. 5, no. 3, pp. 32–38, Jul./Sep. 1998.

[8] J.-S. Zhao and W. C. Chew, “Three-dimensional multilevel fast multipole
algorithm from static to electrodynamic,” Microw. Opt. Technol. Lett.,
vol. 26, no. 1, pp. 43–48, Jul. 2000.

[9] H. Cheng et al., “A wideband fast multipole method for the Helmholtz
equation in three dimensions,” J. Comput. Phys., vol. 216, no. 1,
pp. 300–325, Jul. 2006.

[10] T. Dufva and J. Sarvas, “Broadband MLFMA with plane wave expan-
sions and optimal memory demand,” IEEE Trans. Antennas Propag.,
vol. 57, no. 3, pp. 742–753, Mar. 2009.

[11] I. Bogaert, J. Peeters, J. Fostier, and F. Olyslager, “NSPWMLFMA:
A low frequency stable formulation of the MLFMA in three dimen-
sions,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 2008,
pp. 1–4.

[12] J. Aronsson, I. Jeffrey, and V. Okhmatovski, “Generalization of the
Barnes–Hut algorithm for the Helmholtz equation in three dimen-
sions,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 425–428,
2009.

[13] M. Takrimi, Ö. Ergül, and V. B. Ertürk, “A novel broadband multi-
level fast multipole algorithm with incomplete-leaf tree structures for
multiscale electromagnetic problems,” IEEE Trans. Antennas Propag.,
vol. 64, no. 6, pp. 2445–2456, Jun. 2016.

[14] B. Shanker and H. Huang, “Accelerated Cartesian expansions—A fast
method for computing of potentials of the form R−v for all real v ,”
J. Comput. Phys., vol. 226, no. 1, pp. 732–753, 2007.

[15] M. Vikram, H. Huang, B. Shanker, and T. Van, “A novel wideband FMM
for fast integral equation solution of multiscale problems in electromag-
netics,” IEEE Trans. Antennas Propag., vol. 57, no. 7, pp. 2094–2104,
Jul. 2009.

[16] S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is
it that big? [computational electromagnetics],” IEEE Antennas Propag.

Mag., vol. 45, no. 2, pp. 43–58, Apr. 2003.



1106 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 67, NO. 2, FEBRUARY 2019

[17] Ö. Ergül and L. Gurel, “Efficient parallelization of the multilevel fast
multipole algorithm for the solution of large-scale scattering prob-
lems,” IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2335–2345,
Aug. 2008.

[18] B. Michiels, J. Fostier, I. Bogaert, and D. De Zutter, “Weak scalability
analysis of the distributed-memory parallel MLFMA,” IEEE Trans.

Antennas Propag., vol. 61, no. 11, pp. 5567–5574, Nov. 2013.
[19] V. Melapudi, B. Shanker, S. Seal, and S. Aluru, “A scalable par-

allel wideband MLFMA for efficient electromagnetic simulations on
large scale clusters,” IEEE Trans. Antennas Propag., vol. 59, no. 7,
pp. 2565–2577, Jul. 2011.

[20] M. A. Epton and B. Dembart, “Multipole translation theory for the three-
dimensional Laplace and Helmholtz equations,” SIAM J. Sci. Comput.,
vol. 16, no. 4, pp. 865–897, 1995.

[21] B. Shanker, A. A. Ergin, M. Lu, and E. Michielssen, “Fast analysis
of transient electromagnetic scattering phenomena using the multilevel
plane wave time domain algorithm,” IEEE Trans. Antennas Propag.,
vol. 51, no. 3, pp. 628–641, Mar. 2003.

[22] J. Carrier, L. Greengard, and V. Rokhlin, “A fast adaptive multipole
algorithm for particle simulations,” SIAM J. Sci. Stat. Comput., vol. 9,
no. 4, pp. 669–686, 1988.

[23] A. R. Benson, J. Poulson, K. Tran, B. Engquist, and L. Ying, “A parallel
directional fast multipole method,” SIAM J. Sci. Comput., vol. 36, no. 4,
pp. C335–C352, 2014.

[24] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scat-
tering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.,
vol. AP-30, no. 3, pp. 409–418, May 1982.

[25] J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm
for solving combined field integral equations of electromagnetic scat-
tering,” Microw. Opt. Technol. Lett., vol. 10, no. 1, pp. 14–19,
Sep. 1995.

[26] M. Lu and E. Michielssen, “A local filtering scheme for FMM/PWTD
algorithms,” in Proc. IEEE Antennas Propag. Soc. Symp., vol. 4,
Jun. 2004, pp. 4523–4526.

[27] B. Michiels, “Parallel fast multipole methods for the simulation of
extremely large electromagnetic scattering problems,” Ph.D. dissertation,
Dept. Inf. Technol., Fac. Eng. Archit., Ghent Univ., Ghent, Belgium,
2013.

[28] A. Capozzoli, C. Curcio, A. Liseno, and A. Riccardi, “Parameter
selection and accuracy in type-3 non-uniform FFTs based on Gaussian
gridding,” Prog. Electromagn. Res., vol. 142, no. 6, pp. 743–770, 2013.

[29] J. Sarvas, “Performing interpolation and anterpolation entirely by fast
Fourier transform in the 3-D multilevel fast multipole algorithm,” SIAM

J. Numer. Anal., vol. 41, no. 6, pp. 2180–2196, 2003.
[30] S. M. Hughey, “Efficient parallelization of non-uniform fast multipole

algorithms,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Michigan
State Univ., East Lansing, MI, USA, 2018.

[31] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian prescription,” IEEE Antennas
Propag. Mag., vol. 35, no. 3, pp. 7–12, Jun. 1993.

[32] J. M. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole
algorithm for electromagnetic scattering by large complex objects,” IEEE

Trans. Antennas Propag., vol. 45, no. 10, pp. 1488–1493, Oct. 1997.
[33] R. Jakob-Chien and B. K. Alpert, “A fast spherical filter with uniform

resolution,” J. Comput. Phys., vol. 136, no. 2, pp. 580–584, 1997.
[34] S. Y. K. Yee, “Studies on Fourier series on spheres,” Monthly Weather

Rev., vol. 108, no. 5, pp. 676–678, 1980.
[35] C. Cecka and E. Darve, “Fourier-based fast multipole method for

the Helmholtz equation,” SIAM J. Sci. Comput., vol. 35, no. 1,
pp. A79–A103, 2013.

[36] D. Dault and B. Shanker, “A mixed potential MLFMA for higher
order moment methods with application to the generalized method of
moments,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 650–662,
Feb. 2016.

[37] J. Peeters, “Efficient simulation of 3D electromagnetic scattering prob-
lems using boundary integral equations,” Ph.D. dissertation, Dept. Inf.
Technol., Fac. Eng. Archit., Ghent Univ., Ghent, Belgium, 2010.

[38] H. Sundar, R. S. Sampath, and G. Biros, “Bottom-up construction
and 2:1 balance refinement of linear octrees in parallel,” SIAM J. Sci.

Comput., vol. 30, no. 5, pp. 2675–2708, 2008.
[39] J. Song and W. C. Chew, “Interpolation of translation matrix in

MLFMA,” Microw. Opt. Technol. Lett., vol. 30, no. 2, pp. 109–114,
2001.

[40] B. Michiels, J. Fostier, I. Bogaert, and D. De Zutter, “Full-wave
simulations of electromagnetic scattering problems with billions of
unknowns,” IEEE Trans. Antennas Propag., vol. 63, no. 2, pp. 796–799,
Feb. 2015.

Stephen Hughey (S’12) received the B.S. degree in
electrical engineering and the Ph.D. degree in elec-
trical engineering and computational science from
Michigan State University, East Lansing, MI, USA,
in 2012 and 2018, respectively.

Since 2018, he has been with the BerrieHill
Research Division, Applied Research Associates,
Lansing, MI, USA. His current research interests
include integral equation methods and fast algo-
rithms in electromagnetics, finite-element methods,
and parallel computing/algorithm design.

H. M. Aktulga received the B.S. degree in computer
science from Bilkent University, Ankara, Turkey,
in 2004, and the M.S. and Ph.D. degrees in computer
science from Purdue University, West Lafayette, IN,
USA, in 2009 and 2010, respectively.

He was a Post-Doctoral Researcher with the
Scientific Computing Group, Lawrence Berkeley
National Laboratory, Berkeley, CA, USA. He joined
Michigan State University, East Lansing, MI, USA,
in 2014. His current research interests include high-
performance computing (HPC), HPC applications,

big data analytics and (sparse) numerical linear algebra, the design and
development of parallel algorithms, numerical methods, performance models,
and software systems that can harness the full potential of state-of-the-art
computing platforms to address challenging problems in large-scale scientific
computing and big-data analytics. A distinguishing aspect of his research
is the close collaborations that he has built with domain experts in a wide
range of fields such as molecular modeling and simulation, materials science,
computational electromagnetics, and nuclear physics.

Melapudi Vikram received the B.Tech. degree in
ME from IIT Madras, Chennai, India, in 2003,
and the Ph.D. degree in electrical and computer
engineering from Michigan State University, East
Lansing, MI, USA, in 2009.

He was with the Electrical and Computer Engi-
neering Department, Michigan State University,
from 2009 to 2010, and with Ansys (ANSOFT),
Pittsburgh, PA, USA, from 2010 to 2012. He is
currently a Lead Research Engineer with the GE
Global Research Center, Bengaluru, India. He has

authored over 40 referred publications in international journals and con-
ferences. He holds five patents. His current research interests include the
development of sensing and imaging methods for industrial and medical
applications that includes device design, signal/image processing algorithms,
the use of advanced machine learning methods, multiphysics modeling, and
fast and parallel algorithms.

Dr. Vikram was a recipient of the Best Student Paper Award (3rd prize)
at the 2008 IEEE AP-S International Symposium and USNC/URSI National
Radio Science Meeting, San Diego, CA, USA.

Mingyu Lu (M’03–SM’08) received the B.S.
and M.S. degrees in electrical engineering from
Tsinghua University, Beijing, China, in 1995 and
1997, respectively, and the Ph.D. degree in elec-
trical engineering from the University of Illinois at
Urbana–Champaign, Champaign, IL, USA, in 2002.

From 2002 to 2005, he was a Post-Doctoral
Research Associate with the Electromagnetics Labo-
ratory, University of Illinois at Urbana–Champaign.
From 2005 to 2012, he was an Assistant Profes-
sor with the Department of Electrical Engineering,

University of Texas at Arlington, Arlington, TX, USA. In 2012, he joined
the Department of Electrical and Computer Engineering, West Virginia
University Institute of Technology, Beckley, WV, USA, where he is currently
an Associate Professor. His current research interests include wireless power
transmission, radar systems, microwave remote sensing, antenna design, and
computational electromagnetics.

Dr. Lu was a recipient of the First Prize Award in the student paper
competition of the IEEE AP-S International Symposium, Boston, MA, USA,
in 2001, and the Outstanding Service Award from the IEEE Fort Worth
Chapter in 2008. He served as the Chair of the Antennas and Propagation
Society of the IEEE Fort Worth Chapter from 2006 to 2011.



HUGHEY et al.: PARALLEL WIDEBAND MLFMA FOR ANALYSIS OF ELECTRICALLY LARGE, NONUNIFORM, MULTISCALE STRUCTURES 1107

Balasubramaniam Shanker (SM’02–F’10)
received the B.Tech. degree from IIT Madras,
Chennai, India, in 1989, and the M.S. and Ph.D.
degrees from Pennsylvania State University, State
College, PA, USA, in 1992 and 1993, respectively.

From 1993 to 1996, he was a Research
Associate with the Department of Biochemistry
and Biophysics, Iowa State University, Ames,
IA, USA, where he focused on the molecular
theory of optical activity. From 1996 to 1999,
he was a Visiting Assistant Professor with the

Center for Computational Electromagnetics, University of Illinois at
Urbana–Champaign, Champaign, IL, USA. From 1999 to 2002, he was
an Assistant Professor with the Department of Electrical and Computer
Engineering, Iowa State University. From 2012 to 2015, he was the Associate
Chair of graduate studies with the Department of Electrical and Computer
Engineering, Michigan State University, East Lansing, MI, USA, where he
was the Associate Chair of the Department of Computational Mathematics,
Science and Engineering, from 2015 to 2018, and is currently a University
Distinguished Professor with the Department of Electrical and Computer
Engineering and also with the Department of Physics and Astronomy. He has
authored or co-authored around 400 journal and conference papers and
presented a number of invited talks. His current research interests include
all aspects of computational electromagnetics (frequency- and time-domain
integral equation-based methods, multiscale fast multipole methods, fast
transient methods, and higher order finite-element and integral equation
methods), propagation in complex media, mesoscale electromagnetics, and
particle and molecular dynamics as applied to multiphysics and multiscale
problems.

Dr. Shanker was a recipient of the Withrow Distinguished Junior
Scholar in 2003, the Withrow Distinguished Senior Scholar in 2010,
the Withrow Teaching Award in 2007, and the Beal Outstanding Faculty
Award in 2014. He was an Associate Editor of IEEE ANTENNAS AND

WIRELESS PROPAGATION LETTERS and the IEEE TRANSACTIONS ON

ANTENNAS AND PROPAGATION. He is the Topical Editor of the Journal of
Optical Society of America: A, and is a Full Member of the USNC-URSI
Commission B.

Eric Michielssen (SM’99–F’02) received the M.S.
degree (summa cum laude) in electrical engineer-
ing from Katholieke Universiteit Leuven, Leuven,
Belgium, in 1987, and the Ph.D. degree in elec-
trical engineering from the University of Illinois at
Urbana–Champaign (UIUC), Champaign, IL, USA,
in 1992.

From 1992 to 2005, he was a Faculty Member with
UIUC. In 2005, he joined the University of Michi-
gan, Ann Arbor, MI, USA, where he is currently
the Louise Ganiard Johnson Professor of engineering

and a Professor of electrical engineering and computer science. He also serves
as the Associate Vice President of advanced research computing and the
Co-Director of precision health initiative with the University of Michigan.
He has authored or co-authored over 180 journal papers and book chapters
and over 350 papers in conference proceedings. His current research interests
include all aspects of theoretical and applied computational electromagnetics,
the development of fast frequency and time domain integral-equation-based
techniques for analyzing electromagnetic phenomena, and the development of
robust optimizers for the synthesis of electromagnetic/optical devices.

Dr. Michielssen is a member of the URSI Commission B. He was a
recipient of the Belgian American Educational Foundation Fellowship in 1988,
the Schlumberger Fellowship in 1990, the 1994 International Union of Radio
Scientists (URSI) Young Scientist Fellowship, the 1995 National Science
Foundation CAREER Award, and the 1998 Applied Computational Electro-
magnetics Society Valued Service Award, the UIUC’s 2001 Xerox Award for
Faculty Research, the UM College of Engineering David E. Liddle Research
Excellence Award in 2011, the IEEE AP-S Chen-To-Tai Distinguished Edu-
cator Award in 2014, and the 2018 IEEE AP-S S.A. Schelkunoff Transactions
Prize Paper Award. In addition, he was named the 1999 URSI United States
National Committee Henry G. Booker Fellow and selected as the recipient
of the 1999 URSI Koga Gold Medal. He was appointed the 2002 Beckman
Fellow in the UIUC Center for Advanced Studies, named the 2003 Scholar
in the Tel Aviv University Sackler Center for Advanced Studies, and selected
as the UIUC 2003 University and Sony Scholar.


