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Abstract: The necklace braid group NBn is the motion group of the n + 1 component
necklace link Ln in Euclidean R

3. Here Ln consists of n pairwise unlinked Euclidean
circles each linked to an auxiliary circle. Partially motivated by physical considerations,
we study representations of the necklace braid groupNBn , especially those obtained as
extensions of representations of the braid group Bn and the loop braid group LBn . We
show that any irreducible Bn representation extends to NBn in a standard way. We also
find some non-standard extensions of several well-known Bn-representations such as
the Burau and LKB representations. Moreover, we prove that any local representation of
Bn (i.e., coming from a braided vector space) can be extended toNBn , in contrast to the
situation with LBn . We also discuss some directions for future study from categorical
and physical perspectives.

1. Introduction

Topology, like many fields of mathematics, owes some of its early development to
questions arising in physics. A classic example of this is the development of knot theory:
Lord Kelvin and Tait, inspired by experiments of Helmholtz, theorized that atoms were
knotted tubes of æther, distinguished by their knot type [43]. This theory was quickly
dismissed, but Tait’s tabulation of knot projections with few crossings is arguably the
dawn of modern knot theory.

Non-abelian statistics of anyons in two spatial dimensions has attracted considerable
attention largely due to topological quantum computation [37,49]. Exchanging non-
abelian anyons induces unitary representations of the braid group Bn , which can yield
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Fig. 1. The necklace Ln as seen from a generic observation point

braiding-only universal quantum computation models. Mathematically, this is a rich
theory because the braid group acts faithfully on the fundamental group of the punctured
plane. The well-studied framework of (2+1)-TQFTs can be used to systematically study
these representations and their vast generalization to mapping class groups of punctured
surfaces of any genus.

Naturally we would like to extend these ideas to 3-dimensional topological materials.
Unfortunately (3 + 1)-TQFTs are not as well studied so we cannot obtain as explicit
descriptions as in the 2-dimensional case. Instead, here we will study the relevantmotion
groups [24] and their representations from a more elementary algebraic perspective.

An extension of non-abelian statistics of point-like excitations to three spatial dimen-
sions is not possible due to the spin-statistics theorem in its exchange statistics formu-
lation: exchanging the positions of two indistinguishable particles changes their state
vector by at most a sign. Mathematically, the motion group of n identical points in R

3 is
the symmetric groupSn which leads to the possibility of parastatistics. Notice also that
the fundamental group of R

3 with n points deleted is trivial, so that motions of points
cannot be detected in this way—one must consider the framing of paths to explain the
spin-statistics theorem topologically. But in any case points in 3-dimensions are much
less interesting than in 2-dimensions.

On the other hand, loop or closed string excitations occur naturally in condensed
matter physics and string theory. The mathematical manifestation of this idea was con-
sidered in [9,28] with a study of local and low dimension representations of the loop
braid group LBn : the group of motions of n oriented circles in R

3. In this article we
consider the related groupNBn of motions (up to isotopy) of a necklace Ln : n unlinked
oriented circles that are linked to another auxiliary oriented circle, see Figure 1. One
compelling reason to undertake this study is that such a configurationmay bemore feasi-
ble physically than the free loop picture. Indeed, a number of proposals in this direction
have appeared recently, see [12,25,31,47].

The motion group NBn , the necklace braid group, is described in [7], where it is
identified with the fundamental group of the configuration space of Ln . In Ln we fix
a circle labelled 1, and order the n circles 1, . . . , n in a counterclockwise fashion; and
orient the auxiliary circle in the same counterclockwise way. The group NBn includes
elements σ1, . . . , σn, τ where σi is the motion, up to homotopy, of passing the i th circle
through the i + 1st, while τ corresponds to shifting each circle one position in the
counterclockwise direction. We use the function convention when composing elements
of the motion group: f g means apply g then f . In fact NBn is generated by these
elements.
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Although the realisation of NBn as a motion group is fundamental to its utility
in physical modelling, from a representation theory perspective, manipulating NBn at
the ‘geometric topological’ level of its definition as a motion group is relatively hard.
Fortunately [7, Theorem 2.3] gives a presentation by abstract generators and relations
that facilitates such manipulations. Next we discuss this ‘combinatorial’ realisation.

Theorem 1.1 ([7]). We have a presentation of a group isomorphic to NBn by abstract
generators σ1, . . . , σn, τ satisfying:

(B1) σiσi+1σi = σi+1σiσi+1
(B2) σiσ j = σ jσi for |i − j | �= 1 (mod n),
(N1) τσiτ

−1 = σi+1 for 1 ≤ i ≤ n
(N2) τ 2n = 1

Here indices are taken modulo n, with σn+1 := σ1 and σ0 := σn. ��
Observe from the presentation in Theorem 1.1 that the subgroup generated by the σi

for 1 ≤ i ≤ n − 1 is a quotient of Artin’s braid group Bn . It is not hard to verify that
(N1) and (N2) do not induce further relations among σ1, . . . , σn−1, so that, in fact, we
have Bn < NBn .

It also follows from the presentation thatNBn contains a normal subgroup isomorphic
to the affine braid group (of type A) on n strands: B Ãn ∼= 〈σ1, . . . , σn〉 � NBn .
Notice that [NBn : B Ãn] = 2n and NBn = B Ãn � 〈τ 〉. In particular, every element of
NBn may be written as τ kβ with β ∈ B Ãn .

The annular or circular braid group CBn (the fundamental group of the configu-
ration space of n points in an annulus) may be presented by generators as for NBn in
Theorem 1.1 but omitting relation (N2) (see e.g. [7]). Thus NBn is isomorphic to a
quotient of CBn .

ζ : CBn → NBn (1.1)

Some of the relations (B1–N2) for NBn are redundant: the following reduces the
number of defining relations from 1

2n(n + 1) + 1 to 2n − 1.

Lemma 1.2. The relations (N2), (N1), (B1) for i = 1 (i.e., σ1σ2σ1 = σ2σ1σ2), and (B2)
for i = 1 and 3 ≤ j ≤ n − 1 (i.e., σ1σ j = σ jσ1 for 3 ≤ j ≤ n − 1), imply all relations
of Theorem 1.1.

Proof. Assuming (N1) gives us τ i−1σ1τ
−i+1 = σi for all i where indices are taken

modulo n. Thus σ1σ2σ1 = σ2σ1σ2 implies that for any i :

σiσi+1σi = (τ i−1σ1τ
−i+1)(τ iσ1τ

−i )(τ i−1σ1τ
−i+1)

= τ i−1σ1τ
1σ1τ

−1σ1τ
−i+1

= τ i−1σ1σ2σ1τ
−i+1

= τ i−1σ2σ1σ2τ
−i+1

= τ iσ1τ
−1σ1τ

1σ1τ
−i

= (τ iσ1τ
−i )(τ i−1σ1τ

−i+1)(τ iσ1τ
−i )

= σi+1σiσi+1.

Next we verify (B2) assuming σ1 commutes with σk with 3 ≤ k ≤ n − 1. We may
assume n ≥ j > i > 1 and | j − i | �≡ 1 (mod n).

σiσ j = τ i−1σ1τ
−i+1τ i−1σ j−i+1τ

−i+1
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= τ i−1σ1σ j−i+1τ
−i+1

= τ i−1σ j−i+1σ1τ
−i+1

= τ i−1σ j−i+1τ
−i+1τ i−1σ1τ

−i+1 = σ jσi .

��
Another easy observation is that σi 
→ (i i + 1) (modulo n, so that σn 
→ (n 1))

and τ → (1 2 · · · n) gives a surjection ϕ : NBn → Sn . The kernel of ϕ is the normal
subgroup of motions that carry each circle back to their original positions: the pure
necklace braids.

Themotion group of n unlinked oriented circles inR
3, i.e., the Loop braid groupLBn

studied in [2] does not contain the necklace braid group, but it does contain a quotient
of NBn by a central subgroup of order 2 as we will see. This relationship is explored in
Sect. 2.

1.1. Overview of paper. In Sect. 2 we lay down some basic facts about the relation-
ships between NBn and various other topologically constructed groups. In particular
we develop a number of ways to construct representations of NBn both by extending
fromBn representations or by factoring through representations of the loop braid group.
These ideas are applied in Sect. 3 to many well-known examples of Bn representations,
while in Sect. 4 we focus on extending local Bn representations. It turns out to be much
easier to construct local representations of NBn than LBn . In Sect. 5 we address the
‘brute’ algebraic analysis of low-dimensional representations (in the spirit of [9,21,29]).
In Sect. 6.1 we return closer to physical considerations. We discuss the construction of
representations from braided fusion categories; and in Sect. 6.2 we explore more direct
physical manifestations of NBn using ‘categorified’ quantum spin chains.

2. NBn Representations from Bn and LBn Representations

The necklace braid group is closely related to both the ordinary braid group Bn and the
loop braid group LBn , and both provide a rich source of representations. In this section
we explore these relationships.

2.1. Relationship with Bn. As noted, the braid group Bn on n strands is isomorphic to
the subgroup of NBn generated by σ1, . . . , σn−1. Notice that the absence of σn and τ

obviates the consideration of indices modulo n in relations (B1) and (B2). In particular,
any representation of NBn restricts to a representation of Bn .

In Bn define the single twist

γ = σ1 · · · σn−1. (2.1)

The center ofBn is generated by the the full twist of the n strands: γ n = (σ1 · · · σn−1)
n .

Bn can be generated by γ and σ1, as can be seen from the useful:

γ kσ1γ
−k = σk+1, 1 ≤ k ≤ n − 2. (2.2)

Defining
σ ′
n := γ n−1σ1γ

1−n = γ −1σ1γ = γ σn−1γ
−1 (2.3)
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we find that σ1, . . . , σn−1, σ
′
n satisfy the (modulo n) relations (B1) and (B2) above.

Setting τ = γ we also verify (N1), but not (N2) in general. However, for certain rep-
resentations we can take advantage of this close relationship to produce representations
of NBn :

Lemma 2.1. Let ρ : Bn → GL(V ) be any indecomposable finite-dimensional rep-
resentation of Bn such that ρ(γ 2n) = cρIdV for some scalar cρ (for example
any irreducible ρ). Then ρ extends to an indecomposable representation of NBn by
ρ(σn) = ρ(γ σn−1γ

−1) and

ρ(τ) = (cρ)−1/2nρ(γ ).

Proof. Relations (B1) and (B2) are immediate, and relations (N1) follow from the cen-
trality of γ n . For (N2):

ρ(τ 2n) =
(
(cρ)−1/2nρ(γ )

)2n = 1

cρ

ρ(γ 2n) = I dV .

In fact, since the braid relations are homogeneous we can rescale the ρ(σi )s by κ �= 0 to
obtain a new representation ρ′(σi ) = κρ(σi ) ofBn . Setting ρ′(τ ) = ρ′(γ ) the rescaling
will not affect (B1), (B2), (N1), but can be chosen to cancel the scalar in ρ(γ 2n), and
then we may define ρ(σn) as above.

Now let ρ be any finite-dimensional representation of Bn . It is a direct sum of
indecomposable representations, ρi say, and there is a projection to each of these
in EndBn (V ). The sum of the projections each individually rescaled according to
Lemma 2.1 gives a ρ(τ) and hence a representation of NBn . In particular:

Theorem 2.2. Let ρ : Bn → GL(V ) be any completely reducible complex representa-
tion of Bn (for example any unitary or irreducible representation). Then there exists a
D ∈ EndBn (V ) such that defining

ρ(τ) = Dρ(γ ), ρ(σn) = ρ(γ )ρ(σn−1)ρ(γ −1)

is a representation of NBn.

Proof. By complete reducibility, for some set of irreducibles {Wi }i wehaveV ∼= ⊕
i Wi .

Since γ 2n is central in Bn , we have ρ mod Wi (γ
2n) = ci IdWi for some ci ∈ C. Define

D = ⊕
i (ci )

−1
2n IdWi ∈ EndBn (V ) so that (Dρ(γ ))2n = IdV . Since D commutes with

the operators ρ(σi ) for 1 ≤ i ≤ n − 1, it also commutes with ρ(γ ). Hence defining
ρ(τ) = Dρ(γ ) and ρ(σn) = ρ(γ −1σ1γ ) we see by the above discussion that all NBn
relations are satisfied and hence these assignments extend ρ to NBn . ��

This approach bears some similarity with the notion of a standard extension found
in [9], so we adopt this nomenclature and refer to any representation ρ of NBn with
ρ(τ) = Aρ(γ ) and [A, ρ(σi )] = 1 for all i , a standard extension. Since A = ρ(τγ −1),
this operator is already in the image of ρ, so that ρ(NBn) is generated by ρ(Bn) and A.
In particular, ρ(NBn) is a central product of the cyclic group generated by ρ(Bn) and
the central operator A. From a topological perspective standard extensions do not fully
exploit the (3 + 1)-dimensional nature of NBn , rather the interesting information they
carry is already present in the braid group Bn , which is related to (2 + 1)-dimensional
topology.
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Remark 2.3. By Schur’s lemma a standard extension of an irreducibleBn representation
has the form ρ(τ) = λρ(γ ), where λ is a scalar. On the other hand, the standard
extensions fit into a more general construction, observing that a representation ϕ of Bn
lifts trivially to CBn by letting τ ∈ CBn act by ϕ(γ ). Indeed, if G = F � 〈y〉 is a
semi-direct product in which y acts by conjugation and yn is central for some n then any
representation of G for which the image of yn is semisimple (diagonalizable) factors
over the quotient G/〈yn〉. It is conceivable that more interesting representations ofNBn
can be obtained from CBn in this way, cf. Sect. 6.2.

Remark 2.4. Failure of complete reducibility does not preclude the existence of standard

extensions: the representation of Bn defined by ρ(σi ) = J =
(
1 1
0 1

)
for all i is not

completely reducible, yet ρ(γ ) = Jn−1 commutes with ρ(σi ) so that ρ(τ) = I d =
(J 1−n)ρ(γ ) is a standard extension.

Of course our existence Theorem does not tell us how to construct standard exten-
sions. In this setting there is a computational distinction to be made between individual
values of n (see Sect. 5), and a construction that starts with a braid group representation
for all n and determines a D for each n. We will touch on the latter problem in Sect. 6.2,
where we use integrable spin-chain methods.

Modular categories are a rich source of representations of Bn , where motions of
points in a disk lead to Bn representations on the Hilbert spaces obtained from the
corresponding (2 + 1)TQFT. Categorical constructions of (3 + 1)TQFTs suggest that
there should also be a way to obtain representations ofNBn and other motion groups of
1-dimensional submanifolds of 3-manifolds, by acting on appropriate morphism spaces.

2.2. Relationship between NBn and LBn. The motion class σi in NBn can be imple-
mented if the auxiliary circle is absent as can the motion τ . This suggests a relationship
between NBn and the loop braid group LBn associated with the motions of an array of
n unlinked loops in R

3 studied in [2].
It will be useful to consider for a moment a groupoid � where NBn and LBn both

belong (cf. e.g. [13, Ch.2]). A link is an embedding of some number of copies of the
circle S1 inR

3 (hence a certain 1d submanifold ofR
3). For example consider the linkLn

in Fig.1. Another example is the n-component unlink. Let a, b be two such embeddings.
A motion of a link (in the motion set hom(a, b)) is a smooth variation of one such
embedding a into another b over an interval of time—a 2d submanifold of R

3×[0, 1] ⊂
R
4 ‘starting’ at a ⊂ R

3×{0} and ‘ending’ at b ⊂ R
3×{1}. Wemay combine compatible

motions in the obvious way [13, Ch.2 §1].
Twomotions γ, γ ′ from a to b are equivalent if there is a continuous family [13, Ch.2

§2] in hom(a, b) starting in γ and ending in γ ′. Under this equivalence the classes of
hom(a, a) (denoted �a = hom∼(a, a)) form a group. The classes of all motions form a
groupoid � with object set the set of links. Note that

Lemma 2.5. Two groups �a, �b are isomorp hic if the object links are the same topo-
logical link.

The loop braid group LBn is the motion group hom∼(a, a) for any a that is topolog-
ically the n-unlink. We may visualize LBn as follows: arrange the n loops as circles in
the xy−plane along the x-axis and label them 1, . . . , n:
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Remark 2.6. Consider for comparison the n-loop arrangement obtained as follows. Start-
ing from a single circle, add further circles that are rotations of it about an axis in the
same plane but exterior to the circle:

(2.4)

This is then precisely as in Ln , but with the linking loop omitted. It will be clear, cf. e.g.
[13], that this leads to a group �b isomorphic to �a .

Keeping with arrangement a above, let si denote the interchange of loops i and i + 1
via representative motions like this:

(NB. this is an overlaid ‘movie’ view; each still is a picture of two loops in a 3d space;
time goes vertically). Denote by gi the “leapfrog" motion of passing the i th loop
under and through the i + 1st loop followed by sliding the i + 1st loop into the position
previously occupied by the i th loop. The following projection is helpful to visualise this
operation which is happening in 3 spacial and 1 (vertical) time dimension, (note that the
self-intersections are just shadows of the projection):

A presentation of LBn by abstract generators gi , si (using the same symbols, to
indicate how the homomorphism works) is (see e.g. [2]):

gi gi+1gi = gi+1gi gi+1, gi g j = g j gi |i − j | �= 1 (2.5)

s2i = 1, si si+1si = si+1si si+1, si s j = s j si |i − j | �= 1 (2.6)

si si+1gi = gi+1si si+1, gi gi+1si = si+1gi gi+1, gi s j = s j gi for |i − j | > 1.

(2.7)
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2.3. A group homomorphism. Note that Lemma 2.5 does not give an isomorphism
between LBn and NBn , and indeed they are not isomorphic. One way to see this
is by taking their quotients by their commutator subgroups, i.e their abelianizations:
NBab

n
∼= Z × Z2n whereas LB

ab
n

∼= Z × Z2 for n > 1. Note that in the degenerate case
n = 1 the group NB1 ∼= Z2 and LB1 = 1. However our remark on the relationship
between these constructions does lead to a beautiful homomorphism.

The precise relationship is the following:

Lemma 2.7. There is a group homomorphism ζ : NBn → LBn given by

τ 
→ p := s1s2 · · · sn−1;
σi 
→ gi for i < n; and σn 
→ pgn−1 p−1.

Proof. It is enough to check that the relations given in Lemma 1.2 are satisfied. Notice
(B1) (for ζ(σ1) and ζ(σ2)) as well as (B2) (for ζ(σ1) and ζ(σ j ) with 2 < j < n) are
verified by (2.5) and ζ(τ )2n = 1 follows from the symmetric group relations (2.6). We
use (2.7) to see that

pgi = s1 · · · (si si+1gi )si+2 · · · sn−1 = s1 · · · si−1(gi+1si si+1) · · · sn−1 = gi+1 p

proving (N1) for i ≤ n−2. For i = n−1 (N1) is true by definition: ζ(σn) = pgn−1 p−1 =
ζ(τσn−1τ

−1). Moreover, g1 = p−n+1gn pn−1 = pgn p−1 (since pn = 1) which proves
(N1) for i = n, completing the verification. ��
Theorem 2.8. The kernel of ζ is the order 2 central subgroup 〈τ n〉.
Proof. This is a direct consequence of [7, Lemma 3.1(2)] after observing that ζ is
induced by themap from the necklaceLn to n free loops that forgets the auxiliary linking
circle. ��

Note that for any representation ρ : LBn → GL(V ) then ρ ◦ ζ : NBn → GL(V )

is a representation of NBn .
Let us briefly review LBn and see what this gets us in terms of representations.

Present knowledge of LBn representation theory is limited, but not zero (see e.g. [28]
for a review). (NB the motion si is not possible in NBn).

Firstly there is a realisation ofLBn as the group of conjugating automorphisms of the
the free group Fn = 〈x1, x2, ..., xn〉 generated by braid and permutation automorphisms
[20]:

gi :

⎧⎪⎨
⎪⎩

xi 
→ xi+1
xi+1 
→ x−1

i+1xi xi+1
x j 
→ x j otherwise

si :

⎧⎪⎨
⎪⎩

xi 
→ xi+1
xi+1 
→ xi
x j 
→ x j otherwise

. (2.8)

While this is a faithful action for LBn , the induced action of NBn is of course not
faithful.

Local representations of LBn are constructed in [28] which give rise to NBn repre-
sentations. However, there are many local representations of NBn that do not extend to
LBn (cf. Sect. 4).

3. Extensions of Familiar Bn Representations

Having laid out the general theory in Sect. 2.1, in this section we provide concrete exam-
ples ofNBn representations obtained by extending some well-known representations of
Bn .
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3.1. Extensions of standard representations. Recall (see e.g. [44]) that a standard rep-
resentation of Bn is (β, V ) such that

β(σi ) = Ii−1 ⊕
(
0 z
1 0

)
⊕ In−i−1.

where Ik is the k dimensional identity, and z ∈ C\{0, 1}. Notice that the image of
a standard representation is a group of monomial matrices, and is therefore virtually
abelian. First we will state a theorem that deals with n ≥ 3, and then we will state results
for n = 2. We caution the reader that the established nomenclature is unfortunate as we
must now discuss standard extensions of standard representations of Bn .

Proposition 3.1. For n ≥ 3, any standard extension of the standard representation from
Bn to NBn is of the form ρ(τ) = λβ(γ ), where λ ∈ C such that λ2n = z−2(n−1).

Proof. From the fact that the standard representation is irreducible for n ≥ 3 [44,
Lemmas 5.3 and 5.4], we have that ρ(τ) = λβ(γ ) for λ ∈ C\{0}. The fact that ρ(τ)2n =
λ2nβ(γ )2n = In , and β(γ )2n = z2(n−1) In gives us that λ2n = z−2(n−1). ��

Now considering n = 2, we want A =
(
a b
c d

)
such that AZ = Z A (where β(σ1) =

Z =
(
0 z
1 0

)
), (AZ)4 = I2, and (AZ)2Z(AZ)−2 = Z . The last equation comes from

the fact that we want τσ2τ
−1 = σ1, and we are defining the image of σ2 to be the image

of τσ1τ
−1. From AZ = Z A we get that a = d and b = zc. Using this along with the

other two equations, we get the following possibilities for ρ(τ) = AZ :

{
±I2,±

(
1 0
0 i(z)−1

)
, ξ4

(
0

√
z

(
√
z)−1 0

)
,±1

2

(
1 ± i (1 ∓ i)

√
z

(1 ∓ i)
√
z−1 1 ± i

)}
,

where ξ4 is a choice of 4th root of unity.
Next let us consider non-standard extensions of the standard representation. This

means we want a representation (φ, V ), and T ∈ End(V ) such that φ(τ) = T and
T �= λβ(γ ) (where λ is as defined in proposition 3.1). We know that we need T 2n = IV ,
Tβ(σi ) = β(σi+1)T for all i = 1, . . . , n − 2, and that T 2β(σn−1) = β(σ1)T 2. Let
T = (ti, j )ni, j=1. The later two relations give us that ti, j = 0 if j �≡ i − 1 mod n and

ti,i−1 = t2,1 for all i = 2, . . . , n−1. Hence T has the following block form:

(
0 a

t In−1 0

)
.

Then T 2n = IV gives us that a = t−(n−1), and therefore T =
(

0 t−n+1

t In−1 0

)
. If

t2n = z−2(n−1), we would have a standard extension. Hence, t2n �= z−2(n−1) would give
us a non-standard extension. This gives us the following:

Theorem 3.2. For n ≥ 3, a representation, φ, of NBn is an extension of the standard

representation, β, of Bn if φ(σi ) = β(σi ) for i = 1, . . . , n − 1, φ(τ) =
(

0 t−n+1

t In−1 0

)

(for t �= 0), and φ(σn) = φ(τσn−1τ
−1).

It should be noted that if t2n �= z−2(n−1), then the representation φ is not a standard
extension of β, i.e., the image of τ is not a rescaling of that of the single twist γ .
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3.2. Extensions of the reduced Burau representation. As a reminder, the reduced Burau
representation ρ of Bn is a n − 1 dimensional representation defined as follows:

ρ(σ1) =
⎛
⎝

−t 0
−1 1

In−3

⎞
⎠ , ρ(σi ) =

⎛
⎜⎜⎜⎝

Ii−2
1 −t 0
0 −t 0
0 −1 1

In−i−2

⎞
⎟⎟⎟⎠ , ρ(σn−1) =

⎛
⎝
In−3

1 −t
0 −t

⎞
⎠

where t is a nonzero complex number. The reduced Burau representation is irreducible
if 1 + t + t2 + · · · + tn−1 �= 0. This means (as stated in remark 2.3) that any standard
extension has ρ(τ) = λρ(γ ).

Proposition 3.3. Any standard extension ρ ofNBn of the reduced Burau representation
(with 1 + t + · · · + tn−1 �= 0) has the form ρ(τ) = λρ(γ ) where λ2n = t−2n.

Proof. From the above, we have that ρ(τ) = λρ(γ ) for some scalar λ. From the fact
that ρ(τ)2n = λ2nρ(γ )2n = IV , and ρ(γ )2n = t2n IV . We are given that λ2n = t−2n .
��

3.3. Extensions of the Lawrence–Krammer–Bigelow representation. Let V be a
(n
2

)
dimensional vector space with basis vi, j (1 ≤ i, j ≤ n). Assuming that the order of
the indices do not matter, and that t, q are nonzero complex numbers, the Lawrence-
Krammer-Bigelow (LKB) representation is defined as:

σivi,i+1 = tq2vi,i+1
σiv j,k = v j,k for {i, i + 1} ∩ { j, k} = ∅

σivi+1, j = vi, j for j �= i, i + 1

σivi, j = tq(q − 1)vi,i+1 + (1 − q)vi, j + qvi+1, j if i + 1 < j

σiv j,i = (1 − q)v j,i + qv j,i+1 + q(q − 1)vi,i+1 if j < i.

It can be computed that γ vi, j =
{

tq2vi,i+1 if j = n
q2vi+1, j+1 if j < n

. Repeating this gives that

γ nvi, j = tq2nvi, j . Therefore, a standard extension to NBn given by τ 
→ κγ where κ

is a scalar, we find κ = ω2n(t−1/nq−2), with ω2n a 2n-th root of unity. For n = 3 and
n = 4, these are the only standard extensions. Notice that if ω2n is an nth root of unity,
τ n would be in the kernel. Thus the standard extension would not be faithful.

3.3.1. Nonstandard extensions. For n = 2, since any LKB representation is 1 dimen-
sional, any extension is standard.
For n = 3, with the additional assumption that q �= 1 and α a choice of cube root of
±t−1, the following give a nonstandard extension of the LKB representation:

τ 
→ α

⎛
⎝

0 (q2 − q + 1)q−2 −(q − 1)q−2

0 −(q − 1)q−1 q−1

tq2 (q − 1)(tq2 − q + 1)q−1 (q − 1)q−1

⎞
⎠ .

If we choose α to be the cube root of t−1, then the extension is not faithful (as τ 3 would
be in the kernel).
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For n = 4, again, let q �= 1 and β ∈ {±√±t, (−t2)
1
4 }. Then we obtain a nonstandard

extension of the LKB representation by having the image of τ be

β

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 (q4t)−1(q3 − q + 1) 0 −(q4t)−1 p −(q4t)−1 p

0 0 −(q3t)−1 p 0 (q3t)−1(q2 − q + 1) −(q3t)−1 p

0 0 −(q2t)−1 p 0 −(q2t)−1 p (q2t)−1

q2 0 (q3t)−1 p(q3t − q + 1) 0 (q3t)−1(q3 − 2q2 + 2q − 1) −(q3t)−1 p2

0 q2 (q2t)−1 p(q3t − q + 1) 0 −(q2t)−1 p2 (q2t)−1 p

0 0 −(qt)−1 p2 q2 (qt)−1(q3t − q2(t + 1) + 2q − 1) (qt)−1 p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where p = q − 1. Similar to the case with n = 3, if we choose β = ±√±t , then τ 4 is
in the kernel of the extension. Hence it would not be faithful.

4. Local Representations

One source of matrix representations of Bn is through braided vector spaces (BVS):
these are pairs (R, V ) where V is a vector spaces and R ∈ Aut(V⊗2) satisfies the
Yang-Baxter equation (on V⊗3)

(R ⊗ IV )(IV ⊗ R)(R ⊗ IV ) = (IV ⊗ R)(R ⊗ IV )(IV ⊗ R).

The assignment ρR(σi ) = I⊗(i−1)
V ⊗ R⊗ I⊗(n−i−1)

V then gives a representation ofBn on
V⊗n . This is an example of a local representation: each generator has non-trivial action
only on two (adjacent) copies of V .

Remark 4.1. Note that in general ρR may not lift to a representation of LBn : in [28,
Proposition 3.3] BVSs of group-type are shown to lift to a loop braided vector space but
the general case is open.

By Theorem 2.2, ρR has a standard extension (as long as it is completely reducible).
As above, the image of the standard extension of ρR to NBn does not carry much more
information than ρR itself. However, there is another extension of ρR , using the BVS
obtained from the symmetric group. Namely, define the flip operator P(x ⊗ y) = y ⊗ x
on V ⊗ V . Then we have:

Theorem 4.2. Suppose (R, V ) is a BVS and ρR the corresponding Bn representation.
For n ≥ 3, setting ρR(τ ) = (P ⊗ I⊗n−2

V ) · · · (I⊗n−2
V ⊗ P) defines an extension of ρR

to NBn.

Proof. Again using Lemma 1.2 it is enough to check (N1) and (N2): the fact that (R, V )

is a BVS gives (B1) for i = 1 and (B2) for i = 1 and 3 ≤ j ≤ n − 1 immediately.
From our definition of ρR(τ ), we have that (N2) is satisfied (in fact, ρR(τ ) has

order n).
The key computation is to show that (N1) holds. For this it is sufficient to show that

(P ⊗ I )(I ⊗ P)(R ⊗ I )(P ⊗ I )(I ⊗ P) = (I ⊗ R).

Comparing the two operators on a pure tensor of basis elements v1 ⊗ v2 ⊗ v3 we obtain

(P ⊗ I )(I ⊗ P)[R(v2 ⊗ v3) ⊗ v1] and v1 ⊗ R(v2 ⊗ v3)

for the left- and right-hand sides respectively, which are clearly equal. This completes
the proof. ��
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Remarks 4.3. • Obviously the operator ρR(τ ) is not local in the strict sense: it acts
non-trivially on all tensor factors. However, its action does not mix vectors within
the tensor factors, it only permutes them globally.
• We think the following is an interesting question: given R, how much bigger is the
image ρR(NBn) than ρR(Bn)?Note that while the subgroup generated by σ1, . . . , σn
has index 2n in NBn [7] Bn = 〈σ1, . . . , σn−1〉 has infinite index. If |ρR(Bn)| < ∞
is |ρR(NBn)| < ∞?
• In the degenerate n = 2 case we have B2 ∼= Z, so that any R ∈ Aut(V⊗2)

gives a representation of B2. Setting ρR(τ ) = P defines an extension to NB2 if
R is symmetric in the standard product basis of V ⊗ V : we have that ρR(σ1) =
R, ρR(τ ) = P , and ρR(σ2) = PRP . The only relation that needs checking is
ρR(σ1σ2σ1) = ρR(σ2σ1σ2) i.e., RPRPR = PRPRPRP which is satisfied if R is
symmetric i.e.,PRP = R. Note that (B1) does not hold for every R satisfying the
Yang-Baxter equation, as the following example illustrates.

Example 4.4. Consider dim V = 2 and R = 1√
2

⎛
⎜⎝

1 0 0 1
0 1 −1 0
0 1 1 0

−1 0 0 1

⎞
⎟⎠. This gives us that

ρR(σ1σ2σ1)(e2 ⊗ e1) �= ρR(σ2σ1σ2)(e2 ⊗ e1).

Thus mapping ρR(τ ) = P does not define an extension of ρR from B2 to NB2.

For the matrix R of this example we have verified the following conjecture for n ≤ 5,
showing that the image of NBn can be significantly larger than that of Bn .

Conjecture 4.5. Given the above R and n ≥ 3, |ρR(NBn)| = n|ρR(B Ãn)| =
n2n|ρR(Bn)|.

4.1. Gaussian braided vector spaces. From the above discussion, any unitary BVS pro-
vides a local representation ofBn , which can be extended to a representation ofNBn in
two ways: (1) the standard extension (Lemma 2.1) and (2) the n-cycle extension of The-
orem 4.2. In this subsection we consider extensions of the Gaussian representations first
studied by Jones [27] and analyzed in [22]. As the matrix representations are somewhat
unwieldy, we take a more algebraic approach.

As in [22], we define ES(m, n − 1) as the algebra generated by u1, . . . , un−1 with
the relations umi = 1, uiui+1 = q2ui+1ui , and uiu j = u jui if |i − j | > 1 where

q =
{
e2π i/m, if m odd
eπ i/m, if m even

. Setting ϕn(σi ) = ∑m−1
j=0 q j2u j

i defines a homomorphism

ϕn : Bn → ES(m, n−1). To get a braided vector space from ES(m, n−1) it is enough to
find a vector space V andU ∈ Aut(V⊗2) such that the map ui 
→ I⊗i−1

V ⊗U ⊗ I⊗n−i−1
V

defines a representation of ES(m, n − 1) on V⊗n . Let V ∼= C
m, with standard basis

{ei |0 ≤ i ≤ m−1}. Define ei+m = ei , andU ∈ End(V⊗2) byU (ei ⊗ e j ) = q j−i ei+1 ⊗
e j+1. In [22] it was shown that ui 
→ Ui := I⊗i−1 ⊗ U ⊗ I⊗n−i−1 gives a ∗-algebra
homomorphism (where u∗

i = u−1
i ) from ES(m, n − 1) to End(V⊗n). It was also shown

that R := 1√
m

∑m−1
j=0 q j2U j is a unitary operator. Composingwithϕn weobtain a unitary

representation �n : Bn → Aut(V⊗n), where �n(σi ) = 1√
m

∑m−1
j=0 q j2U j

i .
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To extend this idea to NBn first we extend ES(m, n − 1) to another algebra,
NES(m, n). We define NES(m, n) to be the algebra generated by u1, . . . , un−1, t sub-
ject to the following relations:

(1) umi = 1 = tn

(2) uiui+1 = q2ui+1ui for all 1 ≤ i ≤ n − 2
(3) uiu j = u jui if |i − j | �= 1,
(4) tui t−1 = ui+1 for all 1 ≤ i ≤ n − 2

where q is either an mth or 2m root of unity as above.
Notice that NES(m, n) isnearly a semidirect product of ES(m, n−1)withZn , except

that tun−1t−1 is not in NES(m, n − 1). To make the connection to NBn clearer, and
to remedy this defect we introduce a useful auxiliary generator to obtain a presentation
with more familiar modulo n relations:

Lemma 4.6. If we define un := tun−1t−1 then un satisfies (1) above, relations (2) and
(4) above hold modulo n and the condition in (3) can be replaced with |i − j | �≡ 1
mod n.

Proof. Since tn−2u1t−n+2 = un−1 and tn = 1 we have tn−1u1t1−n = un proving that
(4) holds modulo n. Next we see that

un−1un = tun−2un−1t
−1 = q2tun−1t

−1tun−2t
−1 = q2un−1un

as desired, with unu1 = q2u1un verified similarly. For (3) it is enough to check that un
commutes with un−2 (with n ≥ 4). This is also straightforward:

unun−2 = tun−1t
−1tun−3t

−1 = tun−3un−1t
−1 = un−2un .

��
Observe that the algebra NES(m, n) is a finite dimensional semisimple algebra over

Q(q). Indeed, NES(m, n) is essentially a group algebra. Next we show thatNBn admits
a representation in NES(m, n).

Theorem 4.7. Themap ϕ̂n : NBn → NES(m, n)∗ byσi 
→ Ri (m) = 1√
m

∑m−1
j=0 q j2u j

i

and τ 
→ t is a group homomorphism.

Proof. As shown in [22, Proposition 3.1], the relation ϕ̂n(σ1σ2σ1) = ϕ̂n(σ2σ1σ2),
and ϕ̂n(σ1σ j ) = ϕ̂n(σ jσ1) for 2 < j < n are true. From the definition of t ,
ϕ̂n(τσiτ

−1) = ϕ̂n(σi+1) and ϕ̂n(τ )2n = 1. Thus we have ϕ̂n is a representation of
NBn into NES(m, n). ��

To obtain a representation of NBn again let V ∼= C
m , with standard basis

{e0, . . . , em−1} with ei+m = ei . Now define U, T ∈ End(V⊗2) by U (ei ⊗ e j ) =
q j−i ei+1 ⊗ e j+1 and T (ei ⊗ e j ) = e j ⊗ ei . Further define, for any n ≥ 2, elements of
Aut(V⊗n):

X := (T ⊗ I⊗n−2)(I ⊗ T ⊗ I n−3) · · · (I⊗n−2 ⊗ T )

and Ui := I⊗i−1 ⊗U ⊗ I⊗n−i−1 for each 1 ≤ i ≤ n − 1. Notice that

X (ei1 ⊗ · · · ⊗ ein ) = ein ⊗ ei1 ⊗ · · · ⊗ ein−1 .
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Proposition 4.8. The map � given on generators by ui 
→ Ui and t 
→ X defines a
representation of N ES(m, n) on V⊗n.

Observe that we only need to verify relations (1)-(4) above.

Proof. It is clear that Ui commutes with Uj if |i − j | �= 1 proving (3). Also,

Um(ei ⊗ e j ) =
{
q(m− j)( j−i)q( j−i−m)( j−i)q( j−i)i ei ⊗ e j = ei ⊗ e j i ≤ j
q(m−i)( j−i)q(i− j−m)( j−i)q( j−i) j ei ⊗ e j = ei ⊗ e j i > j.

Notice that X has order n, hence (1) is satisfied. A straightforward calculation shows
that XUi X−1 = Ui+1, i.e., (4). From this we see that for (2) it is sufficient to check
the last relation on NES(m, n) for U1,U2 with n = 3, which has been verified in [42]:
U1U2(ei ⊗ e j ⊗ ek) = q2U2U1(ei ⊗ e j ⊗ ek). ��

Observe that � ◦ ϕ̂ : NBn → Aut(V⊗n) gives a local representation of NBn . The
case m = 2 has the realisation given in Example 4.4, and conjecturally has finite image.
More generally, in [22] it is shown that the restricted image ϕ̂(Bn) in ES(m, n − 1)
is finite. We wish to follow a similar approach to show that the image of ϕ̂n(NBn) is
also finite. Notice that the monomials in NES(m, n) have the following normal form:
tαuα1

1 · · · uαn
n where 0 ≤ α < n and 0 ≤ αi < m. In fact, we see that these n(m)n

monomials form a basis for NES(m, n) over Q(q). The structure of NES(m, n) is
more complicated than ES(m, n−1), which is actually simple for n odd and has exactly
m simple components for n even [42]. We let ϕ̂n(NBn) ⊂ NES(m, n) act on the span
of Û = {uα1

1 · · · uαn
n } by conjugation. Since conjugation by t obviously permutes this

spanning set,
We first show that the conjugation action of Ri (m) also permutes this set. The same

approach as in [22] works here: (note we may omit the scalar 1√
m

in Ri (m) in these
calculations):

qu−1
i ui+1Ri (m) = qu−1

i ui+1

m−1∑
j=0

q j2u j
i = q−1ui+1u

−1
i

m−1∑
j=0

q j2u j
i

= q−1
m−1∑
j=0

q j2ui+1u
j−1
i = q−1

m−1∑
j=0

q j2(q−2( j−1))u j−1
i ui+1

=
m−1∑
j=0

q−1q j2q−2 j+2u j−1
i ui+1

=
⎛
⎝

m−1∑
j=0

q( j−1)2u j−1
i

⎞
⎠ ui+1 = Ri (m)ui+1

and

q−1ui−1ui Ri (m) = quiui−1

m−1∑
j=0

q j2u j
i

= qui

m−1∑
j=0

q j2ui−1u
j
i = qui

m−1∑
j=0

q j2q2 j u j
i ui−1
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=
m−1∑
j=0

qq j2q2 j u j+1
i ui−1

=
⎛
⎝

m−1∑
j=0

q( j+1)2u j+1
i

⎞
⎠ ui−1 = Ri (m)ui−1.

This shows that Ri (m)ui+1Ri (m)−1 = qu−1
i ui+1 and Ri (m)ui−1Ri (m)−1 = q−1ui−1ui .

Thus conjugation by Ri (m) permutes the spanning set Û up to scalars that are roots of
unity (i.e., powers of q). Thus ϕ̂n(NBn) is finite modulo the center. The subalgebra of
NES(m, n) generated by ϕ̂n(NBn) is semisimple, so that the faithful representation of
ϕ̂n(NBn) on NES(m, n) decomposes into full matrix algebras. Thus any element x of
the center of ϕ̂n(NBn) acts via a scalar matrix on each irreducible subrepresentation.
But since the generators of ϕ̂n(NBn) have determinant a root of unity (of degree m or
n), the scalar x is also a root of unity of degree only depending on m and n (indeed
the degree of each irreducible representation depends only on m, n). Thus the center of
ϕ̂n(NBn) is a finite group and has finite index, so ϕ̂n(NBn) is a finite group.

4.2. Quaternionic representation. Similar to the Gaussian Braided Vector Space, the
idea is to take a finite group (in this case Q8) and consider the group algebra with
n copies of the group, where the generators will interact with ‘close’ neighbours in a
specific way, but commute with ‘far’ neighbours. Let q = e2iπ/6 and [, ] denote the
group commutator. Similar to the Gaussian case, we take the algebra Qn defined in [41],
and define Qn to be (almost) a semi-direct product of Qn with Zn the algebra generated
by t, u1, . . . , un−1, v1, . . . , vn−1 with the following relations:

(1) u2i = v2i = −1 for all i ,
(2) [ui , v j ] = −1 if |i − j | < 2,
(3) [ui , v j ] = 1 if |i − j | ≥ 2,
(4) [ui , u j ] = [vi , v j ] = 1 = tn ,
(5) tui t−1 = ui+1, and tvi t−1 = vi+1 for all i .

As in the Gaussian case, we have the following lemma.

Lemma 4.9. Defining, in Qn, un := tun−1t−1 and vn := tvn−1t−1, vn, un satisfy rela-
tions (1) − (5) with indices mod n (defining v0 = vn and vn+1 = v1).

Proof. Wemust check that un and vn also satisfy the relations (1)–(5). For (1), note that
u2n = (tun−1t−1)2 = tu2n−1t

−1 = −1 = tv2n−1t
−1 = (tvn−1t−1)2 = v2n . The relation

(5) follows from the definition of un , vn and tn = 1; tunt−1 = t (tun−1t−1)t−1 =
t (tn−1u1t−n+1)t−1 = tnu1t−n = u1 and similarly tvnt−1 = v1. For (2) and (3), we
will first consider [un, v j ]. Doing so gives the following:

[un, v j ] = [tun−1t
−1, v j ] = tun−1t

−1v j tu
−1
n−1t

−1v−1
j

= tun−1v j+1u
−1
n−1v

−1
j+1t

−1

= t[un−1, v j+1]t−1.

Similarly [u j , vn] = t[u j+1, vn−1]t−1. Thus the relation (3) holds for |i − j | mod n ≥
2. For (2) we need to check the above equation, j = 1, n − 1, n.

[un, v1] = [t−1u1t, v1] = t−1[u1, v2]t = −1
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[un, vn−1] = [tun−1t
−1, tvn−2t

−1] = t[un−1, vn−2]t−1 = −1

[un, vn] = [tun−1t
−1, tvn−1t

−1] = t[un−1, vn−1]t−1 = −1.

Hence (2) holds for |i− j | mod n < 2. Lastly (4) holds from [un, u j ] = t[un−1, u j ]t−1

and [vn, v j ] = t[vn−1, v j ]t−1. ��
Theorem 4.10. The map ξn : NBn → Q×

n given by ξn(σi ) = −1
2q (1 + ui + vi + uivi ) and

ξn(τ ) = t defines a group homomorphism.

Proof. Similarly as in the Gaussian case above, we use Lemma 1.2 and [41] to reduce
to checking ξn(τσiτ

−1) = ξn(σi+1) and [ξn(τ )]2n = 1. These are both immediate from
the (last two) relations in Qn . ��

Interestingly, Qn does not have an obvious local representation. Instead, we obtain a
3-local representation, (see [23, Theorem 5.28]). On the other hand, we can easily show
that the image ξn(NBn) is a finite group. First we show that,the conjugation action on
the subalgebra Q̂n generated by u1, . . . , un, v1, . . . , vn is finite as follows. Observe that
Q̂n is spanned by monomials of the form

uε1
1 · · · uεn

n v
ν1
1 · · · vνn

n

where nonzero εi , νi ∈ {0,±1}. The action of ξn(τ ) = t obviously permutes this
generating set. We can now compute, with k = i ± 1:

uiξn(σi ) = −1

2q
ui (1 + ui + vi + uivi ) = −1

2q
(ui − 1 + uivi − vi )

= −1

2q
(vi uivi + uivi uivi + uivi + uiuivi ) = −1

2q
(vi + uivi + 1 + ui )uivi )

= ξn(σi )uivi

and

viξn(σi ) = −1

2q
vi (1 + ui + vi + uivi ) = ξn(σi )ui

ukξn(σi ) = −1

2q
uk(1 + ui + vi + uivi ) = ξn(σi )ukvi

vkξn(σi ) = −1

2q
vk(1 + ui + vi + uivi ) = ξn(σi )(−uivivk).

Thus the conjugation action of ξn(NBn) permutes a spanning set up to roots of unity
so that ξn(NBn) is finite modulo its center.

Now again, as in the Gaussian case we can see that the Qn is a finite dimensional
semisimple algebra and the restriction to the center of ξn(NBn) on any irreducible
subrepresentation of the faithful regular representation gives a scalar of finite order,
hence ξn(NBn) has finite center and is thus a finite group.
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5. Extending Low-Dimensional Bn Representations

There are gaps in the irreducible representation degrees of Bn (see [29] and references
therein): for exampleBn has no irreducible representations of dimension 2 ≤ d ≤ n−3,
for n ≥ 5.

Lemma 5.1. Let (ρ, V ) to be an irreducible NBn representation, w ∈ V , and 0 < α

be minimal such that τ−αw ∈ span{τ−γ w|0 ≤ γ < α}. Then τ−(α+1)w ∈
span{τ−γ w|0 ≤ γ < α}.

Proof. We have that τ−αw =
−α+1∑
i=0

aiτ
−iw for ai scalars. Then

τ−(α+1)w = τ−1(τ−αw) = τ−1

(
α−1∑
i=0

aiτ
−iw

)

=
α−1∑
i=0

aiτ
−i−1w

=
(

α−1∑
i=1

ai−1τ
−iw

)
+ τ−αw

which is in the span of {τ−γ w|0 ≤ γ < α}. ��
Theorem 5.2. Let n ≥ 5 and (ρ, V ) be an irreducible NBn representation. If dim V =
n − 2, then φ = ρ|Bn is also irreducible.

Proof. Assume that (V, ρ) is an irreducibleNBn representation and to the contrary that
ρ|Bn is not irreducible. So we have that there exists a proper nonempty subspace W (of
minimal dimension, 1 ≤ q < n − 2) of V such that (φ|W ,W ) is a Bn representation.
Note that W being minimal dimension guarantees that (φ|W ,W ) is irreducible. Since
n ≥ 5, we have that the only irreducible representations of Bn of dimension strictly
less than n − 2 are 1-dimensional. Let W be spanned by the vector w ∈ V . Since W
is a Bn invariant space, we have that σiw = λiw for all 1 ≤ i ≤ n − 1 (i.e., w is an
eigenvector for all ρ(σi )). Since the σi are conjugate to each other, we have that w is an
eigenvector of the same eigenvalue. Since τ 2n = 1 and V is irreducible, we also have that
ρ(τ)±n = ±1. Note that M = {w, τ−1w, · · · , τ−nw} is linearly dependent and that the
span of M is τ invariant. We may extract a basis β = {τ−α1w, τ−α2w, . . . , τ−αkw|0 ≤
α1 < α2 < · · · < αk ≤ n} for Q = span(M). Since Q is τ invariant, we may instead
use the basis β ′ = τα1β. This gives us that w ∈ β ′. From the above lemma, we obtain
β ′ = {w, τ−1w, . . . , τ−αw} (where α < n − 2) is a basis for Q. The restriction that
α < n − 2 is from the fact that Q is a subspace of V , and therefore dim Q ≤ n − 2.

Let 0 ≤ γ ≤ α < n − 2. This means that σγ+1 ∈ Bn . From the relation
τγ σ1τ

−γ = σγ+1, we get that σ1τ
−γ w = τ−γ σγ+1w = λ(τγ w). This gives us that Q

is also σ1 invariant. Hence Q is both τ and σ1 invariant, and therefore NBn invariant.
Since V was irreducible, we have that Q = V . This means that β ′ is also a basis for V ,
and in this basis, ρ(σ1) = λ · idV . Hence

ρ(σ2) = ρ(τ)ρ(σ1)ρ(τ−1) = λρ(τ)ρ(τ−1) = λ · idV = ρ(σ1).

This gives us that ρ(τ)ρ(σ1) = ρ(σ1)ρ(τ ). Which would give us a contradiction that
(ρ, V ) is not an irreducible NBn representation. ��
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We can now show that NBn also has gaps in its irreducible representation degrees:

Corollary 5.3. For n ≥ 5, the only irreducible representations of NBn of dimension at
most n − 3 are 1-dimensional.

Proof. Assume to the contrary that (ρ, V ) is an irreducible representation of NBn with
2 ≤ dim V < n − 2. Note that ρ|Bn can not be irreducible, since Bn has no irreducible
representations of dimension between 2 and n − 3. Hence there exists a 1 dimensional
subrepresentaion ofBn . Following the proof of Theorem 5.2, we would get that ρ(NBn)

is abelian, and therefore not irreducible. ��
The following theorem is similar to the one above it, but it has the additional assump-

tion that ρ|Bn is completely reducible.

Theorem 5.4. Let n ≥ 5 and (ρ, V ) be an irreducible NBn representation. If dim V =
n − 1 and ρ|Bn is completely reducible, then ρ|Bn is also irreducible.

Proof. Assume to the contrary that ρ|Bn is completely reducible and not irreducible.
Then we have two possibilities, V = ⊕n−1

i=1 Wi or V = W ⊕ U where W,Wi are all
1-dimensional subrepresentations, and U is an n-2 irreducible subrepresentation of V
forBn . In either case, we have the existence of a 1-dimensional subrepresentation. From
here, we follow the proof of Theorem 5.2, and note that the inequality that α < n − 2
becomes α ≤ n − 2. However, this still ensures that Q is σ1 invariant, because again,
σn−1 = τ n−2σ1τ

−n+2. So again, we would get the contradiction that (ρ, V ) is not an
irreducible representation of NBn . ��
Remark 5.5. Consider the unreduced Burau representation, which is defined as follows:

σi 
→
⎛
⎜⎝

Ii−1
1 − t t
1 0

In−i−1

⎞
⎟⎠. It can easily be verified that the (n×1) vector of all 1’s

is fixed by all of the σ ′
i s. Consider the mapping τ →

(
0 an−1

1
a · In−1 0

)
where In−1 is the

n − 1 × n − 1 identity. It can be checked that ρ(τ−1σiτ) = ρ(σi+1) and ρ(τ)2n = In .
Thus it gives us a representation of NBn . Note that any invariant subspace of ρ(NBn)

will also be invariant under ρ(Bn). It is known that the Burau representation is reducible
with invariant subspaces of dimension 1 and n−1. The 1 dimensional subrepresentation
is spanned by the vector of 1’s. The other is the subspace of C

n of all vectors whose
entries add up to 0. If a �= 1, then we get that the vector of 1′s is not fixed by τ . If
an �= 1, then we get that τ does not fix the n − 1-dimensional subspace. This means
that if NBn has no invariant subspaces. Therefore if an �= 1, then the extension of the
Burau representation described above is an irreducible representation of NBn whose
restriction to Bn is reducible. As this shows, there exist irreducible representations of
NBn of dimension n whose restriction to Bn is no longer irreducible.

5.1. Irreducible representations of dimension 2. From the fact that τ has order 2n,

we may assume that we have chosen a basis for V such that ρ(τ) =
(
t1 0
0 t2

)
where

t1, t2 are 2nth roots of unity. As stated before, for all n ≥ 5, there are no irreducible 2
dimensional representations. This means we need only consider n = 2, 3, and 4. Since
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Table 1. Dimension 2 representations of NBn , 2 ≤ n ≤ 4. Here ω is a primitive 3rd root of unity

ρ(σ1) ρ(τ) Restrictions(
a 1

a2 − ad + d2 d

) (−t2 0
0 t2

)
a �= d

(
a 1

−a2 + ad − d2 d

)
±

(
1 0
0 i

)
, ±

(
i 0
0 1

)
a �= d, n = 2

(
a 1

−1
2 (a2 − ad + d2) d

)
±

(
e±i π

3 0
0 1

)
, ±

(
1 0

0 e±i π
3

)
, a �= d, n = 3

±
(
ei

2π
3 0

0 ei
π
3

)
, ±

(
ei

π
3 0

0 ei
2π
3

)
,

(
ωd 1
c d

)
±

(
1 0

0 e±i 2π3

)
, ±

(
e±i 2π3 0

0 e∓i 2π3

)
d �= 0, c �= ωd2, n = 3

we are wanting irreducible reps, we have that t1 �= t2. Similarly we have that ρ(σ1) is
not upper or lower triangular, as otherwise (1, 0) or (0, 1) would generate an invariant

subspace. Due to rescaling, we may assume that ρ(σ1) =
(
a 1
c d

)
. Since we do not want

diagonal or triangular matrices, this means that c �= 0. Wanting our representations to
be irreducible, we also have at least one of a or d are nonzero.

Proposition 5.6. Any irreducible dimension 2 representation of NB2,NB3 or NB4 is
isomorphic to one of those forms in Table 1.

6. Representations from Topological Physics

The category-theoretic approach to TQFTs as well as its statistical-mechanical predeces-
sor suggest that similar techniques should yield physically relevant necklace braid group
representations. Here we discuss some related ideas from braided fusion categories and
spin chain models that to illustrate this direction.

6.1. Representations from braided fusion categories. From any (unitary) braided fusion
category CWalker andWang [52] construct a (3+1)-TQFT. In the extreme case of mod-
ular C their construction is degenerate. In the other extreme case of a symmetric braided
fusion category of the form Rep(G) for a finite group G one recovers the Dijkgraaf-
Witten theory [16]. The most interesting case is neither symmetric nor modular. As we
expect a (3 + 1)TQFT to provide representations of motion groups of links in R

3 or S3,
we briefly explore this possibility directly from the categorical perspective.

Given a braided fusion categoryCwe obtain from any object X a representation ofBn
on End(X⊗n), via the braiding cX,X (we use the notation of [42], and assume C is strictly
associative for notational convenience). More specifically, the map σi 
→ Id⊗i−1

X ⊗
cX,X ⊗ Id⊗n−i−1 defines a group homomorphism Bn → Aut(X⊗n), which we may
regard as a categorical representation ofBn . If {Xi } is a complete set of representatives of
the isomorphism classes then Aut(X⊗n) acts faithfully onHX,n := ⊕

i Hom(Xi , X⊗n)

by composition, which then gives us an honest linear representation (ρX ,HX,n) of Bn .
Are there categorical representations of NBn? That is, group homomorphisms NBn →
Aut(Y (n)) for some objectsY (n) depending on n?As the representations (ρX ,HX,n) are
completely reducible wemay extend them toNBn in the standard way as in Theorem 2.2
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by rescaling the image of γ . It would be interesting to find categorical non-standard
extensions.

One cannot expect categorical Bn representations to admit extensions to the loop
braid group LBn . Of course if the braiding cX,X is symmetric: c2X,X = IdX⊗X then we
can extend (ρX ,HX,n) toLBn by si → σi . However, the map σi 
→ si savagely reduces
LBn to the symmetric group Sn , so this is not an interesting choice.

The annular braid group CBn does admit such representations as follows (cf. [38]).
Let X,Y be objects in a braided fusion category, and set

Ri = IY ⊗ I⊗i−1
X ⊗ RX,X ⊗ I⊗n−i−1

X ∈ End(Y ⊗ X⊗n)

for 1 ≤ i ≤ n − 1, αY,X = (RX,Y RY,X ⊗ I⊗n−1
X ) and TY,X = αY,X R1 · · · Rn−1.

Then σi → Ri and τ → TY,X satisfy (B1), (B2) and (N1) after defining Rn =
TY,X Rn−1T

−1
Y,X . Notice that (B1) and (B2) are immediate for small i but we must check

that Rn−1RnRn−1 = RnRn−1Rn and R1RnR1 = RnR1Rn and the far-commutation for
Rn with R2, . . . , Rn−2. Observing that αY,X commutes with R j for 2 ≤ j ≤ n, relation
(N1) can be seen in the following way:

TY,X Ri

= αY,X R1 · · · Ri−1Ri Ri+1Ri · · · Rn−1 = αY,X R1 · · · Ri−1Ri+1Ri Ri+1 · · · Rn−1

= αY,X Ri+1R1 · · · Ri−1Ri Ri+1 · · · Rn−1 = Ri+1αY,X R1 · · · Rn−1

= Ri+1TY,X .

For such a representation to factor overNBn one needs (TY,X )2n = IdY⊗X⊗n . Of course
if this is required for all n then T 2

Y,X = IdY,X–which is precisely the condition that
X and Y centralise each other in the sense of Müger [36]. If Y is transparent [8] then
this condition is satisfied for all X . Indeed, in [12] a 3 loop configuration with fermion
interactions is considered, which would be a particular case of this set up.

Example 6.1. Consider the Ising braided fusion category with simple objects 1, ψ and
σ . Setting Y = ψ (the Majorana fermion) and X = σ (the Ising anyon) we find that
cX,Y cY,X = −IdY⊗X where Y ⊗ X ∼= σ so that IdY⊗X ∈ End(σ ) ∼= C. In particular
αY,X = −IdY⊗X⊗n , and we can easily adjust the scalar to ensure (TY,X )2n = Id. Since
Y ⊗ X⊗n ∼= X⊗n this does not provide a very interesting example.

6.2. Necklaces and spin chains. Beautiful classes of representations of Bn are con-
structed in statistical mechanics, both from open spin chains and from transfer matrices.
Drawn suitably, a necklace has some similarity with a ‘thickened’ periodic spin chain.

The main superficial difference withBn is that there is no algebraic way to make this
chain open. This in turn corresponds to the fact that, unlike the natural inclusion ofBn−1
in Bn , and similarly for LBn , NBn−1 does not include in an analogous way in NBn .

Consider for example the n-site XXZ spin chain [30]. Here we associate the leapfrog
motion σi to the local spin-spin interaction and, formally, the motion τ to the periodic
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symmetry of the chain. Naively this gives τ n = 1. But the physical system may be
endowed with what is sometimes called a cohomology seam, generally localised in a
boundary condition, (cf. e.g. [6,35]) so that the image of τ may generate groups of
various orders.

Let us start by using this construction to discuss Theorem2.2 a littlemore.Weproceed
as follows. Firstly, a neat way to construct the spin chain itself is from an XXZ TQFT
(cf. e.g. [18,26,30,33,49]—the ‘bordisms’ here are plane-embedded 1-manifolds) with
parameter q = t2. This system is monoidally generated by

.

SettingU = utu (hereafter we will simply identify elements with their images in the
category Vect as above, so that ut means transpose); and, for n given, setting Ui to be
U localised in the i-th position in an n-fold tensor product in the usual way, we recall
firstly that

H =
n−1∑
i=1

Ui

is the ‘open’ XXZ Hamiltonian, and also that

gi = 1 − qUi (6.1)

obeys the braid relation.Herewewriteρ for this representation (notationally suppressing
the dependencies on q and n).

For n = 2 there is nothing to check here, and yet it is not quite trivial viewed in the
context of Theorem 2.2. Factoring through (6.1) and ρ, the image of γ n=2 is simply

ρ(g21) =
⎛
⎜⎝
1
1 − q2 + q4 −q(1 − q2)
−q(1 − q2) q2

1

⎞
⎟⎠

with eigenvalues 1, q4. If q4 �= 1 or q2 = 1 then the Theorem applies directly (and gives
a very uninteresting representation). If q = i , however, the Theorem does not apply
directly (all eigenvalues are 1 but the matrix is not the identity matrix, so the representa-
tion of Bn is not completely reducible—indeed it contains a representation isomorphic
to that in Remark 2.4, for n = 2, as a direct summand). (The case of q = i exhibits non-
complete-reducibility for general even n. We start with n = 2 to postpone unhelpfully
non-trivial algebra.) We note for future reference that the ‘uninteresting’ representation
with q4 = −1 (to which the Theorem formally does apply) obeys ρ(τ 2n) = g41 = 1
without need of any renormalisation. Let us call this eventuality (D = 1 in Theorem 2.2)
a flat standard extension.

In general the problem of computing the spectrum of γ n here is a kind of elementary
integrable system (see e.g. [33]). By centrality it acts by a scalar on each indecomposable
summand of tensor space. These summands are indexed by the integers l congruent to
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n mod.2 (the XXZ charge or number of propagating lines as for example in [5]), so the
complete spectrum is given by

n \ l 0 1 2 3 4 5 6

0 1

1 1

2 q4 1

3 q6 1

4 q12 q8 1

5 q16 q10 1

6 q24 q20 q12 1

7 q30 q24 q14 1

(the general pattern for larger n will be clear). A necessary condition for ρ(γ 2n) = 1 is,
of course, that the only eigenvalue is 1. We see that for this to be true for all n (indeed
for it to be true for n = 5) we require q4 = 1. (And to be true for all even n we require
q8 = 1.) The case q2 = 1 factors through the symmetric group, so the more interesting
case is q2 = −1.

Proposition 6.2. Setting q2 = −1 then (a) for all odd n, ρ gives a representation of
NBn via ρ(τ) = ρ(γ ) (i.e. with trivial D). Furthermore ρ(τ n) �= 1. (b) for even n we
never get a representation this way, i.e. we do not get a flat standard extension.

Proof. (a) For odd n these representations of Bn are completely reducible by [33, §7.3
Th.2], and every eigenvalue of ρ(γ 2n) takes the form q4m for some m. Meanwhile the
spectrum of ρ(γ n) always contains 1 and q2m with m odd.
(b) For even n these representations are not completely reducible (they are faithful on
a non-semisimple quotient algebra). It remains to show in particular that ρ(γ 2n) has a
non-trivial Jordan form. To see this note that j = U⊗n/2 is both central and radical in the
quotient algebra; that γ expressed in the bordism basis contains j with non-vanishing
coefficient; and that this holds also for any power of γ .

The difference between odd and even cases is well-known in the XXZ setting, but
intriguing here. It again suggests to use a cohomology seam in the manner of [6,35].

Closed boundary conditions have been studied extensively in the XXZ and indeed the
wider spin chain setting (see e.g. [19] for recent references). The seam approach extends
the TQFT by an operator that acts only on the first position—represented in ‘bordisms’
by a blob [17,35]. A simple example of this is

(always localised in the first position in the tensor product). Such an extension intro-
duces a new ‘boundary’ parameter into the chain, normally given [35] by the value of
the ‘topological loop’ scalar
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(6.2)

(N.B. bottom-to-top stacking convention). Such an extension then allows the construc-
tion of a ‘seamed’ braid translation operator

β = (1 + x f)γ (6.3)

where x = q−q−1

q−1−yf
. Just as with γ itself in (2.3) we define g0 = βgn−1β

−1 whereupon

βgiβ
−1 = gi+1 (6.4)

with indices understood periodically [35]. Indeed this holds not only inρ but in the setting
of the algebra bn(q, a) of abstract generators gi and f. Thus we have the following.

Theorem 6.3. Applying the D-matrix method of Theorem 2.2 to the generators gi and
the braid translator β we obtain a two-parameter representation of NBn whenever the
corresponding complete reducibility condition is satisfied. The reducibility condition is
satisfied, for example, when the parameters q, a are indeterminate—i.e. on a Zariski
open subset of parameter space.

Proof. By (6.4) ζ 
→ β gives a representation of CBn . Since ζ n is central in CBn the
proof of Theorem 2.2 generalises. The Zariski open property follows from [35]. ��

The system required to determine the eigenvalues of βn , and hence determine the D
matrix explicitly, is substantially more involved than the γ case above. We will discuss
this elsewhere.
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