

…

downsample upsample

(a)

…

skip connections

(b)

Figure 6: (a) Conventional encoder-decoder architecture,

and (b) Encoder-decoder with U-Net-like skip connections.

In practice, previous work [11] has demonstrated that the noise

vector is typically ignored by G. Hence, in our experiments, noise

is introduced through dropout in the generator instead.

3.4 Post-Refinement

During the usage of our well generation framework, the placement

result is preprocessed and input to the trained GAN model to pro-

duce the well guiding regions. We then perform post-refinement

to legalize the wells based on these guiding regions, such that the

results satisfy the design rules applicable to the well layer, including

minimum spacing, enclosure, width, and area rules. In our post-

refinement, we first merge the GAN-output images of all the clips

into a single image. After that, we perform computational geometry

operations to refine our results, and convert the obtained polygons

back to the final well regions in the layout. The refinement process

is discussed in the following.

3.4.1 Rectilinearization. The well guiding regions generated by

the trained GAN model are essentially polygons. By extracting the

image channel corresponding to the well layer and transforming

it to a binary image through thresholding, we can directly apply

the classical border following algorithm in image processing [17]

to find the polygons (contours) defining the guiding regions. Since

it is illegal to have arbitary shapes for wells, we need to transform

our results to rectilinear polygons.

Our rectilinearization algorithm is described in Alg. 1. First, we

assign either horizontal or vertical directions to the polygon edges

based on their slope (lines 14-16). If the absolute value of the slope

of an edge is less than 1, it is categorized as closer to the horizontal

direction. Otherwise, the edge is assigned to the vertical direction.

We then iteratively merge the neighboring edges with the same

assigned direction, such that the sequence of edges alternates be-

tween horizontal and vertical directions. Subsequently, the merged

edges are rectilinearized. The locations of the rectilinearized edges

are determined according to the average coordinates of the points

on the curve along the specific direction (lines 17-21). Afterwards,

the resultant rectilinearized edges are connected to form the rec-

tilinear polygon. As an example, Fig. 7(b) is the rectilinearization

result for the well guiding regions shown in Fig. 7(a).

3.4.2 Legalization. Since the rectilinearized polygons defining

the well regions may suffer from design rules violations, it is imper-

ative to legalize them. For each rectilinearized well region, the de-

vices outside of it expanded byminimum spacing are first subtracted

from it. Then, it is unioned with the devices inside it expanded by

minimum enclosure.

To address the minimum width design rule violations, we pro-

pose the algorithm presented in Alg. 2. The algorithm works by

Algorithm 1 Rectilinearization.

Input: Polygon p

Output: Rectilinearized polygon pr
1: E← vector of edges of p, Enew ← ∅

2: for all e ∈ E do

3: if AssignEdgeDirection(e) == Enew .last .dir then

4: merge e with Enew .last

5: else

6: Enew ← Enew ∪ e

7: end if

8: end for

9: merge Enew . f irst with Enew .last if same direction

10: for all e ∈ Enew do

11: e .loc ← getLocation(e)

12: end for

13: pr ← polygon formed by Enew

14: function AssignEdgeDirection(e)

15: return |slope(e)| ≥ 1

16: end function

17: function getLocation(e)

18: A← area under the curve formed by points of e

19: d ← distance b/w the first and last points of e

20: return A/d

21: end function

(a) guiding region (b) rectilinearized (c) legalized

Figure 7: Example post-refinement results after each step.

mapping and aligning the polygon edges to a grid whose grid size

equals to the specified minimum width, as illustrated in Fig. 8. Each

polygon builds its own grid. The algorithm will make decisions

on which grid each edge should be aligned to. It will first try to

align the edge to the nearest grid, if the location does not incur

the minimum enclosure nor spacing rule violations. Otherwise, it

will try to align the edge to the other side which would cause no

violation. If that is again infeasible, the algorithm will choose to

align to the grid which satisfies the minimum enclosure rules, and

leave the minimum spacing violations to be fixed at a later stage.

For example, edge e in Fig. 8 is aligned to location e ′ to satisfy the

enclosure requirement. Empirically, since the minimum width is

small compared to the size of the wells and the devices, we are able

to align to the grids without violating the spacing and enclosure

rules for all the layouts in our test set.

Alg. 2 can guarantee to resolve all the minimum width violations

after aligning to grids since no edge will have length less than the

grid size which is the specified minimum width, neither will the

edge distances. It will not cause minimum enclosure rule violations,

