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ABSTRACT

In analog/mixed-signal (AMS) integrated circuits (ICs), most of

the layout design efforts are still handled manually, which is time-

consuming and error-prone. Given the previous high-quality man-

ual layouts containing valuable design expertise of experienced

designers, exploring layout design constraints from the existing

layouts is desirable. In this paper, we extract and explore analog

placement constraints from previous quality-approved layouts, in-

cluding regularity and symmetry (symmetry-island) constraints.

For the first time, an efficient sweep line-based algorithm is de-

veloped to comprehensively extract the regularity constraints in a

given analog placement, which can not only improve routability

but also minimize the layout parasitics-induced circuit performance

degradation. Furthermore, we propose a novel layout technology

migration and performance retargeting framework, where we ap-

ply the constraint extraction algorithms to improve the placement

quality while preserving previous design expertise. Experimental

results show that the proposed techniques can preserve the sym-

metry and regularity constraints, and also reduce the placement

area by 7.6% on average.
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1 INTRODUCTION

Analog/mixed-signal (AMS) integrated circuits (ICs) are usedwidely

and heavily in many emerging applications, including consumer

electronics, automotive, and Internet of Things (IoT). The increasing

demand of these applications calls for a shorter design cycle and

time-to-market of AMS ICs. However, most of the design efforts

in AMS ICs are still handled manually, which is time-consuming

and error-prone, especially as the design rules are becoming more
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and more complicated in nanometer-scale IC era, and as the circuit

performance requirements are becoming more and more stringent.

Despite the progress in the AMS IC layout design automation field

[1ś6], the automatic layout tools have not been widely used among

AMS IC layout designers. The AMS IC design automation level

is far from meeting the need for fast layout-circuit performance

iterations for the rapid growth of the market.

Given the vast amount of previous high-quality analog layouts,

it is desirable to explore the layout design constraints from them.

The extracted layout constraints can be applied in layout technol-

ogy migration [7, 8], retargeting to updated design specifications

(performance retargeting) [9, 10], and knowledge-based layout syn-

thesis [11], etc., to preserve experts’ knowledge across designs,

shorten design cycle and reduce design efforts. Layout technology

migration and performance retargeting are called layout retargeting.

In [7], a layout technology migration tool Migration Assistant

Shape Handler (MASH) was proposed, which addressed the geome-

try scaling between technologies and corrected design rule viola-

tions with minimum layout perturbations. Nevertheless, it did not

consider the layout design constraints in AMS ICs, including sym-

metry (symmetry-island [3]), regularity, matching, etc. Then, in [8],

N. Jangkrajarng et al. presented an intellectual property reuse-based

analog IC layout automation tool, IPRAIL, that could automatically

retarget existing analog layouts for new process technologies and

new design specifications. [9] and [10] further improved the ana-

log layout retargeting algorithm by considering layout parasitics

and circuit performance degradation. The above-mentioned prior

works [8ś10] extracted the topological template from the exist-

ing layout so that the target layout had the same layout topology,

and they automatically detected symmetry in the existing layouts

and carried the symmetry constraints to the target layout, as well.

More recently, P.-H. Wu et al. proposed a knowledge-based ana-

log physical synthesis methodology to generate new layouts by

integrating existing design expertise [11]. It extracted common sub-

circuits between previous designs and the target design and reused

quality-approved layout topologies.

However, the previous works on analog layout retargeting had

the following limitations. Firstly, although symmetry constraints

were extracted from the existing layouts and preserved in the target

layout, regularity constraints were not considered, including topo-

logical rows, columns, arrays, and repetitive structures, which are

common in AMS ICs. Regular structures in AMS IC layouts not only

improve routability, but also minimize the number of vias and bends

of wires that are critical, and reduce the layout parasitics-induced
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Figure 4: (a) The example analog placement in Fig. 3 with the

grids. (b) LUT Vdr and Hdr . (c) Vdl and Hdl . (d) Vlr and Hlr .

of devices {1, 2} is dominated by the row consisting of devices

{1, 2, 3}, and the row consisting of devices {1, 2, 3} is dominated

by the array consisting of devices {1, 2, 3, 4, 5, 6}. The regularity

constraint extraction problem is to find all the regular structures

which are non-dominated by any other regular structure in an

analog placement.

3.1.2 Lookup Table Construction. We first turn the placement

into a grid-based representation. A device bounding box can be

represented by the x (horizontal) coordinates of its left and right

edges, and the y (vertical) coordinates of its bottom and top edges.

The entire placement can be divided by the Hanan grid of all device

bounding boxes, which is built based on the horizontal and vertical

sweep lines. We construct the sets of horizontal and vertical sweep

lines as follows. For each device bounding box in the placement,

a vertical sweep line is added for the x coordinate of its left edge,

and another vertical sweep line is added for the x coordinate of its

right edge. For the vertical sweep lines with the same x coordinate,

only one is added to the set. Therefore, the total number of vertical

sweep lines is less than two times of the number of placement

devices. Similarly, two horizontal sweep lines are added for the y

coordinates of the bottom and top edges of a device, respectively.

Fig. 4a shows the placement of Fig. 3 with the Hanan grid. In Fig. 4,

łH/Vž stands for łhorizontal/verticalž, respectively.

Then, several Boolean lookup tables (LUTs) are constructed

which will be used by the sweep line-based algorithm in Section

3.1.3. For the subscripts of the LUTs, łdž stands for łdevicež, łlž is

for łsweep linež, and łrž is for łregionž. For example, the LUT Vdr
tells us the relationship between a device and a vertical region. The

LUTs Vdr and Hdr shown in Fig. 4b indicate which region each

device bounding box in Fig. 4a lies in. A region is defined as the

range between adjacent sweep lines. For example, a vertical region

i is between vertical sweep lines i and i + 1. The number of vertical

regions is one less than the number of vertical sweep lines. Each

row in Vdr indicates which vertical region a device bounding box

occupies. As an example, device 12 lies between vertical sweep

lines 2 and 9, i.e. it occupies vertical regions {2, 3, · · · , 8}. Hence,

there are 1’s at indices {2, 3, · · · , 8} and 0’s elsewhere on the row

corresponding to device 12 in Vdr . Similarly, the horizontal region

is defined and Hdr is constructed.

The LUTs Vdl and Hdl shown in Fig. 4c indicate the vertical or

horizontal sweep lines a device bounding box strictly intersects.

We say that an HR/VR/ HSL/VSL (see Table 1) strictly intersect with

a device when there is at least some portion of the HR/VR/HSL/VSL

that is strictly inside the device bounding box, not including the

borders of the bounding box. For instance, device 1 does not strictly

intersect any vertical sweep line nor horizontal sweep line, so the

rows corresponding to device 1 have all 0’s inVdl andHdl . Device 9

strictly intersects horizontal sweep lines {4, 5, 6, 7}, so there are 1’s

at indices {4, 5, 6, 7} and 0’s elsewhere on the row corresponding to

device 9 inHdl . The first and the last columns inVdl andHdl consist

of all 0’s, since the first and the last sweep lines will not strictly

intersect with any device. Once we have constructed Vdr and Hdr ,

Vdl and Hdl can be computed by bitwise operations efficiently:

Vdl [d] = Vdr [d]&(Vdr [d] ≪ 1)

Hdl [d] = Hdr [d]&(Hdr [d] ≪ 1)

where łdž is the device index, ł&ž stands for the bitwise and opera-

tion, and ł≪ž is the bitwise left shift operation.

The LUTsVlr andHlr shown in Fig. 4d indicate whether a sweep

line strictly intersects any device bounding box in a region. Each

row in the LUT corresponds to a sweep line, and each column in the

LUT corresponds to a region. For example, the vertical sweep line

1 strictly intersects device 9 in horizontal regions 3 to 7. Therefore,

in LUTVlr , row 1 has 1’s in columns {3, 4, · · · , 7}. Note that the first

and the last rows in Vlr and Hlr are all 0’s, since the first and the

last sweep lines will not strictly intersect with any device in any

region. LUTs Vlr and Hlr can be computed from Vdr , Hdr , Vdl and

Hdl as follows:

Vlr [i][j] =
∨

d

(Vdl [d][i] ∧ Hdr [d][j])

Hlr [i][j] =
∨

d

(Hdl [d][i] ∧Vdr [d][j])

where łdž is the device index, ł∧ž is the logical conjunction opera-

tor, and ł
∨
ž is the logical disjunction operator. Overall, the time

complexity for LUT construction is O(n), where n is the number of

placement devices.

3.1.3 Sweep Line-Based Algorithm. A sweep line-based algo-

rithm is proposed to extract all the regularity constraints in an

analog placement. The notations used are listed in Table 1. The

overall algorithm is described in Alg. 1. The algorithm is based on

the observation that if there is a slicing line segment between point

A and point B for the placement (i.e., the line segment AB does not

strictly intersect any device bounding box), then for every point
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Table 1: Notations

HSL Horizontal sweep line.

VSL Vertical sweep line.

HR Horizontal region.

VR Vertical region.

VRj The j-th VR.

Rf in All regular structure results.

Rpar Intermediate/partial regular structures.

rh, rv Consecutive HRs and VRs in the intermediate/final regular structure.

lh, lv Slicing HSLs and VSLs in the intermediate/final regular structure.

(rh, lh, rv , lv ) Represents an intermediate or final regular structure.

fv Indicates if the consecutive HRs are slicing at a VSL.

fh Indicates if a set of HSLs are slicing at a VR.

Q A set of consecutive HRs that are slicing at a VSL.

C on AB, AC and CB must also be slicing for the placement. The

terminology is defined as follows:

Definition 1 (Slicing Region). If an HR/VR does not strictly in-

tersect with any device bounding box at a VSL/HSL, it is a slicing

HR/VR at that VSL/HSL.

Definition 2 (Sweep Line within a Region). An HSL/VSL is within

a HR/VR (or a region covers a sweep line) when the coordinate of

the HSL/VSL is within the region or at the region endpoints.

Fig. 5a, Fig. 5b, Fig. 5c and Fig. 5d show the intermediate steps

after Alg. 1 proceeds to VSLs 1, 2, 3 and 4, respectively, when the

algorithm is applied to the analog placement example in Fig. 3.

Lines 1-2 in Alg. 1 initialize the set of final regular structures

Rf in and the set of intermediate (partial) regular structures Rpar .

For each VSL j , in line 4, we obtain the set of consecutive slicingHRs,

Q , at the j-th VSL. We also initialize all consecutive HRs in Q to be

irredundant, and will use this indicator in subsequent operations.Q

can be obtained from the consecutive 0’s on the j-th row of LUTVlr ,

which is explained in Lemma 1. Lemma 1 is correct by construction

of the LUT Vlr .

Lemma 1. The consecutive HRs are slicing at a VSL j iff the corre-

sponding indices of the consecutive HRs have consecutive 0’s on the

row Vlr [j] in Vlr .

Each intermediate or final regular structure can be represented

by its (rh , lh , rv , lv ) (see Table 1). For each intermediate regular

structure in Rpar , rv is updated to contain the j-th VR (line 7 of

Alg. 1). We define two indicator variables fv and fh , as shown in

lines 11 and 12 and in Table 1.

fv can be obtained in a way similar to the way of obtaining Q .

fv indicates whether all the consecutive HRs in rh are slicing at

VSL j . If it is true, one and only one q inQ will overlap with rh , and

Alg. 2 will be executed. In Alg. 2, we first add j to the set of VSLs

in the intermediate result. Let q be the consecutive slicing HRs at j

that overlap with rh , and let l
q

h
be the set of HSLs within q at which

the j-th VR is slicing. If l
q

h
is the same as lh in the intermediate

result under consideration, then q will be marked as redundant,

and no new intermediate regular structure needs to be created for

q, since it is contained in the existing intermediate result. This can

be illustrated by Fig. 5b. Before processing VSL 2, Rpar [1] (in green)

has rh = {0, 1, 2} and lv = {0, 1}. The set of consecutive slicing HRs

Q at VSL 2 only has one element q = {0, 1, 2}. Therefore, fv is true

for Rpar [1] at VSL 2, and VSL 2 is added to lv which makes lv {0, 1,

Algorithm 1 Regularity Constraint Extraction Algorithm

Input: Hlr ,Vlr
Output: All regular structures Rf in
1: Rf in ← ∅;

2: Rpar ← ∅;

3: for each VSL j except the last one do

4: Q ← The set of consecutive slicing HR at j;

5: Mark each q in Q as irredundant;

6: for each (rh , lh , rv , lv ) in Rpar do

7: rv ← rv ∪ VRj ;

8: fv ←Whether rh are all slicing at VSL j;

9: if fv is true then

10: UpdateC1((rh , lh , rv , lv ), Rpar , Rf in , Q);

11: else

12: UpdateC2((rh , lh , rv , lv ), Rpar , Rf in , Q);

13: end if

14: fh ←Whether VRj is slicing at every HSL in lh ;

15: if fh is false then

16: l
rh
h
← The set of HSLs within rh at which VRj is

slicing;

17: l ′
h
← l

rh
h
∩ lh ;

18: r ′
h
← The minimal consecutive HRs covering l ′

h
;

19: Check (rh , lh , rv , lv ) before adding to Rf in ;

20: rh ← r ′
h
;

21: lh ← l ′
h
;

22: end if

23: end for

24: for each irredundant HRs q in Q do

25: lnew
h
← The set of HSLs within q where VRj is slicing;

26: rnewv ← the j-th VR;

27: lnewv ← VSL j;

28: Add (q, lnew
h
, rnewv , lnewv ) to Rpar ;

29: end for

30: end for

31: for each (rh , lh , rv , lv ) in Rpar do

32: lv ← lv∪ the last VSL;

33: Check (rh , lh , rv , lv ) before adding to Rf in ;

34: end for

35: return Rf in ;

2}. Since l
q

h
= {0, 1, 2, 3} is not the same as lh = {0, 3}, q is not marked

as redundant when processing Rpar [1] at VSL 2.

Otherwise, if fv is false, there may be zero or more HRs in Q

overlapping with rh , and Alg. 3 will be executed. In Alg. 3, for each

consecutive slicing HRs q overlapping with rh , l
q

h
is obtained as in

the case where fv is true. Then l ′
h
, which is the intersection between

l
q

h
and lh , is calculated and compared with l

q

h
. If they are the same,

then no new intermediate result for q needs to be added to Rpar ,

and q is marked as redundant. After that, we find the minimal HRs

r ′
h
covering l ′

h
and add that intermediate result with VSL j to the set

Rpar . This process can be illustrated by Fig. 5a. Before processing

VSL 1, Rpar [0] (in red) has rh = {1, 2, · · · , 7}, but Q only consists of

one element which is q = {0, 1, 2}. Hence, fv is false for Rpar [0]. l
q

h
=

{0, 3}, and l ′
h
is the same as l

q

h
. Therefore, q is marked as redundant

Three Shades of Placement! ISPD’18, March 25–28, 2018, Monterey, CA, USA

101



Analog Placement Constraint Extraction and Exploration

with the Application to Layout Retargeting ISPD ’18, March 25–28, 2018, Monterey, CA, USA

Algorithm 2 UpdateC1((rh , lh , rv , lv ), Rpar , Rf in , Q)

1: lv ← lv ∪ j;

2: q← The consecutive slicing HRs in Q overlapping rh ;

3: l
q

h
← The set of HSLs within q at which VRj is slicing;

4: if lh == l
q

h
then

5: Mark q as redundant;

6: end if

Algorithm 3 UpdateC2((rh , lh , rv , lv ), Rpar , Rf in , Q)

1: for each consecutive slicing HRs q in Q overlapping rh do

2: l
q

h
← The set of HSLs within q where VRj is slicing;

3: l ′
h
← l

q

h
∩ lh ;

4: if l ′
h
== l

q

h
then

5: Mark q as redundant;

6: end if

7: r ′
h
← The minimal HRs covering l ′

h
;

8: Add (r ′
h
, l ′
h
, rv , lv ∪ j) to Rpar ;

9: end for

and no new intermediate result needs to be created for it. We find

the minimal HRs r ′
h
= {0, 1, 2}, and create a new intermediate result

with (r ′
h
, l ′
h
, rv , lv ∪ j) (see Rpar [1] in green in Fig. 5a). Lines 9 to 13

in Alg. 1 call the two functions łUpdateC1ž (Alg. 2) and łUpdateC2ž

(Alg. 3) depending on fv .

fh can be obtained from the j-th column of LUTHlr (see Lemma 2,

and line 14 of Alg. 1). Similar to Lemma 1, Lemma 2 also holds by

construction of Hlr .

Lemma 2. VR j is slicing at an HSL i iff Hlr [i][j] is 0.

If fh is true, it means the slicingHSLs in lh continues to be slicing

at the j-th VR. For instance, In Fig. 5a, before processing VSL 1, the

rv of Rpar [0] (in red) is {0} (only VR 0 is in rv ). Since all the three

HSLs in lh = {0, 3, 8} are slicing at VR 1, fh is true and VR 1 is added

to rv which becomes {0, 1} after processing VSL 1 (see Fig. 5a).

Otherwise, if fh is false, it means at least one of the HSLs in lh
is no longer slicing at the j-th VR, and we will add the previous

intermediate result to the final result after trimming and checking

whether the resulting regular structure is valid (line 19 in Alg. 1).

That is, rh and rv will be trimmed such that they are the minimal

regions covering lh and lv (see Definition 2).We also check to ensure

that each of the rectangular regions formed by lh and lv contains

at least one device. This can be done by bitwise operations on Vdr
and Hdr . We further prune the final result such that the regular

structure contains more than 2 HSLs or more than 2 VSLs to form a

valid regular structure. Finally, the resulting regular structure will

be compared against the existing ones in Rf in to ensure that each

regular structure is non-dominated by any other regular structure.

After that, the existing intermediate result is updated to contain

only the continuing slicing VR (lines 20 to 21 in Alg. 1). Fig. 5d

shows the case where fh is false. Before processing VSL 4, Rpar [1]

(in green) have two HSLs lh = {0, 3} (as in Fig. 5c). However, the

VR 4 is not slicing at HSL 3, resulting in fh being false. We trim

the rv from {0, 1, 2, 3} to {0, 1} (since lv = {0, 1, 2}), and make sure

that each of the 2 columns in the row contains at least one device
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Figure 5: Applying Alg. 1 to the placement in Fig. 3 after pro-

cessing (a) VSLs 0 and 1. (b) VSL 2. (c) VSL 3. (d) VSL 4.

(devices 10 and 11, respectively). Therefore, Rf in [0] is added the

final result (see Fig. 5d). Since there is only one HSL remaining in

the original intermediate result which will no longer form a regular

structure, it will be removed. Similarly, for Rpar [3] in Fig. 5c (in

cyan), its lh changes from {1, 2, 3, 4, 5, 6, 7, 8} to {1, 4, 5, 6, 7, 8}. It

remains in Rpar but becomes Rpar [2] in Fig. 5d since the original

intermediate result Rpar [1] in Fig. 5c (in green) is removed. The

resulting candidate to add to Rf in with lh = {1, 2, 3, 4, 5, 6, 7, 8} and

lv = {3, 4} is not valid because it contains no device. Thus it is not

added to Rf in .

After iterating through all the intermediate regular structures in

Rpar , for each of the consecutive slicing HRs q in Q that remains
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irredundant (i.e. that is not marked as redundant by the algorithm),

a new intermediate regular structure is added to Rpar , as can be

seen in lines 24-29 in Alg. 1. The new intermediate result has q, the

j-th VR, and the VSL j. Its HSLs can be obtained from Hlr similarly

to the way of getting fh . Fig. 5b shows an example of adding a

new intermediate regular structure for the irredundant consecutive

slicing HRs inQ . The set of consecutive slicing HRsQ at VSL 2 only

has one element q = {0, 1, 2}. It turns out that q remains irredun-

dant after processing both Rpar [0] and Rpar [1]. Therefore, a new

intermediate result Rpar [2] (in purple) with rh = {0, 1, 2}, lh = {0, 1,

2, 3}, rv = {2} and lv = {2} is added to the set Rpar .

The above procedure is performed for all the VSLs except the

last one. Finally, in lines 31-34 in Alg. 1, the last VSL is added to the

lv for all the intermediate results in Rpar , and the updated regular

structures (rh , lh , rv , lv ) are checked and trimmed before they are

added to the Rf in , as already described above.

3.1.4 Algorithm Analysis. The proposed sweep line-based algo-

rithm is, in essence, a smart enumeration algorithm with pruning,

and is guaranteed to find all the regularity constraints.

Lemma 3. Alg. 1 finds all regular structures that are non-dominated

by any other regular structure in an analog placement.

Proof. We begin with the proof that the results found by Alg. 1

are slicing structures and are non-dominated by any other regular

structure. The proof is by induction. For the first VSL, the entire

VSL is slicing, and it must be irredundant. Therefore, the first inter-

mediate result in Rpar is obviously slicing (lines 24-29 in Alg. 1).

Now assume that the intermediate results in Rpar are slicing just

before the algorithm proceeds to the j-th VSL. There are two cases

depending on fv (lines 9-13 in Alg. 1). In Alg. 2, VSL j is slicing

and is added to lv , thus the intermediate regular structure is still

slicing. In Alg. 3, (r ′
h
, l ′
h
, rv , lv ∪ j) is a slicing structure, and after it

is added to Rpar , the slicing property of the intermediate regular

structure still holds. When l ′
h
is assigned to lh (line 21 in Alg. 1), the

slicing property is maintained. When (q, lnew
h
, rnewv , lnewv ) is added

to Rpar (line 28 in Alg. 1), the slicing property is still maintained.

As a result, we know that after processing the j-th VSL, the inter-

mediate results in Rpar are all slicing. For the last VSL, the entire

VSL is slicing, after adding it to the lv of every intermediate regular

structure, the results are still slicing. Note that before adding to

Rf in , the regular structure is compared against other regular struc-

tures to ensure the non-dominance condition. Therefore, the results

found by Alg. 1 are slicing structures and are non-dominated by

any other regular structure.

Next, we show that any regular structure that is non-dominated

by other regular structures will be found by Alg. 1. Let (r∗
h
, l∗
h
, r∗v , l

∗
v )

be any of these regular structures. Let j∗ be the first VSL in l∗v .

VSL j∗ must be slicing at some irredundant HRs q and r∗
h
⊆ q, since

otherwise the regular structure must be in a larger regular structure,

which contradicts with the non-dominance condition. Lines 24-29

in Alg. 1 adds the intermediate result (q, lnew
h
, rnewv , lnewv ) to Rpar ,

where r∗
h
⊆ q, l∗

h
⊆ lnew

h
, rnewv = VR j∗, lnewv = VSL j∗. Then,

before processing the last VSL in l∗v , for every HSL in lnew
h

but not

in l∗
h
, there must be some VR where it is not slicing, therefore, fh

will be false and theHSLwill be removed from lh of the intermediate

result. In contrast, all HSL in l∗
h
will remain in lh . As for the VSLs,

from j∗ until the last VSL in l∗v , if the VSL < l
∗
v , fv must be false, it

is not added to the lv of the intermediate result. On the contrary,

if the VSL ∈ l∗v , there are two cases depending on fv . If fv is

true, in Alg. 2, the VSL is added to lv of the intermediate result.

Otherwise, if fv is false, in Alg. 3, there must be some q ∈ Q

overlapping r∗
h
. r ′
h
must contain r∗

h
, and l ′

h
must contain l∗

h
, hence

the newly added intermediate result by line 8 in Alg. 3 will continue

to produce (r∗
h
, l∗
h
, r∗v , l

∗
v ). Before processing the last VSL in l∗v , the

intermediate result contains exactly l∗
h
and all the VSLs in l∗v except

the last one. For the last VSL in l∗v , fv must be true and fh must

be false. The last VSL in l∗v is added to the lv of the intermediate

regular structure which makes it the same as l∗v , thus the regular

structure (r∗
h
, l∗
h
, r∗v , l

∗
v ) is added to Rf in . Therefore, any regular

structure that is non-dominated by other regular structures will be

found by Alg. 1. □

Most of the operations in the proposed algorithm are bitwise

operations and efficient. Let n be the number of placement devices.

The outer loop of Alg. 1 is executed O(n) times. In each iteration

of the outer loop, the number of intermediate regular structures

is O(n3). Inside the inner loop, with bitwise operations and paral-

lelization, the run-time is O(1). Therefore, the time complexity of

the proposed algorithm is O(n4).

3.2 Symmetry Constraint Extraction

The symmetry and symmetry-island constraint extraction algo-

rithm we used is similar to that in [8, 14]. The main steps are

sorting the devices by the edges, widths, and heights. Due to the

page limit, we will skip the details of the algorithm.

4 CONSTRAINT-AWARE PLACEMENT

After the regularity constraints and symmetry (symmetry-island)

constraints are extracted from the existing layout, the next step

is to perform constraint-aware analog placement considering the

extracted constraints and updated device sizes. The extracted con-

straints are general and can be applied to any constraint-aware

analog placement engine that can handle regularity constraints and

symmetry (symmetry-island) constraints, e.g., [2, 6, 12, 15]. The

analog placement engine used in our layout retargeting flow is

based on the Mixed-Integer Linear Programming (MILP) formu-

lation, and the non-overlapping constraints and symmetry-island

constraints are formulated similarly to [6].

As for the regularity constraints, we have the following condi-

tions:

1) Conditions for devices inside the constraint: The devices inside

the regularity constraint are separated by slicing lines. The devices

in the i-th row and j-th column of the regular structure must lie

inside the box formed by the i-th and (i + 1)-th horizontal slicing

lines and the j-th and (j + 1)-th vertical slicing lines.

Let Di, j,k be the set of devices in the i-th (i < ik ) row and

j-th (j < jk ) column in the regularity constraint k , where ik is

the number of rows and jk is the number of columns in the reg-

ular structure, respectively. Let xd be the x coordinate and yd be

the y coordinate of device d . For a regularity constraint with ik

rows and jk columns, there should be ik + 1 HSLs and jk + 1 VSLs

separating the rows and columns. We introduce ik + 1 auxiliary
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