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Abstract: The necklace braid group N'B,, is the motion group of the n + 1 component
necklace link £, in Euclidean R3. Here L, consists of n pairwise unlinked Euclidean
circles each linked to an auxiliary circle. Partially motivated by physical considerations,
we study representations of the necklace braid group N'B,,, especially those obtained as
extensions of representations of the braid group B,, and the loop braid group LB,,. We
show that any irreducible B, representation extends to N'B,, in a standard way. We also
find some non-standard extensions of several well-known B, -representations such as
the Burau and LKB representations. Moreover, we prove that any local representation of
B, (i.e., coming from a braided vector space) can be extended to NB,,, in contrast to the
situation with £LB,,. We also discuss some directions for future study from categorical
and physical perspectives.

1. Introduction

Topology, like many fields of mathematics, owes some of its early development to
questions arising in physics. A classic example of this is the development of knot theory:
Lord Kelvin and Tait, inspired by experiments of Helmholtz, theorized that atoms were
knotted tubes of @ther, distinguished by their knot type [43]. This theory was quickly
dismissed, but Tait’s tabulation of knot projections with few crossings is arguably the
dawn of modern knot theory.

Non-abelian statistics of anyons in two spatial dimensions has attracted considerable
attention largely due to topological quantum computation [37,49]. Exchanging non-
abelian anyons induces unitary representations of the braid group B,,, which can yield
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Fig. 1. The necklace £, as seen from a generic observation point

braiding-only universal quantum computation models. Mathematically, this is a rich
theory because the braid group acts faithfully on the fundamental group of the punctured
plane. The well-studied framework of (2+1)-TQFTs can be used to systematically study
these representations and their vast generalization to mapping class groups of punctured
surfaces of any genus.

Naturally we would like to extend these ideas to 3-dimensional topological materials.
Unfortunately (3 + 1)-TQFTs are not as well studied so we cannot obtain as explicit
descriptions as in the 2-dimensional case. Instead, here we will study the relevant motion
groups [24] and their representations from a more elementary algebraic perspective.

An extension of non-abelian statistics of point-like excitations to three spatial dimen-
sions is not possible due to the spin-statistics theorem in its exchange statistics formu-
lation: exchanging the positions of two indistinguishable particles changes their state
vector by at most a sign. Mathematically, the motion group of n identical points in R? is
the symmetric group &,, which leads to the possibility of parastatistics. Notice also that
the fundamental group of R? with n points deleted is trivial, so that motions of points
cannot be detected in this way—one must consider the framing of paths to explain the
spin-statistics theorem topologically. But in any case points in 3-dimensions are much
less interesting than in 2-dimensions.

On the other hand, loop or closed string excitations occur naturally in condensed
matter physics and string theory. The mathematical manifestation of this idea was con-
sidered in [9,28] with a study of local and low dimension representations of the loop
braid group LB,: the group of motions of n oriented circles in R3. In this article we
consider the related group N'B,, of motions (up to isotopy) of a necklace L,,: n unlinked
oriented circles that are linked to another auxiliary oriented circle, see Figure 1. One
compelling reason to undertake this study is that such a configuration may be more feasi-
ble physically than the free loop picture. Indeed, a number of proposals in this direction
have appeared recently, see [12,25,31,47].

The motion group NB,,, the necklace braid group, is described in [7], where it is
identified with the fundamental group of the configuration space of L. In £, we fix
a circle labelled 1, and order the n circles 1, ..., n in a counterclockwise fashion; and
orient the auxiliary circle in the same counterclockwise way. The group N'B,, includes
elements o7, ..., 0,, T where o; is the motion, up to homotopy, of passing the ith circle
through the i + Ist, while v corresponds to shifting each circle one position in the
counterclockwise direction. We use the function convention when composing elements
of the motion group: fg means apply g then f. In fact NB, is generated by these
elements.
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Although the realisation of NB,, as a motion group is fundamental to its utility
in physical modelling, from a representation theory perspective, manipulating NB,, at
the ‘geometric topological’ level of its definition as a motion group is relatively hard.
Fortunately [7, Theorem 2.3] gives a presentation by abstract generators and relations
that facilitates such manipulations. Next we discuss this ‘combinatorial’ realisation.

Theorem 1.1 ([7]). We have a presentation of a group isomorphic to NB,, by abstract
generators o1, . .., 0y, T satisfying:

(Bl) 0i0i+10; = 0{+10;0j+1

(B2) ojoj = 0ojo; for|i — j| #1 (mod n),
(NI) to;t ' =01 forl <i<n

(N2) t2" =1

Here indices are taken modulo n, with 0,41 := o1 and o¢ ;= 0,. O

Observe from the presentation in Theorem 1.1 that the subgroup generated by the o;
for 1 <i <n —1is aquotient of Artin’s braid group B,,. It is not hard to verify that
(N1) and (N2) do not induce further relations among o1, ..., 0,—1, so that, in fact, we
have B, < NB,,.

It also follows from the presentation that N'B,, contains a normal subgroup isomorphic
to the affine braid group (of type A) on n strands: BA, = (o1,....0n) < NB,.
Notice that [NB,, : BA,] = 2n and NB,, = BA, % (t). In particular, every element of
NB, may be written as t¥8 with 8 € BA,.

The annular or circular braid group CB, (the fundamental group of the configu-
ration space of n points in an annulus) may be presented by generators as for NB, in
Theorem 1.1 but omitting relation (N2) (see e.g. [7]). Thus N'B,, is isomorphic to a
quotient of CB,,.

¢ :CB, —> NB, (1.1)

Some of the relations (B1-N2) for N'B,, are redundant: the following reduces the
number of defining relations from %n(n +1)+1to2n — 1.

Lemma 1.2. The relations (N2), (N1), (Bl) fori = 1 (i.e., 10201 = 0201073), and (B2)

fori=1and3 < j <n-—1(ie,o010; =0jo1 for3 < j <n— 1), imply all relations

of Theorem 1.1.

Proof. Assuming (N1) gives us v/~ loj77#*! = ¢; for all i where indices are taken

modulo n. Thus 010201 = 020707 implies that for any i:
0101410, = (¢ ot Y (ot (T T oy T

=t oclor o !

— ‘L'l_10'10'20'11'_l+1
11_10201021'_”1

toit lotlo et

— (TialT_i)(fi_lalf_i+l)(fialf_i)
= 0i+10i0j+1-

Next we verify (B2) assuming o1 commutes with o with 3 < k < n — 1. We may
assumen > j >i > land|j —i| #1 (mod n).

0ioj = 1'17]0'11'71“‘L'li]O'j_H]l'iH]
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i—1 —i+l
=17 010417
i—1 —i+l
=1"70j_i+101T
— Tl_laj7i+]T_H—lfl_lo']T_H—l =0j0;.

O

Another easy observation is that o; — (i i + 1) (modulo #n, so that o, — (n 1))
and 7 — (12 --- n) gives a surjection ¢ : NB,, — S,,. The kernel of ¢ is the normal
subgroup of motions that carry each circle back to their original positions: the pure
necklace braids.

The motion group of  unlinked oriented circles inR?, i.e., the Loop braid group LB,
studied in [2] does not contain the necklace braid group, but it does contain a quotient
of N'B,, by a central subgroup of order 2 as we will see. This relationship is explored in
Sect. 2.

1.1. Overview of paper. In Sect. 2 we lay down some basic facts about the relation-
ships between N'B,, and various other topologically constructed groups. In particular
we develop a number of ways to construct representations of NB,, both by extending
from B, representations or by factoring through representations of the loop braid group.
These ideas are applied in Sect. 3 to many well-known examples of B,, representations,
while in Sect. 4 we focus on extending local B,, representations. It turns out to be much
easier to construct local representations of N‘B,, than LB,,. In Sect. 5 we address the
‘brute’ algebraic analysis of low-dimensional representations (in the spirit of [9,21,29]).
In Sect. 6.1 we return closer to physical considerations. We discuss the construction of
representations from braided fusion categories; and in Sect. 6.2 we explore more direct
physical manifestations of NB,, using ‘categorified’ quantum spin chains.

2. N‘B, Representations from B, and LB, Representations

The necklace braid group is closely related to both the ordinary braid group B,, and the
loop braid group LB,,, and both provide a rich source of representations. In this section
we explore these relationships.

2.1. Relationship with B,,. As noted, the braid group B,, on n strands is isomorphic to
the subgroup of N'B,, generated by o1, ..., 0,_1. Notice that the absence of 0,, and
obviates the consideration of indices modulo 7 in relations (B1) and (B2). In particular,
any representation of N'B,, restricts to a representation of B,,.

In B,, define the single twist

Y =01 Op_1. 2.1)

The center of B, is generated by the the full twist of the n strands: y" = (o1 - - - 0,—1)".
B, can be generated by y and o1, as can be seen from the useful:

vory M=o, 1<k<n-2. 2.2)

Defining
’ n—1 1

oy =y" oy =y oy = you_1y ! (2.3)
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we find that oy, ..., 0,1, 0, satisfy the (modulo n) relations (B1) and (B2) above.
Setting T = y we also verify (N1), but not (N2) in general. However, for certain rep-
resentations we can take advantage of this close relationship to produce representations
of NB,,:

Lemma 2.1. Let p : B, — GL(V) be any indecomposable finite-dimensional rep-
resentation of B, such that p(y*") = cpldy for some scalar c, (for example
any irreducible p). Then p extends to an indecomposable representation of NB, by

p(on) = p(you—1y ') and

p() = ()" p ().

Proof. Relations (B1) and (B2) are immediate, and relations (N1) follow from the cen-
trality of y”. For (N2):

2n 1
P = (@) 20m))" = ZpG™) = 1dy.

In fact, since the braid relations are homogeneous we can rescale the p(o;)s by k # 0 to
obtain a new representation p’(0;) = kp(0;) of B,,. Setting p'(t) = p’(y) the rescaling
will not affect (B1), (B2), (N1), but can be chosen to cancel the scalar in ,o(yz"), and
then we may define p(o;) as above.

Now let p be any finite-dimensional representation of B,. It is a direct sum of
indecomposable representations, p; say, and there is a projection to each of these
in Endg, (V). The sum of the projections each individually rescaled according to
Lemma 2.1 gives a p(t) and hence a representation of N'B,,. In particular:

Theorem 2.2. Let p : B, — GL(V) be any completely reducible complex representa-
tion of By, (for example any unitary or irreducible representation). Then there exists a
D € Endg, (V) such that defining

p(t) = Dp(y), plon) =py)pEn—1)py™ "
is a representation of NB,,.

Proof. By complete reducibility, for some set of irreducibles { W; }; wehave V = D, W;.
Since y2" is central in B,,, we have p mod w; (y™) = c;ldw, for some ¢; € C. Define

D = @i(ci)%nlldwi € Endg, (V) so that (Dp(y))¥" = Idy. Since D commutes with
the operators p(o;) for 1 < i < n — 1, it also commutes with p(y). Hence defining
p(t) = Dp(y) and p(0,) = p(y ~'o1y) we see by the above discussion that all NB,,
relations are satisfied and hence these assignments extend p to NB,. O

This approach bears some similarity with the notion of a standard extension found
in [9], so we adopt this nomenclature and refer to any representation p of NB, with
p(t) = Ap(y)and [A, p(0;)] = 1 forall i, a standard extension. Since A = p(ry '),
this operator is already in the image of p, so that p(NB,,) is generated by p(B,,) and A.
In particular, p(NB,,) is a central product of the cyclic group generated by p(B,,) and
the central operator A. From a topological perspective standard extensions do not fully
exploit the (3 + 1)-dimensional nature of N'B,,, rather the interesting information they
carry is already present in the braid group B,,, which is related to (2 + 1)-dimensional
topology.
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Remark 2.3. By Schur’s lemma a standard extension of an irreducible B,, representation
has the form p(r) = Ap(y), where XA is a scalar. On the other hand, the standard
extensions fit into a more general construction, observing that a representation ¢ of B,,
lifts trivially to €B,, by letting € CB, act by ¢(y). Indeed, if G = F x (y) is a
semi-direct product in which y acts by conjugation and y” is central for some #n then any
representation of G for which the image of y” is semisimple (diagonalizable) factors
over the quotient G /(y"). It is conceivable that more interesting representations of NB,
can be obtained from CB,, in this way, cf. Sect. 6.2.

Remark 2.4. Failure of complete reducibility does not preclude the existence of standard

extensions: the representation of B, defined by p(o;) = J = <(1) i) for all i is not

completely reducible, yet p(y) = J n=1 commutes with p(o;) so that p(tv) = Id =
J=m p(y) is a standard extension.

Of course our existence Theorem does not tell us how to construct standard exten-
sions. In this setting there is a computational distinction to be made between individual
values of n (see Sect. 5), and a construction that starts with a braid group representation
for all n and determines a D for each n. We will touch on the latter problem in Sect. 6.2,
where we use integrable spin-chain methods.

Modular categories are a rich source of representations of B,, where motions of
points in a disk lead to B, representations on the Hilbert spaces obtained from the
corresponding (2 + 1)TQFT. Categorical constructions of (3 + 1)TQFTs suggest that
there should also be a way to obtain representations of N'B,, and other motion groups of
1-dimensional submanifolds of 3-manifolds, by acting on appropriate morphism spaces.

2.2. Relationship between N'B,, and LB,,. The motion class o; in NB,, can be imple-
mented if the auxiliary circle is absent as can the motion 7. This suggests a relationship
between N'B,, and the loop braid group LB, associated with the motions of an array of
n unlinked loops in R3 studied in [2].

It will be useful to consider for a moment a groupoid I' where N'B,, and £3B,, both
belong (cf. e.g. [13, Ch.2]). A link is an embedding of some number of copies of the
circle S in R? (hence a certain 1d submanifold of R?). For example consider the link L,
in Fig.1. Another example is the n-component unlink. Let a, b be two such embeddings.
A motion of a link (in the motion set hom(a, b)) is a smooth variation of one such
embedding a into another b over an interval of time—a 2d submanifold of R3 x [0, 1] C
R* ‘starting” ata C R? x {0} and ‘ending’ at b C R? x {1}. We may combine compatible
motions in the obvious way [13, Ch.2 §1].

Two motions y, ¥’ from a to b are equivalent if there is a continuous family [13, Ch.2
§2] in hom(a, b) starting in y and ending in y’. Under this equivalence the classes of
hom(a, a) (denoted I';, = hom~(a, a)) form a group. The classes of all motions form a
groupoid I with object set the set of links. Note that

Lemma 2.5. Two groups Ty, T'y, are isomorp hic if the object links are the same topo-
logical link.

The loop braid group LB, is the motion group hom- (a, a) for any a that is topolog-
ically the n-unlink. We may visualize £B,, as follows: arrange the n loops as circles in
the xy—plane along the x-axis and label them 1, ..., n:

a:©©©©
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Remark 2.6. Consider for comparison the n-loop arrangement obtained as follows. Start-
ing from a single circle, add further circles that are rotations of it about an axis in the
same plane but exterior to the circle:

b —

(2.4)

This is then precisely as in £,,, but with the linking loop omitted. It will be clear, cf. e.g.
[13], that this leads to a group I', isomorphic to I',.

Keeping with arrangement a above, let s; denote the interchange of loops i and i + 1
via representative motions like this:

(NB. this is an overlaid ‘movie’ view; each still is a picture of two loops in a 3d space;
time goes vertically). Denote by g; the “leapfrog" motion of passing the ith loop
under and through the i + 1st loop followed by sliding the i + 1st loop into the position
previously occupied by the ith loop. The following projection is helpful to visualise this
operation which is happening in 3 spacial and 1 (vertical) time dimension, (note that the
self-intersections are just shadows of the projection):

A presentation of LB, by abstract generators g;, s; (using the same symbols, to
indicate how the homomorphism works) is (see e.g. [2]):

8i&i+18i = &i+18i&i+1,  &&j = &;j& li—jl#1 (2.5)
sT=1,  siSielSi = Sis1SiSisl,  Sisj =S8 |i—jl#1 (2.6)
SiSit18i = &i+15iSi+1,  &i&i+185i = Si+18i&i+1,  &Sj =s;gi for|i — j| > L.

2.7)
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2.3. A group homomorphism. Note that Lemma 2.5 does not give an isomorphism
between LB, and NB,, and indeed they are not isomorphic. One way to see this
is by taking their quotients by their commutator subgroups, i.e their abelianizations:
NBf‘lb = 7 x Zp, whereas LB,T’ = 7 x Z, forn > 1. Note that in the degenerate case
n = 1 the group NB; = Z, and L£B; = 1. However our remark on the relationship
between these constructions does lead to a beautiful homomorphism.

The precise relationship is the following:

Lemma 2.7. There is a group homomorphism ¢ : NB, — LB, given by

T pi=8182"""Sn—1;

o; > gi fori < n; and o, — pgu_1p~ L.

Proof. 1t is enough to check that the relations given in Lemma 1.2 are satisfied. Notice
(B1) (for ¢ (o1) and ¢(02)) as well as (B2) (for ¢(o1) and ¢(o;) with 2 < j < n) are
verified by (2.5) and ¢(7)?" = 1 follows from the symmetric group relations (2.6). We
use (2.7) to see that

P8 =51 (SiSi418i)Si+2 "+ Sn—1 =81 8i—1(gi+15i8i+1) - * - Sp—1 = &i+1P

proving (N1)fori < n—2.Fori = n—1(N1)is true by definition: ¢ (0,,) = pgn_1p~ ' =

¢(top_171). Moreover, g1 = p~"*lg,p"~! = pg,p~! (since p" = 1) which proves
(N1) for i = n, completing the verification. 0O

Theorem 2.8. The kernel of ¢ is the order 2 central subgroup (t"").

Proof. This is a direct consequence of [7, Lemma 3.1(2)] after observing that ¢ is
induced by the map from the necklace L,, to n free loops that forgets the auxiliary linking
circle. O

Note that for any representation p : LB, — GL(V)then po ¢ : NB, — GL(V)
is a representation of N'B,,.

Let us briefly review LB, and see what this gets us in terms of representations.
Present knowledge of LB, representation theory is limited, but not zero (see e.g. [28]
for a review). (NB the motion s; is not possible in NB,,).

Firstly there is a realisation of LB, as the group of conjugating automorphisms of the
the free group F;,, = (x1, x2, ..., X») generated by braid and permutation automorphisms
[20]:

Xi = Xit1 Xi = Xit1
. -1 .
8i Py Xitl B> X XiXi+] Si 4 Xisl P> X . (2.8)
xj > xj otherwise Xj > xj otherwise

While this is a faithful action for £3B,,, the induced action of N'B,, is of course not
faithful.

Local representations of LB, are constructed in [28] which give rise to N'B,, repre-
sentations. However, there are many local representations of NB,, that do not extend to
LB, (cf. Sect. 4).

3. Extensions of Familiar B,, Representations

Having laid out the general theory in Sect. 2.1, in this section we provide concrete exam-
ples of N'B,, representations obtained by extending some well-known representations of
Ba.
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3.1. Extensions of standard representations. Recall (see e.g. [44]) that a standard rep-
resentation of B, is (8, V) such that

0
Boi)) =11 ® (1 8) @ li—i—1.

where I is the k dimensional identity, and z € C\{0, 1}. Notice that the image of
a standard representation is a group of monomial matrices, and is therefore virtually
abelian. First we will state a theorem that deals with n > 3, and then we will state results
for n = 2. We caution the reader that the established nomenclature is unfortunate as we
must now discuss standard extensions of standard representations of B,,.

Proposition 3.1. For n > 3, any standard extension of the standard representation from
B, to NBy, is of the form p(t) = AB(y), where A € C such that \*" = 72— D,

Proof. From the fact that the standard representation is irreducible for n > 3 [44,
Lemmas 5.3 and 5.4], we have that p(t) = AB(y) for A € C\{0}. The fact that p(7)** =
A B(y)2 = I, and B(y)?" = 2=V, gives us that A2* = ;72D g

Now considering n = 2, we want A = (CCZ Z) such that AZ = Z A (where B(o1) =

10

the fact that we want To»7~" = o7, and we are defining the image of o5 to be the image
of toyt~!. From AZ = ZA we get that a = d and b = zc. Using this along with the
other two equations, we get the following possibilities for p(t) = AZ:

10 0 W2\ L1 1xi (Fiz
{i’%i(m(z)—l)’g“((ﬁ)—l 0>’i§<(1¢i>ﬁ‘l 1+i )}

where &4 is a choice of 4th root of unity.

Next let us consider non-standard extensions of the standard representation. This
means we want a representation (¢, V), and T € End(V) such that ¢(t) = T and
T # AB(y) (where A is as defined in proposition 3.1). We know that we need T2 = Iy,
TB(o;) = B(ois)T foralli = 1,...,n — 2, and that T2B(0,—1) = B(o1)T?. Let
T = (fi,j)?,j:y The later two relations give us that#; ; = 0if j i —1 mod n and

Z = (O Z)), (AZ)* = I, and (AZ)2Z(AZ)"% = Z. The last equation comes from
1

tij—1 =1ty foralli =2,...,n—1.Hence T has the following block form: (tlo X g) .
n—

—n+1
Then T?" = Iy gives us that a = ¢t~ "~V and therefore T = <t10 ! 0 > If
n—1
= 772D e would have a standard extension. Hence, 2" #+ 7720=1 would give
us a non-standard extension. This gives us the following:

t2n

Theorem 3.2. For n > 3, a representation, ¢, of NB,, is an extension of the standard
—n+1
representation, B, of B, if p(0;) = B(oi) fori =1,...,n—1,¢(t) = ( 0 1 0 >

t1,—1
(fort #0), and ¢ (0y) = §(toy—1T ).
It should be noted that if t*" # z 72"~V then the representation ¢ is not a standard
extension of B, i.e., the image of T is not a rescaling of that of the single twist y.
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3.2. Extensions of the reduced Burau representation. As areminder, the reduced Burau
representation p of B, is an — 1 dimensional representation defined as follows:

Ii >
—t 0 1—-t0 I,_3
plon)=|-11 ., p(oi) = 0-70 , p(on—1) = 1 —1
Ii_3 0-11 0 —t

L

where ¢ is a nonzero complex number. The reduced Burau representation is irreducible
ifl4+r+224 47! # 0. This means (as stated in remark 2.3) that any standard
extension has p(t) = Ap(y).

Proposition 3.3. Any standard extension p of NB,, of the reduced Burau representation
(with 1+t + -+ 1"~V £ 0) has the form p(t) = Ap(y) where A" = =",

Proof. From the above, we have that p(t) = Ap(y) for some scalar A. From the fact
that p(v)%" = A% p(y)** = Iy, and p(y)*" = t*"Iy. We are given that A=
O

3.3. Extensions of the Lawrence—Krammer—Bigelow representation. Let V be a (g)
dimensional vector space with basis v; ; (1 < 7, j < n). Assuming that the order of
the indices do not matter, and that ¢, g are nonzero complex numbers, the Lawrence-
Krammer-Bigelow (LKB) representation is defined as:

2
OiVi i+l =147V} i+1

OiVjk =Vjk for{i,i+1}N{j,k} =0
OiVit+l,j = Vj,j for j #£i,i+1
oivij =tq(q — Dvjjy1 + (1 — @)vi j + quis1,j ifi+l <
oivji = (1 —q)vji+qujiv1 +q(g — Dvi i+ if j <i.

t1q?viisr if j=n
q2vi+1,j+1 if j<n
Y = tq*"v;, ;- Therefore, a standard extension to N'B,, given by © — «y where «
is a scalar, we find k = wyp, (t_l/"q_z), with wy, a 2n-th root of unity. For n = 3 and
n = 4, these are the only standard extensions. Notice that if wy,, is an nth root of unity,
7" would be in the kernel. Thus the standard extension would not be faithful.

It can be computed that yv;; = { . Repeating this gives that

3.3.1. Nonstandard extensions. For n = 2, since any LKB representation is 1 dimen-
sional, any extension is standard.

For n = 3, with the additional assumption that ¢ # 1 and « a choice of cube root of
++~1, the following give a nonstandard extension of the LKB representation:

2 2

0 (q> —q+Dg~ —(g — g~
T—~al O —(q — 1)6]—1 q_1

tq* (g — D(tq*> —q+Dg~' (g—Dg™!

If we choose « to be the cube root of £~ !, then the extension is not faithful (as 73 would
be in the kernel).
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For n = 4, again, let g # 1 and B € {£/%f, (—tz)% }. Then we obtain a nonstandard
extension of the LKB representation by having the image of 7 be

0 0 (¢*'n'g-q+D 0 —-(q*'n7"'p —-(q*'n7"'p
0 0 —(@*n7'p 0 @D g*—q+1) —-@*n7'p
0 0 —(@*n7'p 0 —(@*n7'p q*n~!
P @ 0 @D7'p@t—qg+1) 0 @@ —2¢>+29 -1  —@7'p*|
0 ¢* @7 'p@t—q+1) 0 —(g*t)~ " p? @0~ "'p
0 0 —(gt)~'p? ¢ @O NPt —q*t+D+2g -1 (@) 'p

where p = ¢ — 1. Similar to the case with n = 3, if we choose 8 = ++/%E¢, then t# is
in the kernel of the extension. Hence it would not be faithful.

4. Local Representations

One source of matrix representations of B, is through braided vector spaces (BVS):
these are pairs (R, V) where V is a vector spaces and R € Aut(V®?) satisfies the
Yang-Baxter equation (on V ®3)

(R®Iv)(Iy ® R)(R® Iy) = (Iv ® R)(R® Iy)(Iv ® R).

The assignment p® (0;) = I 5’ DRI 5) == then gives a representation of B,, on
V®" This is an example of a local representation: each generator has non-trivial action
only on two (adjacent) copies of V.

Remark 4.1. Note that in general p® may not lift to a representation of LB,,: in [28,
Proposition 3.3] BVSs of group-type are shown to lift to a loop braided vector space but
the general case is open.

By Theorem 2.2, p® has a standard extension (as long as it is completely reducible).
As above, the image of the standard extension of p to N'B,, does not carry much more
information than ,oR itself. However, there is another extension of ,oR, using the BVS
obtained from the symmetric group. Namely, define the flip operator P(x ® y) = y® x
on V ® V. Then we have:

Theorem 4.2. Suppose (R, V) is a BVS and pX the corresponding B, representation.
Forn > 3, setting pR(t) = (P ® I‘?n_z) “e (1{?"_2 ® P) defines an extension of p&
to N'B,,.

Proof. Again using Lemma 1.2 it is enough to check (N1) and (N2): the fact that (R, V')
is a BVS gives (B1) fori = 1 and (B2) fori = 1 and 3 < j < n — 1 immediately.
From our definition of p®(7), we have that (N2) is satisfied (in fact, p® () has
order n).
The key computation is to show that (N1) holds. For this it is sufficient to show that

POIDNUSP)YRINPRINUIRP)=URR).
Comparing the two operators on a pure tensor of basis elements v; ® v ® v3 we obtain
(P®DHUI ® P)[R(v2®v3) @vi] and vi Q@ R(v2 ® v3)

for the left- and right-hand sides respectively, which are clearly equal. This completes
the proof. O
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Remarks 4.3. e Obviously the operator p®(7) is not local in the strict sense: it acts
non-trivially on all tensor factors. However, its action does not mix vectors within
the tensor factors, it only permutes them globally.

e We think the following is an interesting question: given R, how much bigger is the
image p® (N'B,,) than p® (B,,)? Note that while the subgroup generated by o7, .. ., o,
has index 2n in NB,, [7] B, = (o1, ..., 0,—1) has infinite index. If |pR(‘Bn)| < 00
is |oRONB,)| < 00?

e In the degenerate n = 2 case we have By = Z, so that any R € Aut(V®?)
gives a representation of B,. Setting p®(r) = P defines an extension to NB, if
R is symmetric in the standard product basis of V ® V: we have that pR (o)) =
R, p®(t) = P, and pR(02) = PRP. The only relation that needs checking is
pR(o10001) = pR(00109) i.e., RPRPR = PRPRPRP which is satisfied if R is
symmetric i.e.,PRP = R. Note that (B1) does not hold for every R satisfying the
Yang-Baxter equation, as the following example illustrates.

1001
E le 4.4. Consider dimV =2 dR—L 0 1-10 This gi that
xampie «.4. onsidaer dim = an _ﬁ 0 1 1 0 . nglVCSUS al
—-10 0 1

pX(o10201)(e2 ® €1) # p"(020102)(e2 ® €1).
Thus mapping p®(t) = P does not define an extension of pX from B, to NB,.

For the matrix R of this example we have verified the following conjecture forn < 5,
showing that the image of N'B,, can be significantly larger than that of B,,.

Conjecture 4.5. Given the above R and n > 3, [pR(NB,)| = nlpR(BA,)| =
n2”|pR(‘Bn)|_

4.1. Gaussian braided vector spaces. From the above discussion, any unitary BVS pro-
vides a local representation of B,,, which can be extended to a representation of NB,, in
two ways: (1) the standard extension (Lemma 2.1) and (2) the n-cycle extension of The-
orem 4.2. In this subsection we consider extensions of the Gaussian representations first
studied by Jones [27] and analyzed in [22]. As the matrix representations are somewhat
unwieldy, we take a more algebraic approach.

As in [22], we define ES(m,n — 1) as the algebra generated by uy, ..., u,—1 with
the relations ulm =1, ujujy; = qzui+1u,~, and uju; = wuju; if [i — j| > 1 where
eZTim if m odd

q = eTM i even Setting ¢, (0;) = Z’;’:_Ol quwl./ defines a homomorphism
¢n : Byp > ES(m, n—1).To getabraided vector space from E S(m, n—1) itis enough to
find a vector space V and U € Aut(V®?) such that the map u; — I“?i_l QXU I‘Q,Z’"_i_1
defines a representation of ES(m,n — 1) on V® Let V = C™, with standard basis
{€;|0 <i < m—1}.Define €;4, = ¢;,and U € End(V®*) by U(e; ®e;) = ¢/ eis1 ®
ej+1. In [22] it was shown that u; > U; := I®~!1 @ U ® 1®"~'~! gives a x-algebra
homomorphism (where u;k =u; 1) from ES(m, n — 1) to End(V®"). It was also shown
that R := \/Ln? Z’}:Ol q’ *Ulisa unitary operator. Composing with ¢,, we obtain a unitary

representation ®,, : B, — Aut(V®"), where ®,(0;) = \/L% Z'}’:_Ol quUij.
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To extend this idea to NB, first we extend ES(m,n — 1) to another algebra,
NES(m,n). We define N ES(m, n) to be the algebra generated by uy, ..., u,—1, t sub-
ject to the following relations:

M u'=1=1"

() wjuis1 = q2ujpu; forall1 <i <n—2

Q) wiuj =wuju; if |i — j| # 1,

4) tujt ' =ujy foralll <i<n-—2

where ¢ is either an mth or 2m root of unity as above.

Noticethat N E S(m, n) is nearly asemidirect productof E S(m, n—1) with Z,,, except
that tu,_;7~' is not in NES(m,n — 1). To make the connection to N'B,, clearer, and
to remedy this defect we introduce a useful auxiliary generator to obtain a presentation
with more familiar modulo » relations:

Lemma 4.6. If we define u,, := tuy_11~" then u, satisfies (1) above, relations (2) and
(4) above hold modulo n and the condition in (3) can be replaced with |i — j| # 1

mod n.
Proof. Since " 2ujt™"*? = u,_; and " = 1 we have 1"yt = u, proving that
(4) holds modulo n. Next we see that

-1 2 —1 —1 2
Up—1Up =TUp2Up—18 ~ =q tup_1t tuy_2t =g Up—1Uy

as desired, with u,u; = qzu 1uy, verified similarly. For (3) it is enough to check that u,,
commutes with u,_p (with n > 4). This is also straightforward:

UpUy_2 = tu,,_lt_ltun_3t_1 = tun_gun_lt_l = Uy_2Uy.
O

Observe that the algebra N ES(m, n) is a finite dimensional semisimple algebra over
Q(g).Indeed, N ES(m, n) is essentially a group algebra. Next we show that N'B,, admits
a representation in N ES(m, n).

Theorem 4.7. The map ¢, : NB,, — NES(m, n)* byo; — R;(m) = f Z "0 q' u;
and T +— t is a group homomorphism.

Proof. As shown in [22, Proposition 3.1], the relation ¢,(010201) = @,(020102),
and @,(010j) = @u(ojor) for 2 < j < n are true. From the definition of ¢,
On(to;t™Y) = @u(0is1) and @,(7)*" = 1. Thus we have ¢, is a representation of
NB, into NES(m,n). 0O

~

To obtain a representation of NB, again let V = C", with standard basis
{eo, ..., em—1} with e;4,, = e;. Now define U, T € End(V®?) by U(e; @ ¢j) =
q-/_iei+1 ®ej+1 and T(e; ® ej) = e; ® e;. Further define, for any n > 2, elements of
Aut(Ve"):

X =TI HUQRTRI" ... (I®"2x7T)
and U; := I® 1 @ U @ I®" i~ foreach 1 <i < n — 1. Notice that

X(ei] ®“'®ein)=ein®eil ®...®ein—l'
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Proposition 4.8. The map W given on generators by u; — U; and t — X defines a
representation of NES(m, n) on V",

Observe that we only need to verify relations (1)-(4) above.

Proof. Ttis clear that U; commutes with U; if |[i — j| # 1 proving (3). Also,

m g M=DU=D) g U=i=m (=) g (=Dig, & ej=e¢®e i<j
UPei ®€j) =\ m—i)(j—1) 1 i—j=m)i=D) U=l p: @ 0 — o @ 1 i = i
q q q eiQ®ej=¢Qej 1> ].
Notice that X has order n, hence (1) is satisfied. A straightforward calculation shows
that XU; X~! = Ujyy, i.e., (4). From this we see that for (2) it is sufficient to check
the last relation on N ES(m, n) for Uy, U with n = 3, which has been verified in [42]:
UiUsx(e; ® ej ®ex) = q°UrU1(e; ® ej ®e). O

Observe that W o ¢ : NB, — Aut(V®") gives a local representation of N'B,,. The
case m = 2 has the realisation given in Example 4.4, and conjecturally has finite image.
More generally, in [22] it is shown that the restricted image ¢(B,) in ES(m,n — 1)
is finite. We wish to follow a similar approach to show that the image of ¢, (NB,,) is
also finite. Notice that the monomials in N ES(m, n) have the following normal form:
®uf' -+ uy" where 0 < @ < nand 0 < o; < m. In fact, we see that these n(m)"
monomials form a basis for NES(m, n) over Q(q). The structure of NES(m, n) is
more complicated than E S(m, n — 1), which is actually simple for n odd and has exactly
m simple components for n even [42]. We let ¢,(NB,) C NES(m, n) act on the span
of U = {u?” ---uy"} by conjugation. Since conjugation by ¢ obviously permutes this
spanning set,

We first show that the conjugation action of R;(m) also permutes this set. The same
approach as in [22] works here: (note we may omit the scalar L in R;(m) in these

N
calculations):

m—1 5 m—1 )
-1 -1 2 -l -1 2
qu; uir1Ri(m) = qu; "uiy Zq] Up =q Uip1l; ZCIJ uj
=0 =0

m—1 m—1
—1 2 j-1 -1 2 —2(j—=1)y,,J—1
=q7"' Y ¢ winw] T =q7" Y ¢/ @] i
j=0 j=0

m—1
-1 > —2j+2 j—1
=Y a'q" U] i
j=0

m—1 5
2 i
= ZCI(" Pul 7 wins = Rimyui
j=0

and

m—1

_ 2
g~ uiuiRi(m) = quiu; qu U
j=0

m—1 5 m—1 5
— qu: P = 25
= qu; qu ui_\uy; = qu; Zq/ g7 ujui
j=0 j=0
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m—1 5
i2 2 j+l
=Y qq’ ¢7ul ui
=0

m—1

i+1)2  j+1
= ZCI(]+ Pul™ L uisy = Ri(mu; .
=0

This shows that R; (m)u;+1 R; (m)_1 = qui_lu,url and R; (m)u; 1 R; (m)_1 = q_lui_lui.
Thus conjugation by R;(m) permutes the spanning set U up to scalars that are roots of
unity (i.e., powers of ¢). Thus ¢, (NB,,) is finite modulo the center. The subalgebra of
N E S(m, n) generated by ¢, (NB,,) is semisimple, so that the faithful representation of
@n(N'B,) on NES(m, n) decomposes into full matrix algebras. Thus any element x of
the center of ¢, (NB,,) acts via a scalar matrix on each irreducible subrepresentation.
But since the generators of ¢, (NB,) have determinant a root of unity (of degree m or
n), the scalar x is also a root of unity of degree only depending on m and n (indeed
the degree of each irreducible representation depends only on m, n). Thus the center of
@n(N'B,,)) is a finite group and has finite index, so ¢, (NB,,) is a finite group.

4.2. Quaternionic representation. Similar to the Gaussian Braided Vector Space, the
idea is to take a finite group (in this case Qg) and consider the group algebra with
n copies of the group, where the generators will interact with ‘close’ neighbours in a
specific way, but commute with ‘far’ neighbours. Let ¢ = ¢*7/% and [, ] denote the
group commutator. Similar to the Gaussian case, we take the algebra Q,, defined in [41],
and define Q,, to be (almost) a semi-direct product of Q,, with Z,, the algebra generated
byt,uy,...,uy—1, V1, ..., vy—1 with the following relations:

(1) u? =v? = —1foralli,

@) [ui,v;]=—1if|i — j| <2,

() [uj,vjl=1if|i — j| =2,

@ [uj,uj]l=[vi,vj]l=1=1",

(5) tujt™" = w41, and rv;t~! = v, for all i.

As in the Gaussian case, we have the following lemma.

Lemma 4.9. Defining, in Q,, u, := tuy_1t~ Y and v, = tv,_1t7 ", vy, uy, satisfy rela-
tions (1) — (5) with indices mod n (defining vy = v, and v,+1 = v1).

Proof. We must check that u#,, and v,, also satisfy the relations (1)—(5). For (1), note that
u2 = (tup—1t™H? =12 171 = -1 =12 ;17! = (tv,_117")? = v2. The relation
(5) follows from the definition of u,, v, and " = 1; fuyt~! = r@u,_1t~Hr ! =
t(@ a7 = "ut™ = uy and similarly v~ = vy. For (2) and (3), we
will first consider [u,, v;]. Doing so gives the following:

—1 -1 -1 -1 -1
[un, vj] = [tup—1t" ", v;] = tup—1t~ " vjtu, t v,

J
-1 -1 _ -1
= tun_lvj+1un_lvj+lt
-1
=tlup—1,vj41]t" .

Similarly [, v,] = t[u 41, Vn—11¢~L. Thus the relation (3) holds for |i — j| mod n >
2. For (2) we need to check the above equation, j = 1,n — 1, n.

[, v11 = [t ugt, vl =t ug, valr = —1
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-1 —1 —1
[n, Vo1l = [tup—1t™  tvp_2t™ 1 =tlup—1, vu—2lt™ = —1

—1 -1 -1
[p, val = [tup—1t™  tvp_1t™ | =tlup—1, vp—1 1t~ = —1L.

Hence (2) holdsfor |i — j| mod n < 2.Lastly (4) holds from [u,,, u ;] = t[u, 1, uj]t_1
and [v,, vj] = t[v,—1, vj]t_l. O

Theorem 4.10. The map &, : NB, — Q) given by &,(0;) = g—ql(l +u; +v; +u;v;) and
&,(t) =t defines a group homomorphism.

Proof. Similarly as in the Gaussian case above, we use Lemma 1.2 and [41] to reduce
to checking E,l(ta,'t’l) =§,(0j4+1) and [E,,(r)]z” = 1. These are both immediate from
the (last two) relations in Q,,. 0O

Interestingly, 9Q,, does not have an obvious local representation. Instead, we obtain a
3-local representation, (see [23, Theorem 5.28]). On the other hand, we can easily show
that the image &,(NB,,) is a finite group. First we show that,the conjugation action on

the subalgebra Qn generated by uy, ..., u,, vy, ..., vy, is finite as follows. Observe that
Q,, is spanned by monomials of the form

el... €n Vl... Vn
u) u, v, v,

where nonzero €;,v; € {0, %x1}. The action of &,(r) = t obviously permutes this
generating set. We can now compute, with k =i £ 1:

—1 —1
uign(0y) = Z“i(l Ui+ v +uiv) = Z(“i —1+ujvi —v)
—1 -1
= Z(viuivi + U ViUV + UV F U 0) = Z(vi +ujvi + 1+ u)u;v;)
= &n(0i)uiv;

and

—1

v;i€y(0;) = Zvi(l +u;i +v; +u;v;) = E,(07)u;
—1

upéy(o;) = Zuk(l +u;i +v; +u;v;) = E,(0))ugv;
—1

vién(oi) = ka(l +u; +v; +u;v;) = E(07) (—uivivg).

Thus the conjugation action of &,(NB,,) permutes a spanning set up to roots of unity
so that &, (NB,,) is finite modulo its center.

Now again, as in the Gaussian case we can see that the Q, is a finite dimensional
semisimple algebra and the restriction to the center of &,(NB,) on any irreducible
subrepresentation of the faithful regular representation gives a scalar of finite order,
hence &,(NB,,) has finite center and is thus a finite group.
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5. Extending Low-Dimensional B,, Representations

There are gaps in the irreducible representation degrees of B,, (see [29] and references
therein): for example B,, has no irreducible representations of dimension2 < d <n—3,
forn > 5.

Lemma 5.1. Let (p, V) to be an irreducible N'B,, representation, w € V, and 0 < «
be minimal such that T—%w € span{t™Vw|l0 < y < «a}. Then ety ¢
span{t Y w|0 <y < a}.

—a+1

Proof. We have that t~%w = Z air_iw for a; scalars. Then
i=0

a—1
t7 @Dy = 7Nz 7)) = ¢! (Zaitiw>
i=0
a—1
= Za,-r*"*lw
i=0
a—1
= (Z ailt_iw) +7 7%

i=1
which is in the span of {t7Yw|0 <y <«}. O

Theorem 5.2. Let n > 5 and (p, V) be an irreducible NB,, representation. If dim V =
n — 2, then ¢ = p|p, is also irreducible.

Proof. Assume that (V, p) is an irreducible N'B,, representation and to the contrary that
pls, is not irreducible. So we have that there exists a proper nonempty subspace W (of
minimal dimension, 1 < ¢ < n — 2) of V such that (¢|w, W) is a B,, representation.
Note that W being minimal dimension guarantees that (¢|w, W) is irreducible. Since
n > 5, we have that the only irreducible representations of B, of dimension strictly
less than n — 2 are 1-dimensional. Let W be spanned by the vector w € V. Since W
is a B, invariant space, we have that o;w = A;w forall 1 <i <n —1 (i.e., wis an
eigenvector for all p(o;)). Since the o; are conjugate to each other, we have that w is an
eigenvector of the same eigenvalue. Since 72" = 1 and V is irreducible, we also have that
p(T)*" = £1. Note that M = {w, t"'w, - - - , T™"w} is linearly dependent and that the
span of M is t invariant. We may extract a basis 8 = {t “'w, 772w, ..., T %w|0 <
o] <ap < --- <o <n}for Q =span(M). Since Q is 7 invariant, we may instead
use the basis 8/ = %! 8. This gives us that w € B’. From the above lemma, we obtain
B = {w, v 'w,..., 7%} (where « < n — 2) is a basis for Q. The restriction that
o < n — 2 is from the fact that Q is a subspace of V, and therefore dim Q <n — 2.

Let 0 < ¥y < a < n — 2. This means that 0,41 € B,. From the relation
t7o1T7Y = 0y41, we get that 017 Y w = v 70y w = A(tVw). This gives us that O
is also o7 invariant. Hence Q is both t and o invariant, and therefore N'B,, invariant.
Since V was irreducible, we have that Q = V. This means that 8’ is also a basis for V,
and in this basis, p(o1) = A - idy. Hence

p(02) = p(T)p(a)p(™") = Ap(D)p(t™ ") = 1 -idy = p(o1).

This gives us that p(t)p(o1) = p(o1)p(r). Which would give us a contradiction that
(p, V) is not an irreducible NB,, representation. 0O
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We can now show that N'B,, also has gaps in its irreducible representation degrees:

Corollary 5.3. For n > 5, the only irreducible representations of NB, of dimension at
most n — 3 are 1-dimensional.

Proof. Assume to the contrary that (p, V) is an irreducible representation of N'B,, with
2 <dim V < n — 2. Note that p|g, can not be irreducible, since B, has no irreducible
representations of dimension between 2 and n — 3. Hence there exists a 1 dimensional
subrepresentaion of B,,. Following the proof of Theorem 5.2, we would get that p(NB,,)
is abelian, and therefore not irreducible. O

The following theorem is similar to the one above it, but it has the additional assump-
tion that p|g, is completely reducible.

Theorem 5.4. Let n > 5 and (p, V) be an irreducible NB,, representation. If dimV =
n — 1 and p|p, is completely reducible, then p|g, is also irreducible.

Proof. Assume to the contrary that p|g, is completely reducible and not irreducible.
Then we have two possibilities, V = @:‘l:_ll WiorV =W @ U where W, W; are all
1-dimensional subrepresentations, and U is an n-2 irreducible subrepresentation of V
for B,,. In either case, we have the existence of a 1-dimensional subrepresentation. From
here, we follow the proof of Theorem 5.2, and note that the inequality that < n — 2
becomes o < n — 2. However, this still ensures that Q is o invariant, because again,
on_1 = " 201772, So again, we would get the contradiction that (p, V) is not an
irreducible representation of NB,. O

Remark 5.5. Consider the unreduced Burau representation, which is defined as follows:

I
o; > ! 1_ ! (t) . It can easily be verified that the (n x 1) vector of all 1’s
In—i—
an—l
is fixed by all of the o/s. Consider the mapping 7 — ( Lo 0 ) where [,,_1 is the
a An—1

n — 1 x n — 1 identity. It can be checked that p(t’loit) = p(0oi+1) and ,0(1)2’1 = I,.
Thus it gives us a representation of N'B,,. Note that any invariant subspace of p(N'B,,)
will also be invariant under p(B,,). It is known that the Burau representation is reducible
with invariant subspaces of dimension 1 and n — 1. The 1 dimensional subrepresentation
is spanned by the vector of 1’s. The other is the subspace of C" of all vectors whose
entries add up to 0. If @ # 1, then we get that the vector of 1’s is not fixed by 7. If
a" # 1, then we get that t does not fix the n — 1-dimensional subspace. This means
that if N'B,, has no invariant subspaces. Therefore if a” # 1, then the extension of the
Burau representation described above is an irreducible representation of N‘B,, whose
restriction to B, is reducible. As this shows, there exist irreducible representations of
NB,, of dimension n whose restriction to B,, is no longer irreducible.

5.1. Irreducible representations of dimension 2. From the fact that v has order 2n,

0n

t1, 1 are 2n'" roots of unity. As stated before, for all n > 5, there are no irreducible 2
dimensional representations. This means we need only consider n = 2, 3, and 4. Since

we may assume that we have chosen a basis for V such that p(7) = (ll O) where
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Table 1. Dimension 2 representations of NB,,, 2 < n < 4. Here w is a primitive 3rd root of unity

p(o1) p(T) Restrictions
a 1 —t 0
<a2—ad+d2 d) (o z2) azd
a 1 10 i0
<—a2+ad—d2d> i(ol')*i(m) aFdn=2
a 1 A5 0 1 0
<%1<a27ad+d2>d> i( 0 1) \oeHE) agdn=3
eizTﬂ 0 ei% 0
+ ol IR 2 |
0 €3 0 73
L2
wd 1 Lo 30 )
+ ; + . _
(c d) (Oeil@T), ( 0 ﬁi%ﬂ d#0,c#wd*,n=3

we are wanting irreducible reps, we have that #; # 1,. Similarly we have that p(oq) is
not upper or lower triangular, as otherwise (1, 0) or (0, 1) would generate an invariant

. al .
subspace. Due to rescaling, we may assume that p(o1) = . d)' Since we do not want

diagonal or triangular matrices, this means that ¢ # 0. Wanting our representations to
be irreducible, we also have at least one of a or d are nonzero.

Proposition 5.6. Any irreducible dimension 2 representation of NBy, NB3 or NBy is
isomorphic to one of those forms in Table 1.

6. Representations from Topological Physics

The category-theoretic approach to TQFTs as well as its statistical-mechanical predeces-
sor suggest that similar techniques should yield physically relevant necklace braid group
representations. Here we discuss some related ideas from braided fusion categories and
spin chain models that to illustrate this direction.

6.1. Representations from braided fusion categories. From any (unitary) braided fusion
category C Walker and Wang [52] construct a (3+ 1)-TQFT. In the extreme case of mod-
ular C their construction is degenerate. In the other extreme case of a symmetric braided
fusion category of the form Rep(G) for a finite group G one recovers the Dijkgraaf-
Witten theory [16]. The most interesting case is neither symmetric nor modular. As we
expect a (3 + 1)TQFT to provide representations of motion groups of links in R3 or 3,
we briefly explore this possibility directly from the categorical perspective.

Given a braided fusion category € we obtain from any object X arepresentation of B,
on End(X®"), via the braiding ¢ x,x (we use the notation of [42], and assume C is strictly
associative for notational convenience). More specifically, the map o; +— Id%’ g
cx.x ® 1d®"~=1 defines a group homomorphism B, — Aut(X®"), which we may
regard as a categorical representation of B,,. If { X;} is a complete set of representatives of
the isomorphism classes then Aut(X®") acts faithfully on Hxp = @i Hom(X;, X®")
by composition, which then gives us an honest linear representation (px, Hx ) of B,.
Are there categorical representations of N'B,,? That is, group homomorphisms NB,, —
Aut(Y (n)) for some objects Y (rn) depending on n? As the representations (px, Hx ) are
completely reducible we may extend them to N'B,, in the standard way as in Theorem 2.2
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by rescaling the image of y. It would be interesting to find categorical non-standard
extensions.

One cannot expect categorical B, representations to admit extensions to the loop
braid group LB,,. Of course if the braiding cx, x is symmetric: c%n x = ldxgx then we
can extend (px, Hx ,) to LB, by s; — o;. However, the map o; > s; savagely reduces
LB, to the symmetric group S, so this is not an interesting choice.

The annular braid group CB,, does admit such representations as follows (cf. [38]).
Let X, Y be objects in a braided fusion category, and set

R=I®IF @Ry x®I"""! € End(Y ® X®")

forl <i <n—-1arx = (RxyRyrx ® I?n_l) and Ty x = ay xRi- - Rq—1.
Then 0; — R and t — Ty x satisfy (B1), (B2) and (N1) after defining R, =
Ty xRq— 1TY y- Notice that (B1) and (B2) are immediate for small i but we must check
that R, R, R,— 1 = R,R,_1R, and Ri R, R1 = R, R| R,, and the far-commutation for
Ry, with Ry, ..., R,_>. Observing that oy x commutes with R; for 2 < j < n, relation
(N1) can be seen in the following way:

Ty x R
=ay xRy Ri-1RiRit1Ri - - Ry—1 =ay xR+ Ri—1Ri+1Ri Rix1 - - Ry
=ay xRi+1R1 - Ri—1RiRiy1 -~ - Rp—1 = Riiay xRy -+ Ry
= Rin1Ty x.

For such a representation to factor over N'B,, one needs (7, x)H = Idy g xen. Of course
if this is required for all n then TY x = Idy, x—which is precisely the condition that
X and Y centralise each other in the sense of Miiger [36]. If Y is transparent [8] then
this condition is satisfied for all X. Indeed, in [12] a 3 loop configuration with fermion
interactions is considered, which would be a particular case of this set up.

Example 6.1. Consider the Ising braided fusion category with simple objects 1, ¥ and
o. Setting Y = ¢ (the Majorana fermion) and X = o (the Ising anyon) we find that
cx.ycy.x = —ldygx where Y ® X = o so that Idygy € End(o) = C. In particular
ay,x = —ldygxen, and we can easily adjust the scalar to ensure (Ty, X)z” = Id. Since
Y ® X®" = X®" this does not provide a very interesting example.

6.2. Necklaces and spin chains. Beautiful classes of representations of B, are con-
structed in statistical mechanics, both from open spin chains and from transfer matrices.
Drawn suitably, a necklace has some similarity with a ‘thickened’ periodic spin chain.

o—C—0—60—=C
V) V)
The main superficial difference with B,, is that there is no algebraic way to make this
chain open. This in turn corresponds to the fact that, unlike the natural inclusion of B,,_
in B,,, and similarly for LB,,, NB,_; does not include in an analogous way in N'B,,.

Consider for example the n-site XXZ spin chain [30]. Here we associate the leapfrog
motion o; to the local spin-spin interaction and, formally, the motion 7 to the periodic
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symmetry of the chain. Naively this gives t” = 1. But the physical system may be
endowed with what is sometimes called a cohomology seam, generally localised in a
boundary condition, (cf. e.g. [6,35]) so that the image of T may generate groups of
various orders.

Let us start by using this construction to discuss Theorem 2.2 a little more. We proceed
as follows. Firstly, a neat way to construct the spin chain itself is from an XXZ TQFT
(cf. e.g. [18,26,30,33,49]—the ‘bordisms’ here are plane-embedded 1-manifolds) with
parameter ¢ = 2. This system is monoidally generated by

_ 1 0
u= W — (0, —t,t71,0) and 1, = — ( 0 1)-

Setting U = u'u (hereafter we will simply identify elements with their images in the
category Vect as above, so that U’ means transpose); and, for n given, setting U; to be
U localised in the i-th position in an n-fold tensor product in the usual way, we recall
firstly that

n—1
H = Z Ui
i=1
is the ‘open” XXZ Hamiltonian, and also that
g =1-—qU; 6.1

obeys the braid relation. Here we write p for this representation (notationally suppressing
the dependencies on ¢ and n).
For n = 2 there is nothing to check here, and yet it is not quite trivial viewed in the

context of Theorem 2.2. Factoring through (6.1) and p, the image of y"=? is simply
1
2, 4 2
o _ | 1-49"+q¢" —q(1=¢q)
Io(gl) _q(l_qZ) qZ

with eigenvalues 1, g*. If g* # 1 or g> = 1 then the Theorem applies directly (and gives
a very uninteresting representation). If ¢ = i, however, the Theorem does not apply
directly (all eigenvalues are 1 but the matrix is not the identity matrix, so the representa-
tion of B,, is not completely reducible—indeed it contains a representation isomorphic
to that in Remark 2.4, for n = 2, as a direct summand). (The case of ¢ = i exhibits non-
complete-reducibility for general even n. We start with n = 2 to postpone unhelpfully
non-trivial algebra.) We note for future reference that the ‘uninteresting’ representation
with ¢* = —1 (to which the Theorem formally does apply) obeys p (") = g‘l‘ =1
without need of any renormalisation. Let us call this eventuality (D = 1 in Theorem 2.2)
a flat standard extension.

In general the problem of computing the spectrum of y” here is a kind of elementary
integrable system (see e.g. [33]). By centrality it acts by a scalar on each indecomposable
summand of tensor space. These summands are indexed by the integers [ congruent to
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n mod.2 (the XXZ charge or number of propagating lines as for example in [5]), so the
complete spectrum is given by

n\l 0 1 2 3 4 5 6
0 1
1 1
2 q* 1
3 q6 1
4 g2 ¢ 1
5 ql6 q10 1
6 pez ¢ g2 1
7 PEU Pzl g1 1

(the general pattern for larger n will be clear). A necessary condition for o(y?) = 1is,
of course, that the only eigenvalue is 1. We see that for this to be true for all n (indeed
for it to be true for n = 5) we require ¢g* = 1. (And to be true for all even n we require
g% = 1.) The case ¢ = 1 factors through the symmetric group, so the more interesting
case is g2 = —1.

Proposition 6.2. Setting g> = —1 then (a) for all odd n, p gives a representation of
NB, via p(t) = p(y) (i.e. with trivial D). Furthermore p(t") # 1. (b) for even n we
never get a representation this way, i.e. we do not get a flat standard extension.

Proof. (a) For odd n these representations of B,, are completely reducible by [33, §7.3
Th.2], and every eigenvalue of p(y>") takes the form ¢*" for some m. Meanwhile the
spectrum of p(y™") always contains 1 and ¢*" with m odd.

(b) For even n these representations are not completely reducible (they are faithful on
a non-semisimple quotient algebra). It remains to show in particular that p(y>") has a
non-trivial Jordan form. To see this note that j = U®"/2 is both central and radical in the
quotient algebra; that y expressed in the bordism basis contains j with non-vanishing
coefficient; and that this holds also for any power of y .

The difference between odd and even cases is well-known in the XXZ setting, but
intriguing here. It again suggests to use a cohomology seam in the manner of [6,35].

Closed boundary conditions have been studied extensively in the XXZ and indeed the
wider spin chain setting (see e.g. [19] for recent references). The seam approach extends
the TQFT by an operator that acts only on the first position—represented in ‘bordisms’
by a blob [17,35]. A simple example of this is

e e —— (!
- a+al\ 1 a!

(always localised in the first position in the tensor product). Such an extension intro-
duces a new ‘boundary’ parameter into the chain, normally given [35] by the value of
the ‘topological loop’ scalar
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2 2\—1
v = u(f © 1))t = _ at” + (at’)

~] (a+a) 6.2)

(N.B. bottom-to-top stacking convention). Such an extension then allows the construc-
tion of a ‘seamed’ braid translation operator

B=+xf)y (6.3)

where x = ;’fﬂ:ylf. Just as with y itself in (2.3) we define go = Bgn—18~" whereupon

BgiB~" = gin (6.4)

with indices understood periodically [35]. Indeed this holds not only in p but in the setting
of the algebra b, (g, a) of abstract generators g; and f. Thus we have the following.

Theorem 6.3. Applying the D-matrix method of Theorem 2.2 to the generators g; and
the braid translator B we obtain a two-parameter representation of N'B,, whenever the
corresponding complete reducibility condition is satisfied. The reducibility condition is
satisfied, for example, when the parameters q, a are indeterminate—i.e. on a Zariski
open subset of parameter space.

Proof. By (6.4) ¢ — P gives a representation of CB,,. Since ¢” is central in CB,, the
proof of Theorem 2.2 generalises. The Zariski open property follows from [35]. O

The system required to determine the eigenvalues of 8", and hence determine the D
matrix explicitly, is substantially more involved than the y case above. We will discuss
this elsewhere.
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