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ABSTRACT

In analog/mixed-signal (AMS) integrated circuits (ICs), most of
the layout design efforts are still handled manually, which is time-
consuming and error-prone. Given the previous high-quality man-
ual layouts containing valuable design expertise of experienced
designers, exploring layout design constraints from the existing
layouts is desirable. In this paper, we extract and explore analog
placement constraints from previous quality-approved layouts, in-
cluding regularity and symmetry (symmetry-island) constraints.
For the first time, an efficient sweep line-based algorithm is de-
veloped to comprehensively extract the regularity constraints in a
given analog placement, which can not only improve routability
but also minimize the layout parasitics-induced circuit performance
degradation. Furthermore, we propose a novel layout technology
migration and performance retargeting framework, where we ap-
ply the constraint extraction algorithms to improve the placement
quality while preserving previous design expertise. Experimental
results show that the proposed techniques can preserve the sym-
metry and regularity constraints, and also reduce the placement
area by 7.6% on average.
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1 INTRODUCTION

Analog/mixed-signal (AMS) integrated circuits (ICs) are used widely
and heavily in many emerging applications, including consumer
electronics, automotive, and Internet of Things (IoT). The increasing
demand of these applications calls for a shorter design cycle and
time-to-market of AMS ICs. However, most of the design efforts
in AMS ICs are still handled manually, which is time-consuming
and error-prone, especially as the design rules are becoming more
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and more complicated in nanometer-scale IC era, and as the circuit
performance requirements are becoming more and more stringent.
Despite the progress in the AMS IC layout design automation field
[1-6], the automatic layout tools have not been widely used among
AMS IC layout designers. The AMS IC design automation level
is far from meeting the need for fast layout-circuit performance
iterations for the rapid growth of the market.

Given the vast amount of previous high-quality analog layouts,
it is desirable to explore the layout design constraints from them.
The extracted layout constraints can be applied in layout technol-
ogy migration [7, 8], retargeting to updated design specifications
(performance retargeting) [9, 10], and knowledge-based layout syn-
thesis [11], etc., to preserve experts’ knowledge across designs,
shorten design cycle and reduce design efforts. Layout technology
migration and performance retargeting are called layout retargeting.

In [7], a layout technology migration tool Migration Assistant
Shape Handler (MASH) was proposed, which addressed the geome-
try scaling between technologies and corrected design rule viola-
tions with minimum layout perturbations. Nevertheless, it did not
consider the layout design constraints in AMS ICs, including sym-
metry (symmetry-island [3]), regularity, matching, etc. Then, in [8],
N. Jangkrajarng et al. presented an intellectual property reuse-based
analog IC layout automation tool, IPRAIL, that could automatically
retarget existing analog layouts for new process technologies and
new design specifications. [9] and [10] further improved the ana-
log layout retargeting algorithm by considering layout parasitics
and circuit performance degradation. The above-mentioned prior
works [8-10] extracted the topological template from the exist-
ing layout so that the target layout had the same layout topology,
and they automatically detected symmetry in the existing layouts
and carried the symmetry constraints to the target layout, as well.
More recently, P.-H. Wu et al. proposed a knowledge-based ana-
log physical synthesis methodology to generate new layouts by
integrating existing design expertise [11]. It extracted common sub-
circuits between previous designs and the target design and reused
quality-approved layout topologies.

However, the previous works on analog layout retargeting had
the following limitations. Firstly, although symmetry constraints
were extracted from the existing layouts and preserved in the target
layout, regularity constraints were not considered, including topo-
logical rows, columns, arrays, and repetitive structures, which are
common in AMS ICs. Regular structures in AMS IC layouts not only
improve routability, but also minimize the number of vias and bends
of wires that are critical, and reduce the layout parasitics-induced
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Figure 1: The conventional analog layout retargeting frame-
work.

circuit performance degradation [12, 13]. Thus, it is beneficial to
take regularity constraints into account. Secondly, previous works
extracted a topological template from the existing layout to pre-
serve the entire layout topology. Nevertheless, it may introduce
unnecessary extra topological constraints and limit the solution
space. In fact, due to new process technologies or updated design
specifications, the device sizes may not scale proportionally during
layout retargeting, and it may be more desirable to adopt a differ-
ent layout topology. To address these limitations, in this paper, we
extract and explore the regularity and symmetry (symmetry-island)
constraints from previous quality-approved layouts. The extracted
constraints are applied to a novel analog layout retargeting frame-
work to preserve the design expertise. An efficient sweep line-based
algorithm is developed to extract the regularity constraints from a
given analog placement. Our main contributions include:

e We extract and explore symmetry and regularity constraints
in previous high-quality layouts.

e For the first time, an efficient sweep line-based algorithm
is developed to extract all the regularity constraints in an
analog placement.

e We propose a novel analog layout retargeting framework
based on the extracted constraints, which reduces the place-
ment area compared with the conventional approach while
preserving the design expertise.

o Experimental results show the effectiveness and efficiency
of the proposed techniques.

The rest of this paper is organized as follows. Section 2 shows
the overall flow of the proposed analog layout retargeting frame-
work. Section 3 describes the algorithms to extract analog place-
ment constraints. Section 4 describes the regularity and symmetry
constraint-aware analog placement algorithm used in the proposed
layout retargeting framework. Section 5 shows the experimental
results. Finally, Section 6 concludes the paper.

2 OVERALL FLOW

Conventionally, most of the prior works on analog layout retarget-
ing extract symmetry (symmetry-island) constraints and a topolog-
ical template of the existing layout, followed by a constraint-aware
layout compactor to preserve the extracted constraints and the
entire layout topology. The conventional analog layout retargeting
framework is shown in Fig. 1, where only symmetry constraints
were considered. The layout compactor only generates the layout
with the same topology as the existing one.
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The proposed analog layout retargeting flow based on placement
constraint extraction is shown in Fig. 2. First, the constraint extrac-
tion engine explores various analog placement constraints in the
existing placement, including regularity and symmetry constraints.
Different from the conventional framework that only detects sym-
metry constraints, we are the first to propose an efficient sweep
line-based algorithm to extract the regularity constraints, which
will be described in Section 3. Then, given the extracted constraints
and the updated device sizes due to new process technologies or
new design specifications, a constraint-aware analog placement is
performed such that the design expertise is preserved. Adopting
constraint-aware analog placement engine instead of analog layout
compactor with fixed layout topology provides the potential to
explore various different placement topologies, which may result in
the placement quality improvement. The constraint-aware analog
placement algorithm will be described in Section 4.

3 LAYOUT CONSTRAINT EXTRACTION

3.1 Regularity Constraint Extraction

3.1.1  Problem Definition. AMS IC placements often contain
regular structures which are also called regularity constraints [12].
A regular structure is composed of a group of devices forming a
slicing structure whose rectangular bounding box in the placement
does not cut any device bounding box. Fig. 3 shows an example of
an analog placement with regularity constraints. Each rectangle
represents the bounding box of a placement device (e.g. a transistor).
The orange bounding boxes indicate row constraints. For example,
devices {10, 11} form a row. The blue bounding boxes indicate
column constraints. For example, devices {1, 2, 3}, {4, 5, 6} and devices
7, 8 are four rows in a column. The array constraints are indicated
by red bounding boxes. For instance, devices {1, 2, 3, 4, 5, 6} form a
2-row-by-3-column array. If all the devices in row/column/array A
are inside another bigger row/column/array B, and the set of slicing
lines of A is a subset of that of B, we say that row/column/array A
is dominated by row/column B. As an example, the row consisting
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Figure 4: (a) The example analog placement in Fig. 3 with the
grids. (b) LUT Vy, and Hy,. (c) V4; and Hy;. (d) V;, and Hj,..

of devices {1, 2} is dominated by the row consisting of devices
{1, 2, 3}, and the row consisting of devices {1, 2, 3} is dominated
by the array consisting of devices {1, 2, 3, 4, 5, 6}. The regularity
constraint extraction problem is to find all the regular structures
which are non-dominated by any other regular structure in an
analog placement.

3.1.2  Lookup Table Construction. We first turn the placement
into a grid-based representation. A device bounding box can be
represented by the x (horizontal) coordinates of its left and right

edges, and the y (vertical) coordinates of its bottom and top edges.

The entire placement can be divided by the Hanan grid of all device
bounding boxes, which is built based on the horizontal and vertical
sweep lines. We construct the sets of horizontal and vertical sweep
lines as follows. For each device bounding box in the placement,
a vertical sweep line is added for the x coordinate of its left edge,
and another vertical sweep line is added for the x coordinate of its
right edge. For the vertical sweep lines with the same x coordinate,
only one is added to the set. Therefore, the total number of vertical
sweep lines is less than two times of the number of placement
devices. Similarly, two horizontal sweep lines are added for the y

coordinates of the bottom and top edges of a device, respectively.

Fig. 4a shows the placement of Fig. 3 with the Hanan grid. In Fig. 4,
“H/V” stands for “horizontal/vertical”, respectively.

Then, several Boolean lookup tables (LUTs) are constructed
which will be used by the sweep line-based algorithm in Section
3.1.3. For the subscripts of the LUTs, “d” stands for “device”, “1” is
for “sweep line”, and “r” is for “region”. For example, the LUT V,
tells us the relationship between a device and a vertical region. The
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LUTs V;, and Hy, shown in Fig. 4b indicate which region each
device bounding box in Fig. 4a lies in. A region is defined as the
range between adjacent sweep lines. For example, a vertical region
i is between vertical sweep lines i and i + 1. The number of vertical
regions is one less than the number of vertical sweep lines. Each
row in V4, indicates which vertical region a device bounding box
occupies. As an example, device 12 lies between vertical sweep
lines 2 and 9, i.e. it occupies vertical regions {2, 3, - - -, 8}. Hence,
there are 1’s at indices {2, 3, - - -, 8} and 0’s elsewhere on the row
corresponding to device 12 in V,. Similarly, the horizontal region
is defined and Hy, is constructed.

The LUTs Vy; and Hy; shown in Fig. 4c indicate the vertical or
horizontal sweep lines a device bounding box strictly intersects.
We say that an HR/VR/ HSL/VSL (see Table 1) strictly intersect with
a device when there is at least some portion of the HR/VR/HSL/VSL
that is strictly inside the device bounding box, not including the
borders of the bounding box. For instance, device 1 does not strictly
intersect any vertical sweep line nor horizontal sweep line, so the
rows corresponding to device 1 have all 0’s in V;; and Hy;. Device 9
strictly intersects horizontal sweep lines {4, 5, 6, 7}, so there are 1’s
at indices {4, 5, 6, 7} and 0’s elsewhere on the row corresponding to
device 9 in Hy;. The first and the last columns in Vz; and Hy; consist
of all 0’s, since the first and the last sweep lines will not strictly
intersect with any device. Once we have constructed Vy,. and Hy,.,
V41 and Hyj can be computed by bitwise operations efficiently:

Vaild] = Va,[d]&(Vg,[d] < 1)

Hgy[d] = Hgy[d]&(Hg,[d] < 1)
where “d” is the device index, “&” stands for the bitwise and opera-
tion, and “<” is the bitwise left shift operation.

The LUTs V},- and Hj,- shown in Fig. 4d indicate whether a sweep
line strictly intersects any device bounding box in a region. Each
row in the LUT corresponds to a sweep line, and each column in the
LUT corresponds to a region. For example, the vertical sweep line
1 strictly intersects device 9 in horizontal regions 3 to 7. Therefore,
in LUT V},, row 1 has 1’s in columns {3, 4, - - -, 7}. Note that the first
and the last rows in Vj,. and Hj, are all 0’s, since the first and the
last sweep lines will not strictly intersect with any device in any
region. LUTs V},. and Hj, can be computed from Vy,., Hy,, V4, and
Hy; as follows:

Vi il = \/(de[d][i] A Hg,[d][j])
d

Hy, [i][j] = \/(Hdl [d1[i] A Vg, [d][iD)
d
where “d” is the device index, “A” is the logical conjunction opera-
tor, and “\/” is the logical disjunction operator. Overall, the time
complexity for LUT construction is O(n), where n is the number of
placement devices.

3.1.3 Sweep Line-Based Algorithm. A sweep line-based algo-
rithm is proposed to extract all the regularity constraints in an
analog placement. The notations used are listed in Table 1. The
overall algorithm is described in Alg. 1. The algorithm is based on
the observation that if there is a slicing line segment between point
A and point B for the placement (i.e., the line segment AB does not
strictly intersect any device bounding box), then for every point
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Table 1: Notations

HSL Horizontal sweep line.
VSL Vertical sweep line.
HR Horizontal region.
VR Vertical region.
VR; The j-th VR.
R fin All regular structure results.
Rpar Intermediate/partial regular structures.
Th, Tv Consecutive HRs and VRs in the intermediate/final regular structure.
Iy, 1y Slicing HSLs and VSLs in the intermediate/final regular structure.
(rp, Iy, ros, lo) Represents an intermediate or final regular structure.
fo Indicates if the consecutive HRs are slicing at a VSL.
fn Indicates if a set of HSLs are slicing at a VR.
Q A set of consecutive HRs that are slicing at a VSL.

C on AB, AC and CB must also be slicing for the placement. The
terminology is defined as follows:

Definition 1 (Slicing Region). If an HR/VR does not strictly in-
tersect with any device bounding box at a VSL/HSL, it is a slicing
HR/VR at that VSL/HSL.

Definition 2 (Sweep Line within a Region). An HSL/VSL is within
a HR/VR (or a region covers a sweep line) when the coordinate of
the HSL/VSL is within the region or at the region endpoints.

Fig. 5a, Fig. 5b, Fig. 5¢ and Fig. 5d show the intermediate steps
after Alg. 1 proceeds to VSLs 1, 2, 3 and 4, respectively, when the
algorithm is applied to the analog placement example in Fig. 3.

Lines 1-2 in Alg. 1 initialize the set of final regular structures
Rfip and the set of intermediate (partial) regular structures Rpqr.
For each VSL j, in line 4, we obtain the set of consecutive slicing HRs,
Q, at the j-th VSL. We also initialize all consecutive HRs in Q to be
irredundant, and will use this indicator in subsequent operations. Q
can be obtained from the consecutive 0’s on the j-th row of LUT V.,
which is explained in Lemma 1. Lemma 1 is correct by construction
of the LUT V,.

Lemma 1. The consecutive HRs are slicing at a VSL j iff the corre-
sponding indices of the consecutive HRs have consecutive 0’s on the
row Vp,[j] in V.

Each intermediate or final regular structure can be represented
by its (rp, Iy, v, lu) (see Table 1). For each intermediate regular
structure in Rpqy, 1o is updated to contain the j-th VR (line 7 of
Alg. 1). We define two indicator variables f;, and f,, as shown in
lines 11 and 12 and in Table 1.

fo can be obtained in a way similar to the way of obtaining Q.
fo indicates whether all the consecutive HRs in ry, are slicing at
VSL j. If it is true, one and only one q in Q will overlap with ry,, and
Alg. 2 will be executed. In Alg. 2, we first add j to the set of VSLs
in the intermediate result. Let g be the consecutive slicing HRs at j
that overlap with ry,, and let IZ be the set of HSLs within g at which

the j-th VR is slicing. If ZZ is the same as [j, in the intermediate
result under consideration, then g will be marked as redundant,
and no new intermediate regular structure needs to be created for
g, since it is contained in the existing intermediate result. This can
be illustrated by Fig. 5b. Before processing VSL 2, Rpqr[1] (in green)
has rp, ={0, 1, 2} and I, = {0, 1}. The set of consecutive slicing HRs
Q at VSL 2 only has one element g = {0, 1, 2}. Therefore, f; is true
for Rpar[1] at VSL 2, and VSL 2 is added to I, which makes I, {0, 1,
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Algorithm 1 Regularity Constraint Extraction Algorithm

Input: H;,,Vj,
Output: All regular structures Ry;p,

1: Rfin — 0;
2 Rpar < 0;
3: for each VSL j except the last one do
4 Q « The set of consecutive slicing HR at j;
5 Mark each g in Q as irredundant;
6: for each (ry, Ip, v, ly) in Rpar do
7: ry < ry U VRj;
8: fo < Whether ry, are all slicing at VSL j;
9: if fy is true then
10: UpdateC1((rp, Ip, 7o, o), Rpar, Rein, Q);
11: else
12: UpdateC2((ry, Iy, 1o, 1o), Rpar, Rfim Q);
13: end if
14: fn < Whether VR; is slicing at every HSL in Ip;
15: if f}, is false then
16: l;lh « The set of HSLs within r at which VR; is
slicing;
17: I l;" Nly;
18: r}'l « The minimal consecutive HRs covering [/ ;
19: Check (rp, I, o, ) before adding to Ry;p;
20: rp < r;l;
21: lh — l’;
22 end if
23: end for
24: for each irredundant HRs q in Q do
25: 1" < The set of HSLs within g where VR; is slicing;
26: rié"Y « the j-th VR;
27: eV «— VSL j;
28: Add (q, 17", rg™, I5Y) to Rpar;
29: end for
30: end for
s1: for each (ry, Iy, 1o, ly) in Rpqr do
32 I, < I, U the last VSL;
33 Check (rp, I, v, ) before adding to Rr;p;
34: end for
35: return Ry;p;

2}. Since lZ ={0, 1, 2, 3} is not the same as I}, = {0, 3}, ¢ is not marked
as redundant when processing Ry, [1] at VSL 2.

Otherwise, if f, is false, there may be zero or more HRs in Q
overlapping with ry,, and Alg. 3 will be executed. In Alg. 3, for each
consecutive slicing HRs q overlapping with ry, lZ is obtained as in
the case where f3, is true. Then I/ , which is the intersection between

IZ and [, is calculated and compared with 17 1f they are the same,
then no new intermediate result for g needs to be added to Rpqr,
and q is marked as redundant. After that, we find the minimal HRs
r, covering [} and add that intermediate result with VSL j to the set
Rpar- This process can be illustrated by Fig. 5a. Before processing
VSL 1, Rpar[0] (in red) has ry, = {1, 2, - - -, 7}, but Q only consists of
one element which is g = {0, 1, 2}. Hence, fy, is false for Ryq,[0]. ZZ =

{0, 3}, and l}/‘L is the same as IZA Therefore, g is marked as redundant
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Algorithm 2 UpdateC1((ry, lp. 7o, lv), Rpars Rrins Q)

1 Ly — Iy Uj;

2: q < The consecutive slicing HRs in Q overlapping ry;
3 IZ « The set of HSLs within g at which VR; is slicing;
4 if I, == ] then

5: Mark g as redundant;

6: end if

Algorithm 3 UpdateC2((ry, lp. 7o, lv), Rpar, Rrin, Q)

1: for each consecutive slicing HRs q in Q overlapping rj, do
2 IZ « The set of HSLs within g where VR; is slicing;
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Otherwise, if f, is false, it means at least one of the HSLs in [, I V- 8 h={1, 4,5,6,7, 8}
is no longer slicing at the j-th VR, and we will add the previous . [ 12 _ |r\\/l—:{[§ ‘2}4]

intermediate result to the final result after trimming and checking
whether the resulting regular structure is valid (line 19 in Alg. 1).
That is, r, and r,, will be trimmed such that they are the minimal
regions covering I, and [, (see Definition 2). We also check to ensure
that each of the rectangular regions formed by I, and I, contains
at least one device. This can be done by bitwise operations on Vy,.
and Hy,. We further prune the final result such that the regular
structure contains more than 2 HSLs or more than 2 VSLs to form a
valid regular structure. Finally, the resulting regular structure will
be compared against the existing ones in R¢;,, to ensure that each
regular structure is non-dominated by any other regular structure.
After that, the existing intermediate result is updated to contain
only the continuing slicing VR (lines 20 to 21 in Alg. 1). Fig. 5d
shows the case where f}, is false. Before processing VSL 4, Rpar[1]
(in green) have two HSLs I, = {0, 3} (as in Fig. 5¢). However, the
VR 4 is not slicing at HSL 3, resulting in f, being false. We trim
the r,, from {0, 1, 2, 3} to {0, 1} (since I, = {0, 1, 2}), and make sure
that each of the 2 columns in the row contains at least one device
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Figure 5: Applying Alg. 1 to the placement in Fig. 3 after pro-
cessing (a) VSLs 0 and 1. (b) VSL 2. (c) VSL 3. (d) VSL 4.

(devices 10 and 11, respectively). Therefore, R¢;,[0] is added the
final result (see Fig. 5d). Since there is only one HSL remaining in
the original intermediate result which will no longer form a regular
structure, it will be removed. Similarly, for Rpqr[3] in Fig. 5¢ (in
cyan), its I, changes from {1, 2, 3, 4,5, 6,7, 8} to {1, 4, 5, 6, 7, 8}. It
remains in Rpq, but becomes Rpqr[2] in Fig. 5d since the original
intermediate result Rpqr[1] in Fig. 5¢ (in green) is removed. The
resulting candidate to add to Rf,-n with I, ={1,2,3,4,5,6,7, 8 and
I, ={3, 4} is not valid because it contains no device. Thus it is not
added to Ryjp.

After iterating through all the intermediate regular structures in
Rpar, for each of the consecutive slicing HRs g in Q that remains
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irredundant (i.e. that is not marked as redundant by the algorithm),
a new intermediate regular structure is added to R4y, as can be
seen in lines 24-29 in Alg. 1. The new intermediate result has g, the
Jj-th VR, and the VSL j. Its HSLs can be obtained from Hj, similarly
to the way of getting f},. Fig. 5b shows an example of adding a
new intermediate regular structure for the irredundant consecutive
slicing HRs in Q. The set of consecutive slicing HRs Q at VSL 2 only
has one element ¢ = {0, 1, 2}. It turns out that ¢ remains irredun-
dant after processing both Ryqr[0] and Rpqr[1]. Therefore, a new
intermediate result Rpar[Z] (in purple) with r, ={0, 1, 2}, I, ={0, 1,
2,3}, ry = {2} and [, = {2} is added to the set Rpq.

The above procedure is performed for all the VSLs except the
last one. Finally, in lines 31-34 in Alg. 1, the last VSL is added to the
[, for all the intermediate results in Rp4r, and the updated regular
structures (ry, Iy, v, Ip) are checked and trimmed before they are
added to the Ry;y, as already described above.

3.1.4  Algorithm Analysis. The proposed sweep line-based algo-
rithm is, in essence, a smart enumeration algorithm with pruning,
and is guaranteed to find all the regularity constraints.

Lemma 3. Alg. 1 finds all regular structures that are non-dominated
by any other regular structure in an analog placement.

Proor. We begin with the proof that the results found by Alg. 1
are slicing structures and are non-dominated by any other regular
structure. The proof is by induction. For the first VSL, the entire
VSL is slicing, and it must be irredundant. Therefore, the first inter-
mediate result in Rpq, is obviously slicing (lines 24-29 in Alg. 1).
Now assume that the intermediate results in Rpq, are slicing just
before the algorithm proceeds to the j-th VSL. There are two cases
depending on f;, (lines 9-13 in Alg. 1). In Alg. 2, VSL j is slicing
and is added to I, thus the intermediate regular structure is still
slicing. In Alg. 3, (r;l, l;l, v, Iy U j) is a slicing structure, and after it
is added to R4y, the slicing property of the intermediate regular
structure still holds. When l;l is assigned to I, (line 21 in Alg. 1), the
slicing property is maintained. When (g, [;*"™, rg", [5¢") is added
to Rpqar (line 28 in Alg. 1), the slicing property is still maintained.
As a result, we know that after processing the j-th VSL, the inter-
mediate results in Rpq, are all slicing. For the last VSL, the entire
VSL is slicing, after adding it to the [, of every intermediate regular
structure, the results are still slicing. Note that before adding to
Rfip, the regular structure is compared against other regular struc-
tures to ensure the non-dominance condition. Therefore, the results
found by Alg. 1 are slicing structures and are non-dominated by
any other regular structure.

Next, we show that any regular structure that is non-dominated
by other regular structures will be found by Alg. 1. Let (r,, [, 15, I5))
be any of these regular structures. Let j* be the first VSL in [3,.
VSLj* must be slicing at some irredundant HRs g and r; C g, since
otherwise the regular structure must be in a larger regular structure,
which contradicts with the non-dominance condition. Lines 24-29
in Alg. 1 adds the intermediate result (g, lZew, roevW IneW) to Rpar,
where r;‘l c q l;‘l c l}’l’ew, rpew = VRj*, I2¢Y = VSLj*. Then,
before processing the last VSL in I;,, for every HSL in [;** but not
in lZ’ there must be some VR where it is not slicing, therefore, fj,
will be false and the HSL will be removed from I}, of the intermediate
result. In contrast, all HSL in l;‘l will remain in [j,. As for the VSLs,
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from j* until the last VSL in I};, if the VSL ¢ I3, f,, must be false, it
is not added to the [, of the intermediate result. On the contrary,
if the VSL € [}, there are two cases depending on f,. If f is
true, in Alg. 2, the VSL is added to [, of the intermediate result.
Otherwise, if f, is false, in Alg. 3, there must be some g € Q
overlapping r;. r; must contain r,, and /; must contain [, hence
the newly added intermediate result by line 8 in Alg. 3 will continue
to produce (r;, [y, 13, I7,). Before processing the last VSL in I, the
intermediate result contains exactly l;‘l and all the VSLs in I, except
the last one. For the last VSL in [}, f,, must be true and fj must
be false. The last VSL in [}, is added to the I, of the intermediate
regular structure which makes it the same as [};, thus the regular
structure (r;, [}, 15, 1;) is added to Rg;,. Therefore, any regular
structure that is non-dominated by other regular structures will be
found by Alg. 1. O

Most of the operations in the proposed algorithm are bitwise
operations and efficient. Let n be the number of placement devices.
The outer loop of Alg. 1 is executed O(n) times. In each iteration
of the outer loop, the number of intermediate regular structures
is O(n%). Inside the inner loop, with bitwise operations and paral-
lelization, the run-time is O(1). Therefore, the time complexity of
the proposed algorithm is O(n%).

3.2 Symmetry Constraint Extraction

The symmetry and symmetry-island constraint extraction algo-
rithm we used is similar to that in [8, 14]. The main steps are
sorting the devices by the edges, widths, and heights. Due to the
page limit, we will skip the details of the algorithm.

4 CONSTRAINT-AWARE PLACEMENT

After the regularity constraints and symmetry (symmetry-island)
constraints are extracted from the existing layout, the next step
is to perform constraint-aware analog placement considering the
extracted constraints and updated device sizes. The extracted con-
straints are general and can be applied to any constraint-aware
analog placement engine that can handle regularity constraints and
symmetry (symmetry-island) constraints, e.g., [2, 6, 12, 15]. The
analog placement engine used in our layout retargeting flow is
based on the Mixed-Integer Linear Programming (MILP) formu-
lation, and the non-overlapping constraints and symmetry-island
constraints are formulated similarly to [6].

As for the regularity constraints, we have the following condi-
tions:

1) Conditions for devices inside the constraint: The devices inside
the regularity constraint are separated by slicing lines. The devices
in the i-th row and j-th column of the regular structure must lie
inside the box formed by the i-th and (i + 1)-th horizontal slicing
lines and the j-th and (j + 1)-th vertical slicing lines.

Let D; j k. be the set of devices in the i-th (i < i*) row and
j-th (j < j*) column in the regularity constraint k, where ik is
the number of rows and j¥ is the number of columns in the reg-
ular structure, respectively. Let x4 be the x coordinate and y4 be
the y coordinate of device d. For a regularity constraint with i
rows and j¥ columns, there should be i¥ + 1 HSLs and j* + 1 VSLs

separating the rows and columns. We introduce ik +1 auxiliary
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Table 2: Benchmark AMS IC placements

Placement | #Devices #Row  #Column #Array #Sym.
Const. Const. Const. Const.

1 45 3 9 3 14

50 5 14 0 18

200 20 56 1 72

k,0

. . k,1
variables, i.e., y, ’

&
T yf” , to represent the y coordinates

of the HSLs. Similarly, we introduce j¥ + 1 auxiliary variables, i.e.,

ko0 k1 k. jk .
X%, .., x7 to represent the x coordinates of the VSLs. As-

suming that the rows and HSLs are ordered from bottom to top,
and that the columns and VSLs are ordered from left to right, the
devices in D; ; x must lie inside the box formed by xf’j, xf’jﬂ

k,i k,i+1,
Yy andy,

>

k,j+

k.j >
j,dexr

1 k,i k,i+1
xg > Xy Ya 2y ya <yt Vd €Dy

2) Conditions for devices outside of the constraint: The devices
outside of the regularity constraint must not overlap the bounding
box formed by the devices inside the regularity constraint.

For each d’ ¢ D; j i, we introduce a pair of auxiliary binary

k
d/
following inequalities must be satisfied:

k,j*
+ My (sK, + %) > x/

+wg = My (145K, —tk) < x0
+ Mg -sk +tk) > ki

H d a’ = Yr i
+hy = Mp(2 - sk, —tk) < y0°

variables s¥, and tX, to ensure the non-overlapping property. The

Xq

Xq

Yar

Yar
where My, and My are sufficiently large constants (big-M method
[16]), such that no matter what binary values sk and tS’ are, only
1 out of the 4 inequalities takes effect, while other inequalities are
left ineffective.

In the implementation, the orientations of the devices inside a
regularity constraint are preserved during retargeting. Also, our
placement engine takes the layout compaction result of the con-
ventional layout retargeting approach as a starting point so that
our placement quality will not be worse than the conventional
approach.

Vd/ ¢ Di,j,k

5 EXPERIMENTAL RESULTS

All algorithms are implemented in C++ and all experiments are
performed on a Linux machine with 3.4GHz CPU and 32GB mem-
ory. Table 2 lists the benchmark information used in our exper-
iments, including small to medium scale analog circuits. In this
section, “const.” stands for constraints, “sym.” stands for symme-
try (symmetry-island), and the placement area unit is pm?. The
numbers of rows, columns and arrays can be obtained by a naive
exhaustive enumeration algorithm (with exponential complexity)
which searches over all the possible combinations of HSLs and VSLs
and guarantees to find all the regularity constraints.

5.1 Layout Constraint Extraction Results

For all benchmarks, our algorithm can correctly find all the reg-
ular structures, which are the same as those found by the naive
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Figure 6: Regularity constraints in benchmark #1.

Table 3: Placement result comparison between the approach
in [10] and our layout retargeting framework

Benchmark [10] Our work Area
placement Area | Run-time | Area | Run-time | reduction
1 23068 1.4s 20586 200s 10.8%
2 36248 2.0s 32752 200s 9.6%
3 134400 5.0s 131040 1200s 2.5%

exhaustive enumeration algorithm. As an example, Fig. 6 shows
the benchmark placement #1, with the regularity constraints found
by the proposed algorithm indicated in blue boxes. For instance,
devices {2, 7, 9, 15} form a column, and {30, 31, 32, 33} form a 2-by-2
array. Symmetry (symmetry-island) constraints are also extracted
as in [8-10]. For all benchmarks, the run-time of the constraint
extraction engine is very fast (less than 0.01 seconds), which demon-
strates the efficiency of the proposed algorithms.

5.2 Layout Retargeting Results

We implemented the layout topology extraction and layout com-
paction algorithms in [10] for comparison. For our constraint-aware
analog placement engine, we implement it to take the layout com-
paction result of the approach in [10] as initial starting point so that
we will only generate equal or better results. The change of device
sizes due to different process technologies or updated design speci-
fications is simulated by deviating the widths and heights from the
original values by random percentages. According to the industrial
designs, the percentages of the deviation are generated uniformly
randomly in the range from -30% to +30% in our experiments. The
size deviation percentage of the devices in a symmetry pair should
be the same such that they have the same sizes.

The layout retargeting results are shown in Table 3, where for
benchmark #1 and #2, we set the run-time limit to be 200s, and for
benchmark #3, it is set to 1200s (see Fig. 8 for the selection of the
run-time limit). In practice, users can set the run-time limit for our
algorithm to achieve run-time and result quality tradeoff. Compared
with the approach of [10], our framework explores more layout
topologies and consistently achieves placement area reduction for
all benchmarks. The layout retargeting results of benchmark #1 are
shown in Fig. 7a and Fig. 7b, benchmark #2 in Fig. 7c and Fig. 7d, and
benchmark #3 in Fig. 7e and Fig. 7f, respectively. We can see that
the regularity and symmetry constraints are preserved for both
approaches. However, our approach can achieve more compact
placement than that of [10].
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Figure 7: Layout retargeting results: benchmark #1 by (a)
[10], and (b) our appoach; benchmark #2 by (c) [10], and (b)
our appoach; benchmark #3 by (e) [10], and (f) our appoach.
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Figure 8: Layout retargeting result area and run-time trade-
off of benchmark (a) #1, (b) #2, and (c) #3.

Eoa T ERLTT

We further plot the convergence curves of running our layout
retargeting framework on all benchmarks in Fig. 8. In Fig. 8, the run-
time is plotted in logarithmic-scale. In Fig. 8a and 8b, the run-time
unit is in “s”, while in Fig. 8c the run-time unit is in “min.”. The blue
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lines are the convergence curves of our framework, and the red lines
indicate the result area of the approach in [10], which is also the
initial starting point used by our placement engine. Although the
approach in [10] finishes in a shorter period of time, it only returns
one result with the same layout topology as the existing layout,
which limits the solution space and may lead to inferior results.
Currently, only symmetry and regularity constraints are captured
in our method. Other features that are important to AMS circuits
(e.g., signal integrity) should also be considered as the future work.

6 CONCLUSION

In this paper, we extract and explore the layout constraints and
preserve the design expertise in the previous high-quality AMS IC
layouts. Besides considering symmetry constraints as in the prior
works, we further develop an efficient sweep line-based algorithm
to extract the regularity constraints in an AMS circuit placement.
We also propose a novel analog layout retargeting framework based
on the extracted constraints, which can provide more flexibility
and achieve better placement quality. Experimental results show
the effectiveness of the proposed techniques.
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